Interface connections of a transmembrane voltage sensor

Voltage-sensitive ion channels open and close in response to changes in transmembrane (TM) potential caused by the motion of the S4 voltage sensors. These sensors are α-helices that include four or more positively charged amino acids, most commonly arginine. The so-called paddle model, based on the high-resolution structure of the KvAP K+ channel [Jiang, et al. (2003) Nature 423, 33–41], posits that the S4 sensors move within the membrane bilayer in response to TM voltage changes. Direct exposure of S4 sensors to lipid is contrary to the classical expectation that the dielectric contrast between the membrane hydrocarbon core and water presents an insurmountable energetic penalty to burial of electric charges. Nevertheless, recent experiments have shown that a helix with the sequence of KvAP S4 can be inserted across the endoplasmic reticulum membrane. To reconcile this result with the classical energetics argument, we have carried out a molecular dynamics simulation of an isolated TM S4 helix in a lipid bilayer. The simulation reveals a stabilizing hydrogen-bonded network of water and lipid phosphates around the arginines that reduces the effective thickness of the bilayer hydrocarbon core to ≈10 Å in the vicinity of the helix. It suggests that bilayer phospholipids can adapt locally to strongly perturbing protein elements, causing the phospholipids to become a structural extension of the protein.
Proc Natl Acad Sci USA. 102:15059-15064.
[PubMed Abstract] [Reprint]

 

Self-Induced Docking Site of a Deeply Embedded Peripheral Membrane Protein

As a first step toward understanding the principles of the targeting of C2 domains to membranes, we have carried out a molecular dynamics simulation of the C2 domain of cytosolic phospholipase A2 (cPLA2-C2) in a 1-palmitoyl-2-oleoylphosphatidylcholine bilayer at constant pressure and temperature (NPT, 300 K and 1 atm). Using the high-resolution crystal structure of cPLA2-C2 as a starting point, we embedded two copies of the C2 domain into a preequilibrated membrane at the depth and orientation previously defined by electron paramagnetic resonance (EPR). Noting that in the membrane-bound state the three calcium binding loops are complexed to two calcium ions, we initially restrained the calcium ions at the membrane depth determined by EPR. But the depth and orientation of the domains remained within EPR experimental errors when the restraints were later removed. We find that the thermally disordered, chemically heterogeneous interfacial zones of phosphatidylcholine bilayers allow local lipid remodeling to produce a nearly perfect match to the shape and polarity of the C2 domain, thereby enabling the C2 domain to assemble and optimize its own lipid docking site. The result is a cuplike docking site with a hydrophobic bottom and hydrophilic rim. Contrary to expectations, we did not find direct interactions between the protein-bound calcium ions and lipid headgroups, which were sterically excluded from the calcium binding cleft. Rather, the lipid phosphate groups provided outer-sphere calcium coordination through intervening water molecules. These results show that the combined use of high-resolution protein structures, EPR measurements, and molecular dynamics simulations provides a general approach for analyzing the molecular interactions between membrane-docked proteins and lipid bilayers.
Biophys J 92:517-524.
[PubMed Abstract] [Reprint]

 

Rhomboid Protease Dynamics and Lipid Interactions

Intramembrane proteases, which cleave transmembrane (TM) helices, participate in numerous biological processes encompassing all branches of life. Several crystallographic structures of Escherichia coli GlpG rhomboid protease have been determined. In order to understand GlpG dynamics and lipid interactions in a native-like environment, we have exam- ined the molecular dynamics of wild-type and mutant GlpG in different membrane environments. The irreg- ular shape and small hydrophobic thickness of the protein cause significant bilayer deformations that may be important for substrate entry into the active site. Hydrogen-bond interactions with lipids are paramount in protein orientation and dynamics. Mutations in the unusual L1 loop cause changes in protein dynamics and protein orientation that are relayed to the His-Ser catalytic dyad. Similarly, mutations in TM5 change the dynamics and structure of the L1 loop. These results imply that the L1 loop has an important regulatory role in proteolysis.
Structure 17:395-405.
[PubMed Abstract] [Reprint]

 

Structure and hydration of membranes embedded with voltage-sensing domains

Despite the growing number of atomic-resolution membrane protein structures, direct structural information about proteins in their native membrane environment is scarce. This problem is particularly relevant in the case of the highly charged S1–S4 voltage-sensing domains responsible for nerve impulses, where interactions with the lipid bilayer are critical for the function of voltage-activated ion channels. Here we use neutron diffraction, solid-state nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics simulations to investigate the structure and hydration of bilayer membranes containing S1–S4 voltage-sensing domains. Our results show that voltage sensors adopt transmembrane orientations and cause a modest reshaping of the surrounding lipid bilayer, and that water molecules intimately interact with the protein within the membrane. These structural findings indicate that voltage sensors have evolved to interact with the lipid membrane while keeping energetic and structural perturbations to a minimum, and that water penetrates the membrane, to hydrate charged residues and shape the transmembrane electric field.
Nature 462:473-479.
[PubMed Abstract] [Reprint]