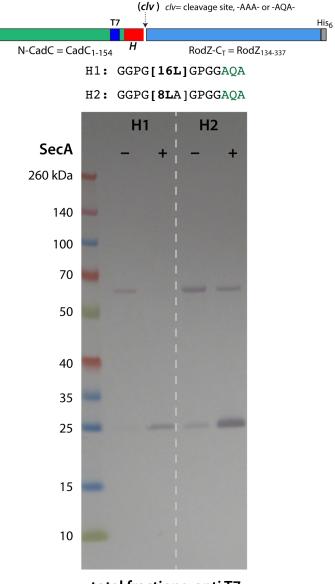
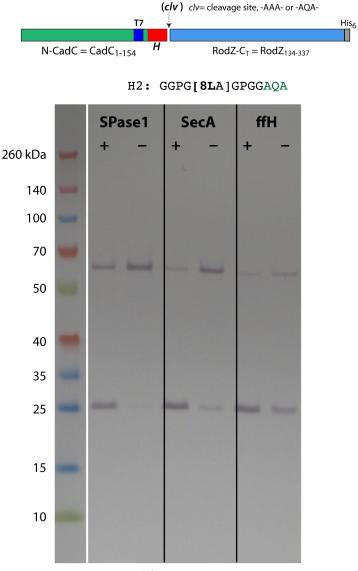
Save date: 15 Mar 2019 17:22

## SUPPLEMENTARY INFORMATION


## DROPPING OUT AND OTHER FATES OF TRANSMEMBRANE SEGMENTS INSERTED BY THE SECA ATPASE

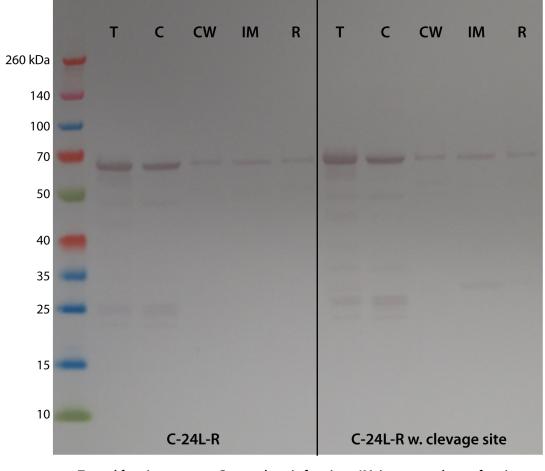
Eric Lindner and Stephen H. White\*

Dept. of Physiology & Biophysics


University of California, Irvine

\*To whom correspondence should be addressed. Dept. of Physiology & Biophysics, Medical Sciences, University of California at Irvine, Irvine, CA 92697-4560. Phone 949-824-7122, FAX 949-824-8540. E-mail: <a href="mailto:stephen.white@uci.edu">stephen.white@uci.edu</a>




total fractions; anti T7

**Figure S1**. Dependence of *H*-segment processing on SecA. Complete processing of the C-H-R constructs requires SecA. We used *E. coli* strain EO527 in which *secA* is under the control of AraC. *C-H-R* constructs with *clv* = AQA (modified pET-vector, T7-RNA-polymerase independent system using a T5 promoter sequence which is recognized by the wt *E. coli* RNA-polymerase.) were transformed in depletion cells. Overnight cultures were grown in SOC media in the presence of 0.02 % arabinose (non-depletion condition). A 400 µl inoculum from the culture was added to 10 ml fresh SOC media with or without 0.02 % arabinose. After 2 h (OD<sub>600</sub> ~ 0.6) protein expression was induced by adding 10 µM IPTG. After 0.5 h of protein expression, cells were pelleted and analyzed.



total fractions, anti T7

**Figure S2**. The dependence of SecA processing on SPase I, SecA, and ffH. While ffH has some effect, it is minor compared the requirement for SPase I and SecA. For SecA depletion studies, we used *E. coli* strain EO527 in which *secA* is under the control of AraC. For Ffh depletion studies, we used *E. coli* strain WAM121 in which *ffh* is under the control of AraC. *C*-*H-R* constructs with *clv* = AQA (modified pET-vector, T7-RNA-polymerase independent system using a T5 promoter sequence which is recognized by the wt *E. coli* RNA-polymerase.) were transformed in depletion cells. Overnight cultures were grown in SOC media in the presence of 0.02 % arabinose (non-depletion condition). A 400 µl inoculum from the culture was added to 10 ml fresh SOC media with or without 0.02 % arabinose. After 2 h (OD<sub>600</sub> ~ 0.6) protein expression was induced by adding 10 µM IPTG. After 0.5 h of protein expression, cells were pelleted and analyzed.



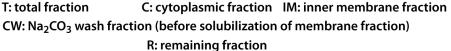



Figure S3. The cellular localization of C-24L-R constructs containing either a cleavage site or no cleavage site. The absence (left panel) or presence (right panel) of a cleavage site (AxA) Cterminal of the H segment is irrelevant. The absence of a cleavage product in the presence of a cleavage site (right panel) indicates that the C-24L-R construct is not membrane incorporated. To exclude the possibility that a cleavage site following a very long H-segment is out of the SPase I 'range', we determined the cellular localization of the construct. C-24L-R was found principally in the cytoplasm. The high intensities of the T and C bands are virtually identical while the CW, IM, and R fraction yield very weak bands. We included here an additional Na<sub>2</sub>CO<sub>3</sub> washing step, because we assumed that the very hydrophobic H-segment has a high tendency to be membrane-attached. Sodium carbonate has been used successfully to remove membrane-attached proteins from subcellular organelles [1]. In addition we included the R fraction, because proteins containing very hydrophobic amino acid stretches have the strong ability to aggregate in a water environment. The R fraction contains such precipitated proteins. Interestingly, we found the C-24L-R construct in the cytoplasmic fraction. We speculate that the H-segment is a target for cytoplasmic chaperons and therefore not accessible for SecA. These experiments were carried out using BL21 cells carrying a pET21 vector. Cells were grown in SOC media at 37° C. See Materials and Methods.

[1] Fujiki Y, Hubbard AL, Fowler S, Lazarow PB. Isolation of intracellular membranes by means of sodium carbonate treatment: application to endoplasmic reticulum. J Cell Biol. 1982;93:97-102.