MPEx: A tool for exploring membrane proteins

Craig Snider,1 Sajith Jayasinghe,2 Kalina Hristova,3 and Stephen H. White1*

1Department of Physiology and Biophysics, Center for Biomembrane Systems, University of California, Irvine, California 92697-4560
2Department of Chemistry and Biochemistry, California State University, San Marcos, San Marcos, California 92096-0001
3Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218

Received 30 August 2009; Revised 18 September 2009; Accepted 21 September 2009
DOI: 10.1002/pro.256
Published online 25 September 2009 proteinscience.org

Abstract: Hydropathy plot methods form a cornerstone of membrane protein research, especially in the early stages of biochemical and structural characterization. Membrane Protein Explorer (MPEx), described in this article, is a refined and versatile hydropathy-plot software tool for analyzing membrane protein sequences. MPEx is highly interactive and facilitates the characterization and identification of favorable protein transmembrane regions using experiment-based physical and biological hydrophobicity scales. Besides allowing the consequences of sequence mutations to be examined, it provides tools for aiding the design of membrane-active peptides. MPEx is freely available as a Java Web Start application from our web site at http://blanco.biomol.uci.edu/mpex.

Keywords: topology; structure prediction; transmembrane helices; hydropathy plots; hydrophobicity; membrane protein explorer

Introduction

Elucidating the three-dimensional structures of membrane proteins continues to be a demanding and often slow process. Despite the exponential increase in the number of unique structures,1,2 many years will be required to obtain a representative collection of structural motifs.3 Biochemical and molecular biological studies guided by structure-analysis software is likely to be an important approach to membrane protein structure determination for many years to come, especially because topology prediction has improved significantly in the past few years.4

Sliding-window analysis of sequence hydrophobicity is a simple method for identifying putative TM segments of membrane protein sequences. Popularized by Kyte and Doolittle,5 sliding-window hydropathy analysis is often the first step in the analysis of secondary structure. A number of sophisticated software tools descended from the Kyte–Doolittle work can be found at http://ca.expasy.org/tools/. Although these tools are extremely useful, we designed membrane protein explorer (MPEx) to aid specific research projects of our laboratories. The first version of MPEx was born to aid our studies of the role of peptide bonds in the energetics of transmembrane helix stability,6 but evolved over time to serve other research needs, such as studies of the relative contribution of hydrophobic

Grant sponsor: National Institute of General Medical Sciences; Grant numbers: GM046823, GM066002, GM074637, GM066685; Grant sponsor: National Institute of Neurological Disorders and Stroke; Grant number: GM086685.

*Correspondence to: Stephen H. White, Department of Physiology and Biophysics, Center for Biomembrane Systems, University of California, Irvine, CA 92697-4560. E-mail: stephen.white@uci.edu

Published by Wiley-Blackwell. © 2009 The Protein Society
moment to translocon recognition of transmembrane segments and peptide partitioning into membrane interfaces. MPEx is a now a highly refined implementation of the sliding-window method that utilizes primarily experiment-derived physical and biological hydrophobicity scales, although other scales can be used. Implemented in Java (http://www.java.com), MPEx is a tool that provides an extendable framework not only for physical and biological hydropathy analyses, but β-barrel identification screening as well. MPEx also calculates and displays hydrophobic moment data, generates helical wheel displays, and allows direct comparison of different sliding-window plots.

General Features of MPEx
The graphical user interface of MPEx is divided into a plot window and a control panel, used for setting the plot parameters for the analysis mode [Fig. 1(A)]. MPEx has three analysis modes of operation and two utility modes that are available from a convenient tabbed interface. The analysis modes include physical-scale hydropathy analysis, translocon-scale hydropathy analysis, and β-barrel analysis. The utility modes include Totalizer for estimating the binding free energies of peptides to phosphatidylcholine interfaces. The other utility mode is Data-Buffer Overlay, which allows storage and graphical comparisons of different sliding-window plots. With this feature, for example, one can compare hydropathy plots of different proteins, or the same protein with amino acid mutations.

MPEx users can enter sequences for analysis in several ways: Sequences may be typed directly into MPEx, read from a saved sequence file, or read directly from the SwissProt or MPtopo databases. Results generated by MPEx include the analysis-plot data as well as a text output listing the TM segments predicted by the program and the parameter settings.
used to derive the generated data [Fig. 1(B)]. Moving
the cursor in the plot window along the analysis plot
displays the residues included in the sliding window in
the “Residues in Window” box on the control panel.
The center residue in the window is highlighted in red.
The MPEx plot window can be printed directly
(optionally including the control panel), or plot data
can be saved in ASCII format suitable for importing
into spreadsheet programs such as Microsoft Excel or
Microcal Origin, which makes it easy to produce pub-
lication-quality plots. Graphics and text generated by
MPEx can be printed or, in the case of the text output,
saved to disk. Work sessions may be saved and
restored between invocations of MPEx.

Hydropathy Analysis Mode
In hydropathy analysis mode, hydropathy plots are
generated using the augmented Wimley–White (WW)
experiment-based whole-residue hydrophobicity scale
described by Jayasinghe et al.6 This augmented scale
relies on measurements of the partitioning of hydro-
phobic pentapeptides14,15 and salt-bridge pairs16 into
n-octanol. Unlike other hydrophobicity scales, these
account for the energetic cost of partitioning the pep-
tide backbone as well as the side chains. Hence, they
are whole-residue scales. Jayasinghe et al.6 have
shown that accounting for the high-energetic penalty
of peptide-bond partitioning is crucial for accurate
detection of transmembrane helices in membrane pro-
tein sequences. Wimley and White17 also measured the
energetics of partitioning whole amino acid residues
into the interface of phosphatidylcholine membranes,
leading to a whole-residue interfacial (IF) hydropho-
bicity scale. Users of MPEx may choose the WW octa-
nol scale or the WW IF scale for hydropathy plots. In
addition, users may choose to make hydropathy plots
using the free energy differences between the WW oc-
tanol and IF scales (Octanol-IF scale), which estimates
the relative preference of an amino acid sequence for
partitioning as an unfolded chain into a phosphatidy-choline membrane interface or as an α-helix across the
membrane. The free energy differences between the
protonated and deprotonated forms of Asp, Glu, and
His are included in both the octanol and IF scales.
This makes it possible to determine the effects of the
protonation states of these residues on hydropathy
plot results.

The sliding-window size for the hydropathy plots
is 19 AA in the locate mode or freely selectable in the
scan mode. The locate mode is distinguished from the
scan mode by inclusion of the algorithms described by
Jayasinghe et al.6 for identifying candidate transmem-
brane helices. The octanol scale is the default scale for
hydropathy analysis.

Translocon TM Analysis Mode
Translocon TM analysis mode is a hydropathy analysis
of transmembrane proteins based on the molecular
code for transmembrane-helix recognition by the
Sec61 translocon.9,18 This code not only provided
measurements of the apparent hydrophobicity scale
used by the translocon, it established that the apparent
hydrophobicity value of a residue depends on its lo-
tation within the TM segment. For example, the hydro-
phobicity of Trp is very favorable when it is located at
the ends of TM helices but is much less favorable
when located in the center of a TM segment. Such
position dependences and helix length are accounted
for in the molecular code. An algorithm for identifica-
tion of TM segments using the molecular code has
been implemented9 as ΔGpred, a server-based analysis
tool available at http://www.cbr.su.se/DGpred. This
ΔGpred algorithm is used for the translocon TM anal-
ysis mode in MPEx. As in ΔGpred, users may select a
range of sliding window sizes, and plots are calculated
for each of them. Predictions of transmembrane
regions are based on comparison of favorable regions
among the different window sizes, with the most
favorable among conflicting or overlapping regions
being selected [Fig. 1(A)].

β-Barrel Analysis Mode
The β-barrel analysis mode does a screening analysis
for the identification of β-barrel membrane proteins
based on the analysis algorithm of Wimley.10 The algo-
rithm uses amino acid composition and architecture of
β-barrel proteins of known structure to make predic-
tions of TM β-strands, connecting β-hairpin loops, and
the number of likely TM β-strands. Scores are assigned
for the likelihood of an entire analysis sequence repre-
senting a β-barrel motif membrane, the number of β-
strand peaks, and for windows of user selected sizes
representing two potential β-strand regions and the
connecting β-hairpin loop. Predictions of β-strand and
β-hairpin regions are made based on these scores.

Utility Modes
MPEx provides a utility analysis module, Totalizer
[Fig. 1(C)], that is designed for investigating short
amino acid sequences such as peptides or protein seg-
ments and should be particularly useful in the design
of membrane-active peptides. Totalizer calculates
water-to-bilayer or bilayer-to-water transfer free ener-
gies of short sequences using the Wimley–White
hydrophobicity scales. In addition, Totalizer provides
the ability to investigate the consequence of acetylating
the N-terminus or amidating the C-terminus on
bilayer partitioning using free energy values and an
algorithm determined by Hristova and White.11 MPEx
also provides the ability to determine transfer free
energies of sequences to the bilayer interface as a
function of α-helical content based on measurements
of Ladokhin and White.19 Future versions of Totalizer
will account for electrostatic interactions of peptides
with bilayer interfaces20 and for the strong effects of
peptide helical hydrophobic moments.8 A particularly
useful feature of Totalizer is helical-wheel plots of peptide hydrophobic moments [Fig. 1(C)].

The MPEx Data Buffer utility allows saving and restoring analysis data and parameter settings for protein sequences to and from data buffers. The data sets stored in the data buffers can be directly compared with one another using the Data Buffer Overlays utility mode that superimposes hydropathy plots of different proteins or proteins with modified sequences.

Novel Features of MPEx

One of the most common ways of studying membrane protein function is by site-directed mutagenesis. How might a particular mutation affect the TM stability of a putative TM helix? This question is easily investigated in MPEx using the “change residue to” box. The plot-window cursor is moved along the sequence until the residue of interest is highlighted in red. The replacement residue is entered into the “change residue to” box and the control button pressed. MPEx tracks such sequence changes, allowing all changed residues to be reverted to the original ones.

Because the WW hydrophobicity scales include values for the deprotonated and protonated versions of Glu, Asp, and His, MPEx makes it easy to change the charge state of these residues by pushing the “change charge” button on the control panel. MPEx assumes a pH of 7.0, meaning that the defaults are negatively charged Asp and Glu and neutral His. The WW scales also include values for salt-bridged pairs. The “set salt bridges” button on the control panel allows charged residues in the sequence to be salt-bridged to examine the consequences of salt bridging in the physical-scale hydropathy plots. The effects of charge state and salt bridges in the translocon molecular code are unknown; consequently, the change-charge and salt-bridge options are not available in the translocon TM analysis mode.

Statistical studies of known membrane proteins as well as experimental evidence suggest that charged and aromatic residues play important roles in determining TM segment topology.21–23 Generally, the preferential positioning of amino acids seems to play an important role in membrane-protein assembly.7,9 Determining the location of residues such as arginine, lysine, and tryptophan in hydropathy plots helps identify segment ends in topology prediction. MPEx provides the ability to display the locations of specific amino acid types in the analysis plots. This feature can be used, for example, to locate positively charged residues in the context of the “positive inside rule”24 or to locate aromatic residues.

Finally, MPEx always computes, in the hydropathy and translocon TM analysis modes, the helical hydrophobic moments of the sliding windows using the selected scale. The HF moment sliding-window plots are not visible by default; they can be made visible from the control panel. Hydrophobic moments are useful for identifying regions of sequences that may have a high propensity for the membrane interface.

Availability

MPEx and its complete documentation are freely available at http://blanco.biomol.uci.edu/mpex. Visiting the web site and clicking on the “Start MPEx” button will guide the user through the acquisition of the Java virtual machine and Web Start technology required for installing MPEx. The Java/Web Start technology acquisition step will be bypassed if it is already present on the user’s computer. A valuable feature of the Web Start technology is that the parent web site is checked each time a Web Start program is started. If a newer version of the program is available, the software will be automatically updated.

Acknowledgments

The authors thank Dr. Alex Ladokhin for ideas and suggestions for improvements in MPEx and Mr. Michael Myers and Mr. Jung Kim for help with the MPEx documentation.

References