Online Supplementary Data

FOLDING AMPHIPATHIC HELICES INTO MEMBRANES: AMPHIPHILICITY TRUMPS HYDROPHOBICITY

Mónica Fernández-Vidal^{1,4}, Sajith Jayasinghe², Alexey S. Ladokhin³, and Stephen H. White¹

¹Department of Physiology and Biophysics, University of California at Irvine, Irvine, CA 92697-4560, USA. ²Department of Chemistry and Biochemistry, California State University at San Marcos, San Marcos, CA 92096, USA. ³Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160-7421, USA. ⁴Present address: Dept. of Peptide and Protein Chemistry, IIQAB-CSIC, 08034 Barcelona, Spain. Correspondence should be addressed to S.H.W. (stephen.white@uci.edu) or A.S.L. (aladokhin@kumc.edu).

Folding of the A₈Q₃L₄ family of peptides in buffer

In order to calculate the free energies of folding of the $A_8Q_3L_4$ family of peptides in water, we used the alcohol-induced α -helix formation method of Hirota *et al.*^{1,2} We approximated the alcohol-induced transition by a two-state mechanism, *i.e.*, the only states present are the native and the α -helical states for all the peptides. The CD spectra of the titrations of peptides with 2,2,2-trifluoroethanol (TFE) showed an isodichroic point at ~ 203 nm (**Fig. S1**), consistent with a two-state approximation.

Figure S1. CD spectra of $A_8Q_3L_4$ -4.72 in buffer with increasing additions of trifluoroethanol (TFE), ranging from 0.0 M (red curve) to 5.5 M (blue curve). Notice the isodichroic point at ~203 nm.

Analysis of two-state alcohol-induced folding of unfolded or partially folded peptides³ follows the same methods used for analyzing the two-state denaturation of soluble proteins using a chaotropic agent, such as urea. A good description of the use of denaturation for studying the stability of soluble proteins is given by Goldenberg⁴. The parameter we follow for alcohol-induced folding is the molar ellipticity at 222 nm, $[\Theta]_{222}$. Plots of $[\Theta]_{222}$ against alcohol concentration follows a Boltzmann distribution, as shown below. A side benefit of this method is that one can estimate the ellipticities

for fully folded and fully unfolded peptides, $\Theta_{\rm H}$ and $\Theta_{\rm RC}$, respectively, which are necessary for determining the fractional ellipticities f_{α} using eq. (6).

The free energy change ΔG_0 for folding in the absence of TFE is given by $\Delta G_0 = -RT \ln K_0 = \Delta G_{AC}$, where $K_0 = f_{\alpha}(0)/f_u(0)$ (see **Table S1**, below). The terms $f_{\alpha}(0)$ and $f_u(0)$ indicate the fractions of folded and unfolded peptide, respectively, for [TFE] = 0.

For [TFE] \neq 0, the free energy of folding ΔG_F can be described^{2,3} by

$$\Delta G_F = \Delta G_0 - m[\text{TFE}] \tag{S1}$$

where *m* measures the dependence of ΔG_F on TFE concentration. Rearrangement of eq. S1 after substitution of the definitions of ΔG_F and ΔG_0 yields

$$K_F = K_0 \exp(m[\text{TFE}]/\text{R}T)$$
(S2)

It follows from $K_F = f_{\alpha}/(1-f_{\alpha})$ that

$$f_{\alpha} = K_F / (1 + K_F) = 1 / (1 + K_F^{-1})$$
(S3)

Substitution of eq. S2 into eq. S3 yields

$$f_{\alpha} = 1/(1 + K_0^{-1} \exp(-m[\text{TFE}]/\text{R}T))$$
(S4)

Eq. S4 is the Boltzmann function. One can readily show that $f_{\alpha} = f_{\alpha}(0)$ for [TFE] = 0, $f_{\alpha} \rightarrow 1$ as [TFE] becomes large and positive, and $f_{\alpha} \rightarrow 0$ as [TFE] becomes large and negative. Of course, [TFE] cannot be less than 0, but for the purpose of curve fitting that does not matter. Because S4 is the Boltzmann function, one can fit molar ellipticity data [Θ]₂₂₂([TFE]) to a general Boltzmann fitting function using non-linear least squares methods. Defining [TFE] = c, $\Theta_{\rm H}$ and $\Theta_{\rm RC}$ can be determined from

$$\left[\Theta\right]_{222} = \frac{\Theta_{RC} - \Theta_{H}}{1 + \exp(c/\Delta c)} + \Theta_{H}$$
(S5)

where Δc is a parameter that describes the width of the transition from f_u to f_α as the TFE concentration is increased.

Each peptide of the family was titrated with TFE and methanol (data not shown) at T = 298 K, and the resulting data fitted to eq. S5. The results are shown in **Fig. S2**.

Figure S2. Plots of molar ellipticity versus TFE concentration for the $A_8Q_3L_4$ family of peptides. Notice that all peptides are maximally folded in ≈ 6 M TFE. From these data, we established that $\Theta_{RC} = -1500$ and $\Theta_H = -33050$ deg cm² dmol⁻¹. Because Θ_H is the same for all of the peptides, we assume that Θ_H corresponds to 100% helicity. This assumption is supported by the comprehensive data and analysis of Chen et al.⁵. Their Equation (2) used with parameters from their Table IV yield a theoretical value of $\Theta_H = -33529$ deg cm² dmol⁻¹, which is satisfyingly close to our value.

From these data, we obtained values of ΔG_{AC} and $f_{\alpha}(0)$, which are summarized in **Table S1**.

Table S1. Helicities and folding free energies (ΔG_{AC}) in buffer for the A₈Q₃L₄ family of peptides and for melittin. The free energy change ΔG_0 for folding in the absence of TFE is given by $\Delta G_0 = -RT ln K_0 = \Delta G_{AC}$, where $K_0 = f_\alpha(0)/f_u(0)$. The terms $f_\alpha(0)$ and $f_u(0)$ indicate the fractions of folded and unfolded peptide, respectively, for [TFE] = 0 M.

^a Peptide	^b ⊖ ₂₂₂	^c Measured f_{lpha}	^d Computed f_{α}	$\Delta G_{\rm AC}$ (kcal mol ⁻¹)	^e ∆ <i>G_{per residue}</i> (kcal mol ⁻¹)
A ₈ Q ₃ L ₄ -0.55	-4400	0.092	0.13	1.32±0.06	0.84±0.02
A ₈ Q ₃ L ₄ -2.00	-6500	0.158	0.14	1.06 ± 0.04	0.39±0.01
$A_8Q_3L_4$ -2.86	-8200	0.212	0.21	0.82±0.04	0.23±0.01
$A_8Q_3L_4-4.72$	-10700	0.292	0.33	0.56 ± 0.04	0.11±0.01
$A_8Q_3L_4-5.51$	-13500	0.380	0.35	0.27±0.04	0.042±0.006
$A_8Q_3L_4$ -5.54	-14000	0.396	0.33	0.27±0.04	0.040±0.006
melittin	-3000	0.060	0.013	1.62±0.06	1.04 ± 0.04
TMX-3	-6500	0.220	0.031	0.74±0.03	0.11±0.01

^aSee Table 1

^bmolar ellipticity, deg cm² dmol⁻¹

^cfractional helicity in buffer. See Methods.

^dfractional helicity, determined using the computer program AGADIR⁶⁻⁹. The estimated uncertainty in these values is estimated by the authors of AGADIR to be 6%.

^eThese are per-residue free energies computed using $\Delta G_{per residue} = \Delta G_{AC}/f_{\alpha}n$, where f_{α} is the fractional helicity and *n* is the number of residues in the sequence.

Determination of the partitioning free energies into membranes of partially-folded peptides

The free energies of peptide partitioning into LUV formed from POPC and POPC/POPG (1:1) were determined by both CD and fluorescence spectroscopy titration following the procedures of White *et al.*¹⁰ (see Methods). The results are summarized in **Table S2**, below.

Typical titration data obtained by CD spectroscopy in **Fig. S3** for $A_8L_4Q_3$ -5.54, where the upper panels (**A and B**) correspond to a titration with POPC membranes and the lower panels (**C and D**) to titrations with POPC/POPG membranes. The helicity of $A_8L_4Q_3$ -5.54 increases steadily with additions of lipid (**panels A and C**). Molar ellipticity at 222 nm was used to determine quantitatively partitioning isotherms¹⁰⁻¹². These were fit by least-squares minimization to obtain the maximum ellipticity ($[\Theta]_{max}$), and mole-fraction partition coefficients (K_x) and consequently ΔG_{CD} (**panels B and D**), as described in Methods.

Figure S3. Typical titration data obtained by CD spectroscopy for $A_8L_4Q_3$ -5.54, where the upper panels (**A and B**) correspond to a titration with POPC membranes and the lower panels (**C and D**) to titrations with POPC/POPG membranes

Because Trp fluorescence is sensitive to its dielectric environment, membrane association of peptides results in a blue-shift in the Trp fluorescence wavelength maximum (λ_{max}) that can be used to measure membrane partitioning¹⁰ by titration of peptide solutions with LUV, as discussed in detail by Ladokhin *et al.*¹³. Typical fluorescence spectra and titration data are presented for A₈L₄Q₃-5.54 in **Fig. S4**. All spectra were corrected for scattering artifacts¹³. For both POPC and POPC/POPG (**panels A and C**, respectively), $\lambda_{max} = 350$ nm in buffer, shifting to about 335 nm in the presence of lipid. Titration curves obtained from the change in fluorescence at 325 nm are shown in panels B and D for POPC and POPC/POPG, respectively. In a manner similar to that for the CD titrations, the data shown in **Fig. S4** were fit by least-squares minimization to obtain the mole-fraction partition coefficient K_x and the maximum intensity increase I_{∞} (**panels B and D**), as described in Methods.

Figure S4. Typical fluorescence spectra and titration data for $A_8L_4Q_3$ -5.54. All spectra were corrected for scattering artifacts¹³. For both POPC and POPC/POPG (**panels A and C**, respectively), $\lambda_{max} = 350$ nm in buffer, shifting to about 335 nm in the presence of lipid. Binding curves determined from data such as those of panels A and C (see Methods) are shown in **panels B and D** for POPC and POPC:POPG, respectively.

^a Peptide	^b ⊖ ₂₂₂	^с fа	^d ∆G _{CD} POPC	^d ∆ <i>G</i> _{CD} ePOPC:POPG	^d ∆G _{CD} POPC	^d ∆ <i>G</i> _{CD} ePOPC:POPG
			^f Fluorescence Titration		^f CD Titration	
A ₈ Q ₃ L ₄ -0.55	-12000	0.30	-5.2±0.3	-5.0±0.5	_	_
A8Q3L4-2.00	-13000	0.36	-5.7±0.2	-5.4±0.2	_	_
A ₈ Q ₃ L ₄ -2.86	-16000	0.46	-5.9±0.2	-5.8±0.2	_	_
$A_8Q_3L_4-4.72$	-22000	0.67	-6.4±0.2	-6.7±0.1	-6.1±0.1	-6.1±0.1
$A_8Q_3L_4$ -5.51	-24500	0.72	-7.3±0.1	-7.0±0.1	-7.3±0.2	-7.1±0.2
A ₈ Q ₃ L ₄ -5.54	-25000	0.73	-7.4±0.2	-7.2±0.1	-7.0±0.2	-7.1±0.2

Table S2. Free energies of transfer ΔG_{CD} of the A₈Q₃L₄ family of peptides from buffer into neutral and anionic large unilamellar vesicles.

^asee Table 1

^bmaximum molar ellipticity $[\Theta_{max}]$ deg cm²dmol⁻¹ (see Fig. S3).

^cfractional helicity obtained by CD experiments (see Methods). When CD experiments were not possible, approximations were made from ellipticities of titrations of the peptides with methanol.

^dkcal mol⁻¹

ePOPC:POPG = 1:1

^fsee Methods

Peptide folding in the membrane interface: ΔG_{BD}

The free energies of folding of the peptides in the interface are obtained by simple summation of the other legs of the thermodynamic cycle shown in **Fig. 1a**. The results are summarize in **Table S3**, below.

aPeptide	${}^{\mathrm{b}}\Delta G_{\mathrm{BD}}$ kcal mol ⁻¹	^c ∆G _{residue} kcal mol ⁻¹
A ₈ Q ₃ L ₄ -0.55	-0.35±0.30	-0.07±0.06
A8Q3L4-2.00	-1.11±0.20	-0.18±0.03
A8Q3L4-2.86	-1.55±0.20	-0.20±0.02
A ₈ Q ₃ L ₄ -4.72	-2.51±0.20	-0.23±0.02
A ₈ Q ₃ L ₄ -5.51	-3.50±0.11	-0.28±0.01
A ₈ Q ₃ L ₄ -5.54	-3.60±0.11	-0.29±0.02
Melittin-5.16	-5.31±0.21	-0.27±0.01
TMX3-3.32 pH=7.6	-7.21±0.20	-0.24±0.02

Table S3. Free energy of folding ΔG_{BD} in the POPC bilayer interface.

^aTable 1

^bComputed from the thermodynamic cycle of **Fig. 1a** and the data of **Tables 1**, **S1**, and **S2**.

^cThese are per-residue free energies computed using $\Delta G_{residue} = \Delta G_{AC}/f_{\alpha}n$, where f_{α} is the fractional helicity (**Table S2**) and *n* is the number of residues in the sequence.

Leu-Leu interactions and helix stability

Table S4. Sequences of peptides used by Luo and Baldwin¹⁴ for studying the role of Leu-Leu interactions in helix stability. Even in this case, the helicity in water increases with the hydrophobic moment (**Fig. S5**).

Sequence	Sidechain interaction	${}^{a}f_{\alpha}$	$^{\mathrm{b}}\mu H$
Ac-KAAAAKAALAKLAAAKGY-NH ₂	(i,i+3)	26%	0.57
Ac-KAAAAKAALAKALAAKGY-NH ₂	(i,i+4)	37%	1.33
Ac-ELAALKAKLAALKAKAGY-NH ₂	2(i,i+3) + (i,i+4)	46%	1.48
Ac-ELAALKAKLAALKAKLGY-NH ₂	2(i,i+3) + 2(i,i+4)	53%	1.62

^a Percentage values given by Luo and Baldwin¹⁴ of helical content in buffer.

^b Values of hydrophobic moment computed by MPEx.

Figure S5. Plot the helicities in Table S4 versus hydrophobic moment.

Consistency of the measured values of helix content with values calculated using AGADIR

As shown below in **Fig. S6**, the relation between the measured values of helicity and values computed with AGADIR⁶⁻⁹ is described well by a straight line forced through the origin (y = ax). The slope of the curve is $1.03(\pm 0.03)$. This means that AGADIR is useful for estimating helicities in water. For instance, the peptide A₈L₄Q₃-0.55 is 9% helical in water, while AGADIR predicts 12.8 % ± 6%.

Figure S6. Experimentally determined helical content for the $A_8L_4Q_3$ peptide family in water plotted against helical contents computed using the program Agadir⁶⁻⁹.

References

- 1. Hirota, N., Mizuno, K. & Goto, Y. (1997). Cooperative α -helix formation of β lactoglobulin and melittin induced by hexafluoroisopropanol. *Protein Sci.* **6**, 416-421.
- 2. Hirota, N., Mizuno, K. & Goto, Y. (1998). Group additive contributions to the alcoholinduced α-helix formation of melittin: Implication for the mechanism of the alcohol effects on proteins. *J. Mol. Biol.* **275**, 365-378.

- 3. Jasanoff, A. & Fersht, A. R. (1994). Quantitative determination of helical propensities from trifluoroethanol titration curves. *Biochemisty* **33**, 2129-2135.
- 4. Goldenberg, D. P. (1992). Mutational analysis of protein folding and stability. In *Protein Folding* (Creighton, T. E., ed.), pp. 353-403. W. H. Freeman, New York.
- 5. Chen, Y.-H., Yang, J. T. & Chau, K. H. (1974). Determination of the helix and β form of proteins in aqueous solution by circular dichroism. *Biochemistry* **13**, 3350-3359.
- 6. Muñoz, V. & Serrano, L. (1995). Elucidating the folding problem of helical peptides using empirical parameters. II. Helix macrodipole effects and rational modification of the helical content of natural peptides. *J. Mol. Biol.* **245**, 275-296.
- 7. Muñoz, V. & Serrano, L. (1995). Elucidating the folding problem of helical peptides using empirical parameters. III. Temperature and pH dependence. *J. Mol. Biol.* **245**, 297-308.
- 8. Muñoz, V. & Serrano, L. (1997). Development of the multiple sequence approximation within the AGADIR model of α-helix formation: Comparison with Zimm-Bragg and Lifson-Roig formalisms. *Biopolymers* **41**, 495-509.
- 9. Lacroix, E., Viguera, A. R. & Serrano, L. (1998). Elucidating the folding problem of αhelices: Local motifs, long-range electrostatics, ionic-strength dependence and prediction of NMR parameters. *J. Mol. Biol.* **284**, 173-191.
- 10. White, S. H., Wimley, W. C., Ladokhin, A. S. & Hristova, K. (1998). Protein folding in membranes: Determining the energetics of peptide-bilayer interactions. *Meth. Enzymol.* **295**, 62-87.
- 11. Rizzo, V., Stankowski, S. & Schwarz, G. (1987). Alamethicin incorporation in lipid bilayers: A thermodynamic study. *Biochemistry* **26**, 2751-2759.
- 12. Schwarz, G. & Beschiaschvili, G. (1989). Thermodynamic and kinetic studies on the association of melittin with a phospholipid bilayer. *Biochim. Biophys. Acta* **979**, 82-90.
- 13. Ladokhin, A. S., Jayasinghe, S. & White, S. H. (2000). How to measure and analyze tryptophan fluorescence in membranes properly, and why bother? *Anal. Biochem.* **285**, 235-245.
- 14. Luo, P. & Baldwin, R. L. (2002). Origin of the different strengths of the (i,i+4) and (i,i+3) leucine pair interactions in helices. *Biophys. Chem.* **96**, 103-108.