Derivation of the ΔG^{aa}_{app} scale

The fraction of unglycosylated molecules is < 0.15 for all constructs, and has been ignored in the calculations. The fraction $f'_{2g} = C_{2g}/(C_{1g} + C_{2g})$ (where C is the pixel-count for the band in question) of doubly glycosylated molecules varies from 0 for H-segments such as GGPGALAALALAALAALAALAALAALAALAALAGPGG that are fully integrated as a transmembrane segment, to 0.86 for H-segments such as GGPGDKQEGEWPTGLRLSRIGGIGPGG (corresponding to residues 304-322 in the translocated P2 domain of Lep) that are fully translocated across the membrane, reflecting the fact that a lumenally exposed glycosylation site is only modified in ~95% of the molecules. To correct for this, the values used in the calculation of ΔG_{app} were normalized:

$$f_{1g} = (f'_{1g} - 0.13)/0.87); f_{2g} = 1 - f_{1g}$$

As the quantitation is maximally sensitive for H-segments with ΔG_{app} values close to zero ($p \approx 0.5$ in Fig. 1D), we balanced, for each kind of residue, the contribution from the central residue by varying the number of Leu residues until an H-segment with ΔG_{app} in the range [-1.2, 1.2] kcal/mol was found. Since, as shown in the main text, there is an appreciable positional variation in ΔG_{app} for different H-segments of a given overall amino acid composition, the approach taken has been to calculate individual ΔG^{aa}_{app} values in a step-wise fashion by comparing H-segments with as similar sequences as possible. Values were calculated to two decimal places and rounded off to one decimal place when discussed in the text.

- 1. $\Delta G^{Leu}_{app} = -0.55$ kcal/mol; $\Delta G^{Ala}_{app} = 0.11$ kcal/mol These values were obtained from Eq. 1 in the main text and the assumption $\Delta G^{flank}_{app} = 0$.
- 2. $\Delta G^{\text{Ile}}_{\text{app}} = -0.60 \text{ kcal/mol}$

This value was obtained from $\Delta G^{\text{Leu}}_{\text{app}}$ by adding the mean $\Delta \Delta G^{\text{Leu} \rightarrow \text{Ile}}_{\text{app}} = -0.05$ kcal/mol for the following pairs of H-segments:

GGPGAAAALAAAALAAAAGPGG	
GGPGAAAALAAAA <mark>I</mark> AAAALAAAAGPGG	$\Delta\Delta G^{\text{Leu}\rightarrow \text{Ile}}_{\text{app}} = -0.06 \text{ kcal/mol}$
GGPGAAAALALALP <mark>L</mark> ALALAAAAGPGG	
GGPGAAAALALALP <mark>I</mark> ALALAAAAGPGG	$\Delta\Delta G^{\text{Leu} \to \text{Ile}}_{\text{app}} = 0.14 \text{ kcal/mol}$
GGPGAAAALALALN <mark>L</mark> ALALAAAAGPGG	
GGPGAAAALALALNIALALAAAAGPGG	$\Delta\Delta G^{\text{Leu} \to \text{Ile}}_{\text{app}} = 0.01 \text{ kcal/mol}$
GGPGAAAALALALH <mark>L</mark> ALALAAAAGPGG	
GGPGAAAALALALHIALALAAAAGPGG	$\Delta\Delta G^{\text{Leu} \to \text{Ile}}_{\text{app}} = -0.15 \text{ kcal/mol}$
GGPGAAAALALALR <mark>L</mark> ALALAAAAGPGG	
GGPGAAAALALALR <mark>I</mark> ALALAAAAGPGG	$\Delta\Delta G^{\text{Leu}\rightarrow \text{Ile}}_{\text{app}} = -0.14 \text{ kcal/mol}$

 $\mathsf{GGPGAAAALALALE}_{\mathsf{L}}\mathsf{ALALAAAAGPGG}$

GGPGAAAALALEIALALAAAAGPGG $\Delta\Delta G^{\text{Leu} \rightarrow \text{Ile}}_{\text{add}} = -0.06 \text{ kcal/mol}$

 ${\tt GGPGAAAALALALQLALALAAAAGPGG}$

GGPGAAAALALAQIALALAAAAGPGG $\Delta\Delta G^{\text{Leu} \rightarrow \text{Ile}}_{\text{app}} = -0.13 \text{ kcal/mol}$

3. $\Delta G^{Phe}_{app} = -0.32 \text{ kcal/mol}$

This value was obtained from $\Delta G^{\text{Leu}}_{\text{app}}$ by adding the $\Delta \Delta G^{\text{Leu} \rightarrow \text{Phe}}_{\text{app}} = 0.23$ kcal/mol for the following pair of H-segments:

GGPGAAAALAAAALAAAALAAAAGPGG GGPGAAAALAAAAFAAAALAAAAGPGG

4. $\Delta G^{Val}_{app} = -0.31 \text{ kcal/mol}$

This value was obtained from $\Delta G^{\text{Leu}}_{\text{app}}$ by adding the $\Delta \Delta G^{\text{Leu} \rightarrow \text{Val}}_{\text{app}} = 0.24$ kcal/mol for the following pair of H-segments:

GGPGAAAALAAAA<mark>L</mark>AAAALAAAAGPGG GGPGAAAALAAAAVAAAALAAAAGPGG

5. $\Delta G^{\text{Cys}}_{\text{app}} = -0.13 \text{ kcal/mol}$

This value was obtained from $\Delta G^{\text{Leu}}_{\text{app}}$ by adding the mean $\Delta \Delta G^{\text{Leu} \to \text{Cys}}_{\text{app}} = 0.42$ kcal/mol for the following pairs of H-segments:

 $\mathsf{GGPGAAAALAAAALAAAALAAAAGPGG}$

GGPGAAAALAAAACAAAALAAAAGPGG $\Delta\Delta G^{\text{Leu} \rightarrow \text{Cys}}_{\text{app}} = 0.39 \text{ kcal/mol}$

 $\mathsf{GGPGAAAALALAALALAAAAGPGG}$

 $\label{eq:GGPGAAAALALAAAAGPGG} GGPGAAAALALAAAAGPGG \qquad \Delta \Delta G^{\text{Leu} \rightarrow \text{Cys}}_{\text{app}} = 0.45 \text{ kcal/mol}$

6. $\Delta G^{Met}_{app} = -0.10 \text{ kcal/mol}$

This value was obtained from $\Delta G^{\text{Leu}}_{\text{app}}$ by adding the $\Delta \Delta G^{\text{Leu} \to \text{Met}}_{\text{app}} = 0.45$ kcal/mol for the following pair of H-segments:

GGPGAAAALAAAALAAAALAAAAGPGG GGPGAAAALAAAAMAAAAALAAAAGPGG

7. $\Delta G^{Trp}_{app} = 0.30 \text{ kcal/mol}$

This value was obtained from $\Delta G^{\text{Leu}}_{\text{app}}$ by adding the mean $\Delta \Delta G^{\text{Leu} \to \text{Trp}}_{\text{app}} = 0.84$ kcal/mol for the following pairs of H-segments:

GGPGAAAALAAAALAAAALAAAAGPGG

GGPGAAAALAAAAWAAAALAAAAGPGG $\Delta\Delta G^{\text{Leu} \rightarrow \text{Trp}}_{\text{app}} = 1.03 \text{ kcal/mol}$

GGPGAAAALALAALALAAAAGPGG

GGPGAAAALALAAWAALALAAAAGPGG $\Delta\Delta G^{\text{Leu} \rightarrow \text{Trp}}_{\text{app}} = 0.66 \text{ kcal/mol}$

8. $\Delta G^{Thr}_{app} = 0.52 \text{ kcal/mol}$

This value was obtained from ΔG^{Ala}_{app} by adding the $\Delta \Delta G^{Ala \rightarrow Thr}_{app} = 0.41$ kcal/mol for the following pair of H-segments:

GGPGAAAALALAA<mark>A</mark>AALALAAAAGPGG GGPGAAAALALAA<mark>T</mark>AALALAAAAGPGG

9. $\Delta G^{Tyr}_{app} = 0.68 \text{ kcal/mol}$

This value was obtained from $\Delta G^{\text{Trp}}_{\text{app}}$ by adding the $\Delta \Delta G^{\text{Trp} \to \text{Tyr}}_{\text{app}} = 0.38$ kcal/mol for the following pair of H-segments:

GGPGAAAALALAAWAALALAAAAGPGG GGPGAAAALALAAYAALALAAAAGPGG

10. $\Delta G^{Gly}_{app} = 0.74 \text{ kcal/mol}$

This value was obtained from ΔG^{Ala}_{app} by adding the $\Delta \Delta G^{Ala \to Gly}_{app} = 0.63$ kcal/mol for the following pair of H-segments:

GGPGAAAALALAAAALALAAAAGPGG GGPGAAAALALAA<mark>G</mark>AALALAAAAGPGG

11. $\Delta G^{Ser}_{app} = 0.84 \text{ kcal/mol}$

This value was obtained from ΔG^{Ala}_{app} by adding the $\Delta \Delta G^{Ala \rightarrow Ser}_{app} = 0.73$ kcal/mol for the following pair of H-segments:

GGPGAAAALALAAAAALALAAAAGPGG GGPGAAAALALAASAALALAAAAGPGG

12. $\Delta G^{Asn}_{app} = 2.05 \text{ kcal/mol}$

This value was obtained from ΔG^{Ala}_{app} by adding the $\Delta \Delta G^{Ala \to Asn}_{app} = 1.94$ kcal/mol for the following pair of H-segments:

GGPGAAAALALAALALAAAAGPGG GGPGAAAALALALNAALALAAAAGPGG

13. $\Delta G^{His}_{app} = 2.06 \text{ kcal/mol}$

This value was obtained from $\Delta G^{\text{Asn}}_{\text{app}}$ by adding the mean $\Delta \Delta G^{\text{Asn} \to \text{His}}_{\text{app}} = 0.01$ kcal/mol for the following pairs of H-segments:

GGPGAAAALALALNLALALAAAAGPGG

GGPGAAALALALHLALALAAAGPGG $\Delta\Delta G^{Asn \rightarrow His}_{app} = 0.08 \text{ kcal/mol}$

GGPGAAAALALALNIALALAAAAGPGG

 $\mbox{GGPGAAAALALAL}_{\mbox{H}\mbox{I}\mbox{ALALAAAAGPGG}} \qquad \Delta \Delta G^{\mbox{\tiny Asn} \rightarrow \mbox{\tiny His}}_{\mbox{\tiny app}} = -0.07 \ kcal/mol$

14. $\Delta G^{Pro}_{app} = 2.23 \text{ kcal/mol}$

This value was obtained from ΔG^{Asn}_{app} by adding the mean $\Delta \Delta G^{Asn \to Pro}_{app} = 0.18$ kcal/mol for the following pairs of H-segments:

 ${\tt GGPGAAAALALALN} {\tt LALALAAAAGPGG}$

 $\label{eq:GGPGAAAALALALPLALAAAAGPGG} \Delta \Delta G^{\mathrm{Asn} \to \mathrm{Pro}}_{\quad \mathrm{app}} = 0.11 kcal/mol$

GGPGAAAALALALNIALALAAAAGPGG

GGPGAAAALALALPIALALAAAAGPGG $\Delta\Delta G^{Asn\to Pro}_{add} = 0.24 \text{ kcal/mol}$

15. $\Delta G^{Gln}_{app} = 2.36 \text{ kcal/mol}$

This value was obtained from $\Delta G^{\mathrm{Asn}}_{\mathrm{app}}$ by adding the mean $\Delta \Delta G^{\mathrm{Asn} \to \mathrm{Gln}}_{\mathrm{app}} = 0.31$ kcal/mol for the following pairs of H-segments:

GGPGAAAALALALNLALAAAAGPGG

GGPGAAAALALALQLALALAAAAGPGG $\Delta\Delta G^{Asn \to Gln}_{add} = 0.38 kcal/mol$

GGPGAAAALALALNIALALAAAAGPGG

 $\label{eq:GGPGAAALALALQ} \text{GGPGAAAALALAL} \begin{tabular}{l} \end{tabular} \textbf{GGPGAAAALALAL} \begin{tabular}{l} \end{tabular} \Delta \Delta G^{\text{Asn} \to \text{Gln}}_{\text{app}} = 0.24 \text{ kcal/mol} \end{tabular}$

16. $\Delta G^{\text{Lys}}_{\text{app}} = 2.71 \text{ kcal/mol}$

This value was obtained from $\Delta G^{\text{Asn}}_{\text{app}}$ by adding $\Delta \Delta G^{\text{Asn} \to \text{Lys}}_{\text{app}} = 0.66$ kcal/mol for the following pair of H-segments:

GGPGAAAALALALNLALALAAAAGPGG

GGPGAAAALAL κ LALALAAAAGPGG $\Delta \Delta G^{Asn \to Lys}_{add} = 0.66 kcal/mol$

17. $\Delta G^{Arg}_{app} = 2.58 \text{ kcal/mol}$

This value was obtained from ΔG^{Lys}_{app} by adding the $\Delta \Delta G^{Lys \to Arg}_{app} = -0.13$ kcal/mol for the following pair of H-segments:

GGPGAAAALALALKLALALAAAAGPGG GGPGAAAALALALRLALALAAAAGPGG

18. $\Delta G^{Glu}_{app} = 2.68 \text{ kcal/mol}$

This value was obtained from ΔG^{Lys}_{app} by adding the $\Delta \Delta G^{Lys \rightarrow Glu}_{app} = -0.03$ kcal/mol for the following pair of H-segments:

GGPGAAAALALALKLALALAAAAGPGG GGPGAAAALALALELALALAAAAGPGG

19. $\Delta G^{Asp}_{app} = 3.49 \text{ kcal/mol}$

This value was obtained from ΔG^{Lys}_{app} by adding the $\Delta \Delta G^{Lys \to Asp}_{app} = 0.78$ kcal/mol for the following pair of H-segments:

GGPGAAAALALALKLALALAAAAGPGG GGPGAAAALALALDLALALAAAAGPGG

Additivity of ΔG^{aa}_{app} values

The H-segments below allow $\Delta\Delta G_{app}$ values to be calculated from both single- and double-residue replacements. The first column shows the H-segment, the second the corresponding ΔG_{app} value, and the third column the $\Delta\Delta G_{app}$ value per residue.

Gly->Ala	$\Delta G_{ m app}$ kcal/mol	$\Delta\Delta$ G $_{ m app}$ kcal/mol
GGPGAAAALALAA <mark>G</mark> AALALAAAAGPGG	0.16	
GGPGAAAALALAA <mark>A</mark> AALALAAAAGPGG	-0.46	-0.62
GGPGAAAALAGAALAAGALAAAAGPGG	1.20	
GGPGAAAALAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	-0.06	-0.63
Trp->Ala		
GGPGAAAALALAAWAALALAAAAGPGG	-0.41	
GGPGAAAALALAAAAALALAAAAGPGG	-0.46	-0.05
GGPGAAAAAAWLLWAAAAAAAAGPGG	0.88	
GGPGAAAAAAAAALLAAAAAAAAAGPGG	0.79	-0.04
Tyr->Ala		
GGPGAAAALALAA <mark>Y</mark> AALALAAAAGPGG	-0.03	
GGPGAAAALALAAAAALALAAAAGPGG	-0.46	-0.43
GGPGAAAAAAYLLLYAAAAAAAGPGG	0.97	
GGPGAAAAAAAALLLAAAAAAAAAGPGG	0.05	-0.46
Ser->Ala		
GGPGAAAALALAASAALALAAAAGPGG	0.27	
GGPGAAAALALAAAAALALAAAAGPGG	-0.46	-0.73
GGPGAAAAAASLLALLSAAAAAAGPGG	0.90	
GGPGAAAAA <mark>A</mark> LLAAALL <mark>A</mark> AAAAAGPGG	-0.66	-0.78

Membrane integration in vivo

The Lep constructs containing the H-segments listed in Table I below were expressed in BHK cells as described in Methods. ΔG_{app} values were calculated in the same way as for the *in vitro* measurements, but without the correction for inefficient glycosylation applied to the *in vitro* data. Table I, column 4 gives the *in vivo* ΔG_{app} values estimated from the linear correlation $\Delta G_{app}(in\ vivo) = 1.54\ \Delta G_{app}(in\ vitro) + 0.52\ kcal/mol$ (see Fig. 2B in the article). The transition from a non-inserted to a membrane-inserted form takes place over a slightly narrower range of Ala \rightarrow Leu replacements *in vivo*, and the zero-point is displaced 0.52 kcal/mol compared to the *in vitro* results.

Table I

H-segment	in vitro	in vivo	in vivo
	$\Delta G_{ extsf{app}}$	$\Delta G_{\mathtt{app}}$	$\Delta {\sf G}_{ t calc}$
	(kcal/mol)	(kcal/mol)	(kcal/mol)
GGPGAAAAAAAAAAAAAAAAAAAAGPGG	0.79	1.06	1.74
GGPGAAAALAAAALAAAALAAAAGPGG	-0.06	0.81	0.43
GGPGAAAALALAAAAALALAAAAGPGG	-0.46	-0.14	-0.19
GGPGAAAALALAALAALAAAAGPGG	-1.07	-1.51	-1.13
GGPGAAAALALAAGAGAALALAAAAGPGG	0.16	0.55	0.77
GGPGAAAALALALGLALALAAAAGPGG	-1.52	-1.85	-1.82
GGPGAAAALALAAWAALAAAAAAGPGG	0.07	0.97	0.63
GGPGAAAALALALWAALALAAAAGPGG	-1.07	-1.06	-1.13
GGPGAAAALALALPLALALAAAAGPGG	-0.17	0.47	0.26
GGPGALAALALALPLALALAALAGPGG	-1.26	-1.85	-1.43
GGPGAAAALALALKLALALAAAAGPGG	0.38	1.16	1.11
GGPGALAALALALKLALALAALAGPGG	-0.81	-0.26	-0.73
GGPGALAALALALDAALALAALAGPGG	0.34	1.28	1.04
GGPGALAALALLLDLALALAALAGPGG	-0.55	-0.44	-0.33

Analysis of flanking residues

H-segments used to analyse the role of flanking residues.

H-segment	$\Delta G_{\mathtt{app}}$	kcal/mol
3L/16A series		
GGPGAAAALAAAALAAAAGPGG		-0.06
GGGPGAAAALAAAALAAAALAAAAGPGGG		0.12
GGGGPGAAAALAAAALAAAALAAAAGPGGGG		0.03
GGGGPGAAAALAAAALAAAALAAAAGPGGGGG		-0.12
GGGGGPGAAAALAAAALAAAALAAAAGPGGGGG		-0.23
NNPNAAAALAAAALAAAALAAAANPNN		0.63
4L/15A series		
GGPGAAAALALAAAAALALAAAAGPGG		-0.46
NNPNAAAALALAAAAALALAAAANPNN		-0.21