News Subscribe for rss news updates
- Members of the Bridge Institute at USC join the mpstruc team: We're pleased to announce that the Ray Stevens and Vadim Cherezov labs will join us in maintaining and improving the mpstruc database. Dr. Gye Won "Gracie" Han will be the voice of the group.
- Membrane-embedded structures now available!: Mark Sansom's lab at Oxford has created the MemProtMD database of all known transmembrane proteins embedded in lipid membranes, described in Stansfeld et al. (2015) Structure 23:1350-1361. Links to the structures are now included in mpstruc. Click on the icon, and you will be taken to the appropriate entry in MemProtMD.
- MPtopo XML data representations now available: XML representations are now available for the MPtopo membrane protein topology database.
Latest new protein entered: 30 Oct 2024 at 11:12 PDT.
Last database update: 30 Oct 2024 at 11:13 PDT
- Kisspeptin receptor (KISS1R) - Gq complex with bound TAK448: Homo sapiens, 2.68 Å
- P-Glycoprotein multi-drug transporter (ABCB1), L335C mutant, outward facing state: Mus musculus, 2.60 Å
- Photosystem I + ferredoxin supercomplex: Pisum sativum, 2.50 Å
- succinate receptor SUCNR1 (GPR91). Humanized (K18E, K269N mutant) in complex with a Nb and antagonist: Rattus norvegicus, 2.27 Å
- Atm1-type ABC exporter with MgADP bound: Novosphingobium aromaticivorans, 3.70 Å
- Glucagon receptor-Gs complex bound to a designed glucagon derivative: Homo sapiens, 3.10 Å
Unique proteins include proteins of same type from different species. For example, photosynthetic reaction centers from R. viridis and R. sphaeroides are considered unique. Structures of mutagenized versions of proteins already in the database are excluded as unique. Proteins that differ only by substrate bound or by physiological state are also excluded. Structures 'obsoleted' by the PDB are not included.
Total number of PDB coördinate files, including those for unique proteins. This number reflects the fact that published reports of structures often include several coördinate files describing, for example, the protein in different crystal forms, or with different bound substrates.
Search
|
|
---|---|
Limit 32 characters. Special characters in the search text should be explicitly represented. You can cut-and-paste them into the search string (the easiest approach), or they can be composed: e.g., on a Mac, Å can be composed with keyboard shift-option-A. See this page for more examples. |
|
0: perfect match, 10: match everything. Recommended values from 0 to 5. A value of 0 forces a case-sensitive search. (What is fuzzy search?). |
|
|
mpstruc database queries
|
|
---|---|
There are other ways of viewing the data in the mpstruc database besides the hierarchical view presented in the table on this page. The mpstruc database queries page (follow the above link) provides a list of queries on the database, some of which provide tables with sortable columns. Some of the queries may take a few moments. Query results are also available as XML data. Currently available queries include requesting a list of unique proteins, a list of all published reports, counting unique proteins by year, and counting all published reports by year. |
XML Representations
|
|
---|---|
An XML representation provides a convenient machine or human-readable format of the portion of the data table that has been made visible, and allows you to build software tools to consume it as you see fit. You can use the URLs adjacent to the buttons below to access the same view the corresponding button provides. |
|
This button generates an XML representation of the currently visible portion of the table. |
|
https://blanco.biomol.uci.edu/mpstruc/listAll/mpstrucTblXml | |
https://blanco.biomol.uci.edu/mpstruc/listAll/mpstrucMonotopicTblXml | |
https://blanco.biomol.uci.edu/mpstruc/listAll/mpstrucBetaBrlTblXml | |
https://blanco.biomol.uci.edu/mpstruc/listAll/mpstrucAlphaHlxTblXml | |
If your browser doesn’t directly display a nicely formatted XML page, it should provide a "view page source" menu selection that will. It should also provide a "save page" option so that you can download the XML formatted data. If you’re not familiar with XML and how to use it, a good source of information is available here. NOTES:Generated XML uses the following Document Type Definition (DTD): <!DOCTYPE mpstruc [ <!ELEMENT mpstruc (caption,groups*)> <!ATTLIST mpstruc createdBy CDATA #REQUIRED> <!ATTLIST mpstruc maintainedBy CDATA #REQUIRED> <!ATTLIST mpstruc copyright CDATA #REQUIRED> <!ATTLIST mpstruc url CDATA #REQUIRED> <!ATTLIST mpstruc lastNewProteinDate CDATA #REQUIRED> <!ATTLIST mpstruc lastDatabaseEditDate CDATA #REQUIRED> <!ATTLIST mpstruc timeStamp CDATA #REQUIRED> <!ELEMENT caption (#PCDATA)> <!ELEMENT groups (group*)> <!ELEMENT group (name,proteins,subgroups)> <!ELEMENT subgroups (subgroup*)> <!ELEMENT subgroup (name,proteins)> <!ELEMENT name (#PCDATA)> <!ELEMENT proteins (protein*)> <!ELEMENT memberProteins (memberProtein*)> <!ELEMENT protein (pdbCode,name,species,taxonomicDomain,expressedInSpecies,resolution,description, bibliography,secondaryBibliographies,relatedPdbEntries,memberProteins)> <!ELEMENT memberProtein (pdbCode,masterProteinPdbCode,name,species,expressedInSpecies,resolution, description,bibliography,secondaryBibliographies,relatedPdbEntries)> <!ELEMENT pdbCode (#PCDATA)> <!ELEMENT masterProteinPdbCode (#PCDATA)> <!ELEMENT species (#PCDATA)> <!ELEMENT taxonomicDomain (#PCDATA)> <!ELEMENT expressedInSpecies (#PCDATA)> <!ELEMENT resolution (#PCDATA)> <!ELEMENT description (#PCDATA)> <!ELEMENT bibliography (pubMedId,authors,year,title,journal,volume,issue,pages,doi,notes)> <!ELEMENT pubMedId (#PCDATA)> <!ELEMENT authors (#PCDATA)> <!ELEMENT year (#PCDATA)> <!ELEMENT title (#PCDATA)> <!ELEMENT journal (#PCDATA)> <!ELEMENT volume (#PCDATA)> <!ELEMENT issue (#PCDATA)> <!ELEMENT pages (#PCDATA)> <!ELEMENT doi (#PCDATA)> <!ELEMENT notes (#PCDATA)> <!ELEMENT secondaryBibliographies (bibliography*)> <!ELEMENT relatedPdbEntries (pdbCode*)> ]> |
|
PDB Code | Links |
Reference
(links are to PubMed) |
---|---|---|---|
MONOTOPIC MEMBRANE PROTEINS
Reviewed by Allen et al. (2018) Database of Peripheral Membrane Proteins |
|||
Cyclooxygenases
|
|||
Ram Prostaglandin H2 synthase-1 (cyclooxygenase-1 or COX-1): Ovis aries E Eukaryota, 3.5 Å
|
Picot et al. (1994).
Picot D, Loll PJ, & Garavito RM (1994). The x-ray crystal structure of the membrane protein prostaglandin H2synthase-1.
Nature 367 :243-249. PubMed Id: 8121489. |
||
Ram Prostaglandin H2 synthase-1 (COX-1): Ovis aries E Eukaryota, 3.4 Å
In complex with bromoaspirin. |
Loll et al. (1995).
Loll PJ, Picot D, & Garavito RM (1995). The structural basis of aspirin activity inferred from the crystal structure of inactivated prostaglandin H2 synthase.
Nat Struct Biol 2 :637-643. PubMed Id: 7552725. |
||
Ram Prostaglandin H2 synthase-1 (COX-1): Ovis aries E Eukaryota, 3.1 Å
In complex with flurbiprofen. |
Garavito et al. (1995).
Garavito RM, Picot D, & Loll PJ (1995). The 3.1 A X-ray crystal structure of the integral membrane enzyme prostaglandin H2 synthase-1.
Adv Prostaglandin Thromboxane Leukot Res 23 :99-103. PubMed Id: 7732912. |
||
Selinsky et al. (2001).
Selinsky BS, Gupta K, Sharkey CT, Loll PJ (2001). Structural analysis of NSAID binding by prostaglandin H2 synthase: time-dependent and time-independent inhibitors elicit identical enzyme conformations.
Biochemistry 40 :5172-5180. PubMed Id: 11318639. |
|||
Ram Prostaglandin H2 synthase-1 (COX-1): Ovis aries E Eukaryota, 3.2 Å
In complex with O-actylsalicylhydroxamic acid. |
Loll et al. (2001).
Loll PJ, Sharkey CT, O'Connor SJ, Dooley CM, O'Brien E, Devocelle M, Nolan KB, Selinsky BS, & Fitzgerald DJ (2001). O-acetylsalicylhydroxamic acid, a novel acetylating inhibitor of prostaglandin H2 synthase: structural and functional characterization of enzyme-inhibitor interactions.
Mol Pharmacol 60 :1407-1413. PubMed Id: 11723249. |
||
Ram Prostaglandin H2 synthase-1 (COX-1): Ovis aries E Eukaryota, 2.00 Å
In complex with alpha-methyl-4-biphenyl acetic acid. |
Gupta et al. (2004).
Gupta K, Selinsky BS, Kaub CJ, Katz AK, & Loll PJ (2004). The 2.0 Å resolution crystal structure of prostaglandin H2 synthase-1: structural insights into an unusual peroxidase.
J Mol Biol 335 :503-518. PubMed Id: 14672659. |
||
Ram Prostaglandin H2 synthase-1 (COX-1): Ovis aries E Eukaryota, 2.00 Å
In complex with flurbiprofen + Mn(III) PPIX cofactor. |
Gupta et al. (2006).
Gupta K, Selinsky BS, & Loll PJ (2006). 2.0 angstroms structure of prostaglandin H2 synthase-1 reconstituted with a manganese porphyrin cofactor.
Acta Crystallogr D Biol Crystallogr 62 :151-156. PubMed Id: 16421446. |
||
Ram Prostaglandin H2 synthase-1 (COX-1): Ovis aries E Eukaryota (expressed in Spodoptera frugiperda), 3.05 Å
3N8V is the unoccupied structure. R120Q/Native Heterodimer mutant in complex with Flurbiprofen, 2.75 Å: 3N8W COX-1 in complex with Nimesulide, 2.75 Å: 3N8X Aspirin Acetylated COX-1 in Complex with Diclofenac, 2.60 Å: 3N8Y COX-1 in Complex with Flurbiprofen, 2.90 Å: 3N8Z |
Sidhu et al. (2010).
Sidhu RS, Lee JY, Yuan C, & Smith WL (2010). Comparison of Cyclooxygenase-1 Crystal Structures: Cross-Talk between Monomers Comprising Cyclooxygenase-1 Homodimers.
Biochemistry 49 :7069-7079. PubMed Id: 20669977. |
||
Ram Prostaglandin H2 synthase-1 (COX-1) in complex with the subtype-selective derivative 2a: Ovis aries E Eukaryota (expressed in Spodoptera frugiperda), 3.35 Å
|
Friedrich et al. (2021).
Friedrich L, Cingolani G, Ko YH, Iaselli M, Miciaccia M, Perrone MG, Neukirch K, Bobinger V, Merk D, Hofstetter RK, Werz O, Koeberle A, Scilimati A, & Schneider G (2021). Learning from Nature: From a Marine Natural Product to Synthetic Cyclooxygenase-1 Inhibitors by Automated De Novo Design.
Adv Sci (Weinh) 8 16:2100832. PubMed Id: 34176236. doi:10.1002/advs.202100832. |
||
Prostaglandin H2 synthase-1 (cyclooxygenase-1 or COX-1): Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.36 Å
|
Miciaccia et al. (2021).
Miciaccia M, Belviso BD, Iaselli M, Cingolani G, Ferorelli S, Cappellari M, Loguercio Polosa P, Perrone MG, Caliandro R, & Scilimati A (2021). Three-dimensional structure of human cyclooxygenase (hCOX)-1.
Sci Rep 11 1:4312. PubMed Id: 33619313. doi:10.1038/s41598-021-83438-z. |
||
Cyclooxygenase-2: Mus musculus E Eukaryota, 3.0 Å
|
Kurumbail et al. (1996).
Kurumbail RG, Stevens AM, Gierse JK, McDonald JJ, Stegeman RA, Pak JY, Gildehaus D, Miyashiro JM, Penning TD, Seibert, K et al (1996). Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents.
Nature 384 :644-648. PubMed Id: 8967954. |
||
Cyclooxygenase-2 with bound indomethacin-ethylenediamine-dansyl conjugate: Mus musculus E Eukaryota (expressed in S. frugiperda), 2.22 Å
with bound indomethacin-butyldiamine-dansyl conjugate, 2.22 Å: 6BL3 |
Xu et al. (2019).
Xu S, Uddin MJ, Banerjee S, Duggan K, Musee J, Kiefer JR, Ghebreselasie K, Rouzer CA, & Marnett LJ (2019). Fluorescent indomethacin-dansyl conjugates utilize the membrane-binding domain of cyclooxygenase-2 to block the opening to the active site.
J Biol Chem 294 22:8690-8698. PubMed Id: 31000626. doi:10.1074/jbc.RA119.007405. |
||
Fatty acid α-dioxygenase (α-DOX): Arabidopsis thaliana E Eukaryota (expressed in E. coli), 1.70 Å
First structure of a member of the α-DOX subfamily of cyclooxygenase-peroxidase family of heme-containing proteins. With bound imidazole, 1.51 Å: 4HHR |
Goulah et al. (2013).
Goulah CC, Zhu G, Koszelak-Rosenblum M, & Malkowski MG (2013). The Crystal Structure of α-Dioxygenase Provides Insight into Diversity in the Cyclooxygenase-Peroxidase Superfamily.
Biochemistry 52 :1364-1372. PubMed Id: 23373518. doi:10.1021/bi400013k. |
||
Lipoxygenases
Related to Cyclooxygenases Rather than being tethered by α-helices at the interface, they are tethered by N-terminal β-sheet C2-like domains |
|||
Arachidonic acid 15-lipoxygenase from soybeans: Glycine max E Eukaryota, 2.60 Å
|
Boyington et al. (1993).
Boyington JC, Gaffney BJ, & Amzel LM (1993). The three-dimensional structure of an arachidonic acid 15-lipoxygenase.
Science 260 5113:1482-1486. PubMed Id: 8502991. doi:10.1126/science.8502991. |
||
Lipoxygenase-L1 from soybeans: Glycine max E Eukaryota, 1.40 Å
|
Minor et al. (1996).
Minor W, Steczko J, Stec B, Otwinowski Z, Bolin JT, Walter R, & Axelrod B (1996). Crystal structure of soybean lipoxygenase L-1 at 1.4 A resolution.
Biochemistry 35 33:10687-10701. PubMed Id: 8718858. doi:10.1021/bi960576u. |
||
Lipoxygenase-L3 from soybeans: Glycine max E Eukaryota, 2.60 Å
|
Skrzypczak-Jankun et al. (1997).
Skrzypczak-Jankun E, Amzel LM, Kroa BA, & Funk MO Jr (1997). Structure of soybean lipoxygenase L3 and a comparison with its L1 isoenzyme.
Proteins 29 1:15-31. PubMed Id: 9294864. doi:10.1002/(SICI)1097-0134(199709)29:1. |
||
8R-Lipoxygenase from coral: Plexaura homomalla E Eukaryota (expressed in E. coli), 3.20 Å
2FNQ supersedes 1ZQ4 |
Oldham et al. (2005).
Oldham ML, Brash AR, & Newcomer ME (2005). Insights from the X-ray crystal structure of coral 8R-lipoxygenase: calcium activation via a C2-like domain and a structural basis of product chirality.
J Biol Chem 280 47:39545-39552. PubMed Id: 16162493. doi:10.1074/jbc.M506675200. |
||
8R-Lipoxygenase from coral. Δ413-417 I805A mutant: Plexaura homomalla E Eukaryota (expressed in E. coli), 1.85 Å
|
Neau et al. (2009).
Neau DB, Gilbert NC, Bartlett SG, Boeglin W, Brash AR, & Newcomer ME (2009). The 1.85 A structure of an 8R-lipoxygenase suggests a general model for lipoxygenase product specificity.
Biochemistry 48 33:7906-7915. PubMed Id: 19594169. doi:10.1021/bi900084m. |
||
15-Lipoxygenase from rabbit reticulocytes: Oryctolagus cuniculus E Eukaryota, 2.40 Å
|
Gillmor et al. (1997).
Gillmor SA, Villaseñor A, Fletterick R, Sigal E, & Browner MF (1997). The structure of mammalian 15-lipoxygenase reveals similarity to the lipases and the determinants of substrate specificity.
Nat Struct Mol Biol 4 12:1003-1009. PubMed Id: 9406550. doi:10.1038/nsb1297-1003 . |
||
5-Lipoxygenase: Homo sapiens E Eukaryota (expressed in E. coli), 2.39 Å
|
Gilbert et al. (2011).
Gilbert NC, Bartlett SG, Waight MT, Neau DB, Boeglin WE, Brash AR, & Newcomer ME (2011). The structure of human 5-lipoxygenase.
Science 331 :217-219. PubMed Id: 21233389. doi:10.1126/science.1197203. |
||
15-Lipoxygenase-2 (15-LOX-2) with substrate mimic: Homo sapiens E Eukaryota (expressed in E. coli), 2.63 Å
|
Kobe et al. (2014).
Kobe MJ, Neau DB, Mitchell CE, Bartlett SG, & Newcomer ME (2014). The structure of human 15-lipoxygenase-2 with a substrate mimic.
J Biol Chem 289 :8562-8569. PubMed Id: 24497644. doi:10.1074/jbc.M113.543777. |
||
Squalene-Hopene Cyclases
|
|||
Squalene-hopene cyclase: Alicyclobacillus acidocaldarius B Bacteria, 2.0 Å
2SQC is space group P43212. 3SQC, 2.8 Å is P3221. |
Wendt et al. (1999).
Wendt KU, Lenhart A, & Schulz GE (1999). The structure of the membrane protein squalene-hopene cyclase at 2.0 Å resolution.
J. Mol. Biol. 286 :175-187. PubMed Id: 9931258. |
||
Oxidases
|
|||
Monoamine Oxidase B: Homo sapiens (Human) mitochondrial outer membrane E Eukaryota (expressed in Pichia pastoris), 3.0 Å
NOTE: MAOB has a single transmembrane helix that anchors it to the outer membrane (residues 489-515). Nevertheless, we consider it monotopic because the bulk of the 520-residue protein, including the active site, is not located within the membrane core. |
Binda et al. (2002).
Binda C, Newton-Vinson P, Hubálek F, Edmondson DE, & Mattevi A (2002). Structure of human monoamine oxidase B, a drug target for the treatment of neurological disorders.
Nature Struct Biol 9 :22-26. PubMed Id: 11753429. |
||
Monoamine Oxidase B with bound Isatin: Homo sapiens (Human) mitochondrial outer membrane E Eukaryota (expressed in Pichia pastoris), 1.70 Å
with bound Tranylcypromine, 2.20 Å: 1OJB with bound N-(2-aminoethyl)-p-chlorobenamide, 2.40 Å: 1OJC with bound Lauryldimethyl-amine N-Oxide, 3.10 Å: 1OJD with bound 1.4-Diphenyl-2-butene, 2.30 Å: 1OJ9 |
Binda et al. (2003).
Binda C, Li M, Hubálek F, Restelli N, Edmondson DE, & Mattevi A (2003). Insights into the mode of inhibition of human mitochondrial monoamine oxidase B from high-resolution crystal structures.
Proc Natl Acad Sci USA 100 :9750-9755. PubMed Id: 12913124. |
||
Monoamine Oxidase A: Rattus norvegicus (Rat) mitochondrial outer membrane E Eukaryota (expressed in S. cerevisiae), 3.20 Å
|
Ma et al. (2004).
Ma J, Yoshimura M, Yamashita E, Nakagawa A, Ito A, & Tsukihara T (2004). Structure of rat monoamine oxidase A and its specific recognitions for substrates and inhibitors.
J Mol Biol 338 :103-114. PubMed Id: 15050826. |
||
De Colibus et al. (2005).
De Colibus L, Li M, Binda C, Lustig A, Edmondson DE, & Mattevi A (2005). Three-dimensional structure of human monoamine oxidase A (MAO A): relation to the structures of rat MAO A and human MAO B.
Proc Natl Acad Sci USA 102 :12684-12689. PubMed Id: 16129825. |
|||
Monoamine Oxidase A with bound Harmine: Homo sapiens (Human) mitochondrial outer membrane E Eukaryota (expressed in S. cerevisiae), 2.20 Å
G110A mutant with bound Harmine, 2.17 Å: 2Z5Y |
Son et al. (2008).
Son SY, Ma J, Kondou Y, Yoshimura M, Yamashita E, & Tsukihara T (2008). Structure of human monoamine oxidase A at 2.2-Å resolution: The control of opening the entry for substrates/inhibitors.
Proc Natl Acad Sci USA 105 :5739-5744. PubMed Id: 18391214. |
||
Shiba et al. (2013).
Shiba T, Kido Y, Sakamoto K, Inaoka DK, Tsuge C, Tatsumi R, Takahashi G, Balogun EO, Nara T, Aoki T, Honma T, Tanaka A, Inoue M, Matsuoka S, Saimoto H, Moore AL, Harada S, & Kita K (2013). Structure of the trypanosome cyanide-insensitive alternative oxidase.
Proc Natl Acad Sci USA 110 :4580-4585. PubMed Id: 23487766. doi:10.1073/pnas.1218386110. |
|||
Hydrolases
|
|||
Fatty acid amide hydrolase: Rattus norvegicus E Eukaryota, 2.8 Å
NOTE: Like MAO, FAAH has a single TM segment. But the active site is external to the membrane, and many other residues on the protein surface contribute to membrane binding. Absence of the TM segment affects neither membrane association or function. |
Bracey et al. (2002).
Bracey MH, Hanson MA, Masuda KR, Stevens RC, & Cravatt BF (2002). Structural adaptations in a membrane enzyme that terminates endo cannabinoid signaling.
Science 298 :1793-1796. PubMed Id: 12459591. |
||
Okada et al. (2016).
Okada C, Wakabayashi H, Kobayashi M, Shinoda A, Tanaka I, & Yao M (2016). Crystal structures of the UDP-diacylglucosamine pyrophosphohydrase LpxH from Pseudomonas aeruginosa.
Sci Rep 6 :32822. PubMed Id: 27609419. doi:10.1038/srep32822. |
|||
LpxI phosphodiester hydrolase for lipid A biosynthesis: Caulobacter crescentus B Bacteria (expressed in E. coli), 2.90 Å
D225A mutant, 2.52 Å: 4GGI |
Metzger et al. (2012).
Metzger LE 4th, Lee JK, Finer-Moore JS, Raetz CR, & Stroud RM (2012). LpxI structures reveal how a lipid A precursor is synthesized.
Nature Struc Mol Biol 19 :1132-1138. PubMed Id: 23042606. doi:10.1038/nsmb.2393. |
||
Emptage et al. (2012).
Emptage RP, Daughtry KD, Pemble CW 4th, & Raetz CR (2012). Crystal structure of LpxK, the 4'-kinase of lipid A biosynthesis and atypical P-loop kinase functioning at the membrane interface.
Proc Natl Acad Sci USA 109 :12956-12961. PubMed Id: 22826246. doi:10.1073/pnas.1206072109. |
|||
N-acylphosphatidylethanolamine-hydrolyzing phospholipase D: Homo sapiens E Eukaryota (expressed in E. coli), 2.65 Å
|
Magotti et al. (2015).
Magotti P, Bauer I, Igarashi M, Babagoli M, Marotta R, Piomelli D, & Garau G (2015). Structure of human N-acylphosphatidylethanolamine-hydrolyzing phospholipase D: regulation of Fatty Acid ethanolamide biosynthesis by bile acids.
Structure 23 3:598-604. PubMed Id: 25684574. doi:10.1016/j.str.2014.12.018. |
||
PulA pullulanase: Klebsiella oxytoca B Bacteria (expressed in E. coli), 2.88 Å
|
East et al. (2016).
East A, Mechaly AE, Huysmans GH, Bernarde C, Tello-Manigne D, Nadeau N, Pugsley AP, Buschiazzo A, Alzari PM, Bond PJ, & Francetic O (2016). Structural Basis of Pullulanase Membrane Binding and Secretion Revealed by X-Ray Crystallography, Molecular Dynamics and Biochemical Analysis.
Structure 24 :92-104. PubMed Id: 26688215. doi:10.1016/j.str.2015.10.023. |
||
C2 domain of cytosolic phospholipase A2α bound to phosphatidylcholine: Gallus gallus E Eukaryota (expressed in E. coli), 2.21 Å
|
Hirano et al. (2019).
Hirano Y, Gao YG, Stephenson DJ, Vu NT, Malinina L, Simanshu DK, Chalfant CE, Patel DJ, & Brown RE (2019). Structural basis of phosphatidylcholine recognition by the C2-domain of cytosolic phospholipase A2α.
Elife 8 :e44760. PubMed Id: 31050338. doi:10.7554/eLife.44760. |
||
PlaF phospholipase A bacterial virulence factor: Pseudomonas aeruginosa B Bacteria, 2.00 Å
|
Bleffert et al. (2022).
Bleffert F, Granzin J, Caliskan M, Schott-Verdugo SN, Siebers M, Thiele B, Rahme L, Felgner S, Dörmann P, Gohlke H, Batra-Safferling R, Jaeger KE, & Kovacic F (2022). Structural, mechanistic, and physiological insights into phospholipase A-mediated membrane phospholipid degradation in Pseudomonas aeruginosa.
Elife 11 :e72824. PubMed Id: 35536643. doi:10.7554/eLife.72824. |
||
Falzone & MacKinnon (2023).
Falzone ME, & MacKinnon R (2023). Gβγ activates PIP2 hydrolysis by recruiting and orienting PLCβ on the membrane surface.
Proc Natl Acad Sci U S A 120 20:e2301121120. PubMed Id: 37172014. doi:10.1073/pnas.2301121120. |
|||
Hydroxylases
|
|||
Joo et al. (2018).
Joo SH, Pemble CW 4th, Yang EG, Raetz CRH, & Chung HS (2018). Biochemical and Structural Insights into an Fe(II)/α-Ketoglutarate/O2-Dependent Dioxygenase, Kdo 3-Hydroxylase (KdoO).
J Mol Biol 430 21:4036-4048. PubMed Id: 30092253. doi:10.1016/j.jmb.2018.07.029. |
|||
Acyltransferases
|
|||
LpxM lipid A acyltransferase: Acinetobacter baumannii B Bacteria (expressed in E. coli), 1.99 Å
The protein is anchored at the membrane interface by a single TM helix. E127A catalytic residue mutant, 1.9 Å: 5KNK |
Dovala et al. (2016).
Dovala D, Rath CM, Hu Q, Sawyer WS, Shia S, Elling RA, Knapp MS, & Metzger LE 4th (2016). Structure-guided enzymology of the lipid A acyltransferase LpxM reveals a dual activity mechanism.
Proc Natl Acad Sci USA 113 :E6064-E6071. PubMed Id: 27681620. doi:10.1073/pnas.1610746113. |
||
PatA membrane-associated acyltransferase, unliganded: Mycolicibacterium smegmatis B Bacteria, 3.67 Å
|
Anso et al. (2021).
Anso I, Basso LGM, Wang L, Marina A, Páez-Pérez ED, Jäger C, Gavotto F, Tersa M, Perrone S, Contreras FX, Prandi J, Gilleron M, Linster CL, Corzana F, Lowary TL, Trastoy B, & Guerin ME (2021). Molecular ruler mechanism and interfacial catalysis of the integral membrane acyltransferase PatA.
Sci Adv 7 42:eabj4565. PubMed Id: 34652941. doi:10.1126/sciadv.abj4565. |
||
Thioesterases
|
|||
Abrami et al. (2021).
Abrami L, Audagnotto M, Ho S, Marcaida MJ, Mesquita FS, Anwar MU, Sandoz PA, Fonti G, Pojer F, Dal Peraro M, & van der Goot FG (2021). Palmitoylated acyl protein thioesterase APT2 deforms membranes to extract substrate acyl chains.
Nat Chem Biol 17 4:438-447. PubMed Id: 33707782. doi:10.1038/s41589-021-00753-2. |
|||
Nucleotidyltransferases
|
|||
Tam41 mitochondrial CDP-DAG synthase Δ74: Schizosaccharomyces pombe E Eukaryota (expressed in E. coli), 2.26 Å
F240A mutant, 2.88 Å: 6IG2 |
Jiao et al. (2019).
Jiao H, Yin Y, & Liu Z (2019). Structures of the Mitochondrial CDP-DAG Synthase Tam41 Suggest a Potential Lipid Substrate Pathway from Membrane to the Active Site.
Structure 27 8:1258-1269.e4. PubMed Id: 31178220. doi:10.1016/j.str.2019.04.017. |
||
Oxidoreductases (Monotopic)
|
|||
Sulfide:quinone oxidoreductase in complex with decylubiquinone: Aquifex aeolicus B Bacteria, 2.0 Å
"as-purified" protein, 2.30 Å: 3HYV in complex with aurachin C, 2.9 Å: 3HYX This monotopic membrane protein is thought to be buried about 12 Å in the bilayer interface. Listed under TRANSMEMBRANE PROTEINS: ALPHA-HELICAL : Oxidoreductases, MONOTOPIC MEMBRANE PROTEINS : Oxidoreductases (Monotopic). |
Marcia et al. (2009).
Marcia M, Ermler U, Peng G, & Michel H (2009). The structure of Aquifex aeolicus sulfide:quinone oxidoreductase, a basis to understand sulfide detoxification and respiration.
Proc Natl Acad Sci USA 106 :9625-9630. PubMed Id: 19487671. |
||
Sulfide:quinone oxidoreductase, selenomethionine-substituted: Homo sapiens E Eukaryota (expressed in e. coli), 2.59 Å
native protein, 2.99 Å: 6MP5 |
Jackson et al. (2019).
Jackson MR, Loll PJ, & Jorns MS (2019). X-Ray Structure of Human Sulfide:Quinone Oxidoreductase: Insights into the Mechanism of Mitochondrial Hydrogen Sulfide Oxidation.
Structure 27 5:794-805.e4. PubMed Id: 30905673. doi:10.1016/j.str.2019.03.002. |
||
Electron Transfer Flavoprotein-ubiquinone oxidoreductase (ETF-QO) with bound UQ: Sus scrofa E Eukaryota, 2.5 Å
UQ-free structure, 2.6 Å: 2GMJ. Because this is a mitochondrial respiratory chain protein, it is listed under TRANSMEMBRANE PROTEINS: ALPHA-HELICAL : Oxidoreductases and MONOTOPIC MEMBRANE PROTEINS : Oxidoreductases (Monotopic). |
Zhang et al. (2006).
Zhang J, Frerman FE, & Kim J-JP (2006). Structure of electron transfer flavoprotein-ubiquinone oxidoreductase and electron transfer to the mitochondrial ubiquinone pool.
Proc Natl Acad Sci U S A 103 :16212-16217. PubMed Id: 17050691. |
||
mitochondrial trifunctional protein: Homo sapiens E Eukaryota (expressed in E. coli), 3.6 Å
|
Xia et al. (2019).
Xia C, Fu Z, Battaile KP, & Kim JP (2019). Crystal structure of human mitochondrial trifunctional protein, a fatty acid β-oxidation metabolon.
Proc Natl Acad Sci USA 116 13:6069-6074. PubMed Id: 30850536. doi:10.1073/pnas.1816317116. |
||
Electron bifurcating flavoprotein Fix/EtfABCX: Thermotoga maritima B Bacteria (expressed in Pyrococcus furiosus), 2.90 Å
cryo-EM structure |
Feng et al. (2021).
Feng X, Schut GJ, Lipscomb GL, Li H, & Adams MWW (2021). Cryoelectron microscopy structure and mechanism of the membrane-associated electron-bifurcating flavoprotein Fix/EtfABCX.
Proc Natl Acad Sci U S A 118 2:e2016978118. PubMed Id: 33372143. doi:10.1073/pnas.2016978118. |
||
Dehydrogenases
|
|||
Glycerol-3-phosphate dehydrogenase (GlpD, native): Escherichia coli B Bacteria, 1.75 Å
SeMet-GlpD, 1.95 Å: 2R4J GlpD-2-PGA, 2.3 Å: 2R45 GlpD-PEP, 2.1 Å: 2R46 GlpD-DHAP, 2.1 Å: 2R4E Listed under MONOTOPIC MEMBRANE PROTEINS : Dehydrogenases, TRANSMEMBRANE PROTEINS: ALPHA-HELICAL : Oxidoreductases. |
Yeh et al. (2008).
Yeh JI, Chinte U, & Du S (2008). Structure of glycerol-3-phosphate dehydrogenase, an essential monotopic membrane enzyme involved in respiration and metabolism.
Proc. Natl. Acad. Sci. USA 105 :3280-3285. PubMed Id: 18296637. |
||
PutA proline utilization protein: Geobacter sulfurreducens B Bacteria (expressed in E. coli), 1.90 Å
in complex with L-tetrahydro-2-furoic acid, 2.10 Å: 4NMA in complex with L-lactate, 2.2 Å: 4NMB in complex with Zwittergent 3-12, 1.90 Å: 4NMC reduced with dithionite, 1.98 Å: 4NMD inactivated by N-propargylglycine, 2.09 Å: 4NME inactivated by N-propargylglycine and complexed with menadione bisulfite, 1.95 Å: 4NMF |
Singh et al. (2014).
Singh H, Arentson BW, Becker DF, & Tanner JJ (2014). Structures of the PutA peripheral membrane flavoenzyme reveal a dynamic substrate-channeling tunnel and the quinone-binding site.
Proc Natl Acad Sci USA 111 :3389-3394. PubMed Id: 24550478. doi:10.1073/pnas.1321621111. |
||
Iwata et al. (2012).
Iwata M, Lee Y, Yamashita T, Yagi T, Iwata S, Cameron AD, & Maher MJ (2012). The structure of the yeast NADH dehydrogenase (Ndi1) reveals overlapping binding sites for water- and lipid-soluble substrates.
Proc Natl Acad Sci USA 109 :15247-15252. PubMed Id: 22949654. doi:10.1073/pnas.1210059109 . |
|||
Feng et al. (2012).
Feng Y, Li W, Li J, Wang J, Ge J, Xu D, Liu Y, Wu K, Zeng Q, Wu JW, Tian C, Zhou B, & Yang M (2012). Structural insight into the type-II mitochondrial NADH dehydrogenases.
Nature 491 :478-482. PubMed Id: 23086143. doi:10.1038/nature11541. |
|||
NDH-2 NADH dehydrogenase: Caldalkalibacillus thermarum B Bacteria (expressed in E. coli), 2.50 Å
NDH-2 is a non-proton pumping dehydrogenase. |
Heikal et al. (2014).
Heikal A, Nakatani Y, Dunn E, Weimar MR, Day CL, Baker EN, Lott JS, Sazanov LA, & Cook GM (2014). Structure of the bacterial type II NADH dehydrogenase: a monotopic membrane protein with an essential role in energy generation.
Mol Microbiol 91 5:950-964. PubMed Id: 24444429. doi:10.1111/mmi.12507. |
||
(S)-Mandelate dehydrogenase (MDH): Pseudomonas putida B Bacteria (expressed in E. coli), 2.2 Å
|
Sukumar et al. (2018).
Sukumar N, Liu S, Li W, Mathews FS, Mitra B, & Kandavelu P (2018). Structure of the monotopic membrane protein (S)-mandelate dehydrogenase at 2.2Å resolution.
Biochimie 154 :45-54. PubMed Id: 30071260. doi:10.1016/j.biochi.2018.07.017. |
||
Decarboxylases (Monotopic)
|
|||
phosphatidylserine decarboxylase (PSD), apo-form: Escherichia coli B Bacteria, 2.60 Å
PE-bond form, 3.60 Å: 6L07 |
Watanabe et al. (2020).
Watanabe Y, Watanabe Y, & Watanabe S (2020). Structural Basis for Phosphatidylethanolamine Biosynthesis by Bacterial Phosphatidylserine Decarboxylase.
Structure 28 7:799-809.e5. PubMed Id: 32402247. doi:10.1016/j.str.2020.04.006. |
||
Cho et al. (2021).
Cho G, Lee E, & Kim J (2021). Structural insights into phosphatidylethanolamine formation in bacterial membrane biogenesis.
Sci Rep 11 1:5785. PubMed Id: 33707636. doi:10.1038/s41598-021-85195-5. |
|||
Glycosyltransferases
|
|||
Peptidoglycan Glycosyltransferase: Staphylococcus aureus B Bacteria, 2.8 Å
NOTE: The enzyme has a single TM segment, which is absent in the structure. The active site is external to the membrane, but the so-called Jaw Region contributes to membrane binding. 2OLV shows the enzyme complexed with moenomycin. 2OLU is the structure of the apoenzyme. |
Lovering et al. (2007).
Lovering AL, de Castro LH, Lim D, & Strynadka NCJ (2007). Structural insight into the transglycosylation step in bacterial cell-wall biosynthesis.
Science 315 :1402-1405. PubMed Id: 17347437. |
||
Peptidoglycan Glycosyltransferase penicillin-binding protein 1a (PBP1a): Aquifex aeolicus B Bacteria (expressed in E. coli), 2.1 Å
NOTE: The enzyme has a single TM segment, which is absent in the structure. The active site is external to the membrane. |
Yuan et al. (2007).
Yuan Y, Barrett D, Zhang Y, Kahne D, Sliz P, & Walker S. (2007). Crystal structure of a peptidoglycan glycosyltransferase suggests a model for processive glycan chain synthesis.
Proc Natl Acad Sci USA 104 :5348-5353. PubMed Id: 17360321. |
||
Peptidoglycan Glycosyltransferase penicillin-binding protein 1b (PBP1b): Escherichia coli B Bacteria, 2.16 Å
3VMA supersedes the original PDB entry 3FWM. NOTE: The single TM segment is present in this structure. The active site is external to the membrane. SeMet Protein, 3.09 Å: 3FWL |
Sung et al. (2009).
Sung MT, Lai YT, Huang CY, Chou LY, Shih HW, Cheng WC, Wong CH, & Ma C (2009). Crystal structure of the membrane-bound bifunctional transglycosylase PBP1b from Escherichia coli.
Proc Natl Acad Sci USA 106 :8824-8829. PubMed Id: 19458048. |
||
Peptidoglycan Glycosyltransferase penicillin-binding protein 1b (PBP1b): Escherichia coli B Bacteria, 3.28 Å
cryo-EM structure |
Caveney et al. (2021).
Caveney NA, Workman SD, Yan R, Atkinson CE, Yu Z, & Strynadka NCJ (2021). CryoEM structure of the antibacterial target PBP1b at 3.3 Å resolution.
Nat Commun 12 1:2775. PubMed Id: 33986273. doi:10.1038/s41467-021-23063-6. |
||
Monofunctional glycosyltransferase WaaA, substrate free: Aquifex aeolicus B Bacteria (expressed in E. coli), 2.00 Å
WaaA catalyzes the transfer of Kdo to the lipid A precursor of lipopolysaccharide. Structure with substrate, 2.42 Å: 2XCU |
Schmidt et al. (2012).
Schmidt H, Hansen G, Singh S, Hanuszkiewicz A, Lindner B, Fukase K, Woodard RW, Holst O, Hilgenfeld R, Mamat U, & Mesters JR (2012). Structural and mechanistic analysis of the membrane-embedded glycosyltransferase WaaA required for lipopolysaccharide synthesis.
Proc Natl Acad Sci USA 109 :6253-6258. PubMed Id: 22474366. doi:10.1073/pnas.1119894109. |
||
Monofunctional glycosyltransferase in complex with Lipid II analog: Staphylococcus aureus B Bacteria (expressed in E. coli), 2.30 Å
NOTE: The single TM segment is present in this structure. The active site is external to the membrane. Substrate-free protein, 2.52 Å: 3VMQ In complex with moenomycin, 3.69 Å: 3VMR In complex with NBD-Lipid II, 3.20 Å: 3VMS |
Huang et al. (2012).
Huang CY, Shih HW, Lin LY, Tien YW, Cheng TJ, Cheng WC, Wong CH, & Ma C (2012). Crystal structure of Staphylococcus aureus transglycosylase in complex with a lipid II analog and elucidation of peptidoglycan synthesis mechanism.
Proc Natl Acad Sci USA 109 :6496-6501. PubMed Id: 22493270. doi:10.1073/pnas.1203900109. |
||
Ramírez et al. (2018).
Ramírez AS, Boilevin J, Mehdipour AR, Hummer G, Darbre T, Reymond JL, & Locher KP (2018). Structural basis of the molecular ruler mechanism of a bacterial glycosyltransferase.
Nat Commun 9 1:445. PubMed Id: 29386647. doi:10.1038/s41467-018-02880-2. |
|||
GPI-Anchored Cell-Wall Proteins (GPI-CWPs)
GPIs are glycosylphophatidylinositol anchors that are post-translational modifications in eukaryotes |
|||
Dfg5 GH76 protein: Chaetomium thermophilum E Eukaryota (expressed in E. coli), 1.05 Å
in complex with mannose, 1.30 Å: 6RY1 in complex with alpha-1,2-mannobiose, 1.30 Å: 6RY2 in complex with alpha-1,6-mannobiose, 1.30 Å: 6RY5 in complex with glucosamine, 1.30 Å: 6RY6 in complex with laminaribiose, 1.30 Å: 6RY7 |
Vogt et al. (2020).
Vogt MS, Schmitz GF, Varón Silva D, Mösch HU, & Essen LO (2020). Structural base for the transfer of GPI-anchored glycoproteins into fungal cell walls.
Proc Natl Acad Sci USA 117 36:22061-22067. PubMed Id: 32839341. doi:10.1073/pnas.2010661117. |
||
Phosphoglycosyl Transferases (PGT)
These proteins catalyze the first membrane-committed step of glycoconjugates |
|||
PglC phosphoglycosyl transferase, I57M/Q175M variant: Campylobacter concisus B Bacteria (expressed in E. coli), 2.74 Å
|
Ray et al. (2018).
Ray LC, Das D, Entova S, Lukose V, Lynch AJ, Imperiali B, & Allen KN (2018). Membrane association of monotopic phosphoglycosyl transferase underpins function.
Nat Chem Biol 14 :538-541. PubMed Id: 29769739. doi:10.1038/s41589-018-0054-z. |
||
Peptidases
|
|||
LepB Signal Peptidase (SPase) in complex with a β-lactam inhibitor: Escherichia coli B Bacteria, 1.9 Å
Located in the periplasmic space, the SPase has two transmembrane segments (AAs 4-28 & 58-76), which are missing in this structure. The Ser-Lys catalytic site is part of a hydrophobic surface that interacts strongly with the membrane. |
Paetzel et al. (1998).
Paetzel M, Dalbey RE, & Strynadka NC (1998). Crystal structure of a bacterial signal peptidase in complex with a β-lactam inhibitor.
Nature 396 :186-190. PubMed Id: 9823901. |
||
LepB Signal Peptidase (SPase), apoprotein: Escherichia coli B Bacteria, 2.40 Å
Δ2-75 protein lacking the two transmembrane helices |
Paetzel et al. (2002).
Paetzel M, Dalbey RE, & Strynadka NC (2002). Crystal structure of a bacterial signal peptidase apoenzyme
J Biol Chem 277 :9512-9519. PubMed Id: 11741964. |
||
LepB Signal Peptidase (SPase) in complex with a lipopeptide inhibitor: Escherichia coli B Bacteria, 2.47 Å
This structure of the Δ2-75 protein reveals the likely position of the signal peptide in the active site. |
Paetzel et al. (2004).
Paetzel M, Goodall JJ, Kania M, Dalbey RE, & Page MG (2004). Crystallographic and biophysical analysis of a bacterial signal peptidase in complex with a lipopeptide-based inhibitor.
J Biol Chem 279 :30781-30790. PubMed Id: 15136583. |
||
Ting et al. (2016).
Ting YT, Harris PW, Batot G, Brimble MA, Baker EN, & Young PG (2016). Peptide binding to a bacterial signal peptidase visualized by peptide tethering and carrier-driven crystallization.
IUCrJ 3 :10-19. PubMed Id: 26870377. doi:10.1107/S2052252515019971. |
|||
Signal Peptide Peptidase (SppA), native protein: Escherichia coli B Bacteria, 2.55 Å
SeMet protein, 2.76 Å: 3BEZ. Long thought to be a transmembrane protein, the structure reveals a peripheral homotetramer that likely is buried in the membrane interface. Each monomer has a putative N-terminal transmembrane helix for anchoring to the membrane. This anchor was removed for crystallization. Listed under TRANSMEMBRANE PROTEINS: ALPHA-HELICAL : Intramembrane Proteases, MONOTOPIC MEMBRANE PROTEINS : Peptidases. |
Kim et al. (2008).
Kim AC, Oliver DC, & Paetzel M (2008). Crystal structure of a bacterial signal Peptide peptidase.
J Mol Biol 376 :352-366. PubMed Id: 18164727. |
||
Signal Peptide Peptidase (SppA): Bacillus subtilis B Bacteria (expressed in E. coli), 2.37 Å
Each monomer of the homooctamer has a putative N-terminal transmembrane helix for anchoring to the membrane. This anchor was removed for crystallization. Listed under TRANSMEMBRANE PROTEINS: ALPHA-HELICAL : Intramembrane Proteases, MONOTOPIC MEMBRANE PROTEINS : Peptidases. |
Nam et al. (2012).
Nam SE, Kim AC, & Paetzel M (2012). Crystal Structure of Bacillus subtilis Signal Peptide Peptidase A.
J Mol Biol 419 :347-358. PubMed Id: 22472423. doi:10.1016/j.jmb.2012.03.020. |
||
Signal Peptide Peptidase (SppA) K199A mutant showing C-terminal peptide bound in eight active sites: Bacillus subtilis B Bacteria (expressed in E. coli), 2.39 Å
Each monomer of the homooctamer has a putative N-terminal transmembrane helix for anchoring to the membrane. This anchor was removed for crystallization. Listed under TRANSMEMBRANE PROTEINS: ALPHA-HELICAL : Intramembrane Proteases, MONOTOPIC MEMBRANE PROTEINS : Peptidases. |
Nam & Paetzel (2013).
Nam SE, & Paetzel M (2013). Structure of Signal Peptide Peptidase A with C-Termini Bound in the Active Sites: Insights into Specificity, Self-Processing, and Regulation.
Biochemistry 52 :8811-8822. PubMed Id: 24228759. |
||
Meprin β sheddase (metalloproteinase), pro-form: Homo sapiens E Eukaryota (expressed in Trichoplusia ni), 1.85 Å
Mature form, 3.00 Å: 4GWN |
Arolas et al. (2012).
Arolas JL, Broder C, Jefferson T, Guevara T, Sterchi EE, Bode W, Stöcker W, Becker-Pauly C, & Gomis-Rüth FX (2012). Structural basis for the sheddase function of human meprin β metalloproteinase at the plasma membrane.
Proc Natl Acad Sci USA 109 :16131-16136. PubMed Id: 22988105. doi:10.1073/pnas.1211076109. |
||
Cytochromes P450
P450s are members of the CYP51 family involved in sterol biosynthesis |
|||
Lanosterol 14α-demethylase with bound lanosterol: Saccharomyces cerevisiae E Eukaryota, 1.90 Å
with bound itraconazole, 2.19 Å: 5EQB. Supersedes 4K0F. This is the first structure of a full-length single-span 'bitopic' membrane protein. Proteins of this structural type are anchored at the membrane surface by one or two TM segments, which are generally not seen in the structures. See, for example, 1B12. |
Monk et al. (2014).
Monk BC, Tomasiak TM, Keniya MV, Huschmann FU, Tyndall JD, O'Connell JD 3rd, Cannon RD, McDonald JG, Rodriguez A, Finer-Moore JS, & Stroud RM (2014). Architecture of a single membrane spanning cytochrome P450 suggests constraints that orient the catalytic domain relative to a bilayer.
Proc Natl Acad Sci USA 111 :3865-3870. PubMed Id: 24613931. doi:10.1073/pnas.1324245111. |
||
Dihydroorotate Dehydrogenases (DHODH, class 2)
Class 1 DHODHs are soluble proteins. Class 2 are membrane associated proteins. |
|||
Dihydroorotate Dehydrogenase: Escherichia coli B Bacteria, 1.70 Å
|
Thoden et al. (2001).
Thoden JB, Phillips GN Jr, Neal TM, Raushel FM, & Holden HM (2001). Molecular structure of dihydroorotase: a paradigm for catalysis through the use of a binuclear metal center.
Biochemistry 40 :6989-6997. PubMed Id: 11401542. |
||
Dihydroorotate Dehydrogenase: Escherichia coli B Bacteria, 1.90 Å
|
Lee et al. (2005).
Lee M, Chan CW, Mitchell Guss J, Christopherson RI, & Maher MJ (2005). Dihydroorotase from Escherichia coli: loop movement and cooperativity between subunits.
J Mol Biol 348 :523-533. PubMed Id: 15826651. |
||
Dihydroorotate Dehydrogenase in complex with atovaquone: Rattus rattus E Eukaryota (expressed in E. coli), 2.30 Å
DHO in complex with brequinar, 2.40 Å: 1UUO |
Hansen et al. (2004).
Hansen M, Le Nours J, Johansson E, Antal T, Ullrich A, Löffler M, & Larsen S (2004). Inhibitor binding in a class 2 dihydroorotate dehydrogenase causes variations in the membrane-associated N-terminal domain.
Protein Sci 13 :1031-1042. PubMed Id: 15044733. |
||
Walse et al. (2008).
Walse B, Dufe VT, Svensson B, Fritzson I, Dahlberg L, Khairoullina A, Wellmar U, & Al-Karadaghi S (2008). The structures of human dihydroorotate dehydrogenase with and without inhibitor reveal conformational flexibility in the inhibitor and substrate binding sites.
Biochemistry 47 :8929-8936. PubMed Id: 18672895. |
|||
Deng et al. (2009).
Deng X, Gujjar R, El Mazouni F, Kaminsky W, Malmquist NA, Goldsmith EJ, Rathod PK, & Phillips MA (2009). Structural plasticity of malaria dihydroorotate dehydrogenase allows selective binding of diverse chemical scaffolds.
J Biol Chem 284 :26999-27009. PubMed Id: 19640844. |
|||
Polymerases
|
|||
Lovering et al. (2010).
Lovering AL, Lin LY, Sewell EW, Spreter T, Brown ED, & Strynadka NC (2010). Structure of the bacterial teichoic acid polymerase TagF provides insights into membrane association and catalysis.
Nat Struct Mol Biol 17 :582-589. PubMed Id: 20400947. |
|||
ADP-Ribosylation Factors
|
|||
ADP-ribosylation factor (ARF1), myristoylated: Saccharomyces cerevisiae E Eukaryota (expressed in E. coli), NMR Structure
|
Liu et al. (2009).
Liu Y, Kahn RA, & Prestegard JH (2009). Structure and Membrane Interaction of Myristoylated ARF1.
Structure 17 :79-87. PubMed Id: 19141284. |
||
ADP-ribosylation factor (ARF1*GTP), myristoylated: Saccharomyces cerevisiae E Eukaryota (expressed in E. coli), NMR Structure
|
Liu et al. (2010).
Liu Y, Kahn RA, & Prestegard JH (2010). Dynamic structure of membrane-anchored Arf*GTP.
Nature Struct Molec Biol 17 :876-881. PubMed Id: 20601958. |
||
Isomerases
|
|||
RPE65 visual cycle retinoid isomerase: Bos taurus E Eukaryota, 2.14 Å
This retinal pigment epithelium (RPE) protein simultaneously cleaves and isomerizes all-trans-retinyl esters to 11-cis-retinol and a fatty acid. |
Kiser et al. (2009).
Kiser PD, Golczak M, Lodowski DT, Chance MR, Palczewski K (2009). Crystal structure of native RPE65, the retinoid isomerase of the visual cycle.
Proc Natl Acad Sci USA 106 :17325-17330. PubMed Id: 19805034. |
||
Kiser et al. (2012).
Kiser PD, Farquhar ER, Shi W, Sui X, Chance MR, & Palczewski K (2012). Structure of RPE65 isomerase in a lipidic matrix reveals roles for phospholipids and iron in catalysis.
Proc Natl Acad Sci USA 109 :E2747-2756. PubMed Id: 23012475. |
|||
Phosphoinositide Kinases
|
|||
Phosphatidylinositol 4-kinase IIα: Homo sapiens E Eukaryota (expressed in E. coli), 2.77 Å
|
Baumlova et al. (2014).
Baumlova A, Chalupska D, Róźycki B, Jovic M, Wisniewski E, Klima M, Dubankova A, Kloer DP, Nencka R, Balla T, & Boura E (2014). The crystal structure of the phosphatidylinositol 4-kinase II?.
EMBO Rep 15 :1085-1092. PubMed Id: 25168678. doi:10.15252/embr.201438841. |
||
Akt1 serine/threonine protein kinase: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 2.05 Å
|
Truebestein et al. (2021).
Truebestein L, Hornegger H, Anrather D, Hartl M, Fleming KD, Stariha JTB, Pardon E, Steyaert J, Burke JE, & Leonard TA (2021). Structure of autoinhibited Akt1 reveals mechanism of PIP3-mediated activation.
Proc Natl Acad Sci U S A 118 33:e2101496118. PubMed Id: 34385319. doi:10.1073/pnas.2101496118. |
||
Membrane-Shaping Proteins (monotopic)
|
|||
IST1-CHMP1B ESCRT-III copolymer: Homo sapiens E Eukaryota (expressed in E. coli), 4.00 Å
cryo-EM structure |
McCullough et al. (2015).
McCullough J, Clippinger AK, Talledge N, Skowyra ML, Saunders MG, Naismith TV, Colf LA, Afonine P, Arthur C, Sundquist WI, Hanson PI, & Frost A (2015). Structure and membrane remodeling activity of ESCRT-III helical polymers.
Science 350 6267:1548-1551. PubMed Id: 26634441. doi:10.1126/science.aad8305. |
||
ESCRT-III filament composed of CHMP1B, membrane bound: Homo sapiens E Eukaryota (expressed in E. coli), 6.20 Å
cryo-EM structure ESCRT-III filament composed of CHMP1B+IST1 (right-handed), 3.20 Å: 6TZ4 ESCRT-III filament composed of CHMP1B+IST1 (left-handed), 3.10 Å: 6TZ5 filament composed of IST1 NTD, R16E,K27E mutant, 7.2 Å: 6TZA |
Nguyen et al. (2020).
Nguyen HC, Talledge N, McCullough J, Sharma A, Moss FR 3rd, Iwasa JH, Vershinin MD, Sundquist WI, & Frost A (2020). Membrane constriction and thinning by sequential ESCRT-III polymerization.
Nat Struct Mol Biol 27 4:392-399. PubMed Id: 32251413. doi:10.1038/s41594-020-0404-x. |
||
CHMP2A-CHMP3 ESCRT-III copolymer, 430 Å diameter: Homo sapiens E Eukaryota (expressed in E. coli), 3.30 Å
cryo-EM structure 410 Å diameter, 3.60 Å: 7ZCH |
Azad et al. (2023).
Azad K, Guilligay D, Boscheron C, Maity S, De Franceschi N, Sulbaran G, Effantin G, Wang H, Kleman JP, Bassereau P, Schoehn G, Roos WH, Desfosses A, & Weissenhorn W (2023). Structural basis of CHMP2A-CHMP3 ESCRT-III polymer assembly and membrane cleavage.
Nat Struct Mol Biol 30 :81-90. PubMed Id: 36604498. doi:10.1038/s41594-022-00867-8. |
||
ESCRT-III Snf7 core domain, conformation A: Saccharomyces cerevisiae E Eukaryota (expressed in E. coli), 2.40 Å
conformation B, 1.60 Å: 5FD9 |
Tang et al. (2015).
Tang S, Henne WM, Borbat PP, Buchkovich NJ, Freed JH, Mao Y, Fromme JC, & Emr SD (2015). Structural basis for activation, assembly and membrane binding of ESCRT-III Snf7 filaments.
Elife 4 :e12548. PubMed Id: 26670543. doi:10.7554/eLife.12548. |
||
Shrub, fly ortholog of ESCRT-III SNF7/CHMP4B: Drosophila melanogaster E Eukaryota (expressed in E. coli), 2.76 Å
|
McMillan et al. (2016).
McMillan BJ, Tibbe C, Jeon H, Drabek AA, Klein T, & Blacklow SC (2016). Electrostatic Interactions between Elongated Monomers Drive Filamentation of Drosophila Shrub, a Metazoan ESCRT-III Protein.
Cell Rep 16 5:1211-1217. PubMed Id: 27452459. doi:10.1016/j.celrep.2016.06.093. |
||
Retromer Vps26-Vps29-Vps35 complex: Chaetomium thermophilum E Eukaryota (expressed in E. coli), 11.4 Å
cryo-electron tomography with subtomogram averaging Vps29 structure by x-ray diffraction, 1.52 Å: 5W8M |
Kovtun et al. (2018).
Kovtun O, Leneva N, Bykov YS, Ariotti N, Teasdale RD, Schaffer M, Engel BD, Owen DJ, Briggs JAG, & Collins BM (2018). Structure of the membrane-assembled retromer coat determined by cryo-electron tomography.
Nature 561 7724:561-564. PubMed Id: 30224749. doi:10.1038/s41586-018-0526-z. |
||
Seipin lipid droplet-formation protein: Drosophila melanogaster E Eukaryota (expressed in E. coli), 4 Å
cryo-EM structure |
Sui et al. (2018).
Sui X, Arlt H, Brock KP, Lai ZW, DiMaio F, Marks DS, Liao M, Farese RV Jr, & Walther TC (2018). Cryo-electron microscopy structure of the lipid droplet-formation protein seipin.
J Cell Biol 217 12:4080-4091. PubMed Id: 30327422. doi:10.1083/jcb.201809067. |
||
Seipin lipid droplet-formation protein: Saccharomyces cerevisiae E Eukaryota, 3.45 Å
cryo-EM structure |
Arlt et al. (2022).
Arlt H, Sui X, Folger B, Adams C, Chen X, Remme R, Hamprecht FA, DiMaio F, Liao M, Goodman JM, Farese RV Jr, & Walther TC (2022). Seipin forms a flexible cage at lipid droplet formation sites.
Nat Struct Mol Biol 29 3:194-202. PubMed Id: 35210614. doi:10.1038/s41594-021-00718-y. |
||
Mgm1 mitochondrial remodeling GTPase: Chaetomium thermophilum E Eukaryota (expressed in E. coli), 3.6 Å
by cryo-tomography: s-Mgm1 decorating the outer surface of tubulated lipid membranes, 14.7 Å: 6RZT s-Mgm1 decorating the outer surface of tubulated lipid membranes in the GTPγS bound state, 14.7 Å: 6RZU s-Mgm1 decorating the inner surface of tubulated lipid membranes, 20.6 Å: 6RZV s-Mgm1 decorating the inner surface of tubulated lipid membranes in the GTPγS bound state, 18.8 Å: 6RZW |
Faelber et al. (2019).
Faelber K, Dietrich L, Noel JK, Wollweber F, Pfitzner AK, Mühleip A, Sánchez R, Kudryashev M, Chiaruttini N, Lilie H, Schlegel J, Rosenbaum E, Hessenberger M, Matthaeus C, Kunz S, von der Malsburg A, Noé F, Roux A, van der Laan M, Kühlbrandt W, & Daumke O (2019). Structure and assembly of the mitochondrial membrane remodelling GTPase Mgm1.
Nature 571 7765:429-433. PubMed Id: 31292547. doi:10.1038/s41586-019-1372-3. |
||
Sorting nexin (SNX)-BAR Mvp1 tetramer: Saccharomyces cerevisiae E Eukaryota (expressed in E. coli), 4.20 Å
cryo-EM structure |
Sun et al. (2020).
Sun D, Varlakhanova NV, Tornabene BA, Ramachandran R, Zhang P, & Ford MGJ (2020). The cryo-EM structure of the SNX-BAR Mvp1 tetramer.
Nat Commun 11 1. PubMed Id: 32198400. doi:10.1038/s41467-020-15110-5. |
||
sorting nexin (SNX) protein SNX1, helical array: Mus musculus E Eukaryota (expressed in E. coli), 9.00 Å
cryo-EM structure 10.0 Å: 7D6E |
Zhang et al. (2021).
Zhang Y, Pang X, Li J, Xu J, Hsu VW, & Sun F (2021). Structural insights into membrane remodeling by SNX1.
Proc Natl Acad Sci U S A 118 10. PubMed Id: 33658379. doi:10.1073/pnas.2022614118. |
||
Lopez-Robles et al. (2023).
Lopez-Robles C, Scaramuzza S, Astorga-Simon EN, Ishida M, Williamson CD, Baños-Mateos S, Gil-Carton D, Romero-Durana M, Vidaurrazaga A, Fernandez-Recio J, Rojas AL, Bonifacino JS, Castaño-Díez D, & Hierro A (2023). Architecture of the ESCPE-1 membrane coat.
Nat Struct Mol Biol 30 7:958-969. PubMed Id: 37322239. doi:10.1038/s41594-023-01014-7. |
|||
myelin P2 protein, N2D variant: Homo sapiens E Eukaryota (expressed in E. coli), 1.65 Å
P2 protein is a small β-barrel protein involved in myelin sheath formation K3N mutant, 2.70 Å: 6XU9 K21Q mutant, 2.30 Å: 6XUA L27D mutantt, 2.31 Å: 6XUW R30Q mutantt, 3.00 Å: 6STS K31Q mutant, 1.80 Å: 6XVQ L35S mutant, 2.00 Å: 6XVR P38G mutant, unliganded, 1.80 Å: 6XVS K45S mutant, 2.20 Å: 4A1H K65Q mutant, 1.20 Å: 4A1Y R88Q mutant, 1.80 Å: 6XVY K112Q mutant, 1.80 Å: 4A8Z K120S mutant, 2.90 Å: 6XW9 |
Ruskamo et al. (2020).
Ruskamo S, Krokengen OC, Kowal J, Nieminen T, Lehtimäki M, Raasakka A, Dandey VP, Vattulainen I, Stahlberg H, & Kursula P (2020). Cryo-EM, X-ray diffraction, and atomistic simulations reveal determinants for the formation of a supramolecular myelin-like proteolipid lattice.
J Biol Chem 295 26:8692-8705. PubMed Id: 32265298. doi:10.1074/jbc.RA120.013087. |
||
Endophilin B1 N-BAR helical scaffold protein: Homo sapiens E Eukaryota (expressed in E. coli), 9.0 Å
cryo-EM helical scaffold, 10 Å: 6UPN |
Bhatt et al. (2021).
Bhatt VS, Ashley R, & Sundborger-Lunna A (2021). Amphipathic Motifs Regulate N-BAR Protein Endophilin B1 Auto-inhibition and Drive Membrane Remodeling.
Structure 29 1:61-69.e3. PubMed Id: 33086035. doi:10.1016/j.str.2020.09.012. |
||
Hutchings et al. (2021).
Hutchings J, Stancheva VG, Brown NR, Cheung ACM, Miller EA, & Zanetti G (2021). Structure of the complete, membrane-assembled COPII coat reveals a complex interaction network.
Nat Commun 12 1:2034. PubMed Id: 33795673. doi:10.1038/s41467-021-22110-6. |
|||
metazoan membrane-assembled retromer:SNX3, VPS35/VPS29 arch: Homo sapiens E Eukaryota (expressed in E. coli), 8.90 Å
cryo-EM structure VPS26 dimer region, 9.50 Å 7BLO Grd19 complex (Chaetomium thermophilum, 9.50 Å 7BLP Grd19 complex, Vps26 dimer region, 9.20 Å 7BLQ Vps5 (SNX-BAR) complex (Chaetomium thermophilum), 9.30 Å 7BLR |
Leneva et al. (2021).
Leneva N, Kovtun O, Morado DR, Briggs JAG, & Owen DJ (2021). Architecture and mechanism of metazoan retromer:SNX3 tubular coat assembly.
Sci Adv 7 13:eabf8598. PubMed Id: 33762348. doi:10.1126/sciadv.abf8598. |
||
Atlastin-1 GTPase (residues 1-439) bound to GDP-Mg2+: Homo sapiens E Eukaryota (expressed in E. coli), 2.20 Å
atlastin-3 (residues 1-334) bound to GDP-Mg2+, 2.10 Å 6XJO |
Kelly et al. (2021).
Kelly CM, Byrnes LJ, Neela N, Sondermann H, & O'Donnell JP (2021). The hypervariable region of atlastin-1 is a site for intrinsic and extrinsic regulation.
J Cell Biol 220 11:e202104128. PubMed Id: 34546351. doi:10.1083/jcb.202104128. |
||
caveolin-1 complex: Homo sapiens E Eukaryota (expressed in E. coli), 3.40 Å
cryo-EM structure |
Porta et al. (2022).
Porta JC, Han B, Gulsevin A, Chung JM, Peskova Y, Connolly S, Mchaourab HS, Meiler J, Karakas E, Kenworthy AK, & Ohi MD (2022). Molecular architecture of the human caveolin-1 complex.
Sci Adv 8 19:eabn7232. PubMed Id: 35544577. doi:10.1126/sciadv.abn7232. |
||
Eps15-homology domain containing proteins (EHDs), EHD4 complex: Mus musculus E Eukaryota (expressed in E. coli), 7.60 Å
cryo-EM structure by cryo-EM tomography |
Melo et al. (2022).
Melo AA, Sprink T, Noel JK, Vázquez-Sarandeses E, van Hoorn C, Mohd S, Loerke J, Spahn CMT, & Daumke O (2022). Cryo-electron tomography reveals structural insights into the membrane remodeling mode of dynamin-like EHD filaments.
Nat Commun 13 1:7641. PubMed Id: 36496453. doi:10.1038/s41467-022-35164-x. |
||
Membrane Trafficking Proteins
|
|||
BBSome (complex of 7 Bardet–Biedl syndrome, BBS, proteins), apo form: Bos taurus E Eukaryota, 3.44 Å
cryo-EM structure BBSome-ARL6 complex, 4.00 Å: 6VOA |
Yang et al. (2020).
Yang S, Bahl K, Chou HT, Woodsmith J, Stelzl U, Walz T, & Nachury MV (2020). Near-atomic structures of the BBSome reveal the basis for BBSome activation and binding to GPCR cargoes.
Elife 9 :e55954. PubMed Id: 32510327. doi:10.7554/eLife.55954. |
||
Cell Adhesion Molecules
|
|||
Opioid Binding Protein/Cell Adhesion Molecule Like (OPCML): Homo sapiens E Eukaryota (expressed in Trichoplusia ni), 2.65 Å
|
Birtley et al. (2019).
Birtley JR, Alomary M, Zanini E, Antony J, Maben Z, Weaver GC, Von Arx C, Mura M, Marinho AT, Lu H, Morecroft EVN, Karali E, Chayen NE, Tate EW, Jurewicz M, Stern LJ, Recchi C, & Gabra H (2019). Inactivating mutations and X-ray crystal structure of the tumor suppressor OPCML reveal cancer-associated functions.
Nat Commun 10 1. PubMed Id: 31316070. doi:10.1038/s41467-019-10966-8. |
||
Aparicio et al. (2020).
Aparicio D, Scheffer MP, Marcos-Silva M, Vizarraga D, Sprankel L, Ratera M, Weber MS, Seybert A, Torres-Puig S, Gonzalez-Gonzalez L, Reitz J, Querol E, Piñol J, Pich OQ, Fita I, & Frangakis AS (2020). Structure and mechanism of the Nap adhesion complex from the human pathogen Mycoplasma genitalium.
Nat Commun 11 1:2877. PubMed Id: 32513917. doi:10.1038/s41467-020-16511-2. |
|||
Guanosine Triphosphatases
|
|||
Lysosomal Folliculin Complex (FLCN-FNIP2-RagA-RagC-Ragulator): Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.6 Å
cryo-EM structure |
Lawrence et al. (2019).
Lawrence RE, Fromm SA, Fu Y, Yokom AL, Kim DJ, Thelen AM, Young LN, Lim CY, Samelson AJ, Hurley JH, & Zoncu R (2019). Structural mechanism of a Rag GTPase activation checkpoint by the lysosomal folliculin complex.
Science 366 6468:971-977. PubMed Id: 31672913. doi:10.1126/science.aax0364. |
||
FLCN-FNIP2-Rag-Ragulator complex: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.31 Å
cryo-EM structure |
Shen et al. (2019).
Shen K, Rogala KB, Chou HT, Huang RK, Yu Z, & Sabatini DM (2019). Cryo-EM Structure of the Human FLCN-FNIP2-Rag-Ragulator Complex.
Cell 179 6:1319-1329.e8. PubMed Id: 31704029. doi:10.1016/j.cell.2019.10.036. |
||
Phospholipid Phosphatases
|
|||
MTMR8 catalytic phosphatase domain: Homo sapiens E Eukaryota (expressed in E. coli), 2.8 Å
|
Yoo et al. (2015).
Yoo KY, Son JY, Lee JU, Shin W, Im DW, Kim SJ, Ryu SE, & Heo YS (2015). Structure of the catalytic phosphatase domain of MTMR8: implications for dimerization, membrane association and reversible oxidation.
Acta Crystallogr. D Biol. Crystallogr. 71 :1528-1539. PubMed Id: 26143924. doi:10.1107/S139900471500927X. |
||
lipin/Pah phosphatidic acid phosphatase: Tetrahymena thermophila B Bacteria (expressed in E. coli), 3 Å
Lipin Phosphatidic Acid Phosphatase with Magnesium, 3 Å: 6TZZ |
Khayyo et al. (2020).
Khayyo VI, Hoffmann RM, Wang H, Bell JA, Burke JE, Reue K, & Airola MVV (2020). Crystal structure of a lipin/Pah phosphatidic acid phosphatase.
Nat Commun 11 1:1309. PubMed Id: 32161260. doi:10.1038/s41467-020-15124-z. |
||
Sorting Nexins
|
|||
Xu et al. (2020).
Xu T, Gan Q, Wu B, Yin M, Xu J, Shu X, & Liu J (2020). Molecular Basis for PI(3,5)P2 Recognition by SNX11, a Protein Involved in Lysosomal Degradation and Endosome Homeostasis Regulation.
J Mol Biol 432 16:4750-4761. PubMed Id: 32561432. doi:10.1016/j.jmb.2020.06.010. |
|||
Pro-apoptotic BCL-2 Family
|
|||
BAK core domain BH3-groove in complex with E. coli lipid: Homo sapiens E Eukaryota (expressed in E. coli), 2.49 Å
in complex with phosphatidylserine, 2.49 Å: 6UXN in complex with DDM, 1.80 Å: 6UXO in complex with phosphatidylglycerol, 2.49 Å: 6UXP in complex with POPC and C8E4, 1.70 Å: 6UXQ in complex with LysoPC, 1.80 Å: 6UXR |
Cowan et al. (2020).
Cowan AD, Smith NA, Sandow JJ, Kapp EA, Rustam YH, Murphy JM, Brouwer JM, Bernardini JP, Roy MJ, Wardak AZ, Tan IK, Webb AI, Gulbis JM, Smith BJ, Reid GE, Dewson G, Colman PM, & Czabotar PE (2020). BAK core dimers bind lipids and can be bridged by them.
Nat Struct Mol Biol 27 11:1024-1031. PubMed Id: 32929280. doi:10.1038/s41594-020-0494-5. |
||
Bax core dimer in bicelles: Homo sapiens E Eukaryota (expressed in E coli), NMR structure
|
Lv et al. (2021).
Lv F, Qi F, Zhang Z, Wen M, Kale J, Piai A, Du L, Wang S, Zhou L, Yang Y, Wu B, Liu Z, Del Rosario J, Pogmore J, Chou JJ, Andrews DW, Lin J, & OuYang B (2021). An amphipathic Bax core dimer forms part of the apoptotic pore wall in the mitochondrial␣membrane.
EMBO J 40 14:e106438. PubMed Id: 34101209. doi:10.15252/embj.2020106438. |
||
Bak transmembrane helix in DPC micelles: Homo sapiens E Eukaryota (expressed in E. coli), NMR structure
in lipid nanodiscs, 7OFO |
Sperl et al. (2021).
Sperl LE, Rührnößl F, Schiller A, Haslbeck M, & Hagn F (2021). High-resolution analysis of the conformational transition of pro-apoptotic Bak at the lipid membrane.
EMBO J 40 20:e107159. PubMed Id: 34523144. doi:10.15252/embj.2020107159. |
||
Variant Surface Glycoproteins (VSG)
|
|||
N-terminal Domain of VSG2 (MITat 1.2): Trypanosoma brucei B Bacteria, 2.90 Å
|
Freymann et al. (1990).
Freymann D, Down J, Carrington M, Roditi I, Turner M, & Wiley D (1990). 2.9 Å resolution structure of the N-terminal domain of a variant surface glycoprotein from Trypanosoma brucei.
J Mol Biol 216 1:141-160. PubMed Id: 2231728. |
||
N-terminal of VSG ILTat 1.24: Trypanosoma brucei B Bacteria, 2.70 Å
|
Blum et al. (1993).
Blum ML, Down JA, Gurnett AM, Carrington M, Turner MJ, & Wiley DC (1993). A structural motif in the variant surface glycoproteins of Trypanosoma brucei.
Nature 362 6421:603-609. PubMed Id: 8464512. |
||
N-terminal domain of VSG M1.1: Trypanosoma brucei B Bacteria, 1.65 Å
C-terminal domain of VSG M1.1 (NMR structure) 5M4T |
Bartossek et al. (2017).
Bartossek T, Jones NG, Schäfer C, Cvitković M, Glogger M, Mott HR, Kuper J, Brennich M, Carrington M, Smith AS, Fenz S, Kisker C, & Engstler M (2017). Structural basis for the shielding function of the dynamic trypanosome variant surface glycoprotein coat.
Nat Microbiol 2 11:1523-1532. PubMed Id: 28894098. doi:10.1038/s41564-017-0013-6. |
||
N-terminal Domain of VSG3: Trypanosoma brucei B Bacteria, 1.41 Å
|
Pinger et al. (2018).
Pinger J, Nešić D, Ali L, Aresta-Branco F, Lilic M, Chowdhury S, Kim HS, Verdi J, Raper J, Ferguson MAJ, Papavasiliou FN, & Stebbins CE (2018). African trypanosomes evade immune clearance by O-glycosylation of the VSG surface coat.
Nat Microbiol 3 8:932-938. PubMed Id: 29988048. doi:10.1038/s41564-018-0187-6. |
||
Variant Surface Glycoproteins VSGsur & VSG13: Trypanosoma brucei E Eukaryota, 1.21 Å
VSGsur bound to suramin, 1.86 Å 6Z7B VSGsur mutant H122A, 1.64 Å 6Z7C H122A soaked in 0.77 mM Suramin, 1.75 Å 6Z7D H122A soaked in 7.7 mM suramin, 1.66 Å 6Z7E VSG13 soaked in 0.5 M used to phase VSG13, 1.56 Å 6Z8G Variant Surface Glycoprotein VSG13, 1.38 Å 6Z8H VSGsur, I3C ("Magic Triangle") derivative, 1.92 Å 6Z79 |
Zeelen et al. (2021).
Zeelen J, van Straaten M, Verdi J, Hempelmann A, Hashemi H, Perez K, Jeffrey PD, Hälg S, Wiedemar N, Mäser P, Papavasiliou FN, & Stebbins CE (2021). Structure of trypanosome coat protein VSGsur and function in suramin resistance.
Nat Microbiol 6 3:392-400. PubMed Id: 33462435. doi:10.1038/s41564-020-00844-1. |
||
TRANSMEMBRANE PROTEINS: BETA-BARREL
|
|||
Adventitious Membrane Proteins: Beta-sheet Pore-forming Toxins/Attack Complexes
|
|||
α-hemolysin: Staphylococcus aureus B Bacteria, 1.9 Å
|
Song et al. (1996).
Song L, Hobaugh MR, Shustak C, Cheley S, Bayley H, & Gouaux JE (1996). Structure of staphylococcal a -hemolysin, a heptameric transmembrane pore.
Science 274 :1859-1866. PubMed Id: 8943190. |
||
Banerjee et al. (2010).
Banerjee A, Mikhailova E, Cheley S, Gu LQ, Montoya M, Nagaoka Y, Gouaux E, & Bayley H (2010). Molecular bases of cyclodextrin adapter interactions with engineered protein nanopores.
Proc Natl Acad Sci USA 107 :8165-8170. PubMed Id: 20400691. doi:10.1073/pnas.0914229107 . |
|||
α-hemolysin: Staphylococcus aureus B Bacteria (expressed in E. coli), 2.30 Å
Crystals were prepared using 2-methyl-2,4-pentanediol without detergent. |
Tanaka et al. (2011).
Tanaka Y, Hirano N, Kaneko J, Kamio Y, Yao M, & Tanaka I (2011). 2-Methyl-2,4-pentanediol induces spontaneous assembly of staphylococcal α-hemolysin into heptameric pore structure.
Protein Sci 20 :448-456. PubMed Id: 21280135. doi:10.1002/pro.579. |
||
Liu et al. (2020).
Liu J, Kozhaya L, Torres VJ, Unutmaz D, & Lu M (2020). Structure-based discovery of a small-molecule inhibitor of methicillin-resistant Staphylococcus aureus virulence.
J Biol Chem 295 18:5944-5959. PubMed Id: 32179646. doi:10.1074/jbc.RA120.012697. |
|||
α-hemolysin: Vibrio campbelli B Bacteria (expressed in E. coli), 2.00 Å
X-ray structure assembled heptamer, cryo-EM structure, 2.06 Å: 8JC7 |
Chiu et al. (2023).
Chiu YC, Yeh MC, Wang CH, Chen YA, Chang H, Lin HY, Ho MC, & Lin SM (2023). Structural basis for calcium-stimulating pore formation of Vibrio α-hemolysin.
Nat Commun 14 1:5946. PubMed Id: 37741869. doi:10.1038/s41467-023-41579-x. |
||
γ-hemolysin composed of LukF and Hlg2: Staphylococcus aureus B Bacteria (expressed in E. coli), 2.50 Å
|
Yamashita et al. (2011).
Yamashita K, Kawai Y, Tanaka Y, Hirano N, Kaneko J, Tomita N, Ohta M, Kamio Y, Yao M, & Tanaka I (2011). Crystal structure of the octameric pore of staphylococcal γ-hemolysin reveals the β-barrel pore formation mechanism by two components.
Proc Natl Acad Sci USA 108 :17314-17319. PubMed Id: 21969538. doi:10.1073/pnas.1110402108. |
||
γ-hemolysin prepore: Staphylococcus aureus B Bacteria (expressed in E. coli), 2.99 Å
|
Yamashita et al. (2014).
Yamashita D, Sugawara T, Takeshita M, Kaneko J, Kamio Y, Tanaka I, Tanaka Y, & Yao M (2014). Molecular basis of transmembrane beta-barrel formation of staphylococcal pore-forming toxins.
Nat Commun 5 :4897. PubMed Id: 25263813. doi:10.1038/ncomms5897. |
||
Olson et al. (1999).
Olson R, Nariya H, Yokota K, Kamio Y, & Gouaux E (1999). Crystal structure of Staphylococcal LukF delineates conformational changes accompanying formation of a transmembrane channel.
Nature Struc. Biol 6 :134-140. PubMed Id: 10048924. |
|||
LUK prepore formed from LukF & LukS: Staphylococcus aureus B Bacteria (expressed in E. coli), 2.40 Å
|
Yamashita et al. (2014).
Yamashita D, Sugawara T, Takeshita M, Kaneko J, Kamio Y, Tanaka I, Tanaka Y, & Yao M (2014). Molecular basis of transmembrane beta-barrel formation of staphylococcal pore-forming toxins.
Nat Commun 5 :4897. PubMed Id: 25263813. doi:10.1038/ncomms5897. |
||
LukGH octamer: Staphylococcus aureus B Bacteria (expressed in E. coli), 2.80 Å
|
Badarau et al. (2015).
Badarau A, Rouha H, Malafa S, Logan DT, Håkansson M, Stulik L, Dolezilkova I, Teubenbacher A, Gross K, Maierhofer B, Weber S, Jägerhofer M, Hoffman D, & Nagy E (2015). Structure-function analysis of heterodimer formation, oligomerization, and receptor binding of the Staphylococcus aureus bi-component toxin LukGH.
J Biol Chem 290 1:142-156. PubMed Id: 25371205. doi:10.1074/jbc.M114.598110. |
||
Leukocidin (LukFG) in complex with mouse CD11b I-domain (CD11b-I): Staphylococcus aureus B Bacteria (expressed in E. coli), 2.29 Å
in complex with human CD11b I-domain (CD11b-I), 2.75 Å: 6RHW |
Trstenjak et al. (2020).
Trstenjak N, Milić D, Graewert MA, Rouha H, Svergun D, Djinović-Carugo K, Nagy E, & Badarau A (2020). Molecular mechanism of leukocidin GH-integrin CD11b/CD18 recognition and species specificity.
Proc Natl Acad Sci USA 117 1:317-327. PubMed Id: 31852826. doi:10.1073/pnas.1913690116. |
||
Liu et al. (2020).
Liu J, Kozhaya L, Torres VJ, Unutmaz D, & Lu M (2020). Structure-based discovery of a small-molecule inhibitor of methicillin-resistant Staphylococcus aureus virulence.
J Biol Chem 295 18:5944-5959. PubMed Id: 32179646. doi:10.1074/jbc.RA120.012697. |
|||
Lambey et al. (2022).
Lambey P, Otun O, Cong X, Hoh F, Brunel L, Verdié P, Grison CM, Peysson F, Jeannot S, Durroux T, Bechara C, Granier S, & Leyrat C (2022). Structural insights into recognition of chemokine receptors by Staphylococcus aureus leukotoxins.
Elife 11 :e72555. PubMed Id: 35311641. doi:10.7554/eLife.72555. |
|||
Panton-Valentine leukocidin (PVL) with bound C14PC: Staphylococcus aureus B Bacteria (expressed in E. coli), 2.04 Å
|
Liu et al. (2020).
Liu J, Kozhaya L, Torres VJ, Unutmaz D, & Lu M (2020). Structure-based discovery of a small-molecule inhibitor of methicillin-resistant Staphylococcus aureus virulence.
J Biol Chem 295 18:5944-5959. PubMed Id: 32179646. doi:10.1074/jbc.RA120.012697. |
||
NetB Necrotic B-like enteritis toxin: Clostridium perfringens B Bacteria (expressed in E. coli), 3.90 Å
|
Savva et al. (2013).
Savva CG, Fernandes da Costa SP, Bokori-Brown M, Naylor CE, Cole AR, Moss DS, Titball RW, & Basak AK (2013). Molecular architecture and functional analysis of NetB, a pore-forming toxin from Clostridium perfringens.
J Biol Chem 288 5:3512-3522. PubMed Id: 23239883. doi:10.1074/jbc.M112.430223. |
||
Perfringolysin O (PFO) protomer: Clostridium perfringens B Bacteria (expressed in E. coli), 2.20 Å
The protein is a thiol-activated cytolysin that uses membrane cholesterol as a receptor. 40 or more protomers assemble into a large pore anchored in the bilayer by the β-sheets of domain 4. Space group is C2221. P21212 space group, 3.0 Å: 1M3J. P31 space group, 2.90 Å: 1M3I. |
Rossjohn et al. (1997).
Rossjohn J, Feil SC, McKinstry WJ, Tweten RK, & Parker MW (1997). Structure of a cholesterol-binding, thiol-activated cytolysin and a model of its membrane form.
Cell 89 :685-692. PubMed Id: 9182756. |
||
Anthrax Protective Antigen (PA) and Lethal Factor (LF) Prechannel Complex: Bacillus anthraciss B Bacteria (expressed in E. coli), 3.10 Å
The structure is the PA8LF4 prechannel. |
Feld et al. (2010).
Feld GK, Thoren KL, Kintzer AF, Sterling HJ, Tang II, Greenberg SG, Williams ER, & Krantz BA (2010). Structural basis for the unfolding of anthrax lethal factor by protective antigen oligomers.
Nat Struct Mol Biol 17 :1383-1390. PubMed Id: 21037566. |
||
Anthrax protective antigen pore: Bacillus anthracis B Bacteria (expressed in E. coli), 2.9 Å
cryo-EM structure |
Jiang et al. (2015).
Jiang J, Pentelute BL, Collier RJ, & Zhou ZH (2015). Atomic structure of anthrax protective antigen pore elucidates toxin translocation.
Nature 521 :545-549. PubMed Id: 25778700. doi:10.1038/nature14247. |
||
Anthrax octamer prechannel bound to full-length edema factor (EF): Bacillus anthracis B Bacteria (expressed in E. coli), 3.30 Å
cryo-EM structure bound to full-length lethal factor (LF), 3.80 Å: 6WJJ |
Zhou et al. (2020).
Zhou K, Liu S, Hardenbrook NJ, Cui Y, Krantz BA, & Zhou ZH (2020). Atomic Structures of Anthrax Prechannel Bound with Full-Length Lethal and Edema Factors.
Structure 28 8:879-887.e3. PubMed Id: 32521227. doi:10.1016/j.str.2020.05.009. |
||
Anthrax protective antigen pore translating N-terminal of LF: Bacillus anthracis B Bacteria (expressed in E. coli), 3.30 Å
cryo-EM structure |
Machen et al. (2021).
Machen AJ, Fisher MT, & Freudenthal BD (2021). Anthrax toxin translocation complex reveals insight into the lethal factor unfolding and refolding mechanism.
Sci Rep 11 1:13038. PubMed Id: 34158520. doi:10.1038/s41598-021-91596-3. |
||
Lymphocyte perforin monomer: Mus musculus E Eukaryota (expressed in S. frugiperda), 2.75 Å
The multimeric pore structure has been visualized by cryo-EM. |
Law et al. (2010).
Law RH, Lukoyanova N, Voskoboinik I, Caradoc-Davies TT, Baran K, Dunstone MA, D'Angelo ME, Orlova EV, Coulibaly F, Verschoor S, Browne KA, Ciccone A, Kuiper MJ, Bird PI, Trapani JA, Saibil HR, & Whisstock JC (2010). The structural basis for membrane binding and pore formation by lymphocyte perforin.
Nature 468 :447-451. PubMed Id: 21037563. |
||
Lymphocyte perforin pore: Mus musculus E Eukaryota (expressed in Spodoptera frugiperda), 4.00 Å
cryo-EM structure |
Ivanova et al. (2022).
Ivanova ME, Lukoyanova N, Malhotra S, Topf M, Trapani JA, Voskoboinik I, & Saibil HR (2022). The pore conformation of lymphocyte perforin.
Sci Adv 8 6:eabk3147. PubMed Id: 35148176. doi:10.1126/sciadv.abk3147. |
||
Macrophage-expressed gene 1 (MPEG1/Perforin-2), wild-type soluble pre-pore: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.49 Å
cryo-EM structure L425K, alpha conformation pre-pore, 2.37 Å: 6U2J L425K, alpha conformation pre-pore, monomer, 2.93 Å: 6U2K L425K soluble pre-pore complex, 2.83 Å: 6U2L L425K pre-pore complex bound to liposome, 3.63 Å: 6U2W |
Pang et al. (2019).
Pang SS, Bayly-Jones C, Radjainia M, Spicer BA, Law RHP, Hodel AW, Parsons ES, Ekkel SM, Conroy PJ, Ramm G, Venugopal H, Bird PI, Hoogenboom BW, Voskoboinik I, Gambin Y, Sierecki E, Dunstone MA, & Whisstock JC (2019). The cryo-EM structure of the acid activatable pore-forming immune effector Macrophage-expressed gene 1.
Nat Commun 10 1. PubMed Id: 31537793. doi:10.1038/s41467-019-12279-2. |
||
Macrophage-expressed gene 1 (MPEG1/Perforin-2), pore in ring form: Mus musculus E Eukaryota (expressed in HEK293 cells), 3.00 Å
cryo-EM structure pore in twisted form, 4.00 Å: 8A1S |
Yu et al. (2022).
Yu X, Ni T, Munson G, Zhang P, & Gilbert RJC (2022). Cryo-EM structures of perforin-2 in isolation and assembled on a membrane suggest a mechanism for pore formation.
EMBO J 41 23:e111857. PubMed Id: 36245269. doi:10.15252/embj.2022111857. |
||
Cytolysin pore-forming toxin: Vibrio cholerae B Bacteria (expressed in E. coli), 2.88 Å
Reveals the full structure of the assembled heptameric pore. The pore has a novel ring of tryptophan residues lining the narrowest constriction. |
De & Olson (2011).
De S & Olson R. (2011). Crystal structure of the Vibrio cholerae cytolysin heptamer reveals common features among disparate pore-forming toxins
Proc Natl Acad Sci USA 108 :7385-7390. PubMed Id: 21502531. doi:10.1073/pnas.1017442108. |
||
Cytolysin pore-forming toxin protomer: Vibrio cholerae B Bacteria (expressed in E. coli), 2.30 Å
|
Olson & Gouaux (2005).
Olson R & Gouaux E (2005). Crystal structure of the Vibrio cholerae cytolysin (VCC) pro-toxin and its assembly into a heptameric transmembrane pore
J Mol Biol 350 :997-1016. PubMed Id: 15978620 . doi:10.1016/j.jmb.2005.05.045. |
||
Streptolysin O pore-forming toxin: Streptococcus pyogenes B Bacteria (expressed in E. coli), 2.10 Å
|
Feil et al. (2014).
Feil SC, Ascher DB, Kuiper MJ, Tweten RK, & Parker MW (2014). Structural Studies of Streptococcus pyogenes Streptolysin O Provide Insights into the Early Steps of Membrane Penetration.
J Mol Biol 426 :785-792. PubMed Id: 24316049. doi:10.1016/j.jmb.2013.11.020. |
||
Degiacomi et al. (2013).
Degiacomi MT, Iacovache I, Pernot L, Chami M, Kudryashev M, Stahlberg H, van der Goot FG, & Dal Peraro M (2013). Molecular assembly of the aerolysin pore reveals a swirling membrane-insertion mechanism.
Nat Chem Biol 9 10:623-629. PubMed Id: 23912165. doi:10.1038/nchembio.1312. |
|||
Monalysin pore-forming toxin, cleaved form: Pseudomonas entomophila B Bacteria (expressed in E. coli), 1.70 Å
mutant deleted of the membrane-spanning domain, 2.65 Å: 4MKQ EM structure deposited in EMBD as EMD-2698. |
Leone et al. (2015).
Leone P, Bebeacua C, Opota O, Kellenberger C, Klaholz B, Orlov I, Cambillau C, Lemaitre B, & Roussel A (2015). X-ray and Cryo-electron Microscopy Structures of Monalysin Pore-forming Toxin Reveal Multimerization of the Pro-form.
J Biol Chem 290 :13191-13201. PubMed Id: 25847242. doi:10.1074/jbc.M115.646109. |
||
poly-C9 component of the complement membrane attack Complex: Homo sapiens E Eukaryota, 8 Å
model from cryo-EM |
Dudkina et al. (2016).
Dudkina NV, Spicer BA, Reboul CF, Conroy PJ, Lukoyanova N, Elmlund H, Law RH, Ekkel SM, Kondos SC, Goode RJ, Ramm G, Whisstock JC, Saibil HR, & Dunstone MA (2016). Structure of the poly-C9 component of the complement membrane attack complex.
Nat Commun 7 . PubMed Id: 26841934. doi:10.1038/ncomms10588. See also: Serna et al. (2016). Serna M, Giles JL, Morgan BP, & Bubeck D (2016). Structural basis of complement membrane attack complex formation.
Nat Commun 7 :10587. PubMed Id: 26841837. doi:10.1038/ncomms10587. |
||
poly-C9 component of the complement membrane attack Complex: Homo sapiens E Eukaryota (expressed in Expi293 cells), 3.9 Å
cryo-EM structure |
Spicer et al. (2018).
Spicer BA, Law RHP, Caradoc-Davies TT, Ekkel SM, Bayly-Jones C, Pang SS, Conroy PJ, Ramm G, Radjainia M, Venugopal H, Whisstock JC, & Dunstone MA (2018). The first transmembrane region of complement component-9 acts as a brake on its self-assembly.
Nat Commun 9 1:3266. PubMed Id: 30111885. doi:10.1038/s41467-018-05717-0. |
||
Membrane attack complex (MAC) in open conformation: Homo sapiens E Eukaryota, 5.6 Å
cryo-EM structure closed conformation, 5.6 Å: 6H04 |
Menny et al. (2018).
Menny A, Serna M, Boyd CM, Gardner S, Joseph AP, Morgan BP, Topf M, Brooks NJ, & Bubeck D (2018). CryoEM reveals how the complement membrane attack complex ruptures lipid bilayers.
Nat Commun 9 1. PubMed Id: 30552328. doi:10.1038/s41467-018-07653-5. |
||
3C9-sMAC Complement membrane attack complex packaged for clearance: Homo sapiens E Eukaryota, 3.54 Å
cryo-EM structure 2C9-sMAC, 3.27 Å 7NYD |
Menny et al. (2021).
Menny A, Lukassen MV, Couves EC, Franc V, Heck AJR, & Bubeck D (2021). Structural basis of soluble membrane attack complex packaging for clearance.
Nat Commun 12 1:6086. PubMed Id: 34667172. doi:10.1038/s41467-021-26366-w. |
||
monomeric C9 component of the complement membrane attack Complex: Mus musculus E Eukaryota (expressed in Expi293 cells), 2.2 Å
|
Spicer et al. (2018).
Spicer BA, Law RHP, Caradoc-Davies TT, Ekkel SM, Bayly-Jones C, Pang SS, Conroy PJ, Ramm G, Radjainia M, Venugopal H, Whisstock JC, & Dunstone MA (2018). The first transmembrane region of complement component-9 acts as a brake on its self-assembly.
Nat Commun 9 1:3266. PubMed Id: 30111885. doi:10.1038/s41467-018-05717-0. |
||
Lysenin Pore complex: Eisenia fetida B Bacteria (expressed in E. coli), 3.1 Å
cryo-EM structure |
Bokori-Brown et al. (2016).
Bokori-Brown M, Martin TG, Naylor CE, Basak AK, Titball RW, & Savva CG (2016). Cryo-EM structure of lysenin pore elucidates membrane insertion by an aerolysin family protein.
Nat Commun 7 :11293. PubMed Id: 27048994. doi:10.1038/ncomms11293. |
||
ILYml Cholesterol-dependent cytolysin, CD59-responsive: Streptococcus intermedius B Bacteria (expressed in E. coli), 2.89 Å
ILYml = monomer-locked via a disulfide. Bound to CD59D22A, 2.7 Å: 5IMT |
Lawrence et al. (2016).
Lawrence SL, Gorman MA, Feil SC, Mulhern TD, Kuiper MJ, Ratner AJ, Tweten RK, Morton CJ, & Parker MW (2016). Structural Basis for Receptor Recognition by the Human CD59-Responsive Cholesterol-Dependent Cytolysins.
Structure 24 :1488-1498. PubMed Id: 27499440. doi:10.1016/j.str.2016.06.017. |
||
VLYml Cholesterol-dependent cytolysin, CD-59 responsive, bound to CD59D22A: Gardnerella vaginalis B Bacteria (expressed in E. coli), 2.4 Å
VLYml = monomer locked via a disulfide |
Lawrence et al. (2016).
Lawrence SL, Gorman MA, Feil SC, Mulhern TD, Kuiper MJ, Ratner AJ, Tweten RK, Morton CJ, & Parker MW (2016). Structural Basis for Receptor Recognition by the Human CD59-Responsive Cholesterol-Dependent Cytolysins.
Structure 24 :1488-1498. PubMed Id: 27499440. doi:10.1016/j.str.2016.06.017. |
||
van Pee et al. (2017).
van Pee K, Neuhaus A, D'Imprima E, Mills DJ, Kühlbrandt W, & Yildiz Ö (2017). CryoEM structures of membrane pore and prepore complex reveal cytolytic mechanism of Pneumolysin.
Elife 6 :e23644. PubMed Id: 28323617. doi:10.7554/eLife.23644. |
|||
Epsilon toxin (Etx): Clostridium perfringens B Bacteria (expressed in E. coli), 3.2 Å
cryo-EM structure |
Savva et al. (2019).
Savva CG, Clark AR, Naylor CE, Popoff MR, Moss DS, Basak AK, Titball RW, & Bokori-Brown M (2019). The pore structure of Clostridium perfringens epsilon toxin.
Nat Commun 10 1. PubMed Id: 31201325. doi:10.1038/s41467-019-10645-8. |
||
Yamada et al. (2020).
Yamada T, Yoshida T, Kawamoto A, Mitsuoka K, Iwasaki K, & Tsuge H (2020). Cryo-EM structures reveal translocational unfolding in the clostridial binary iota toxin complex.
Nat Struct Mol Biol 27 3:288-296. PubMed Id: 32123390. doi:10.1038/s41594-020-0388-6. |
|||
Xu et al. (2020).
Xu X, Godoy-Ruiz R, Adipietro KA, Peralta C, Ben-Hail D, Varney KM, Cook ME, Roth BM, Wilder PT, Cleveland T, Grishaev A, Neu HM, Michel SLJ, Yu W, Beckett D, Rustandi RR, Lancaster C, Loughney JW, Kristopeit A, Christanti S, Olson JW, MacKerell AD, Georges AD, Pozharski E, & Weber DJ (2020). Structure of the cell-binding component of the Clostridium difficile binary toxin reveals a di-heptamer macromolecular assembly.
Proc Natl Acad Sci USA 117 2:1049-1058. PubMed Id: 31896582. doi:10.1073/pnas.1919490117. |
|||
Kawamoto et al. (2022).
Kawamoto A, Yamada T, Yoshida T, Sato Y, Kato T, & Tsuge H (2022). Cryo-EM structures of the translocational binary toxin complex CDTa-bound CDTb-pore from Clostridioides difficile.
Nat Commun 13 1:6119. PubMed Id: 36253419. doi:10.1038/s41467-022-33888-4. |
|||
De novo Designed β-barrel Membrane Proteins
β-barrel Proteins Designed from First Principles |
|||
de novo designed β-barrel TMB2.3: de novo designed U Unclassified (expressed in E. coli), NMR structure
de novo designed TMB2.17, crystal structure, 2.07 Å: 6X9Z |
Vorobieva et al. (2021).
Vorobieva AA, White P, Liang B, Horne JE, Bera AK, Chow CM, Gerben S, Marx S, Kang A, Stiving AQ, Harvey SR, Marx DC, Khan GN, Fleming KG, Wysocki VH, Brockwell DJ, Tamm LK, Radford SE, & Baker D (2021). De novo design of transmembrane β barrels.
Science 371 6531. PubMed Id: 33602829. doi:10.1126/science.abc8182. |
||
Beta-Barrel Membrane Proteins: Porins and Relatives
|
|||
Porin: Rhodobacter capsulatus B Bacteria, 1.8 Å
|
Weiss & Schulz (1992).
Weiss MS & Schulz GE (1992). Structure of porin refined at 1.8 Å resolution.
J. Mol. Biol. 227 :493-509. PubMed Id: 1328651. |
||
Porin: Rhodopeudomonas blastica B Bacteria, 1.96 Å
|
Kreusch & Schulz (1994).
Kreusch A & Schulz GE (1994). Refined structure of the porin from Rhodopseudomonas blastica. Comparison with the porin from Rhodobacter capsulatus.
J Mol Biol 243 :891-905. PubMed Id: 7525973. doi:10.1006/jmbi.1994.1690. See also: Kreusch et al. (1994). Kreusch A, Neubüser A, Schiltz E, Weckesser J, & Schulz GE (1994). Structure of the membrane channel porin from Rhodopseudomonas blastica at 2.0 Å resolution.
Protein Sci 3 :58-63. PubMed Id: 8142898. doi:10.1002/pro.5560030108. |
||
Porin, E1M/A116K Mutant: Rhodopseudomonas blastica B Bacteria (expressed in E. coli), 2.19 Å
E1M/E99W/A116W mutant, 1.93 Å: 2PRN E1M/A104W mutant, 1.90 Å: 3PRN E1M/Y96W/S119W mutant, 2.00 Å: 5PRN E1M/K50A/R52A mutant, 2.04 Å: 6PRN E1M/D97A/E99A mutant, 2.25 Å: 7PRN E1M/K50A/R52A/D97A/E99A mutant, 2.30 Å: 8PRN |
Schmid et al. (1998).
Schmid B, Maveyraud L, Krömer M, & Schulz GE (1998). Porin mutants with new channel properties.
Protein Sci 7 :1603-1611. PubMed Id: 9684893. doi:10.1002/pro.5560070714. |
||
Porin: Rhodopseudomonas blastica B Bacteria (expressed in E. coli), 3.00 Å
Positively charged peptide GGGGPKLAKMEKARGGGG inserted in periplasmic turn. |
Bannwarth & Schulz (2002).
Bannwarth M & Schulz GE (2002). Asymmetric conductivity of engineered porins.
Protein Eng 15 :799-804. PubMed Id: 12468713. doi:10.1093/protein/15.10.799. |
||
OmpK36 osmoporin: Klebsiella pneumoniae B Bacteria, 3.2 Å
|
Dutzler et al. (1999).
Dutzler R, Rummel G, Alberti S, Hernandez-Alles S, Phale P, Rosenbusch J, Benedi V, & Schirmer T (1999). Crystal structure and functional characterization of OmpK36, the osmoporin of Klebsiella pneumoniae.
Structure Fold. Des 7 :425-434. PubMed Id: 10196126. |
||
Wong et al. (2019).
Wong JLC, Romano M, Kerry LE, Kwong HS, Low WW, Brett SJ, Clements A, Beis K, & Frankel G (2019). OmpK36-mediated Carbapenem resistance attenuates ST258 Klebsiella pneumoniae in vivo.
Nat Commun 10 1. PubMed Id: 31477712. doi:10.1038/s41467-019-11756-y. |
|||
OmpK36 osmoporin, native-SAD structure determined at wavelength 4.13 Å: Klebsiella pneumoniae B Bacteria (expressed in E. coli), 2.70 Å
X-ray Structure |
El Omari et al. (2023).
El Omari K, Duman R, Mykhaylyk V, Orr CM, Latimer-Smith M, Winter G, Grama V, Qu F, Bountra K, Kwong HS, Romano M, Reis RI, Vogeley L, Vecchia L, Owen CD, Wittmann S, Renner M, Senda M, Matsugaki N, Kawano Y, Bowden TA, Moraes I, Grimes JM, Mancini EJ, Walsh MA, Guzzo CR, Owens RJ, Jones EY, Brown DG, Stuart DI, Beis K, & Wagner A (2023). Experimental phasing opportunities for macromolecular crystallography at very long wavelengths.
Commun Chem 6 1:219. PubMed Id: 37828292. doi:10.1038/s42004-023-01014-0. |
||
Omp32 anion-selective porin: Comamonas acidovorans B Bacteria, 2.1 Å
|
Zeth et al. (2000).
Zeth K, Diederichs K, Welte W, & Engelhardt H (2000). Crystal structure of Omp32, the anion-selective porin from Comamonas acidovorans, in complex with a periplasmic peptide at 2.1 A resolution.
Structure 8 :981-992. PubMed Id: 10986465. |
||
Zachariae et al. (2006).
Zachariae U, Kluhspies T, De S, Engelhardt H, & Zeth K (2006). High resolution crystal structures and molecular dynamics studies reveal substrate binding in the porin omp32.
J Biol Chem 281 :7413-7420. PubMed Id: 16434398. |
|||
OmpF Porin: Escherichia coli B Bacteria, 2.4 Å
Note: Also see BtuB with bound colicin E3 R-domain, below. |
Cowan et al. (1992).
Cowan SW, Schirmer T, Rummel G, Steiert M, Ghosh R, Pauptit RA, Jansonius JN, & Rosenbusch JP (1992). Crystal structures explain functional properties of two Escherichia coli porins.
Nature 358 :727-733. PubMed Id: 1380671. |
||
OmpF Porin from colicin-resistant E. coli: Escherichia coli B Bacteria, 3.00 Å
|
Jeanteur et al. (1994).
Jeanteur D, Schirmer T, Fourel D, Simonet V, Rummel G, Widmer C, Rosenbusch JP, Pattus F, & Pagès JM (1994). Structural and functional alterations of a colicin-resistant mutant of OmpF porin from Escherichia coli.
Proc Natl Acad Sci USA 91 :10675-10679. PubMed Id: 7524100. |
||
OmpF Porin: Escherichia coli B Bacteria, 3.20 Å
Tetragonal crystal form. |
Cowan et al. (1995).
Cowan SW, Garavito RM, Jansonius JN, Jenkins JA, Karlsson R, König N, Pai EF, Pauptit RA, Rizkallah PJ, Rosenbusch JP, Rummel G, & Schirmer T (1995). The structure of OmpF porin in a tetragonal crystal form.
Structure 3 :1041-1050. PubMed Id: 8589999. doi:10.1016/S0969-2126(01)00240-4. |
||
Lou et al. (1996).
Lou KL, Saint N, Prilipov A, Rummel G, Benson SA, Rosenbusch JP, & Schirmer T (1996). Structural and functional characterization of OmpF porin mutants selected for larger pore size. I. Crystallographic analysis.
J Biol Chem 271 :20669-20675. PubMed Id: 8702816. doi:10.1074/jbc.271.34.20669 . |
|||
OmpF Porin, D74A mutant: Escherichia coli B Bacteria (expressed in Escherichia coli B), 3.00 Å
|
Phale et al. (1998).
Phale PS, Philippsen A, Kiefhaber T, Koebnik R, Phale VP, Schirmer T, & Rosenbusch JP (1998). Stability of trimeric OmpF porin: the contributions of the latching loop L2.
Biochemistry 37 :15663-15670. PubMed Id: 9843370. doi:10.1021/bi981215c. |
||
Phale et al. (2001).
Phale PS, Philippsen A, Widmer C, Phale VP, Rosenbusch JP, & Schirmer T (2001). Role of charged residues at the OmpF porin channel constriction probed by mutagenesis and simulation.
Biochemistry 40 :6319-6325. PubMed Id: 11371193. doi:10.1021/bi010046k. |
|||
OmpF Porin: Escherichia coli B Bacteria, 1.6 Å
With inserted 83 residue N-terminal peptide of colicin E3, 3.0 Å: 2ZLD |
Yamashita et al. (2008).
Yamashita E, Zhalnina MV, Zakharov SD, Sharma O, & Cramer WA (2008). Crystal structures of the OmpF porin: function in a colicin translocon.
EMBO J 27 :2171-2180. PubMed Id: 18636093. |
||
OmpF porin with a synthetic dibenzo-18-crown-6: Escherichia coli B Bacteria, 3.40 Å
|
Reitz et al. (2009).
Reitz S, Cebi M, Reiss P, Studnik G, Linne U, Koert U, & Essen LO (2009). On the function and structure of synthetically modified porins.
Angew Chem Int Ed Engl 48 :4853-4857. PubMed Id: 19322865. doi:10.1002/anie.200900457. |
||
OmpF Porin in complex with colicin peptide OBS1: Escherichia coli B Bacteria, 3.01 Å
Shows colicin bound within porin lumen spanning the membrane bilayer |
Housden et al. (2010).
Housden NG, Wojdyla JA, Korczynska J, Grishkovskaya I, Kirkpatrick N, Brzozowski AM, & Kleanthous C. (2010). Directed epitope delivery across the Escherichia coli outer membrane through the porin OmpF.
Proc Natl Acad Sci USA 107 :21412-21417. PubMed Id: 21098297. |
||
OmpF Porin: Escherichia coli B Bacteria, 2.61 Å
Cation-selective pathway revealed by anomalous x-ray diffraction. Structure at 3.00 Å: 3HWB |
Dhakshnamoorthy et al. (2010).
Dhakshnamoorthy B, Raychaudhury S, Blachowicz L, & Roux B (2010). Cation-selective pathway of OmpF porin revealed by anomalous X-ray diffraction.
J Mol Biol 396 :293-300. PubMed Id: 19932117. doi:10.1016/j.jmb.2009.11.042. |
||
OmpF Porin in presence of foscholine-12: Escherichia coli B Bacteria, 3.79 Å
Structure at 4.39 Å: 3K1B |
Kefala et al. (2010).
Kefala G, Ahn C, Krupa M, Esquivies L, Maslennikov I, Kwiatkowski W, & Choe S (2010). Structures of the OmpF porin crystallized in the presence of foscholine-12.
Protein Sci 19 :1117-1125. PubMed Id: 20196071. doi:10.1002/pro.369. |
||
OmpF porin in lipidic cubic phase: Escherichia coli B Bacteria, 2.80 Å
|
Efremov & Sazanov (2012).
Efremov RG, & Sazanov LA (2012). Structure of Escherichia coli OmpF porin from lipidic mesophase.
J Struct Biol 178 3:311-318. PubMed Id: 22484237. doi:10.1016/j.jsb.2012.03.005. |
||
OmpF Porin: Escherichia coli B Bacteria, 3.5 Å
I2 space group |
Chaptal et al. (2016).
Chaptal V, Kilburg A, Flot D, Wiseman B, Aghajari N, Jault JM, & Falson P (2016). Two different centered monoclinic crystals of the E. coli outer-membrane protein OmpF originate from the same building block.
Biochim Biophy Acta 1858 :326-332. PubMed Id: 26620074. doi:10.1016/j.bbamem.2015.11.021. |
||
OmpF Porin: Escherichia coli B Bacteria, 2.54 Å
cryo-EM structure |
Su et al. (2021).
Su CC, Lyu M, Morgan CE, Bolla JR, Robinson CV, & Yu EW (2021). A 'Build and Retrieve' methodology to simultaneously solve cryo-EM structures of membrane proteins.
Nat Methods 18 1:69-75. PubMed Id: 33408407. doi:10.1038/s41592-020-01021-2. |
||
OmpF and BtuB Porin in complex with colicin E9 (colE9): Escherichia coli E Eukaryota, 4.70 Å
cryo-EM structure ColicinE9 partial translocation complex, 3.70 Å 7NST |
Francis et al. (2021).
Francis MR, Webby MN, Housden NG, Kaminska R, Elliston E, Chinthammit B, Lukoyanova N, & Kleanthous C (2021). Porin threading drives receptor disengagement and establishes active colicin transport through Escherichia coli OmpF.
EMBO J 40 21:e108610. PubMed Id: 34515361. doi:10.15252/embj.2021108610. |
||
Omp35 (OmpF): Enterobacter aerogenes B Bacteria (expressed in E. coli), 2.85 Å
|
Acosta-Gutiérrez et al. (2018).
Acosta-Gutiérrez S, Ferrara L, Pathania M, Masi M, Wang J, Bodrenko I, Zahn M, Winterhalter M, Stavenger RA, Pagès JM, Naismith JH, van den Berg B, Page MGP, & Ceccarelli M (2018). Getting Drugs into Gram-Negative Bacteria: Rational Rules for Permeation through General Porins.
ACS Infect Dis 4 10:1487-1498. PubMed Id: 29962203. doi:10.1021/acsinfecdis.8b00108. |
||
OmpF Porin: Salmonella typhi B Bacteria (expressed in E. coli), 2.79 Å
|
Balasubramaniam et al. (2012).
Balasubramaniam D, Arockiasamy A, Kumar PD, Sharma A, & Krishnaswamy S (2012). Asymmetric pore occupancy in crystal structure of OmpF porin from Salmonella typhi.
J Struc Biol 178 :233-244. PubMed Id: 22525817. doi:10.1016/j.jsb.2012.04.005. |
||
OmpE35 (OmpF): Enterobacter cloacae B Bacteria (expressed in E. coli), 2.3 Å
|
Acosta-Gutiérrez et al. (2018).
Acosta-Gutiérrez S, Ferrara L, Pathania M, Masi M, Wang J, Bodrenko I, Zahn M, Winterhalter M, Stavenger RA, Pagès JM, Naismith JH, van den Berg B, Page MGP, & Ceccarelli M (2018). Getting Drugs into Gram-Negative Bacteria: Rational Rules for Permeation through General Porins.
ACS Infect Dis 4 10:1487-1498. PubMed Id: 29962203. doi:10.1021/acsinfecdis.8b00108. |
||
OmpK35 (OmpF): Klebsiella pneumoniae B Bacteria (expressed in E. coli), 1.5 Å
|
Acosta-Gutiérrez et al. (2018).
Acosta-Gutiérrez S, Ferrara L, Pathania M, Masi M, Wang J, Bodrenko I, Zahn M, Winterhalter M, Stavenger RA, Pagès JM, Naismith JH, van den Berg B, Page MGP, & Ceccarelli M (2018). Getting Drugs into Gram-Negative Bacteria: Rational Rules for Permeation through General Porins.
ACS Infect Dis 4 10:1487-1498. PubMed Id: 29962203. doi:10.1021/acsinfecdis.8b00108. |
||
OmpC Osmoporin: Escherichia coli B Bacteria, 2.0 Å
|
Baslé et al. (2006).
Baslé A, Rummel G, Storici P, Rosenbusch J, & Schirmer T (2006). Crystal Structure of Osmoporin OmpC from E. coli at 2.0 Å.
J Mol Biol 362 :933-942. PubMed Id: 16949612. |
||
Lou et al. (2011).
Lou H, Chen M, Black SS, Bushell SR, Ceccarelli M, Mach T, Beis K, Low AS, Bamford VA, Booth IR, Bayley H, & Naismith JH (2011). Altered antibiotic transport in OmpC mutants isolated from a series of clinical strains of multi-drug resistant E. coli.
PLoS One 6 :e25825. PubMed Id: 22053181. doi:10.1371/journal.pone.0025825. |
|||
OmpC Osmoporin: Escherichia coli B Bacteria, 2.56 Å
cryo-EM structure |
Su et al. (2021).
Su CC, Lyu M, Morgan CE, Bolla JR, Robinson CV, & Yu EW (2021). A 'Build and Retrieve' methodology to simultaneously solve cryo-EM structures of membrane proteins.
Nat Methods 18 1:69-75. PubMed Id: 33408407. doi:10.1038/s41592-020-01021-2. |
||
OmpK36 (OmpC): Klebsiella pneumoniae B Bacteria (expressed in E. coli), 1.65 Å
|
Acosta-Gutiérrez et al. (2018).
Acosta-Gutiérrez S, Ferrara L, Pathania M, Masi M, Wang J, Bodrenko I, Zahn M, Winterhalter M, Stavenger RA, Pagès JM, Naismith JH, van den Berg B, Page MGP, & Ceccarelli M (2018). Getting Drugs into Gram-Negative Bacteria: Rational Rules for Permeation through General Porins.
ACS Infect Dis 4 10:1487-1498. PubMed Id: 29962203. doi:10.1021/acsinfecdis.8b00108. |
||
Omp36 (OmpC): Klebsiella aerogenes B Bacteria (expressed in E. coli), 2.47 Å
|
Acosta-Gutiérrez et al. (2018).
Acosta-Gutiérrez S, Ferrara L, Pathania M, Masi M, Wang J, Bodrenko I, Zahn M, Winterhalter M, Stavenger RA, Pagès JM, Naismith JH, van den Berg B, Page MGP, & Ceccarelli M (2018). Getting Drugs into Gram-Negative Bacteria: Rational Rules for Permeation through General Porins.
ACS Infect Dis 4 10:1487-1498. PubMed Id: 29962203. doi:10.1021/acsinfecdis.8b00108. |
||
OmpC homolog (OmpE36) with bound lipopolysaccharide (LPS): Enterobacter cloacae B Bacteria (expressed in E. coli), 1.45 Å
|
Arunmanee et al. (2016).
Arunmanee W, Pathania M, Solovyova AS, Le Brun AP, Ridley H, Baslé A, van den Berg B, & Lakey JH (2016). Gram-negative trimeric porins have specific LPS binding sites that are essential for porin biogenesis.
Proc Natl Acad Sci USA 113 34:E5034-E5043. PubMed Id: 27493217. doi:10.1073/pnas.1602382113. |
||
OmpG *monomeric* porin: Escherichia coli B Bacteria, 2.3 Å
|
Subbarao and van den Berg (2006).
Subbarao GV & van den Berg B (2006). Crystal structure of the monomeric porin OmpG.
J Mol Biol 360 :750-759. PubMed Id: 16797588. |
||
OmpG *monomeric* porin in open state: Escherichia coli B Bacteria, 2.3 Å
OmpG in closed state, 2.73 Å: 2IWW |
Yildiz et al. (2006).
Yildiz O, Vinothkumar KR, Goswami P, & Kuhlbrandt W (2006). Structure of the monomeric outer-membrane porin OmpG in the open and closed conformation.
EMBO J. 25 :3702-3713. PubMed Id: 16888630. |
||
OmpG *monomeric* porin: Escherichia coli B Bacteria, 2.18 Å
His231A/His261A mutant stable in open state |
Korkmaz-Ozkan et al. (2010).
Korkmaz-Özkan F, Köster S, Kühlbrandt W, Mäntele W, & Yildiz O (2010). Correlation between the OmpG secondary structure and its pH-dependent alterations monitored by FTIR.
J Mol Biol 401 :56-67. PubMed Id: 20561532. doi:10.1016/j.jmb.2010.06.015. |
||
OmpG *monomeric* porin: Escherichia coli B Bacteria, NMR Structure (DPC micelles)
|
Liang & Tamm (2007).
Liang B & Tamm LK (2007). Structure of outer membrane protein G by solution NMR Spectroscopy.
Proc Natl Acad Sci USA 104 :16140-16145. PubMed Id: 17911261. |
||
OmpG *monomeric* porin: Escherichia coli B Bacteria, solid-state NMR structure
protein embedded in E. coli lipid extracts |
Retel et al. (2017).
Retel JS, Nieuwkoop AJ, Hiller M, Higman VA, Barbet-Massin E, Stanek J, Andreas LB, Franks WT, van Rossum BJ, Vinothkumar KR, Handel L, de Palma GG, Bardiaux B, Pintacuda G, Emsley L, Kühlbrandt W, & Oschkinat H (2017). Structure of outer membrane protein G in lipid bilayers.
Nat Commun 8 1:2073. PubMed Id: 29233991. doi:10.1038/s41467-017-02228-2. |
||
OmpG ΔL6-ΔD215 mutant, "quiet" porin: Escherichia coli B Bacteria, NMR Structure
|
Sanganna Gari et al. (2019).
Sanganna Gari RR, Seelheim P, Liang B, & Tamm LK (2019). Quiet Outer Membrane Protein G (OmpG) Nanopore for Biosensing.
ACS Sens 4 5:1230-1235. PubMed Id: 30990011. doi:10.1021/acssensors.8b01645. |
||
Pathania et al. (2018).
Pathania M, Acosta-Gutierrez S, Bhamidimarri SP, Baslé A, Winterhalter M, Ceccarelli M, & van den Berg B (2018). Unusual Constriction Zones in the Major Porins OmpU and OmpT from Vibrio cholerae.
Structure 26 5:708-721.e4. PubMed Id: 29657131. doi:10.1016/j.str.2018.03.010. |
|||
OmpU: Vibrio cholerae B Bacteria (expressed in E. coli), 2.22 Å
|
Li et al. (2018).
Li H, Zhang W, & Dong C (2018). Crystal structure of the outer membrane protein OmpU from Vibrio cholerae at 2.2 Å resolution.
Acta Crystallogr D Struct Biol 74 :21-29. PubMed Id: 29372896. doi:10.1107/S2059798317017697. |
||
Pathania et al. (2018).
Pathania M, Acosta-Gutierrez S, Bhamidimarri SP, Baslé A, Winterhalter M, Ceccarelli M, & van den Berg B (2018). Unusual Constriction Zones in the Major Porins OmpU and OmpT from Vibrio cholerae.
Structure 26 5:708-721.e4. PubMed Id: 29657131. doi:10.1016/j.str.2018.03.010. |
|||
PhoE: Escherichia coli B Bacteria, 3.0 Å
|
Cowan et al. (1992).
Cowan SW, Schirmer T, Rummel G, Steiert M, Ghosh R, Pauptit RA, Jansonius JN, & Rosenbusch JP (1992). Crystal structures explain functional properties of two Escherichia coli porins.
Nature 358 :727-733. PubMed Id: 1380671. |
||
LamB Maltoporin: Salmonella typhimurium B Bacteria, 2.4 Å
|
Meyer et al. (1997).
Meyer JEW, Hofnung M, & Schulz GE (1997). Structure of maltoporin from Salmonella typhimurium ligated with a nitrophenyl-maltotrioside.
J. Mol. Biol 266 :761-775. PubMed Id: 9102468. |
||
LamB Maltoporin: Escherichia coli B Bacteria, 3.1 Å
|
Schirmer et al. (1995).
Schirmer T, Keller TA, Wang YF, & Rosenbusch JP (1995). Structural basis for sugar translocation through maltoporin channels at 3.1 Å resolution.
Science 267 :512-4. PubMed Id: 7824948. |
||
Dutzler et al. (1996).
Dutzler R, Wang YF, Rizkallah P, Rosenbusch JP, Schirmer T (1996). Crystal structures of various maltooligosaccharides bound to maltoporin reveal a specific sugar translocation pathway.
Structure 4 :127-134. PubMed Id: 8805519. |
|||
LamB Maltoporin in complex with sucrose: Escherichia coli B Bacteria, 2.4 Å
In complex with trehalose, 3.0 Å: 1MPQ |
Wang et al. (1997).
Wang YF, Dutzler R, Rizkallah PJ, Rosenbusch JP, & Schirmer T (1997). Channel specificity: structural basis for sugar discrimination and differential flux rates in maltoporin.
J Mol Biol 272 :56-63. PubMed Id: 9299337. |
||
ScrY sucrose-specific porin: Salmonella typhimurium B Bacteria, 2.4 Å
Complexed Form, 1A0T. Uncomplexed form, 1A0S. |
Forst et al. (1998).
Forst D, Welte W, Wacker T, & Diederichs K (1998). Structure of the sucrose-specific porin ScrY from Salmonella typhimurium and its complex with sucrose.
Nature Structural Biol 5 :37-46. PubMed Id: 9437428. |
||
MspA mycobacterial porin: Mycobacterium smegmatis B Bacteria, 2.5 Å
Homooctamer |
Faller et al. (2004).
Faller M, Niederweis M, & Schulz GE (2004). The structure of a mycobacterial outer-membrane channel.
Science 303 :1189-1192. PubMed Id: 14976314. |
||
OprB carbohydrate-specific transporter at high pH: Pseudomonas putida B Bacteria (expressed in E. coli), 2.70 Å
low-pH structure, 3.10 Å: 4GF4 |
van den Berg (2012).
van den Berg B (2012). Structural basis for outer membrane sugar uptake in pseudomonads.
J Biol Chem 287 :41044-41052. PubMed Id: 23066028. doi:10.1074/jbc.M112.408518. |
||
OprO diphosphate-specific transporter: Pseudomonas aeruginosa B Bacteria, 1.52 Å
F62Y/D114Y mutant, 1.54 Å: 4RJX |
Modi et al. (2015).
Modi N, Ganguly S, Bárcena-Uribarri I, Benz R, van den Berg B, & Kleinekathöfer U (2015). Structure, Dynamics, and Substrate Specificity of the OprO Porin from Pseudomonas aeruginosa.
Biophys J 109 :1429-1438. PubMed Id: 26445443. doi:10.1016/j.bpj.2015.07.035. |
||
OprP phosphate-specific transporter: Pseudomonas aeruginosa B Bacteria, 1.9 Å
Contains a novel nine-residue arginine ladder |
Moraes et al. (2007).
Moraes TF, Bains M, Hancock REW & Strynadka NCJ (2007). An arginine ladder in OprP mediates phosphate-specific transfer across the outer membrane.
Nature Struc Mol Biol 14 :85-87. PubMed Id: 17187075. |
||
PorB outer membrane protein, native structure: Neisseria meningitidis B Bacteria (expressed in E. coli), 2.30 Å
The second most common OMP of Neisseria, PorB is required for pathogenesis. Former 3A2R, 3A2T, and 3A2U superseded by 3VZT, 3VZW, and 3VZU, respectively. In complex with sucrose, 2.20 Å: 3A2S In complex with galactose, 3.20 Å: 3VZW In complex with AMP-PNP, 2.90 Å: 3ZVU |
Tanabe et al. (2010).
Tanabe M, Nimigean CM, & Iverson TM (2010). Structural basis for solute transport, nucleotide regulation, and immunological recognition of Neisseria meningitidis PorB.
Proc Natl Acad Sci USA 107 :6811-6816. PubMed Id: 20351243. |
||
PorB outer membrane protein: Neisseria meningitidis B Bacteria (expressed in E. coli), 3.32 Å
Loop 7 mutant, 2.40 Å: 3WI5 |
Kattner et al. (2014).
Kattner C, Toussi DN, Zaucha J, Wetzler LM, Rüppel N, Zachariae U, Massari P, & Tanabe M (2014). Crystallographic analysis of Neisseria meningitidis PorB extracellular loops potentially implicated in TLR2 recognition.
J Struct Biol 185 3:440-447. PubMed Id: 24361688. doi:10.1016/j.jsb.2013.12.006. |
||
PorB outer membrane protein, G103K mutant: Neisseria meningitidis B Bacteria (expressed in E. coli), 2.76 Å
|
Bartsch et al. (2021).
Bartsch A, Ives CM, Kattner C, Pein F, Diehn M, Tanabe M, Munk A, Zachariae U, Steinem C, & Llabrás S (2021). An antibiotic-resistance conferring mutation in a neisserial porin: Structure, ion flux, and ampicillin binding.
Biochim Biophys Acta Biomembr 1863 6:183601. PubMed Id: 33675718. doi:10.1016/j.bbamem.2021.183601. |
||
PorB outer membrane protein: Neisseria gonorrhoeae B Bacteria, 3.20 Å
|
Zeth et al. (2013).
Zeth K, Kozjak-Pavlovic V, Faulstich M, Fraunholz M, Hurwitz R, Kepp O, & Rudel T (2013). Structure and function of the PorB porin from disseminating Neisseria gonorrhoeae.
Biochem J 449 3:631-642. PubMed Id: 23095086. doi:10.1042/BJ20121025. |
||
KdgM *monomeric* porin in complex with disordered oligogalacturonate, wild-type: Dickeya dadantii B Bacteria (expressed in E. coli), 2.10 Å
K161S mutant in complex with disordered oligogalacturonate, 2.10 Å: 4PR7 |
Hutter et al. (2014).
Hutter CA, Lehner R, Wirth Ch, Condemine G, Peneff C, & Schirmer T (2014). Structure of the oligogalacturonate-specific KdgM porin.
Acta Crystallogr. D Biol. Crystallogr. 70 :1770-1778. PubMed Id: 24914987. doi:10.1107/S1399004714007147. |
||
van den Berg et al. (2015).
van den Berg B, Prathyusha Bhamidimarri S, Dahyabhai Prajapati J, Kleinekathöfer U, & Winterhalter M (2015). Outer-membrane translocation of bulky small molecules by passive diffusion.
Proc Natl Acad Sci USA 112 :E2991-E2999. PubMed Id: 26015567. doi:10.1073/pnas.1424835112. |
|||
COG4313 outer membrane channel: Pseudomonas putida B Bacteria (expressed in E. coli), 2.30 Å
|
van den Berg et al. (2015).
van den Berg B, Bhamidimarri SP, & Winterhalter M (2015). Crystal structure of a COG4313 outer membrane channel.
Sci Rep 5 :11927. PubMed Id: 26149193. doi:10.1038/srep11927. |
||
OprG outer membrane amino acid transporter: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), NMR structure
P92A mutant, NMR structure: 2N6P |
Kucharska et al. (2015).
Kucharska I, Seelheim P, Edrington T, Liang B, & Tamm LK (2015). OprG Harnesses the Dynamics of its Extracellular Loops to Transport Small Amino Acids across the Outer Membrane of Pseudomonas aeruginosa.
Structure 23 :2234-2245. PubMed Id: 26655471. doi:10.1016/j.str.2015.10.009. |
||
MOMP major outer membrane protein: Campylobacter jejuni (expressed in E. coli), 2.1 Å
expressed in C. jejuni, 2.88 Å: 5LDT |
Ferrara et al. (2016).
Ferrara LG, Wallat GD, Moynié L, Dhanasekar NN, Aliouane S, Acosta-Gutiérrez S, Pagès JM, Bolla JM, Winterhalter M, Ceccarelli M, & Naismith JH (2016). MOMP from Campylobacter jejuni Is a Trimer of 18-Stranded β-Barrel Monomers with a Ca2+ Ion Bound at the Constriction Zone.
J Mol Biol 428 :4528-4543. PubMed Id: 27693650. doi:10.1016/j.jmb.2016.09.021. |
||
Omp-Pst1 type-A porin: Providencia stuartii B Bacteria (expressed in E. coli), 3.2 Å
Structures reveal that these porins can self-associate to form dimers of trimers Omp-Pst1 type-B, 2.7 Å: 5NXR Omp-Pst1 type-B in complex with maltose, 3 Å: 5NXU Omp-Pst2 reveals dimer of trimers, 2.2 Å: 4D65 283-LGNY-286, steric zipper that supports dimerization of Pst2, 0.997 Å: 5N9H 206-GVVTSE-211 steric zipper that supports dimerization of Pst1, 1.91 Å: 5N9I Pst1 L5 deletion, 3.12 Å: 5NXN |
El-Khatib et al. (2018).
El-Khatib M, Nasrallah C, Lopes J, Tran QT, Tetreau G, Basbous H, Fenel D, Gallet B, Lethier M, Bolla JM, Pagès JM, Vivaudou M, Weik M, Winterhalter M, & Colletier JP (2018). Porin self-association enables cell-to-cell contact inProvidencia stuartiifloating communities.
Proc Natl Acad Sci USA 115 10:E2220-E2228. PubMed Id: 29476011. doi:10.1073/pnas.1714582115. |
||
Aunkham et al. (2018).
Aunkham A, Zahn M, Kesireddy A, Pothula KR, Schulte A, Baslá A, Kleinekathöfer U, Suginta W, & van den Berg B (2018). Structural basis for chitin acquisition by marine Vibrio species.
Nat Commun 9 1. PubMed Id: 29335469. doi:10.1038/s41467-017-02523-y. |
|||
Rouse et al. (2017).
Rouse SL, Hawthorne WJ, Berry JL, Chorev DS, Ionescu SA, Lambert S, Stylianou F, Ewert W, Mackie U, Morgan RML, Otzen D, Herbst FA, Nielsen PH, Dueholm M, Bayley H, Robinson CV, Hare S, & Matthews S (2017). A new class of hybrid secretion system is employed in Pseudomonas amyloid biogenesis.
Nat Commun 8 1. PubMed Id: 28811582. doi:10.1038/s41467-017-00361-6. |
|||
DcaP outer membrane channel: Acinetobacter baumannii B Bacteria (expressed in E. coli), 2.2 Å
|
Bhamidimarri et al. (2019).
Bhamidimarri SP, Zahn M, Prajapati JD, Schleberger C, Söderholm S, Hoover J, West J, Kleinekathöfer U, Bumann D, Winterhalter M, & van den Berg B (2019). A Multidisciplinary Approach toward Identification of Antibiotic Scaffolds for Acinetobacter baumannii.
Structure 27 2:268-280.e6. PubMed Id: 30554842. doi:10.1016/j.str.2018.10.021. |
||
MtrAB electron transporter complex: Shewanella baltica B Bacteria (expressed in Shewanella oneidensis), 2.70 Å
MtrC, 2.29 Å: 6QYC |
Edwards et al. (2020).
Edwards MJ, White GF, Butt JN, Richardson DJ, & Clarke TA (2020). The Crystal Structure of a Biological Insulated Transmembrane Molecular Wire.
Cell 181 3:665-673.e10. PubMed Id: 32289252. doi:10.1016/j.cell.2020.03.032. |
||
Outer Membrane Carboxylate Channels (Occ)
These outer membrane proteins require substrates to have a carboxyl group for efficient transport. OccD channels are selective for basic amino acids. OccK channels prefer cyclic substrates. See Eren et al. (2012). |
|||
OccD1 (OprD) basic amino acid uptake channel: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 2.9 Å
|
Biswas et al. (2007).
Biswas S, Mohammad MM, Patel DR, Movileanu L, & van den Berg B (2007). Structural insight into OprD substrate specificity.
Nature Struct Mol Biol 14 :1108-1109. PubMed Id: 17952093. |
||
OccD1 (OprD) basic amino acid uptake channel: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 2.15 Å
|
Eren et al. (2012).
Eren E, Vijayaraghavan J, Liu J, Cheneke BR, Touw DS, Lepore BW, Indic M, Movileanu L, & van den Berg B (2012). Substrate Specificity within a Family of Outer Membrane Carboxylate Channels.
PLoS Biol 10 :e1001242. PubMed Id: 22272184. doi:10.1371/journal.pbio.1001242. |
||
OccD2 (OpdC) basic amino acid uptake channel: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 2.80 Å
|
Eren et al. (2012).
Eren E, Vijayaraghavan J, Liu J, Cheneke BR, Touw DS, Lepore BW, Indic M, Movileanu L, & van den Berg B (2012). Substrate Specificity within a Family of Outer Membrane Carboxylate Channels.
PLoS Biol 10 :e1001242. PubMed Id: 22272184. doi:10.1371/journal.pbio.1001242. |
||
OccD3 (OpdP) basic amino acid uptake channel: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 2.70 Å
|
Eren et al. (2012).
Eren E, Vijayaraghavan J, Liu J, Cheneke BR, Touw DS, Lepore BW, Indic M, Movileanu L, & van den Berg B (2012). Substrate Specificity within a Family of Outer Membrane Carboxylate Channels.
PLoS Biol 10 :e1001242. PubMed Id: 22272184. doi:10.1371/journal.pbio.1001242. |
||
OccK1 (OpdK) benzoate channel: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 2.8 Å
Binds vanillate. Forms labile trimer. |
Biswas et al. (2008).
Biswas S, Mohammad MM, Movileanu L, & van den Berg B (2008). Crystal structure of the outer membrane protein OpdK from Pseudomonas aeruginosa.
Structure 16 :1027-1035. PubMed Id: 18611376. |
||
OccK1 (OpdK) benzoate channel: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 1.65 Å
|
Eren et al. (2012).
Eren E, Vijayaraghavan J, Liu J, Cheneke BR, Touw DS, Lepore BW, Indic M, Movileanu L, & van den Berg B (2012). Substrate Specificity within a Family of Outer Membrane Carboxylate Channels.
PLoS Biol 10 :e1001242. PubMed Id: 22272184. doi:10.1371/journal.pbio.1001242. |
||
OccK2 (OpdF) glucuronate channel: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 2.30 Å
|
Eren et al. (2012).
Eren E, Vijayaraghavan J, Liu J, Cheneke BR, Touw DS, Lepore BW, Indic M, Movileanu L, & van den Berg B (2012). Substrate Specificity within a Family of Outer Membrane Carboxylate Channels.
PLoS Biol 10 :e1001242. PubMed Id: 22272184. doi:10.1371/journal.pbio.1001242. |
||
OccK3 (OpdO) aromatic hydrocarbon channel: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 1.45 Å
|
Eren et al. (2012).
Eren E, Vijayaraghavan J, Liu J, Cheneke BR, Touw DS, Lepore BW, Indic M, Movileanu L, & van den Berg B (2012). Substrate Specificity within a Family of Outer Membrane Carboxylate Channels.
PLoS Biol 10 :e1001242. PubMed Id: 22272184. doi:10.1371/journal.pbio.1001242. |
||
OccK4 (OpdL) aromatic hydrocarbon channel: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 2.10 Å
|
Eren et al. (2012).
Eren E, Vijayaraghavan J, Liu J, Cheneke BR, Touw DS, Lepore BW, Indic M, Movileanu L, & van den Berg B (2012). Substrate Specificity within a Family of Outer Membrane Carboxylate Channels.
PLoS Biol 10 :e1001242. PubMed Id: 22272184. doi:10.1371/journal.pbio.1001242. |
||
OccK5 (OpdH) aromatic hydrocarbon channel: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 2.60 Å
|
Eren et al. (2012).
Eren E, Vijayaraghavan J, Liu J, Cheneke BR, Touw DS, Lepore BW, Indic M, Movileanu L, & van den Berg B (2012). Substrate Specificity within a Family of Outer Membrane Carboxylate Channels.
PLoS Biol 10 :e1001242. PubMed Id: 22272184. doi:10.1371/journal.pbio.1001242. |
||
OccK6 (OpdQ) aromatic hydrocarbon channel: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 2.35 Å
|
Eren et al. (2012).
Eren E, Vijayaraghavan J, Liu J, Cheneke BR, Touw DS, Lepore BW, Indic M, Movileanu L, & van den Berg B (2012). Substrate Specificity within a Family of Outer Membrane Carboxylate Channels.
PLoS Biol 10 :e1001242. PubMed Id: 22272184. doi:10.1371/journal.pbio.1001242. |
||
BenF-like Porin (putative) benzoate channel: Pseudomonas fluorescens B Bacteria, 2.60 Å
Probably belongs to OccK subfamily |
Sampathkumar et al. (2010).
Sampathkumar P, Lu F, Zhao X, Li Z, Gilmore J, Bain K, Rutter ME, Gheyi T, Schwinn KD, Bonanno JB, Pieper U, Fajardo JE, Fiser A, Almo SC, Swaminathan S, Chance MR, Baker D, Atwell S, Thompson DA, Emtage JS, Wasserman SR, Sali A, Sauder JM, &Burley SK (2010). Structure of a putative BenF-like porin from Pseudomonas fluorescens Pf-5 at 2.6 Å resolution.
Proteins 78 :3056-3062. PubMed Id: 20737437. |
||
OccAB1 outer membrane channel: Acinetobacter baumannii B Bacteria (expressed in E. coli), 2.05 Å
|
Zahn et al. (2016).
Zahn M, Bhamidimarri SP, Baslé A, Winterhalter M, & van den Berg B (2016). Structural Insights into Outer Membrane Permeability of Acinetobacter baumannii.
Structure 24 :221-231. PubMed Id: 26805524. doi:10.1016/j.str.2015.12.009. |
||
OccAB2 outer membrane channel: Acinetobacter baumannii B Bacteria (expressed in E. coli), 2.9 Å
|
Zahn et al. (2016).
Zahn M, Bhamidimarri SP, Baslé A, Winterhalter M, & van den Berg B (2016). Structural Insights into Outer Membrane Permeability of Acinetobacter baumannii.
Structure 24 :221-231. PubMed Id: 26805524. doi:10.1016/j.str.2015.12.009. |
||
OccAB3 outer membrane channel: Acinetobacter baumannii B Bacteria (expressed in E. coli), 1.75 Å
|
Zahn et al. (2016).
Zahn M, Bhamidimarri SP, Baslé A, Winterhalter M, & van den Berg B (2016). Structural Insights into Outer Membrane Permeability of Acinetobacter baumannii.
Structure 24 :221-231. PubMed Id: 26805524. doi:10.1016/j.str.2015.12.009. |
||
OccAB4 outer membrane channel: Acinetobacter baumannii B Bacteria (expressed in E. coli), 2.2 Å
|
Zahn et al. (2016).
Zahn M, Bhamidimarri SP, Baslé A, Winterhalter M, & van den Berg B (2016). Structural Insights into Outer Membrane Permeability of Acinetobacter baumannii.
Structure 24 :221-231. PubMed Id: 26805524. doi:10.1016/j.str.2015.12.009. |
||
Beta-Barrel Membrane Proteins: Monomeric/Dimeric
|
|||
TolC outer membrane protein: Escherichia coli B Bacteria, 2.1 Å
NOTE: Functional protein is a homotrimer. Each monomer contributes 4 strands to a single barrel. |
Koronakis et al. (2000).
Koronakis V, Sharff A, Koronakis E, Luisi B, & Hughes C (2000). Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export.
Nature 405 :914-919. PubMed Id: 10879525. |
||
TolC outer membrane protein, ligand blocked: Escherichia coli B Bacteria, 2.75 Å
|
Higgins et al. (2004).
Higgins MK, Eswaran J, Edwards P, Schertler GF, Hughes C, & Koronakis V (2004). Structure of the ligand-blocked periplasmic entrance of the bacterial multidrug efflux protein TolC.
J Mol Biol 342 :697-702. PubMed Id: 15342230. |
||
TolC outer membrane protein (Y362F, R367E), partially open state: Escherichia coli B Bacteria, 3.2 Å
2VDE is P212121 form. C2 form, 3.30 Å: 2VDD |
Bavro et al. (2008).
Bavro VN, Pietras Z, Furnham N, Pérez-Cano L, Fernández-Recio J, Pei XY, Misra R, & Luisi B (2008). Assembly and channel opening in a bacterial drug efflux machine.
Mol Cell 30 :114-121. PubMed Id: 18406332. |
||
TolC outer membrane protein in a nanodisc with colicin E1 fragment: Escherichia coli B Bacteria, 3.09 Å
cryo-EM structure TolC alone, 2.84 Å 6WXI |
Budiardjo et al. (2022).
Budiardjo SJ, Stevens JJ, Calkins AL, Ikujuni AP, Wimalasena VK, Firlar E, Case DA, Biteen JS, Kaelber JT, & Slusky JSG (2022). Colicin E1 opens its hinge to plug TolC.
Elife 11 :e73297. PubMed Id: 35199644. doi:10.7554/eLife.73297. |
||
Housden et al. (2021).
Housden NG, Webby MN, Lowe ED, El-Baba TJ, Kaminska R, Redfield C, Robinson CV, & Kleanthous C (2021). Toxin import through the antibiotic efflux channel TolC.
Nat Commun 12 1:4625. PubMed Id: 34330923. doi:10.1038/s41467-021-24930-y. |
|||
CmeC bacterial multi-drug efflux transporter outer membrane channel: Campylobacter jejuni B Bacteria, 2.37 Å
|
Su et al. (2014).
Su CC, Radhakrishnan A, Kumar N, Long F, Bolla JR, Lei HT, Delmar JA, Do SV, Chou TH, Rajashankar KR, Zhang Q, & Yu EW (2014). Crystal structure of the Campylobacter jejuni CmeC outer membrane channel.
Protein Sci 23 7:954-961. PubMed Id: 24753291. doi:10.1002/pro.2478. |
||
VceC outer membrane protein: Vibrio cholerae B Bacteria, 1.8 Å
NOTE: Functional protein is a homotrimer. Each monomer contributes 4 strands to a single barrel. |
Federici et al. (2005).
Federici L, Du D, Walas F, Matsumura H, Fernandez-Recio J, McKeegan KS, Borges-Walmsley MI, Luisi BF, & Walmsley AR (2005). The Crystal Structure of the Outer Membrane Protein VceC from the Bacterial Pathogen Vibrio cholerae at 1.8 A Resolution.
J Biol Chem 280 :15307-15314. PubMed Id: 15684414. |
||
OprM drug discharge outer membrane protein: Pseudomonas aeruginosa B Bacteria, 2.56 Å
Functional protein is a homotrimer. Each monomer contributes 4 strands to a single barrel. H32 space group. OprM is the discharge channel for the tripartite efflux complex MexAB-OprM. The structures of MexB (the inner membrane efflux pump) and MexA (periplasmic fusion protein) are known. See 2V50 and 1T5E, respectively. See 6IOK for structure of entire complex. |
Akama et al. (2004).
Akama H, Kanemaki M, Yoshimura M, Tsukihara T, Kashiwagi T, Yoneyama H, Narita S, Nakagawa A, & Nakae T (2004). Crystal structure of the drug discharge outer membrane protein, OprM, of Pseudomonas aeruginosa: dual modes of membrane anchoring and occluded cavity end.
J Biol Chem 279 :52816-52819. PubMed Id: 15507433. |
||
OprM drug discharge outer membrane protein: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 2.40 Å
Structure of OprM in a non-symmetrical space group, P212121 |
Phan et al. (2010).
Phan G, Benabdelhak H, Lascombe MB, Benas P, Rety S, Picard M, Ducruix A, Etchebest C, & Broutin I (2010). Structural and dynamical insights into the opening mechanism of P. aeruginosa OprM channel.
Structure 18 :507-517. PubMed Id: 20399187. |
||
OprN drug discharge outer membrane protein, I4 space group: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 1.69 Å
P321 space group, 2.70 Å: 5AZP |
Yonehara et al. (2016).
Yonehara R, Yamashita E, & Nakagawa A (2016). Crystal structures of OprN and OprJ, outer membrane factors of multidrug tripartite efflux pumps of Pseudomonas aeruginosa.
Proteins 84 6:759-769. PubMed Id: 26914226. doi:10.1002/prot.25022. |
||
OprJ drug discharge outer membrane protein: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 3.10 Å
|
Yonehara et al. (2016).
Yonehara R, Yamashita E, & Nakagawa A (2016). Crystal structures of OprN and OprJ, outer membrane factors of multidrug tripartite efflux pumps of Pseudomonas aeruginosa.
Proteins 84 6:759-769. PubMed Id: 26914226. doi:10.1002/prot.25022. |
||
ST50 discharge outer membrane protein: Salmonella enterica B Bacteria (expressed in E. coli), 2.98 Å
Functional protein is a homotrimer. Each monomer contributes 4 strands to a single barrel. |
Guan et al. (2015).
Guan HH, Yoshimura M, Chuankhayan P, Lin CC, Chen NC, Yang MC, Ismail A, Fun HK, & Chen CJ (2015). Crystal structure of an antigenic outer-membrane protein from Salmonella Typhi suggests a potential antigenic loop and an efflux mechanism.
Sci Rep 5 :16441. PubMed Id: 26563565. doi:10.1038/srep16441. |
||
CusC heavy metal discharge outer membrane protein: Escherichia coli B Bacteria, 2.30 Å
NOTE: Functional protein is a homotrimer. Each monomer contributes 4 strands to a single barrel. H32 space group. |
Kulathila et al. (2011).
Kulathila R, Kulathila R, Indic M, & van den Berg B (2011). Crystal structure of Escherichia coli CusC, the outer membrane component of a heavy metal efflux pump.
PLoS One 6 :e15610. PubMed Id: 21249122. doi:10.1371/journal.pone.0015610. |
||
Lei et al. (2014).
Lei HT, Bolla JR, Bishop NR, Su CC, & Yu EW (2014). Crystal Structures of CusC Review Conformational Changes Accompanying Folding and Transmembrane Channel Formation.
J Mol Biol 426 :403-411. PubMed Id: 24099674. doi:10.1016/j.jmb.2013.09.042. |
|||
Chimento et al. (2003).
Chimento DP, Mohanty AK, Kadner RJ, & Wiener MC (2003). Substrate-induced transmembrane signaling in the cobalamin transporter BtuB.
Nat Struct Biol. 10 :394-401. PubMed Id: 12652322. |
|||
BtuB with bound colicin E3 R-domain: Escherichia coli B Bacteria, 2.75 Å
NOTE: The 135-residue coiled-coil R-domain is believed to deliver the colicin to OmpF (above). |
Kurisu et al. (2003).
Kurisu G, Zakharov SD, Zhalnina MV, Bano S, Eroukova VY, Rokitskaya TI, Antonenko YN, Wiener MC, & Cramer WA (2003). The structure of BtuB with bound colicin E3 R-domain implies a translocon.
Nat. Struct. Biol. 10 :948-954. PubMed Id: 14528295. |
||
apo BtuB by in meso crystallization: Escherichia coli B Bacteria, 1.95 Å
NOTE: Crystals were prepared from cubic phase lipids. This is the first β-barrel protein prepared by this method. |
Cherezov et al. (2006).
Cherezov V, Yamashita E, Liu W, Zhalnina M, Cramer WA & Caffrey M (2006). In meso structure of the cobalamin transporter, BtuB, at 1.95 Å resolution.
J Mol Biol 364 :716-734. PubMed Id: 17028020. |
||
BtuB in complex with TonB: Escherichia coli B Bacteria, 2.1 Å
|
Shultis et al. (2006).
Shultis DD, Purdy MD, Banchs CN, & Wiener MC (2006). Outer membrane active transport: structure of the BtuB:TonB complex.
Science 312 :1396-1399. PubMed Id: 16741124. |
||
BtuB with bound colicin E2 R-domain: Escherichia coli B Bacteria, 3.50 Å
|
Sharma et al. (2007).
Sharma O, Yamashita E, Zhalnina MV, Zakharov SD, Datsenko KA, Wanner BL, & Cramer WA (2007). Structure of the complex of the colicin E2 R-domain and its BtuB receptor. The outer membrane colicin translocon.
J Biol Chem 282 :23163-23170. PubMed Id: 17548346. |
||
apo BtuB V10R1 spin-labeled: Escherichia coli B Bacteria, 2.44 Å
Spin-labeled BtuB V10R1 with bound calcium and cyanocobalamin, 2.44 Å: 3M8D |
Freed et al. (2010).
Freed DM, Horanyi PS, Wiener MC, & Cafiso DS (2010). Conformational exchange in a membrane transport protein is altered in protein crystals.
Biophys J 99 :1604-1610. PubMed Id: 20816073. doi:10.1016/j.bpj.2010.06.026. |
||
Colicin I receptor Cir in complex with Colicin Ia binding domain: Escherichia coli B Bacteria, 2.5 Å
Cir Colicin I receptor alone, 2.65 Å: 2HDF |
Buchanan et al. (2007).
Buchanan S, Lukacik P, Grizot S, Ghirlando R, Ali MMU, Barnard TJ, Jakes S, Kienker PK, & Esser L. (2007). Structure of colicin I receptor bound to the R-domain of colicin Ia: Implications for protein import.
EMBO J 26 :2594-2604. PubMed Id: 17464289. |
||
OmpA: Escherichia coli B Bacteria, 2.50 Å
|
Pautsch & Schulz (1998).
Pautsch A & Schulz GE (1998). Structure of the outer membrane protein A transmembrane domain.
Nature Struct Biol 5 :1013-1017. PubMed Id: 9808047. |
||
OmpA: Escherichia coli B Bacteria, 1.60 Å
|
Pautsch & Schulz (2000).
Pautsch A & Schulz GE (2000). High-resolution structure of the OmpA membrane domain.
J Mol Biol 298 :273-282. PubMed Id: 10764596. |
||
OmpA: Escherichia coli B Bacteria, NMR Structure
in DPC micelles |
Arora et al. (2001).
Arora A, Abildgaard F, Bushweller JH, & Tamm LK (2001). Structure of outer membrane protein A transmembrane domain by NMR spectroscopy.
Nature Structural Biol. 8 :334-338. PubMed Id: 11276254. |
||
OmpA: Escherichia coli B Bacteria, NMR structure
DPC micelles. High-resolution structure determined using residual dipolar couplings. |
Cierpicki et al. (2006).
Cierpicki T, Liang B, Tamm LK, & Bushweller JH (2006). Increasing the accuracy of solution NMR structures of membrane proteins by application of residual dipolar couplings. High-resolution structure of outer membrane protein A.
J Am Chem Soc 128 :6947-6951. PubMed Id: 16719475. |
||
OmpA with four shortened loops: Escherichia coli B Bacteria, NMR Structure
DHPC micelles. Called β-barrel platform (BBP). |
Johansson et al. (2007).
Johansson MU, Alioth S, Hu K, Walser R, Koebnik R, & Pervushin K (2007). A minimal transmembrane β-barrel platform protein studied by nuclear magnetic resonance.
Biochemistry 46 :1128-1140. PubMed Id: 17260943. |
||
OmpA: Klebsiella pneumoniae B Bacteria (expressed in E. coli), NMR Structure
DHPC micelles |
Renault et al. (2009).
Renault M, Saurel O, Czaplicki J, Demange P, Gervais V, Löhr F, Réat V, Piotto M, & Milon A (2009). Solution state NMR structure and dynamics of KpOmpA, a 210 residue transmembrane domain possessing a high potential for immunological applications
J Mol Biol 385 :117-130. PubMed Id: 18952100. doi:10.1016/j.jmb.2008.10.021. |
||
OmpT outer membrane protease: Escherichia coli B Bacteria, 2.6 Å
|
Vandeputte-Rutten et al. (2001).
Vandeputte-Rutten L, Kramer RA, Kroon J, Dekker N, Egmond, MR, & Gros P (2001). Crystal structure of the outer membrane protease OmpT from Eschericia coli suggests a novel catalytic site.
EMBO J 20 :5033-5039. PubMed Id: 11566868. |
||
Eren et al. (2010).
Eren E, Murphy M, Goguen J, & van den Berg B. (2010). An active site water network in the plasminogen activator Pla from Yersinia pestis.
Structure 18 :809-818. PubMed Id: 20637417. |
|||
OmpW outer membrane protein: Escherichia coli B Bacteria, 2.7 Å
2F1V is orthorhomibic form. Trigonal form, 3.0 Å: 2F1T |
Hong et al. (2006).
Hong H, Patel DR, Tamm LK, & van den Berg B (2006). The Outer Membrane Protein OmpW Forms an Eight-stranded beta-Barrel with a Hydrophobic Channel.
J Biol Chem 281 :7568-7577. PubMed Id: 16414958. |
||
OmpW outer membrane protein: Escherichia coli B Bacteria, NMR structure
30-Fos detergent |
Horst et al. (2014).
Horst R, Stanczak P, & Wüthrich K (2014). NMR polypeptide backbone conformation of the E. coli outer membrane protein W.
Structure 22 :1204-1209. PubMed Id: 25017731. doi:10.1016/j.str.2014.05.016. |
||
AlkL passive importer of hydrophobic molecules in DMPC lipid bilayer: Pseudomonas oleovorans B Bacteria (expressed in E. coli), NMR structure
Solution NMR structure, 6QAM |
Schubeis et al. (2020).
Schubeis T, Le Marchand T, Daday C, Kopec W, Tekwani Movellan K, Stanek J, Schwarzer TS, Castiglione K, de Groot BL, Pintacuda G, & Andreas LB (2020). A β-barrel for oil transport through lipid membranes: Dynamic NMR structures of AlkL.
Proc Natl Acad Sci USA 117 35:21014-21021. PubMed Id: 32817429. doi:10.1073/pnas.2002598117. |
||
Zahn et al. (2015).
Zahn M, D'Agostino T, Eren E, Baslé A, Ceccarelli M, & van den Berg B (2015). Small-Molecule Transport by CarO, an Abundant Eight-Stranded β-Barrel Outer Membrane Protein from Acinetobacter baumannii.
J Mol Biol 427 :2329-2339. PubMed Id: 25846137. doi:10.1016/j.jmb.2015.03.016. |
|||
OprF outer membrane protein, N-terminal β-barrel domain: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 1.6 Å
|
Zahn et al. (2015).
Zahn M, D'Agostino T, Eren E, Baslé A, Ceccarelli M, & van den Berg B (2015). Small-Molecule Transport by CarO, an Abundant Eight-Stranded β-Barrel Outer Membrane Protein from Acinetobacter baumannii.
J Mol Biol 427 :2329-2339. PubMed Id: 25846137. doi:10.1016/j.jmb.2015.03.016. |
||
OprG outer membrane protein: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 2.4 Å
Potential channel for hydrophobic molecule transport |
Touw et al. (2010).
Touw DS, Patel DR, & van den Berg B (2010). The crystal structure of OprG from Pseudomonas aeruginosa, a potential channel for transport of hydrophobic molecules across the outer membrane.
PLoS One 5 :e15016. PubMed Id: 21124774. doi:10.1371/journal.pone.0015016. |
||
OprH, outer membrane protein H: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), NMR Structure
Structure determined in DHPC micelles. Eight strands. Chemical-shift measurements identify likely lipopolysaccharide interaction sites. |
Edrington et al. (2011).
Edrington TC, Kintz E, Goldberg JB, & Tamm LK (2011). Structural Basis for the Interaction of Lipopolysaccharide with Outer Membrane Protein H (OprH) from Pseudomonas aeruginosa
J Biol Chem 286 :39211-39223. PubMed Id: 21865172. doi:10.1074/jbc.M111.280933. |
||
Vogt & Schulz (1999).
Vogt J & Schulz GE (1999). The structure of the outer membrane protein OmpX from Escherichia coli reveals possible mechanisms of virulence.
Structure Fold.Des. 7 :1301-1309. PubMed Id: 10545325. |
|||
OmpX: Escherichia coli B Bacteria, NMR (DHPC micelles)
|
Fernández et al. (2001).
Fernández C, Adeishvili K, & Wüthrich K (2001). Transverse relaxation-optimized NMR spectroscopy with the outer membrane protein OmpX in dihexanoyl phosphatidylcholine micelles.
Proc Natl Acad Sci USA 98 :2358-2363. PubMed Id: 11226244. |
||
OmpX: Escherichia coli B Bacteria, NMR (DPC micelles, with H-bond constraints)
For structure without H-bond constraints, see 1Q9G |
Fernández et al. (2004).
Fernández C, Hilty C, Wider G, Guntert P, & Wüthrich K (2004). NMR structure of the integral membrane protein OmpX.
J Mol Biol. 336 :1211-1221. PubMed Id: 15037080. |
||
OmpX in optimized nanodiscs: Escherichia coli B Bacteria, NMR Structure
In DPC micelles, NMR Structure: 2M07 |
Hagn et al. (2013).
Hagn F, Etzkorn M, Raschle T, & Wagner G (2013). Optimized phospholipid bilayer nanodiscs facilitate high-resolution structure determination of membrane proteins.
J Am Chem Soc 135 :1919-1925. PubMed Id: 23294159. doi:10.1021/ja310901f. |
||
Ail adhesion protein: Yersinia pestis B Bacteria (expressed in E. coli), 1.80 Å
In complex with sucrose octasulfate (SOS), 1.85 Å: 3QRC |
Yamashita et al. (2011).
Yamashita S, Lukacik P, Barnard TJ, Noinaj N, Felek S, Tsang TM, Krukonis ES, Hinnebusch BJ, & Buchanan SK (2011). Structural Insights into Ail-Mediated Adhesion in Yersinia pestis.
Structure 19 :1672-1682. PubMed Id: 22078566. doi:10.1016/j.str.2011.08.010. |
||
Ail adhesion protein, decylphosphocholine micelles: Yersinia pestis B Bacteria (expressed in E. coli), NMR structure
in decylphosphocholine micelles calculated with implicit membrane solvation, NMR structure: 2N2L |
Marassi et al. (2015).
Marassi FM, Ding Y, Schwieters CD, Tian Y, & Yao Y (2015). Backbone structure of Yersinia pestis Ail determined in micelles by NMR-restrained simulated annealing with implicit membrane solvation.
J Biomol NMR 63 :59-65. PubMed Id: 26143069. doi:10.1007/s10858-015-9963-2. |
||
Ail adhesion protein: Yersinia pestis B Bacteria (expressed in E. coli), NMR structure
Structure of protein in phospholipid nano-disc. Examines the effect of KDO2-lipid A. |
Dutta et al. (2017).
Dutta SK, Yao Y, & Marassi FM (2017). Structural Insights into the Yersinia pestis Outer Membrane Protein Ail in Lipid Bilayers.
J Phys Chem B 121 :7561-7570. PubMed Id: 28726410. doi:10.1021/acs.jpcb.7b03941. |
||
TtoA Outer Membrane Protein (OMP): Thermus thermophilus HB27 B Bacteria, 2.8 Å
First structure of an OMP from a thermophile |
Brosig et al. (2009).
Brosig A, Nesper J, Boos W, Welte W, & Diederichs K (2009). Crystal structure of a major outer membrane protein from Thermus thermophilus HB27.
J Mol Biol 385 :1445-1455. PubMed Id: 19101566. |
||
OmpLA (PldA) outer membrane phospholipase A monomer: Escherichia coli B Bacteria, 2.17 Å
Dimer, 2.10 Å: 1QD6 |
Snijder et al. (1999).
Snijder HJ, Ubarretxena-Belandia I, Blaauw M, Kalk KH, Verheij HM, Egmond MR, Dekker N, & Dijkstra BW (1999). Structural evidence for dimerization-regulated activation of an integral membrane phospholipase.
Nature 401 :717-721. PubMed Id: 10537112. |
||
OmpLA (PldA) outer membrane phospholipase A monomer with Ca++: Escherichia coli B Bacteria, 2.60 Å
Dimer, 2.80 Å: 1FW3 |
Snijder et al. (2001).
Snijder HJ, Kingma RL, Kalk KH, Dekker N, Egmond MR, & Dijkstra BW (2001). Structural investigations of calcium binding and its role in activity and activation of outer membrane phospholipase A from Escherichia coli.
J Mol Biol 309 :477-489. PubMed Id: 11371166. |
||
Snijder et al. (2001).
Snijder HJ, Van Eerde JH, Kingma RL, Kalk KH, Dekker N, Egmond MR, & Dijkstra BW (2001). Structural investigations of the active-site mutant Asn156Ala of outer membrane phospholipase A: function of the Asn-His interaction in the catalytic triad.
Protein Sci 10 :1962-1969. PubMed Id: 11567087. |
|||
OpcA adhesin protein: Neisseria meningitidis B Bacteria, 2.0 Å
|
Prince et al. (2002).
Prince SM, Achtman M, & Derrick JP (2002). Crystal structure of the OpcA integral membrane adhesin from Neisseria meningitidis.
Proc. Natl. Acad. Sci. USA 99 :3417-3421. PubMed Id: 11891340. |
||
OpcA adhesin protein: Neisseria meningitidis B Bacteria (expressed in E. coli), 1.95 Å
In meso crystallization |
Cherezov et al. (2008).
Cherezov V, Liu W, Derrick JP, Luan B, Aksimentiev A, Katritch V, & Caffrey M (2008). In meso crystal structure and docking simulations suggest an alternative proteoglycan binding site in the OpcA outer membrane adhesin.
Proteins 71 :24-34. PubMed Id: 18076035. doi:10.1002/prot.21841. |
||
NspA surface protein: Neisseria meningitidis B Bacteria, 2.55 Å
|
Vandeputte-Rutten et al. (2003).
Vandeputte-Rutten L, Bos MP, Tommassen J, & Gros P (2003). Crystal structure of Neisserial surface protein A (NspA), a conserved outer membrane protein with vaccine potential.
J. Biol. Chem. 278 :24825-24830. PubMed Id: 12716881. |
||
NanC Porin, model for KdgM porin family: Escherichia coli B Bacteria, 1.80 Å
H3 space group. See also 2WJQ, p6322 space group, 2.0 Å resolution. |
Wirth et al. (2009).
Wirth C, Condemine G, Boiteux C, Bernèche S, Schirmer T, & Peneff CM (2009). NanC Crystal Structure, a Model for Outer-Membrane Channels of the Acidic Sugar-Specific KdgM Porin Family.
J Mol Biol 394 :718-731. PubMed Id: 19796645. |
||
PagL LPS 3-O-deacylase: Pseudomonas aeruginosa B Bacteria, 2.00 Å
|
Rutten et al. (2006).
Rutten L, Geurtsen J, Lambert W, Smolenaers JJ, Bonvin AM, de Haan A, van der Ley P, Egmond MR, Gros P, & Tommassen J (2006). Crystal structure and catalytic mechanism of the LPS 3-O-deacylase PagL from Pseudomonas aeruginosa.
Proc Natl Acad Sci USA 103 :7071-7076. PubMed Id: 16632613. doi:10.1073/pnas.0509392103. |
||
LpxR lipid A deacylase: Salmonella typhimurium B Bacteria (expressed in E. coli), 1.90 Å
|
Rutten et al. (2009).
Rutten L, Mannie JP, Stead CM, Raetz CR, Reynolds CM, Bonvin AM, Tommassen JP, Egmond MR, Trent MS, & Gros P (2009). Active-site architecture and catalytic mechanism of the lipid A deacylase LpxR of Salmonella typhimurium.
Proc Natl Acad Sci USA 106 :1960-1964. PubMed Id: 19174515. doi:10.1073/pnas.0813064106 . |
||
PagP outer membrane palimitoyl transferease: Escherichia coli B Bacteria, NMR
1MM4 is Structure in DPC micelles. Structure in OG micelles: 1MM5 |
Hwang et al. (2002).
Hwang PM, Choy WY, Lo EI, Chen L, Forman-Kay JD, Raetz CR, Privé GG, Bishop RE, Kay LE (2002). Solution structure and dynamics of the outer membrane enzyme PagP by NMR.
Proc Natl Acad Sci USA 99 :13560-13565. PubMed Id: 12357033. |
||
PagP outer membrane palimitoyl transferease: Escherichia coli B Bacteria, 1.90 Å
|
Ahn et al. (2004).
Ahn VE, Lo EI, Engel CK, Chen L, Hwang PM, Kay LE, Bishop RE, & Prive GG (2004). A hydrocarbon ruler measures palmitate in the enzymatic acylation of endotoxin.
EMBO J. 23 :2931-2941. PubMed Id: 15272304. |
||
PagP outer membrane palimitoyl transferease crystallized from SDS/Co-solvent: Escherichia coli B Bacteria, 1.40 Å
Reveals phospholipid access route (crenel between strands F and G) |
Cuesta-Seijo et al. (2010).
Cuesta-Seijo JA, Neale C, Khan MA, Moktar J, Tran CD, Bishop RE, Pomès R, & Privé GG (2010). PagP crystallized from SDS/cosolvent reveals the route for phospholipid access to the hydrocarbon ruler.
Structure 18 :1210-1219. PubMed Id: 20826347. |
||
FadL long-chain fatty acid transporter: Escherichia coli B Bacteria, 2.6 Å
1T16 is from Monoclinic crystals. From hexagonal crystals, 2.8 Å: 1T1L |
van den Berg et al. (2004).
van den Berg B, Black PN, Clemons WM Jr, & Rapoport TA (2004). Crystal structure of the long-chain fatty acid transporter FadL.
Science 304 :1506-1509. PubMed Id: 15178802. |
||
FadL long-chain fatty acid transporter A77E/S100R mutant: Escherichia coli B Bacteria, 2.5 Å
Mutants show that channel wall opening for passage of fatty acids into inner layer of outer membrane is likely. ΔS3 kink, 2.60 Å: 2R88 P34A mutant, 3.3 Å: 2R4L N33A mutant, 3.2 Å: 2R4N ΔNPA mutant, 3.6 Å: 2R4O G212E mutant, 2.9 Å: 2R4P |
Hearn et al. (2009).
Hearn EM, Patel DR, Lepore BW, Indic M, van den Berg B (2009). Transmembrane passage of hydrophobic compounds through a protein channel wall.
Nature 458 :367-370. PubMed Id: 19182779. |
||
FadL long-chain fatty acid transporter D348R mutant: Escherichia coli B Bacteria, 2.60 Å
This and associated structures in conjunction with in vivo transport assays and Trp fluorescence demonstrate ligand gating of the β-barrel protein. delta N3 mutant, 3.40 Å: 2R89 D348A mutant, 2.70 Å: 3PF1 F3E mutant, 1.70 Å: 3PGU F3G mutant, 1.90 Å: 3PGS |
Lepore et al. (2011).
Lepore BW, Indic M, Pham H, Hearn EM, Patel DR, & van den Berg B (2011). Ligand-gated diffusion across the bacterial outer membrane
Proc Natl Acad Sci USA 108 :10121-10126. PubMed Id: 21593406. doi:10.1073/pnas.1018532108. |
||
FadL homologue long-chain fatty acid transporter: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 2.2 Å
Shows break in channel wall for passage of fatty acids into inner layer of outer membrane in a species other than E. coli. Residues 22-463. |
Hearn et al. (2009).
Hearn EM, Patel DR, Lepore BW, Indic M, van den Berg B (2009). Transmembrane passage of hydrophobic compounds through a protein channel wall.
Nature 458 :367-370. PubMed Id: 19182779. |
||
YebT lipid transporter, domains 1-4: Escherichia coli B Bacteria, 3.1 Å
cryo-EM structure domains 5-7, 3 Å: 6KZ4 |
Liu et al. (2020).
Liu C, Ma J, Wang J, Wang H, & Zhang L (2020). Cryo-EM Structure of a Bacterial Lipid Transporter YebT.
J Mol Biol 432 4:1008-1019. PubMed Id: 31870848. doi:10.1016/j.jmb.2019.12.008. |
||
FauA alcaligin outer membrane transporter: Bordetella pertussis B Bacteria (expressed in E. coli), 2.3 Å
|
Brillet et al. (2009).
Brillet K, Meksem A, Lauber E, Reimmann & C, Cobessi D (2009). Use of an in-house approach to study the three-dimensional structures of various outer membrane proteins: structure of the alcaligin outer membrane transporter FauA from Bordetella pertussis.
Acta Crystallogr D Biol Crystallogr 65 :326-331. PubMed Id: 19307713. |
||
TodX hydrocarbon transporter: Pseudomonas putida B Bacteria, 2.6 Å
3BS0 is P1 space group, 2 molecules in asymmetric unit. I222 space group, 3.2 Å: 3BRZ |
Hearn et al. (2008).
Hearn EM, Patel DR, & van den Berg BO (2008). Outer-membrane transport of aromatic hydrocarbons as a first step in biodegradation.
Proc Natl Acad Sci USA 105 :8601-8606. PubMed Id: 18559855. |
||
TbuX hydrocarbon transporter: Ralstonia pickettii B Bacteria, 3.2 Å
|
Hearn et al. (2008).
Hearn EM, Patel DR, & van den Berg BO (2008). Outer-membrane transport of aromatic hydrocarbons as a first step in biodegradation.
Proc Natl Acad Sci USA 105 :8601-8606. PubMed Id: 18559855. |
||
Ye and van den Berg (2004).
Ye J & van den Berg B (2004). Crystal structure of the bacterial nucleoside transporter Tsx.
EMBO J. 23 :3187-3195. PubMed Id: 15272310. |
|||
FhuA, Ferrichrome-iron receptor without ligand: Escherichia coli B Bacteria, 2.7 Å
With ligand: 1BY5 |
Locher et al. (1998).
Locher KP, Rees B, Koebnik R, Mitschler A, Moulinier L, Rosenbusch JP, & Moras D (1998). Transmembrane signaling across the ligand-gated FhuA receptor: crystal structures of free and ferrichrome-bound states reveal allosteric changes.
Cell 11 :771-8. PubMed Id: 9865695. |
||
FhuA: Escherichia coli B Bacteria, 2.50 Å
Includes the structure of a bound lipopolysaccharide (LPS) molecule In complex with ferrichrome-iron, 2.70 Å: 1FCP |
Ferguson et al. (1998).
Ferguson AD, Hofmann E, Coulton JW, Diederichs K, & Welte W (1998). Siderophore-mediated iron transport: crystal structure of FhuA with bound lipopolysaccharide.
Protein Sci 9 :956-963. PubMed Id: 9856937. |
||
FhuA-AW140-LPS: Escherichia coli B Bacteria, 2.5 Å
Structure of lipopolysaccharide (LPS) in complex with FhuA. FhuA-DL41-LPS-ferricrocin, 2.7 Å: 1QFF |
Ferguson et al. (2000).
Ferguson AD, Welte W, Hofmann E, Lindner B, Holst O, Coulton JW, & Diederichs K (2000). A conserved structural motif for lipopolysaccharide recognition by procaryotic and eucaryotic proteins.
Structure 8 :585-592. PubMed Id: 10873859. |
||
FhuA in complex with albomycin: Escherichia coli B Bacteria, 3.10 Å
In complex with phenylferricrocin, 2.95 Å: 1QJQ |
Ferguson et al. (2000).
Ferguson AD, Braun V, Fiedler HP, Coulton JW, Diederichs K, & Welte W (2000). Crystal structure of the antibiotic albomycin in complex with the outer membrane transporter FhuA.
Science 282 :2215-2220. PubMed Id: 10850805. |
||
FhuA in complex with lipopolysaccharide and rifamycin CGP4832: Escherichia coli B Bacteria, 2.90 Å
|
Ferguson et al. (2001).
Ferguson AD, Ködding J, Walker G, Bös C, Coulton JW, Diederichs K, Braun V, & Welte W (2001). Active transport of an antibiotic rifamycin derivative by the outer-membrane protein FhuA.
Structure 9 :707-716. PubMed Id: 11587645. |
||
FhuA in complex withTonB: Escherichia coli B Bacteria, 3.3 Å
|
Pawelek et al. (2006).
Pawelek PD, Croteau N, Ng-Thow-Hing C, Khursigara CM, Moiseeva N, Allaire M, & Coulton JW (2006). Structure of TonB in complex with FhuA, E. coli outer membrane receptor.
Science 312 :1399-1402. PubMed Id: 16741125. |
||
FhuA in complex with lasso peptide microcin J25 (MccJ25): Escherichia coli B Bacteria, 2.30 Å
|
Mathavan et al. (2014).
Mathavan I, Zirah S, Mehmood S, Choudhury HG, Goulard C, Li Y, Robinson CV, Rebuffat S, & Beis K (2014). Structural basis for hijacking siderophore receptors by antimicrobial lasso peptides.
Nat Chem Biol 10 5:340-342. PubMed Id: 24705590. doi:10.1038/nchembio.1499. |
||
FhuA in complex with superinfection exclusion (SE) lipoprotein Llp: Escherichia coli B Bacteria, 3.37 Å
In complex with T5 phage receptor-binding protein (RBP) pb5, cryo-EM structure, 3.1 Å: 8A8C |
van den Berg et al. (2022).
van den Berg B, Silale A, Baslé A, Brandner AF, Mader SL, & Khalid S (2022). Structural basis for host recognition and superinfection exclusion by bacteriophage T5.
Proc Natl Acad Sci U S A 119 42:e2211672119. PubMed Id: 36215462. doi:10.1073/pnas.2211672119. |
||
FyuA siderophore transporter: Yersinia pestis B Bacteria (expressed in E. coli), 3.20 Å
pesticin bacteriocin toxin, 2.09 Å: 4EPF phage lysin containing the binding domain of pesticin and the killing domain of T4-lysozyme, 2.60 Å: 4EXM pesticin-T4 lysozyme hybrid stabilized by engineered disulfide bonds, 1.74 Å: 4EPI |
Lukacik et al. (2012).
Lukacik P, Barnard TJ, Keller PW, Chaturvedi KS, Seddiki N, Fairman JW, Noinaj N, Kirby TL, Henderson JP, Steven AC, Hinnebusch BJ, & Buchanan SK (2012). Structural engineering of a phage lysin that targets gram-negative pathogens.
Proc Natl Acad Sci USA 109 25:9857-9862. PubMed Id: 22679291. doi:10.1073/pnas.1203472109. |
||
FepA, Ferric enterobactin receptor: Escherichia coli B Bacteria, 2.4 Å
|
Buchanan et al. (1999).
Buchanan S, Smith BS, Venkatramani L, Xia D, Esser L, Palnitkar M, Chakraborty R, van der Helm D, & Deisenhofer J. (1999). Crystal Structure of the outer membrane active transporter FepA from Escherichia coli.
Nature Structural Biol 6 :56-63. PubMed Id: 9886293. |
||
Grinter & Lithgow (2019).
Grinter R, & Lithgow T (2019). The structure of the bacterial iron-catecholate transporter Fiu suggests that it imports substrates via a two-step mechanism.
J Biol Chem 294 51:19523-19534. PubMed Id: 31712312. doi:10.1074/jbc.RA119.011018. |
|||
Ferguson et al. (2002).
Ferguson AD, Chakraborty R, Smith BS, Esser L, van der Helm D, & Deisenhofer, J (2002). Structural basis of gating by the outer Membrane transporter FecA.
Science 295 :1715-1719. PubMed Id: 11872840. |
|||
Yue et al. (2003).
Yue WW, Grizot S, & Buchanan SK (2003). Structural evidence for iron-free citrate and ferric citrate binding to the TonB-dependent outer membrane transporter FecA.
J Mol Biol 332 :353-368. PubMed Id: 12948487. |
|||
FecA, siderophore transporter periplasmic signalling domain: Escherichia coli B Bacteria, NMR Structure
Shows the signalling domain not seen x-ray structures |
Garcia-Herrero & Vogel (2005).
Garcia-Herrero A & Vogel HJ (2005). Nuclear magnetic resonance solution structure of the periplasmic signalling domain of the TonB-dependent outer membrane transporter FecA from Escherichia coli.
Mol Microbiol 58 :1226-1237. PubMed Id: 16313612. |
||
PiuA siderophore receptor: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 1.90 Å
|
Moyniéet al. (2017).
Moynié L, Luscher A, Rolo D, Pletzer D, Tortajada A, Weingart H, Braun Y, Page MG, Naismith JH, & Köhler T (2017). Structure and Function of the PiuA and PirA Siderophore-Drug Receptors from Pseudomonas aeruginosa and Acinetobacter baumannii.
Antimicrob Agents Chemother 61 4. PubMed Id: 28137795. doi:10.1128/AAC.02531-16. |
||
PiuD siderophore receptor: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 2.30 Å
|
Luscher et al. (2018).
Luscher A, Moynié L, Auguste PS, Bumann D, Mazza L, Pletzer D, Naismith JH, & Köhler T (2018). TonB-Dependent Receptor Repertoire of Pseudomonas aeruginosa for Uptake of Siderophore-Drug Conjugates.
Antimicrob Agents Chemother 62 6. PubMed Id: 29555629. doi:10.1128/AAC.00097-18. |
||
PiuA siderophore receptor: Acinetobacter baumannii B Bacteria (expressed in E. coli), 1.94 Å
|
Moyniéet al. (2017).
Moynié L, Luscher A, Rolo D, Pletzer D, Tortajada A, Weingart H, Braun Y, Page MG, Naismith JH, & Köhler T (2017). Structure and Function of the PiuA and PirA Siderophore-Drug Receptors from Pseudomonas aeruginosa and Acinetobacter baumannii.
Antimicrob Agents Chemother 61 4. PubMed Id: 28137795. doi:10.1128/AAC.02531-16. |
||
PirA siderophore receptor: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 2.97 Å
|
Moyniéet al. (2017).
Moynié L, Luscher A, Rolo D, Pletzer D, Tortajada A, Weingart H, Braun Y, Page MG, Naismith JH, & Köhler T (2017). Structure and Function of the PiuA and PirA Siderophore-Drug Receptors from Pseudomonas aeruginosa and Acinetobacter baumannii.
Antimicrob Agents Chemother 61 4. PubMed Id: 28137795. doi:10.1128/AAC.02531-16. |
||
PirA siderophore receptor: Acinetobacter baumannii B Bacteria (expressed in E. coli), 2.83 Å
|
Moyniéet al. (2017).
Moynié L, Luscher A, Rolo D, Pletzer D, Tortajada A, Weingart H, Braun Y, Page MG, Naismith JH, & Köhler T (2017). Structure and Function of the PiuA and PirA Siderophore-Drug Receptors from Pseudomonas aeruginosa and Acinetobacter baumannii.
Antimicrob Agents Chemother 61 4. PubMed Id: 28137795. doi:10.1128/AAC.02531-16. |
||
Krieg et al. (2009).
Krieg S, Huché F, Diederichs K, Izadi-Pruneyre N, Lecroisey A, Wandersman C, Delepelaire P, & Welte W. (2009). Heme uptake across the outer membrane as revealed by crystal structures of the receptor-hemophore complex.
Proc Natl Acad Sci USA 106 :1045-1050. PubMed Id: 19144921. |
|||
ShuA heme-uptake receptor in complex with HasA hemophore and heme: Shigella dysenteriae B Bacteria (expressed in E. coli), 2.6 Å
|
Cobessi et al. (2010).
Cobessi D, Meksem A, & Brillet K (2010). Structure of the heme/hemoglobin outer membrane receptor ShuA from Shigella dysenteriae: heme binding by an induced fit mechanism.
Proteins 78 :286-294. PubMed Id: 19731368. doi:10.1002/prot.22539. |
||
FptA pyochelin siderophore transporter: Pseudomonas aeruginosa B Bacteria, 2.0 Å
|
Cobessi et al. (2005).
Cobessi D, Celia H, Pattus F (2005). Crystal structure at high resolution of ferric-pyochelin and its membrane receptor FptA from Pseudomonas aeruginosa.
J Mol Biol 352 :893-904. PubMed Id: 16139844. |
||
FptA pyochelin siderophore transporter: Pseudomonas fluorescens B Bacteria, 3.26 Å
|
Brillet et al. (2011).
Brillet K, Reimmann C, Mislin GL, Noël S, Rognan D, Schalk IJ, & Cobessi D (2011). Pyochelin enantiomers and their outer-membrane siderophore transporters in fluorescent pseudomonads: structural bases for unique enantiospecific recognition.
J Am Chem Soc 133 41:16503-16509. PubMed Id: 21902256. doi:10.1021/ja205504z. |
||
FpvA, Pyoverdine receptor: Pseudomonas aeruginosa B Bacteria, 3.6 Å
|
Cobessi et al. (2005).
Cobessi D, Celia H, Folschweiller N, Schaik IJ, Abdallah MA, & Pattus F (2005). The crystal structure of the pyoverdine outer membrane receptor FpvA from Pseudomonas aeruginosa at 3.6 Å resolution.
J Mol Biol 347 :121-134. PubMed Id: 15733922. |
||
FpvA, Pyoverdine receptor (apo form): Pseudomonas aeruginosa B Bacteria, 2.77 Å
|
Brillet et al. (2007).
Brillet K, Journet L, Célia H, Paulus L, Stahl A, Pattus F, & Cobessi D (2007). A β strand lock exchange for signal transduction in TonB-dependent transducers on the basis of a common structural motif.
Structure 15 :1383-1391. PubMed Id: 17997964. |
||
FpvA, Full-length structure bound to iron-pyoverdine: Pseudomonas aeruginosa B Bacteria, 2.73 Å
|
Wirth et al. (2007).
Wirth C, Meyer-Klaucke W, Pattus F, & Cobessi D (2007). From the periplasmic signaling domain to the extracellular face of an outer membrane signal transducer of Pseudomonas aeruginosa: crystal structure of the ferric pyoverdine outer membrane receptor.
J Mol Biol 368 :398-406. PubMed Id: 17349657. |
||
AlgE alginate export protein: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 2.30 Å
18-stranded β-barrel with a highly electropositive pore constriction that acts as a selectivity filter for negatively charged alginate. |
Whitney et al. (2011).
Whitney JC, Hay ID, Li C, Eckford PD, Robinson H, Amaya MF, Wood LF, Ohman DE, Bear CE, Rehm BH, & Lynne Howell P (2011). Structural basis for alginate secretion across the bacterial outer membrane.
Proc Natl Acad Sci USA 108 :13083-13088. PubMed Id: 21778407. doi:10.1073/pnas.1104984108. |
||
Tan et al. (2014).
Tan J, Rouse SL, Li D, Pye VE, Vogeley L, Brinth AR, El Arnaout T, Whitney JC, Howell PL, Sansom MS, & Caffrey M (2014). A conformational landscape for alginate secretion across the outer membrane of Pseudomonas aeruginosa.
Acta Crystallogr D Biol Crystallogr 70 :2054-2068. PubMed Id: 25084326. doi:10.1107/S1399004714001850. |
|||
AlgE alginate export protein at 100 K: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 2.90 Å
data collected at 293 K, 2.80 Å: 4XNK Structures determined by serial x-ray crystallography |
Huang et al. (2015).
Huang CY, Olieric V, Ma P, Panepucci E, Diederichs K, Wang M, & Caffrey M (2015). In meso in situ serial X-ray crystallography of soluble and membrane proteins.
Acta Crystallogr D Biol Crystallogr 71 :1238-1256. PubMed Id: 26057665. doi:10.1107/S1399004715005210. |
||
AlgE alginate export protein, native-SAD structure determined at wavelength 2.755 Å: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 1.77 Å
X-ray Structure |
El Omari et al. (2023).
El Omari K, Duman R, Mykhaylyk V, Orr CM, Latimer-Smith M, Winter G, Grama V, Qu F, Bountra K, Kwong HS, Romano M, Reis RI, Vogeley L, Vecchia L, Owen CD, Wittmann S, Renner M, Senda M, Matsugaki N, Kawano Y, Bowden TA, Moraes I, Grimes JM, Mancini EJ, Walsh MA, Guzzo CR, Owens RJ, Jones EY, Brown DG, Stuart DI, Beis K, & Wagner A (2023). Experimental phasing opportunities for macromolecular crystallography at very long wavelengths.
Commun Chem 6 1:219. PubMed Id: 37828292. doi:10.1038/s42004-023-01014-0. |
||
AlgE alginate export protein in 7.10 monoacylglycerol (MAG): Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 1.45 Å
X-ray structure |
Krawinski et al. (2024).
Krawinski P, Smithers L, van Dalsen L, Boland C, Ostrovitsa N, Pérez J, & Caffrey M (2024). 7.10 MAG. A Novel Host Monoacylglyceride for In Meso (Lipid Cubic Phase) Crystallization of Membrane Proteins.
Cryst Growth Des 24 7:2985-3001. PubMed Id: 38585376. doi:10.1021/acs.cgd.4c00087. |
||
AlgK–AlgX alginate export protein complex: Pseudomonas putida B Bacteria (expressed in E. coli), 2.46 Å
|
Gheorghita et al. (2022).
Gheorghita AA, Li YE, Kitova EN, Bui DT, Pfoh R, Low KE, Whitfield GB, Walvoort MTC, Zhang Q, Codée JDC, Klassen JS, & Howell PL (2022). Structure of the AlgKX modification and secretion complex required for alginate production and biofilm attachment in Pseudomonas aeruginosa.
Nat Commun 13 1:7631. PubMed Id: 36494359. doi:10.1038/s41467-022-35131-6. |
||
P pilus usher translocation domain, PapC130-640: Escherichia coli B Bacteria, 3.2 Å
|
Remaut et al. (2008).
Remaut H, Tang C, Henderson NS, Pinkner JS, Wang T, Hultgren SJ, Thanassi DG, Waksman G, & Li H (2008). Fiber formation across the bacterial outer membrane by the chaperone/usher pathway.
Cell 133 :640-652. PubMed Id: 18485872. |
||
P pilus usher translocation domain, PapC146-637: Escherichia coli B Bacteria, 3.15 Å
|
Huang et al. (2009).
Huang Y, Smith BS, Chen LX, Baxter RH, & Deisenhofer J (2009). Insights into pilus assembly and secretion from the structure and functional characterization of usher PapC.
Proc Natl Acad Sci USA 106 18:7403-7407. PubMed Id: 19380723. doi:10.1073/pnas.0902789106. |
||
P pilus FimD usher bound to FimC:FimH substrate: Escherichia coli B Bacteria, 2.80 Å
FimD translocation domain, 3.01 Å: 3OHN |
Phan et al. (2011).
Phan G, Remaut H, Wang T, Allen WJ, Pirker KF, Lebedev A, Henderson NS, Geibel S, Volkan E, Yan J, Kunze MB, Pinkner JS, Ford B, Kay CW, Li H, Hultgren SJ, Thanassi DG, & Waksman G (2011). Crystal structure of the FimD usher bound to its cognate FimC-FimH substrate.
Nature 474 :49-53. PubMed Id: 21637253. doi:10.1038/nature10109. |
||
P pilus FimD usher in complex with FimC:FimF:FimG:FimH: Escherichia coli B Bacteria, 3.80 Å
This is the complete structure of the tip complex assembly in which the FimC:FimF:FimG:FimH complex passes through FimD. |
Geibel et al. (2013).
Geibel S, Procko E, Hultgren SJ, Baker D, & Waksman G (2013). Structural and energetic basis of folded-protein transport by the FimD usher.
Nature 496 :243-246. PubMed Id: 23579681. doi:10.1038/nature12007. |
||
P pilus assembly intermediate (FimD-FimC-FimF-FimG-FimH), conformer 1: Escherichia coli B Bacteria, 4 Å
cryo-EM structure conformer 2, 5.1 Å: 6E15 |
Du et al. (2018).
Du M, Yuan Z, Yu H, Henderson N, Sarowar S, Zhao G, Werneburg GT, Thanassi DG, & Li H (2018). Handover mechanism of the growing pilus by the bacterial outer-membrane usher FimD.
Nature 562 7727:444-447. PubMed Id: 30283140. doi:10.1038/s41586-018-0587-z. |
||
Du et al. (2021).
Du M, Yuan Z, Werneburg GT, Henderson NS, Chauhan H, Kovach A, Zhao G, Johl J, Li H, & Thanassi DG (2021). Processive dynamics of the usher assembly platform during uropathogenic Escherichia coli P pilus biogenesis.
Nat Commun 12 1:5207. PubMed Id: 34471127. doi:10.1038/s41467-021-25522-6. |
|||
Transferrin binding protein A (TbpA) in complex with human transferrin: Neisseria meningitidis serogroup b B Bacteria (expressed in E. coli), 2.60 Å
TbpA in complex with human transferrin C-lobe, 3.10 Å: 3V89 Diferric human transferrin, 2.10 Å: 3V83 Apo-human transferrin C-lobe with bound sulfate ions, 1.70 Å: 3SKP Transferrin binding protein B (TbpB), 2.40 Å: 3V8U |
Noinaj et al. (2012).
Noinaj N, Easley NC, Oke M, Mizuno N, Gumbart J, Boura E, Steere AN, Zak O, Aisen P, Tajkhorshid E, Evans RW, Gorringe AR, Mason AB, Steven AC, & Buchanan SK (2012). Structural basis for iron piracy by pathogenic Neisseria.
Nature 483 :53-58. PubMed Id: 22327295. doi:10.1038/nature10823. |
||
Wzi outer-membrane lectin: Escherichia coli B Bacteria, 2.64 Å
Assists in the formation of the bacterial capsule via direct interaction with capsular polysaccharides. |
Bushell et al. (2013).
Bushell SR, Mainprize IL, Wear MA, Lou H, Whitfield C, & Naismith JH (2013). Wzi Is an Outer Membrane Lectin that Underpins Group 1 Capsule Assembly in Escherichia coli.
Structure 21 :844-853. PubMed Id: 23623732. doi:10.1016/j.str.2013.03.010. |
||
Opa60 for receptor-mediated engulfment, EXPLOR refined: Neisseria gonorrhoeae B Bacteria, NMR strucuture
MD/EXPLOR refined structure, NMR structure: 2MAF |
Fox et al. (2014).
Fox DA, Larsson P, Lo RH, Kroncke BM, Kasson PM, & Columbus L (2014). Structure of the neisserial outer membrane protein opa60: loop flexibility essential to receptor recognition and bacterial engulfment.
J Am Chem Soc 136 :9938-9946. PubMed Id: 24813921. doi:10.1021/ja503093y. |
||
Opa60 for receptor-mediated engulfment, proton-detected magic-angle spinning nuclear magnetic resonance (MAS NMR) used: Neisseria gonorrhoeae B Bacteria (expressed in E. coli), NMR structure
|
Forster et al. (2024).
Forster MC, Tekwani Movellan K, Najbauer EE, Becker S, & Andreas LB (2024). Magic-angle spinning NMR structure of Opa60 in lipid bilayers.
J Struct Biol X 9 :100098. PubMed Id: 39010882. doi:10.1016/j.yjsbx.2024.100098. |
||
CsgG bacterial amyloid secretion channel: Escherichia coli B Bacteria, 3.59 Å
Pre-pore conformation, 2.80 Å: 4UV2 |
Goyal et al. (2014).
Goyal P, Krasteva PV, Van Gerven N, Gubellini F, Van den Broeck I, Troupiotis-Tsaïlaki A, Jonckheere W, Péhau-Arnaudet G, Pinkner JS, Chapman MR, Hultgren SJ, Howorka S, Fronzes R, & Remaut H (2014). Structural and mechanistic insights into the bacterial amyloid secretion channel CsgG.
Nature 516 7530:250-253. PubMed Id: 25219853. doi:10.1038/nature13768. |
||
CsgG bacterial amyloid secretion channel: Escherichia coli B Bacteria, 3.10 Å
|
Cao et al. (2014).
Cao B, Zhao Y, Kou Y, Ni D, Zhang XC, & Huang Y (2014). Structure of the nonameric bacterial amyloid secretion channel.
Proc Natl Acad Sci USA 111 50:E5439-E5444. PubMed Id: 25453093. doi:10.1073/pnas.1411942111. |
||
Zhang et al. (2020).
Zhang M, Shi H, Zhang X, Zhang X, & Huang Y (2020). Cryo-EM structure of the nonameric CsgG-CsgF complex and its implications for controlling curli biogenesis in Enterobacteriaceae.
PLoS Biol 18 6. PubMed Id: 32559189. doi:10.1371/journal.pbio.3000748. |
|||
CsgG-CsgF complex involved in curli biogenesis: Escherichia coli B Bacteria, 3.38 Å
cryo-EM structure complex with substrate CsgAN6 peptide, 3.34 Å: 6L7C |
Yan et al. (2020).
Yan Z, Yin M, Chen J, & Li X (2020). Assembly and substrate recognition of curli biogenesis system.
Nat Commun 11 1:241. PubMed Id: 31932609. doi:10.1038/s41467-019-14145-7. |
||
CsgG-CsgF complex involved in curli biogenesis: Escherichia coli B Bacteria, 3.40 Å
cryo-EM structure |
Van der Verren et al. (2020).
Van der Verren SE, Van Gerven N, Jonckheere W, Hambley R, Singh P, Kilgour J, Jordan M, Wallace EJ, Jayasinghe L, & Remaut H (2020). A dual-constriction biological nanopore resolves homonucleotide sequences with high fidelity.
Nat Biotechnol 38 12:1415-1420. PubMed Id: 32632300. doi:10.1038/s41587-020-0570-8. |
||
FusA plant-ferredoxin receptor: Pectobacterium atrosepticum B Bacteria (expressed in E. coli), 3.2 Å
|
Grinter et al. (2016).
Grinter R, Josts I, Mosbahi K, Roszak AW, Cogdell RJ, Bonvin AM, Milner JJ, Kelly SM, Byron O, Smith BO, & Walker D (2016). Structure of the bacterial plant-ferredoxin receptor FusA.
Nat Commun 7 :13308. PubMed Id: 27796364. doi:10.1038/ncomms13308. |
||
Omp33 outer membrane protein: Acinetobacter baumannii B Bacteria (expressed in E. coli), 2.2 Å
|
Abellón-Ruiz et al. (2018).
Abellón-Ruiz J, Zahn M, Baslé A, & van den Berg B (2018). Crystal structure of the Acinetobacter baumannii outer membrane protein Omp33.
Acta Crystallogr D Struct Biol 74 :852-860. PubMed Id: 30198896. doi:10.1107/S205979831800904X. |
||
Saleem et al. (2013).
Saleem M, Prince SM, Rigby SE, Imran M, Patel H, Chan H, Sanders H, Maiden MC, Feavers IM, & Derrick JP (2013). Use of a molecular decoy to segregate transport from antigenicity in the FrpB iron transporter from Neisseria meningitidis.
PLoS ONE 8 2. PubMed Id: 23457610. doi:10.1371/journal.pone.0056746. |
|||
FhuE TonB-dependent transporter: Escherichia coli B Bacteria, 2 Å
|
Grinter & Lithgow (2019).
Grinter R, & Lithgow T (2019). Determination of the molecular basis for coprogen import by Gram-negative bacteria.
IUCrJ 6 :401-411. PubMed Id: 31098021. doi:10.1107/S2052252519002926. |
||
YncD TonB-dependent transporter: Escherichia coli B Bacteria, 2.96 Å
|
Grinter & Lithgow (2020).
Grinter R, & Lithgow T (2020). The crystal structure of the TonB-dependent transporter YncD reveals a positively charged substrate-binding site.
Acta Crystallogr D Struct Biol 76 :484-495. PubMed Id: 32355044. doi:10.1107/S2059798320004398. |
||
PfeA ferric enterobactin receptor, apo form: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 2.12 Å
in complex with enterobactin, 2.7 Å: 6Q5E in complex with azotochelin, 2.78 Å: 5NR2 in complex with protochelin, 2.8 Å: 5NC4 R480A, Q482A mutant, 2.67 Å: 5MZS G324V mutant, 2.9 Å: 5OUT R480A mutant in complex with enterobactin, 3.11 Å: 6R1F Q482A mutant in complex with enterobactin, 2.96 Å: 6I2J |
Moynié et al. (2019).
Moynié L, Milenkovic S, Mislin GLA, Gasser V, Malloci G, Baco E, McCaughan RP, Page MGP, Schalk IJ, Ceccarelli M, & Naismith JH (2019). The complex of ferric-enterobactin with its transporter from Pseudomonas aeruginosa suggests a two-site model.
Nat Commun 10 1. PubMed Id: 31413254. doi:10.1038/s41467-019-11508-y. |
||
PfeA ferric enterobactin receptor in complex with TCV: Pseudomonas aeruginosa E Eukaryota (expressed in E. coli), 2.57 Å
in complex with BCV, 2.71 Å: 6Z33 in complex with TCV-L6, 2.66 Å: 7OBW in complex with TCV_L5, 2.72 Å: 6YY5 in complex with BCV-L6, 3.03 Å: 6Z2N in complex with BCV-L5, 3.04 Å: 6Y47 |
Moynié et al. (2022).
Moynié L, Hoegy F, Milenkovic S, Munier M, Paulen A, Gasser V, Faucon AL, Zill N, Naismith JH, Ceccarelli M, Schalk IJ, & Mislin GLA (2022). Hijacking of the Enterobactin Pathway by a Synthetic Catechol Vector Designed for Oxazolidinone Antibiotic Delivery in Pseudomonas aeruginosa.
ACS Infect Dis 8 9:1894-1904. PubMed Id: 35881068. doi:10.1021/acsinfecdis.2c00202. |
||
BcsC cellulose synthase outer membrane channel: Escherichia coli B Bacteria, 1.85 Å
See inner membrane components structures: 4HG6 |
Acheson et al. (2019).
Acheson JF, Derewenda ZS, & Zimmer J (2019). Architecture of the Cellulose Synthase Outer Membrane Channel and Its Association with the Periplasmic TPR Domain.
Structure 27 12:1855-1861.e3. PubMed Id: 31604608. doi:10.1016/j.str.2019.09.008. |
||
ZnuD zinc transporter: Neisseria meningitidis B Bacteria (expressed in E. coli), 3.20 Å
|
Calmettes et al. (2015).
Calmettes C, Ing C, Buckwalter CM, El Bakkouri M, Chieh-Lin Lai C, Pogoutse A, Gray-Owen SD, Pomès R, & Moraes TF (2015). The molecular mechanism of Zinc acquisition by the neisserial outer-membrane transporter ZnuD.
Nat Commun 6 :7996. PubMed Id: 26282243. doi:10.1038/ncomms8996. |
||
MtrE Outer Membrane Channel: Neisseria gonorrhoeae B Bacteria (expressed in E. coli), 3.29 Å
Multidrug efflux transporter. See 4MT1 |
Lei et al. (2014).
Lei HT, Chou TH, Su CC, Bolla JR, Kumar N, Radhakrishnan A, Long F, Delmar JA, Do SV, Rajashankar KR, Shafer WM, & Yu EW (2014). Crystal structure of the open state of the Neisseria gonorrhoeae MtrE outer membrane channel.
PLoS ONE 9 6. PubMed Id: 24901251. doi:10.1371/journal.pone.0097475. |
||
LetB lipophilic Envelope-spanning Tunnel B, model 1: Escherichia coli B Bacteria, 3.46 Å
cryo-EM structure model 2, 3.49 Å: 6V0D model 3, 3.06 Å: 6V0E model 4, 2.96 Å: 6V0F model 5, 3.03 Å: 6V0G model 6, 3.60 Å: 6V0H model 7, 3.43 Å: 6V0I model 8, 3.78 Å: 6V0J domains MCE2-MCE3 by x-ray, 2.15 Å: 6VCI |
Isom et al. (2020).
Isom GL, Coudray N, MacRae MR, McManus CT, Ekiert DC, & Bhabha G (2020). LetB Structure Reveals a Tunnel for Lipid Transport across the Bacterial Envelope.
Cell 181 3:653-664.e19. PubMed Id: 32359438. doi:10.1016/j.cell.2020.03.030. |
||
PcoB copper transporter: Escherichia coli B Bacteria, 2.00 Å
|
Li et al. (2022).
Li P, Nayeri N, Górecki K, Becares ER, Wang K, Mahato DR, Andersson M, Abeyrathna SS, Lindkvist-Petersson K, Meloni G, Missel JW, & Gourdon P (2022). PcoB is a defense outer membrane protein that facilitates cellular uptake of copper.
Protein Sci 31 7:e4364. PubMed Id: 35762724. doi:10.1002/pro.4364. |
||
outer membrane porin OmpW: Klebsiella pneumoniae B Bacteria (expressed in E. coli), 3.20 Å
X-ray structure |
Seddon et al. (2024).
Seddon C, Frankel G, & Beis K (2024). Structure of the outer membrane porin OmpW from the pervasive pathogen Klebsiella pneumoniae.
Acta Crystallogr F Struct Biol Commun 80 :22-27. PubMed Id: 38206593. doi:10.1107/S2053230X23010579. |
||
Outer Membrane Autotransporters
|
|||
NalP autotransporter translocator domain: Neisseria meningitidis B Bacteria (expressed in E. coli), 2.60 Å
p6122 space group. See also 1UYO, C2221 space group, 3.2 Å resolution. |
Oomen et al. (2004).
Oomen CJ, Van Ulsen P, Van Gelder P, Feijen M, Tommassen J, & Gros P (2004). Structure of the translocator domain of a bacterial autotransporter.
EMBO J 23 :1257-1266. PubMed Id: 15014442. |
||
Hia1022-1098 trimeric autotransporter: Haemophilus influenzae B Bacteria (expressed in E. coli), 2.0 Å
Hia992-1098, 2.3 Å: 2GR7 |
Meng et al. (2006).
Meng G, Surana NK, St Geme JW 3rd, Waksman G (2006). Structure of the outer membrane translocator domain of the Haemophilus influenzae Hia trimeric autotransporter.
EMBO J 25 :2297-2304. PubMed Id: 16688217. |
||
EspP autotransporter, post-cleavage state: Escherichia coli B Bacteria, 2.7 Å
|
Barnard et al. (2007).
Barnard TJ, Dautin N, Lukacik P, Bernstein HD, & Buchanan SK (2007). Autotransporter structure reveals intra-barrel cleavage followed by conformational changes.
Nature Struc Mol Biol 14 :1214-1220. PubMed Id: 17994105. |
||
Barnard et al. (2012).
Barnard TJ, Gumbart J, Peterson JH, Noinaj N, Easley NC, Dautin N, Kuszak AJ, Tajkhorshid E, Bernstein HD, & Buchanan SK (2012). Molecular Basis for the Activation of a Catalytic Asparagine Residue in a Self-Cleaving Bacterial Autotransporter.
J Mol Biol 415 :128-142. PubMed Id: 22094314. doi:10.1016/j.jmb.2011.10.049. |
|||
EspP autotransporter passenger domain: Escherichia coli B Bacteria, 2.50 Å
Like a number of other auto-cleaved passengers, a parallel β-helix is a characteristic feature. |
Khan et al. (2011).
Khan S, Mian HS, Sandercock LE, Chirgadze NY, & Pai EF (2011). Crystal Structure of the Passenger Domain of the Escherichia coli Autotransporter EspP.
J Mol Biol 413 :985-1000. PubMed Id: 21964244. doi:10.1016/j.jmb.2011.09.028. |
||
AIDA-I autotransport unit (AIDA = adhesin involved in diffuse adherence): Escherichia coli B Bacteria, 3.00 Å
|
Gawarzewski et al. (2014).
Gawarzewski I, DiMaio F, Winterer E, Tschapek B, Smits SHJ, Jose J, & Schmitt L (2014). Crystal structure of the transport unit of the autotransporter adhesin involved in diffuse adherence from Escherichia coli.
J Struct Biol 187 1:20-29. PubMed Id: 24841284. doi:10.1016/j.jsb.2014.05.003. |
||
Hbp (hemoglobin protease) self-cleaving autotransporter with truncated passenger: Escherichia coli B Bacteria, 2.00 Å
The structure shows the pre-cleavage state. |
Tajima et al. (2010).
Tajima N, Kawai F, Park SY, & Tame JR (2010). A novel intein-like autoproteolytic mechanism in autotransporter proteins.
J Mol Biol 402 :645-656. PubMed Id: 20615416. doi:10.1016/j.jmb.2010.06.068. |
||
Hbp (hemoglobin protease) full-length passenger domain: Escherichia coli B Bacteria, 2.20 Å
The passenger domain has a prominent β-helix domain. |
Otto et al. (2005).
Otto BR, Sijbrandi R, Luirink J, Oudega B, Heddle JG, Mizutani K, Park SY, & Tame JR (2005). Crystal structure of hemoglobin protease, a heme binding autotransporter protein from pathogenic Escherichia coli.
J Biol Chem 280 :17339-17345. PubMed Id: 15728184. doi:10.1074/jbc.M412885200. |
||
EstA Autotransporter, full length: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 2.50 Å
This is the first full-length structure of an autotransporter. The passenger is not cleaved physiologically, but rather presents an esterase domain to the external world. |
van den Berg (2010).
van den Berg B (2010). Crystal Structure of a Full-Length Autotransporter.
J Mol Biol 396 :627-633. PubMed Id: 20060837. |
||
IcsA autotransporter (autochaperone region only): Shigella flexneri B Bacteria (expressed in E. coli), 2.00 Å
|
Kühnel & Diezmann (2011).
Kühnel K & Diezmann D (2011). Crystal structure of the autochaperone region from the Shigella flexneri autotransporter IcsA.
J Bacteriol 193 :2042-2045 . PubMed Id: 21335457. doi:10.1128/JB.00790-10. |
||
Intimin outer membrane β-domain: Escherichia coli B Bacteria, 1.86 Å
The C-terminal passenger domain, not present in this structure, is involved in adhesion to host cells. |
Fairman et al. (2012).
Fairman JW, Dautin N, Wojtowicz D, Liu W, Noinaj N, Barnard TJ, Udho E, Przytycka TM, Cherezov V, & Buchanan SK (2012). Crystal structures of the outer membrane domain of intimin and invasin from enterohemorrhagic E. coli and enteropathogenic Y. pseudotuberculosis.
Structure 20 :1233-1243. PubMed Id: 22658748. doi:10.1016/j.str.2012.04.011. |
||
Intimin C-terminal passenger domain in complex with receptor: Escherichia coli B Bacteria, 2.90 Å
|
Luo et al. (2000).
Luo Y, Frey EA, Pfuetzner RA, Creagh AL, Knoechel DG, Haynes CA, Finlay BB, & Strynadka NC (2000). Crystal structure of enteropathogenic Escherichia coli intimin-receptor complex.
Nature 405 :1073-1077. PubMed Id: 10890451. doi:10.1038/35016618. See also: Batchelor et al. (2000). Batchelor M, Prasannan S, Daniell S, Reece S, Connerton I, Bloomberg G, Dougan G, Frankel G, & Matthews S (2000). Structural basis for recognition of the translocated intimin receptor (Tir) by intimin from enteropathogenic Escherichia coli.
EMBO J 19 :2452-2464. PubMed Id: 10835344. |
||
Invasin outer membrane β-domain: Yersinia pseudotuberculosis B Bacteria (expressed in E. coli), 2.26 Å
The C-terminal passenger domain, not present in this structure, is involved in adhesion to host cells. |
Fairman et al. (2012).
Fairman JW, Dautin N, Wojtowicz D, Liu W, Noinaj N, Barnard TJ, Udho E, Przytycka TM, Cherezov V, & Buchanan SK (2012). Crystal structures of the outer membrane domain of intimin and invasin from enterohemorrhagic E. coli and enteropathogenic Y. pseudotuberculosis.
Structure 20 :1233-1243. PubMed Id: 22658748. doi:10.1016/j.str.2012.04.011. |
||
Invasin C-terminal passenger domain: Yersinia pseudotuberculosis B Bacteria (expressed in E. coli), 2.30 Å
|
Hamburger et al. (1999).
Hamburger ZA, Brown MS, Isberg RR, & Bjorkman PJ (1999). Crystal structure of invasin: a bacterial integrin-binding protein.
Science 286 :291-295. PubMed Id: 10514372. |
||
YadA trimeric adhesin autotransporter: Yersinia enterocolitica subsp. enterocolitica 8081 B Bacteria (expressed in E. coli), NMR Structure
Structure determined from microcrystals using solid-state NMR |