News
Subscribe for rss news updates
- Members of the Bridge Institute at USC join the mpstruc team: We're pleased to announce that the Ray Stevens and Vadim Cherezov labs will join us in maintaining and improving the mpstruc database. Dr. Gye Won "Gracie" Han will be the voice of the group.
-
Membrane-embedded structures now available!:
Mark Sansom's lab at Oxford has created the MemProtMD database of all known transmembrane proteins embedded in lipid membranes, described in Stansfeld et al. (2015) Structure 23:1350-1361. Links to the structures are now included in mpstruc. Click on the
icon, and you will be taken to the appropriate entry in MemProtMD.
- MPtopo XML data representations now available: XML representations are now available for the MPtopo membrane protein topology database.
Latest new protein entered: 20 Mar 2025 at 20:27 PDT.
Last database update: 20 Mar 2025 at 20:29 PDT
- Apelin receptor (angiotensin II protein J receptor [APJR]), dimeric form: Homo sapiens, 3.25 Å
- ATP-dependent translocase ABCB1, SapNP reconstituted: Homo sapiens, 3.80 Å
- SLC11A1 natural resistance-associated macrophage protein 1 (NRAMP1) with bound Mn2+, towards the inward-open state: Homo sapiens, 3.70 Å
- SLC11A2 divalent metal transporter 1 (DMT1) with bound Mn2+, occluded state: Homo sapiens, 3.60 Å
- Cholinephosphotransferase-1 (CPT1) with bound diacylglycerol: Saccharomyces cerevisiae, 3.20 Å
- heterodimeric IrtAB ABC transporter, inward-facing state in nanodisc: Mycolicibacterium thermoresistibile, 3.60 Å
Unique proteins include proteins of same type from different species. For example, photosynthetic reaction centers from R. viridis and R. sphaeroides are considered unique. Structures of mutagenized versions of proteins already in the database are excluded as unique. Proteins that differ only by substrate bound or by physiological state are also excluded. Structures 'obsoleted' by the PDB are not included.
Total number of PDB coördinate files, including those for unique proteins. This number reflects the fact that published reports of structures often include several coördinate files describing, for example, the protein in different crystal forms, or with different bound substrates.

Search
|
|
---|---|
Limit 32 characters. Special characters in the search text should be explicitly represented. You can cut-and-paste them into the search string (the easiest approach), or they can be composed: e.g., on a Mac, Å can be composed with keyboard shift-option-A. See this page for more examples. |
|
0: perfect match, 10: match everything. Recommended values from 0 to 5. A value of 0 forces a case-sensitive search. (What is fuzzy search?). |
|
|
mpstruc database queries
|
|
---|---|
There are other ways of viewing the data in the mpstruc database besides the hierarchical view presented in the table on this page. The mpstruc database queries page (follow the above link) provides a list of queries on the database, some of which provide tables with sortable columns. Some of the queries may take a few moments. Query results are also available as XML data. Currently available queries include requesting a list of unique proteins, a list of all published reports, counting unique proteins by year, and counting all published reports by year. |
XML Representations
|
|
---|---|
An XML representation provides a convenient machine or human-readable format of the portion of the data table that has been made visible, and allows you to build software tools to consume it as you see fit. You can use the URLs adjacent to the buttons below to access the same view the corresponding button provides. |
|
This button generates an XML representation of the currently visible portion of the table. |
|
https://blanco.biomol.uci.edu/mpstruc/listAll/mpstrucTblXml | |
https://blanco.biomol.uci.edu/mpstruc/listAll/mpstrucMonotopicTblXml | |
https://blanco.biomol.uci.edu/mpstruc/listAll/mpstrucBetaBrlTblXml | |
https://blanco.biomol.uci.edu/mpstruc/listAll/mpstrucAlphaHlxTblXml | |
If your browser doesn’t directly display a nicely formatted XML page, it should provide a "view page source" menu selection that will. It should also provide a "save page" option so that you can download the XML formatted data. If you’re not familiar with XML and how to use it, a good source of information is available here. NOTES:Generated XML uses the following Document Type Definition (DTD): <!DOCTYPE mpstruc [ <!ELEMENT mpstruc (caption,groups*)> <!ATTLIST mpstruc createdBy CDATA #REQUIRED> <!ATTLIST mpstruc maintainedBy CDATA #REQUIRED> <!ATTLIST mpstruc copyright CDATA #REQUIRED> <!ATTLIST mpstruc url CDATA #REQUIRED> <!ATTLIST mpstruc lastNewProteinDate CDATA #REQUIRED> <!ATTLIST mpstruc lastDatabaseEditDate CDATA #REQUIRED> <!ATTLIST mpstruc timeStamp CDATA #REQUIRED> <!ELEMENT caption (#PCDATA)> <!ELEMENT groups (group*)> <!ELEMENT group (name,proteins,subgroups)> <!ELEMENT subgroups (subgroup*)> <!ELEMENT subgroup (name,proteins)> <!ELEMENT name (#PCDATA)> <!ELEMENT proteins (protein*)> <!ELEMENT memberProteins (memberProtein*)> <!ELEMENT protein (pdbCode,name,species,taxonomicDomain,expressedInSpecies,resolution,description, bibliography,secondaryBibliographies,relatedPdbEntries,memberProteins)> <!ELEMENT memberProtein (pdbCode,masterProteinPdbCode,name,species,expressedInSpecies,resolution, description,bibliography,secondaryBibliographies,relatedPdbEntries)> <!ELEMENT pdbCode (#PCDATA)> <!ELEMENT masterProteinPdbCode (#PCDATA)> <!ELEMENT species (#PCDATA)> <!ELEMENT taxonomicDomain (#PCDATA)> <!ELEMENT expressedInSpecies (#PCDATA)> <!ELEMENT resolution (#PCDATA)> <!ELEMENT description (#PCDATA)> <!ELEMENT bibliography (pubMedId,authors,year,title,journal,volume,issue,pages,doi,notes)> <!ELEMENT pubMedId (#PCDATA)> <!ELEMENT authors (#PCDATA)> <!ELEMENT year (#PCDATA)> <!ELEMENT title (#PCDATA)> <!ELEMENT journal (#PCDATA)> <!ELEMENT volume (#PCDATA)> <!ELEMENT issue (#PCDATA)> <!ELEMENT pages (#PCDATA)> <!ELEMENT doi (#PCDATA)> <!ELEMENT notes (#PCDATA)> <!ELEMENT secondaryBibliographies (bibliography*)> <!ELEMENT relatedPdbEntries (pdbCode*)> ]> |
![]() |
PDB Code | Links |
Reference
(links are to PubMed) |
---|---|---|---|
![]() ![]() ![]()
MONOTOPIC MEMBRANE PROTEINS
Reviewed by Allen et al. (2018) and Nastou et. al. (2020) |
|||
![]() ![]()
Cyclooxygenases
|
|||
Ram Prostaglandin H2 synthase-1 (cyclooxygenase-1 or COX-1): Ovis aries E Eukaryota, 3.5 Å
|
Picot et al. (1994).
Picot D, Loll PJ, & Garavito RM (1994). The x-ray crystal structure of the membrane protein prostaglandin H2synthase-1.
Nature 367 :243-249. PubMed Id: 8121489. |
||
Ram Prostaglandin H2 synthase-1 (COX-1): Ovis aries E Eukaryota, 3.4 Å
In complex with bromoaspirin. |
Loll et al. (1995).
Loll PJ, Picot D, & Garavito RM (1995). The structural basis of aspirin activity inferred from the crystal structure of inactivated prostaglandin H2 synthase.
Nat Struct Biol 2 :637-643. PubMed Id: 7552725. |
||
Ram Prostaglandin H2 synthase-1 (COX-1): Ovis aries E Eukaryota, 3.1 Å
In complex with flurbiprofen. |
Garavito et al. (1995).
Garavito RM, Picot D, & Loll PJ (1995). The 3.1 A X-ray crystal structure of the integral membrane enzyme prostaglandin H2 synthase-1.
Adv Prostaglandin Thromboxane Leukot Res 23 :99-103. PubMed Id: 7732912. |
||
Selinsky et al. (2001).
Selinsky BS, Gupta K, Sharkey CT, Loll PJ (2001). Structural analysis of NSAID binding by prostaglandin H2 synthase: time-dependent and time-independent inhibitors elicit identical enzyme conformations.
Biochemistry 40 :5172-5180. PubMed Id: 11318639. |
|||
Ram Prostaglandin H2 synthase-1 (COX-1): Ovis aries E Eukaryota, 3.2 Å
In complex with O-actylsalicylhydroxamic acid. |
Loll et al. (2001).
Loll PJ, Sharkey CT, O'Connor SJ, Dooley CM, O'Brien E, Devocelle M, Nolan KB, Selinsky BS, & Fitzgerald DJ (2001). O-acetylsalicylhydroxamic acid, a novel acetylating inhibitor of prostaglandin H2 synthase: structural and functional characterization of enzyme-inhibitor interactions.
Mol Pharmacol 60 :1407-1413. PubMed Id: 11723249. |
||
Ram Prostaglandin H2 synthase-1 (COX-1): Ovis aries E Eukaryota, 2.00 Å
In complex with alpha-methyl-4-biphenyl acetic acid. |
Gupta et al. (2004).
Gupta K, Selinsky BS, Kaub CJ, Katz AK, & Loll PJ (2004). The 2.0 Å resolution crystal structure of prostaglandin H2 synthase-1: structural insights into an unusual peroxidase.
J Mol Biol 335 :503-518. PubMed Id: 14672659. |
||
Ram Prostaglandin H2 synthase-1 (COX-1): Ovis aries E Eukaryota, 2.00 Å
In complex with flurbiprofen + Mn(III) PPIX cofactor. |
Gupta et al. (2006).
Gupta K, Selinsky BS, & Loll PJ (2006). 2.0 angstroms structure of prostaglandin H2 synthase-1 reconstituted with a manganese porphyrin cofactor.
Acta Crystallogr D Biol Crystallogr 62 :151-156. PubMed Id: 16421446. |
||
Ram Prostaglandin H2 synthase-1 (COX-1): Ovis aries E Eukaryota (expressed in Spodoptera frugiperda), 3.05 Å
3N8V is the unoccupied structure. R120Q/Native Heterodimer mutant in complex with Flurbiprofen, 2.75 Å: 3N8W COX-1 in complex with Nimesulide, 2.75 Å: 3N8X Aspirin Acetylated COX-1 in Complex with Diclofenac, 2.60 Å: 3N8Y COX-1 in Complex with Flurbiprofen, 2.90 Å: 3N8Z |
Sidhu et al. (2010).
Sidhu RS, Lee JY, Yuan C, & Smith WL (2010). Comparison of Cyclooxygenase-1 Crystal Structures: Cross-Talk between Monomers Comprising Cyclooxygenase-1 Homodimers.
Biochemistry 49 :7069-7079. PubMed Id: 20669977. |
||
Ram Prostaglandin H2 synthase-1 (COX-1) in complex with the subtype-selective derivative 2a: Ovis aries E Eukaryota (expressed in Spodoptera frugiperda), 3.35 Å
|
Friedrich et al. (2021).
Friedrich L, Cingolani G, Ko YH, Iaselli M, Miciaccia M, Perrone MG, Neukirch K, Bobinger V, Merk D, Hofstetter RK, Werz O, Koeberle A, Scilimati A, & Schneider G (2021). Learning from Nature: From a Marine Natural Product to Synthetic Cyclooxygenase-1 Inhibitors by Automated De Novo Design.
Adv Sci (Weinh) 8 16:2100832. PubMed Id: 34176236. doi:10.1002/advs.202100832. |
||
Prostaglandin H2 synthase-1 (cyclooxygenase-1 or COX-1): Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.36 Å
|
Miciaccia et al. (2021).
Miciaccia M, Belviso BD, Iaselli M, Cingolani G, Ferorelli S, Cappellari M, Loguercio Polosa P, Perrone MG, Caliandro R, & Scilimati A (2021). Three-dimensional structure of human cyclooxygenase (hCOX)-1.
Sci Rep 11 1:4312. PubMed Id: 33619313. doi:10.1038/s41598-021-83438-z. |
||
Cyclooxygenase-2: Mus musculus E Eukaryota, 3.0 Å
|
Kurumbail et al. (1996).
Kurumbail RG, Stevens AM, Gierse JK, McDonald JJ, Stegeman RA, Pak JY, Gildehaus D, Miyashiro JM, Penning TD, Seibert, K et al (1996). Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents.
Nature 384 :644-648. PubMed Id: 8967954. |
||
Cyclooxygenase-2 with bound indomethacin-ethylenediamine-dansyl conjugate: Mus musculus E Eukaryota (expressed in S. frugiperda), 2.22 Å
with bound indomethacin-butyldiamine-dansyl conjugate, 2.22 Å: 6BL3 |
Xu et al. (2019).
Xu S, Uddin MJ, Banerjee S, Duggan K, Musee J, Kiefer JR, Ghebreselasie K, Rouzer CA, & Marnett LJ (2019). Fluorescent indomethacin-dansyl conjugates utilize the membrane-binding domain of cyclooxygenase-2 to block the opening to the active site.
J Biol Chem 294 22:8690-8698. PubMed Id: 31000626. doi:10.1074/jbc.RA119.007405. |
||
Fatty acid α-dioxygenase (α-DOX): Arabidopsis thaliana E Eukaryota (expressed in E. coli), 1.70 Å
First structure of a member of the α-DOX subfamily of cyclooxygenase-peroxidase family of heme-containing proteins. With bound imidazole, 1.51 Å: 4HHR |
Goulah et al. (2013).
Goulah CC, Zhu G, Koszelak-Rosenblum M, & Malkowski MG (2013). The Crystal Structure of α-Dioxygenase Provides Insight into Diversity in the Cyclooxygenase-Peroxidase Superfamily.
Biochemistry 52 :1364-1372. PubMed Id: 23373518. doi:10.1021/bi400013k. |
||
![]() ![]()
Lipoxygenases
Related to Cyclooxygenases Rather than being tethered by α-helices at the interface, they are tethered by N-terminal β-sheet C2-like domains |
|||
Arachidonic acid 15-lipoxygenase from soybeans: Glycine max E Eukaryota, 2.60 Å
|
Boyington et al. (1993).
Boyington JC, Gaffney BJ, & Amzel LM (1993). The three-dimensional structure of an arachidonic acid 15-lipoxygenase.
Science 260 5113:1482-1486. PubMed Id: 8502991. doi:10.1126/science.8502991. |
||
Lipoxygenase-L1 from soybeans: Glycine max E Eukaryota, 1.40 Å
|
Minor et al. (1996).
Minor W, Steczko J, Stec B, Otwinowski Z, Bolin JT, Walter R, & Axelrod B (1996). Crystal structure of soybean lipoxygenase L-1 at 1.4 A resolution.
Biochemistry 35 33:10687-10701. PubMed Id: 8718858. doi:10.1021/bi960576u. |
||
Lipoxygenase-L3 from soybeans: Glycine max E Eukaryota, 2.60 Å
|
Skrzypczak-Jankun et al. (1997).
Skrzypczak-Jankun E, Amzel LM, Kroa BA, & Funk MO Jr (1997). Structure of soybean lipoxygenase L3 and a comparison with its L1 isoenzyme.
Proteins 29 1:15-31. PubMed Id: 9294864. doi:10.1002/(SICI)1097-0134(199709)29:1. |
||
8R-Lipoxygenase from coral: Plexaura homomalla E Eukaryota (expressed in E. coli), 3.20 Å
2FNQ supersedes 1ZQ4 |
Oldham et al. (2005).
Oldham ML, Brash AR, & Newcomer ME (2005). Insights from the X-ray crystal structure of coral 8R-lipoxygenase: calcium activation via a C2-like domain and a structural basis of product chirality.
J Biol Chem 280 47:39545-39552. PubMed Id: 16162493. doi:10.1074/jbc.M506675200. |
||
8R-Lipoxygenase from coral. Δ413-417 I805A mutant: Plexaura homomalla E Eukaryota (expressed in E. coli), 1.85 Å
|
Neau et al. (2009).
Neau DB, Gilbert NC, Bartlett SG, Boeglin W, Brash AR, & Newcomer ME (2009). The 1.85 A structure of an 8R-lipoxygenase suggests a general model for lipoxygenase product specificity.
Biochemistry 48 33:7906-7915. PubMed Id: 19594169. doi:10.1021/bi900084m. |
||
15-Lipoxygenase from rabbit reticulocytes: Oryctolagus cuniculus E Eukaryota, 2.40 Å
|
Gillmor et al. (1997).
Gillmor SA, Villaseñor A, Fletterick R, Sigal E, & Browner MF (1997). The structure of mammalian 15-lipoxygenase reveals similarity to the lipases and the determinants of substrate specificity.
Nat Struct Mol Biol 4 12:1003-1009. PubMed Id: 9406550. doi:10.1038/nsb1297-1003 . |
||
5-Lipoxygenase: Homo sapiens E Eukaryota (expressed in E. coli), 2.39 Å
|
Gilbert et al. (2011).
Gilbert NC, Bartlett SG, Waight MT, Neau DB, Boeglin WE, Brash AR, & Newcomer ME (2011). The structure of human 5-lipoxygenase.
Science 331 :217-219. PubMed Id: 21233389. doi:10.1126/science.1197203. |
||
15-Lipoxygenase-2 (15-LOX-2) with substrate mimic: Homo sapiens E Eukaryota (expressed in E. coli), 2.63 Å
|
Kobe et al. (2014).
Kobe MJ, Neau DB, Mitchell CE, Bartlett SG, & Newcomer ME (2014). The structure of human 15-lipoxygenase-2 with a substrate mimic.
J Biol Chem 289 :8562-8569. PubMed Id: 24497644. doi:10.1074/jbc.M113.543777. |
||
![]() ![]()
Squalene-Hopene Cyclases
|
|||
Squalene-hopene cyclase: Alicyclobacillus acidocaldarius B Bacteria, 2.0 Å
2SQC is space group P43212. 3SQC, 2.8 Å is P3221. |
Wendt et al. (1999).
Wendt KU, Lenhart A, & Schulz GE (1999). The structure of the membrane protein squalene-hopene cyclase at 2.0 Å resolution.
J. Mol. Biol. 286 :175-187. PubMed Id: 9931258. |
||
![]() ![]()
Oxidases
|
|||
Monoamine Oxidase B: Homo sapiens (Human) mitochondrial outer membrane E Eukaryota (expressed in Pichia pastoris), 3.0 Å
NOTE: MAOB has a single transmembrane helix that anchors it to the outer membrane (residues 489-515). Nevertheless, we consider it monotopic because the bulk of the 520-residue protein, including the active site, is not located within the membrane core. |
Binda et al. (2002).
Binda C, Newton-Vinson P, Hubálek F, Edmondson DE, & Mattevi A (2002). Structure of human monoamine oxidase B, a drug target for the treatment of neurological disorders.
Nature Struct Biol 9 :22-26. PubMed Id: 11753429. |
||
Monoamine Oxidase B with bound Isatin: Homo sapiens (Human) mitochondrial outer membrane E Eukaryota (expressed in Pichia pastoris), 1.70 Å
with bound Tranylcypromine, 2.20 Å: 1OJB with bound N-(2-aminoethyl)-p-chlorobenamide, 2.40 Å: 1OJC with bound Lauryldimethyl-amine N-Oxide, 3.10 Å: 1OJD with bound 1.4-Diphenyl-2-butene, 2.30 Å: 1OJ9 |
Binda et al. (2003).
Binda C, Li M, Hubálek F, Restelli N, Edmondson DE, & Mattevi A (2003). Insights into the mode of inhibition of human mitochondrial monoamine oxidase B from high-resolution crystal structures.
Proc Natl Acad Sci USA 100 :9750-9755. PubMed Id: 12913124. |
||
Monoamine Oxidase A: Rattus norvegicus (Rat) mitochondrial outer membrane E Eukaryota (expressed in S. cerevisiae), 3.20 Å
|
Ma et al. (2004).
Ma J, Yoshimura M, Yamashita E, Nakagawa A, Ito A, & Tsukihara T (2004). Structure of rat monoamine oxidase A and its specific recognitions for substrates and inhibitors.
J Mol Biol 338 :103-114. PubMed Id: 15050826. |
||
De Colibus et al. (2005).
De Colibus L, Li M, Binda C, Lustig A, Edmondson DE, & Mattevi A (2005). Three-dimensional structure of human monoamine oxidase A (MAO A): relation to the structures of rat MAO A and human MAO B.
Proc Natl Acad Sci USA 102 :12684-12689. PubMed Id: 16129825. |
|||
Monoamine Oxidase A with bound Harmine: Homo sapiens (Human) mitochondrial outer membrane E Eukaryota (expressed in S. cerevisiae), 2.20 Å
G110A mutant with bound Harmine, 2.17 Å: 2Z5Y |
Son et al. (2008).
Son SY, Ma J, Kondou Y, Yoshimura M, Yamashita E, & Tsukihara T (2008). Structure of human monoamine oxidase A at 2.2-Å resolution: The control of opening the entry for substrates/inhibitors.
Proc Natl Acad Sci USA 105 :5739-5744. PubMed Id: 18391214. |
||
Shiba et al. (2013).
Shiba T, Kido Y, Sakamoto K, Inaoka DK, Tsuge C, Tatsumi R, Takahashi G, Balogun EO, Nara T, Aoki T, Honma T, Tanaka A, Inoue M, Matsuoka S, Saimoto H, Moore AL, Harada S, & Kita K (2013). Structure of the trypanosome cyanide-insensitive alternative oxidase.
Proc Natl Acad Sci USA 110 :4580-4585. PubMed Id: 23487766. doi:10.1073/pnas.1218386110. |
|||
![]() ![]()
Hydrolases
|
|||
Fatty acid amide hydrolase: Rattus norvegicus E Eukaryota, 2.8 Å
NOTE: Like MAO, FAAH has a single TM segment. But the active site is external to the membrane, and many other residues on the protein surface contribute to membrane binding. Absence of the TM segment affects neither membrane association or function. |
Bracey et al. (2002).
Bracey MH, Hanson MA, Masuda KR, Stevens RC, & Cravatt BF (2002). Structural adaptations in a membrane enzyme that terminates endo cannabinoid signaling.
Science 298 :1793-1796. PubMed Id: 12459591. |
||
Okada et al. (2016).
Okada C, Wakabayashi H, Kobayashi M, Shinoda A, Tanaka I, & Yao M (2016). Crystal structures of the UDP-diacylglucosamine pyrophosphohydrase LpxH from Pseudomonas aeruginosa.
Sci Rep 6 :32822. PubMed Id: 27609419. doi:10.1038/srep32822. |
|||
LpxI phosphodiester hydrolase for lipid A biosynthesis: Caulobacter crescentus B Bacteria (expressed in E. coli), 2.90 Å
D225A mutant, 2.52 Å: 4GGI |
Metzger et al. (2012).
Metzger LE 4th, Lee JK, Finer-Moore JS, Raetz CR, & Stroud RM (2012). LpxI structures reveal how a lipid A precursor is synthesized.
Nature Struc Mol Biol 19 :1132-1138. PubMed Id: 23042606. doi:10.1038/nsmb.2393. |
||
Emptage et al. (2012).
Emptage RP, Daughtry KD, Pemble CW 4th, & Raetz CR (2012). Crystal structure of LpxK, the 4'-kinase of lipid A biosynthesis and atypical P-loop kinase functioning at the membrane interface.
Proc Natl Acad Sci USA 109 :12956-12961. PubMed Id: 22826246. doi:10.1073/pnas.1206072109. |
|||
N-acylphosphatidylethanolamine-hydrolyzing phospholipase D: Homo sapiens E Eukaryota (expressed in E. coli), 2.65 Å
|
Magotti et al. (2015).
Magotti P, Bauer I, Igarashi M, Babagoli M, Marotta R, Piomelli D, & Garau G (2015). Structure of human N-acylphosphatidylethanolamine-hydrolyzing phospholipase D: regulation of Fatty Acid ethanolamide biosynthesis by bile acids.
Structure 23 3:598-604. PubMed Id: 25684574. doi:10.1016/j.str.2014.12.018. |
||
PulA pullulanase: Klebsiella oxytoca B Bacteria (expressed in E. coli), 2.88 Å
|
East et al. (2016).
East A, Mechaly AE, Huysmans GH, Bernarde C, Tello-Manigne D, Nadeau N, Pugsley AP, Buschiazzo A, Alzari PM, Bond PJ, & Francetic O (2016). Structural Basis of Pullulanase Membrane Binding and Secretion Revealed by X-Ray Crystallography, Molecular Dynamics and Biochemical Analysis.
Structure 24 :92-104. PubMed Id: 26688215. doi:10.1016/j.str.2015.10.023. |
||
C2 domain of cytosolic phospholipase A2α bound to phosphatidylcholine: Gallus gallus E Eukaryota (expressed in E. coli), 2.21 Å
|
Hirano et al. (2019).
Hirano Y, Gao YG, Stephenson DJ, Vu NT, Malinina L, Simanshu DK, Chalfant CE, Patel DJ, & Brown RE (2019). Structural basis of phosphatidylcholine recognition by the C2-domain of cytosolic phospholipase A2α.
Elife 8 :e44760. PubMed Id: 31050338. doi:10.7554/eLife.44760. |
||
PlaF phospholipase A bacterial virulence factor: Pseudomonas aeruginosa B Bacteria, 2.00 Å
|
Bleffert et al. (2022).
Bleffert F, Granzin J, Caliskan M, Schott-Verdugo SN, Siebers M, Thiele B, Rahme L, Felgner S, Dörmann P, Gohlke H, Batra-Safferling R, Jaeger KE, & Kovacic F (2022). Structural, mechanistic, and physiological insights into phospholipase A-mediated membrane phospholipid degradation in Pseudomonas aeruginosa.
Elife 11 :e72824. PubMed Id: 35536643. doi:10.7554/eLife.72824. |
||
Falzone & MacKinnon (2023).
Falzone ME, & MacKinnon R (2023). Gβγ activates PIP2 hydrolysis by recruiting and orienting PLCβ on the membrane surface.
Proc Natl Acad Sci U S A 120 20:e2301121120. PubMed Id: 37172014. doi:10.1073/pnas.2301121120. |
|||
![]() ![]()
Hydroxylases
|
|||
Joo et al. (2018).
Joo SH, Pemble CW 4th, Yang EG, Raetz CRH, & Chung HS (2018). Biochemical and Structural Insights into an Fe(II)/α-Ketoglutarate/O2-Dependent Dioxygenase, Kdo 3-Hydroxylase (KdoO).
J Mol Biol 430 21:4036-4048. PubMed Id: 30092253. doi:10.1016/j.jmb.2018.07.029. |
|||
![]() ![]()
Acyltransferases
|
|||
LpxM lipid A acyltransferase: Acinetobacter baumannii B Bacteria (expressed in E. coli), 1.99 Å
The protein is anchored at the membrane interface by a single TM helix. E127A catalytic residue mutant, 1.9 Å: 5KNK |
Dovala et al. (2016).
Dovala D, Rath CM, Hu Q, Sawyer WS, Shia S, Elling RA, Knapp MS, & Metzger LE 4th (2016). Structure-guided enzymology of the lipid A acyltransferase LpxM reveals a dual activity mechanism.
Proc Natl Acad Sci USA 113 :E6064-E6071. PubMed Id: 27681620. doi:10.1073/pnas.1610746113. |
||
PatA membrane-associated acyltransferase, unliganded: Mycolicibacterium smegmatis B Bacteria, 3.67 Å
|
Anso et al. (2021).
Anso I, Basso LGM, Wang L, Marina A, Páez-Pérez ED, Jäger C, Gavotto F, Tersa M, Perrone S, Contreras FX, Prandi J, Gilleron M, Linster CL, Corzana F, Lowary TL, Trastoy B, & Guerin ME (2021). Molecular ruler mechanism and interfacial catalysis of the integral membrane acyltransferase PatA.
Sci Adv 7 42:eabj4565. PubMed Id: 34652941. doi:10.1126/sciadv.abj4565. |
||
![]() ![]()
Thioesterases
|
|||
Abrami et al. (2021).
Abrami L, Audagnotto M, Ho S, Marcaida MJ, Mesquita FS, Anwar MU, Sandoz PA, Fonti G, Pojer F, Dal Peraro M, & van der Goot FG (2021). Palmitoylated acyl protein thioesterase APT2 deforms membranes to extract substrate acyl chains.
Nat Chem Biol 17 4:438-447. PubMed Id: 33707782. doi:10.1038/s41589-021-00753-2. |
|||
![]() ![]()
Nucleotidyltransferases
|
|||
Tam41 mitochondrial CDP-DAG synthase Δ74: Schizosaccharomyces pombe E Eukaryota (expressed in E. coli), 2.26 Å
F240A mutant, 2.88 Å: 6IG2 |
Jiao et al. (2019).
Jiao H, Yin Y, & Liu Z (2019). Structures of the Mitochondrial CDP-DAG Synthase Tam41 Suggest a Potential Lipid Substrate Pathway from Membrane to the Active Site.
Structure 27 8:1258-1269.e4. PubMed Id: 31178220. doi:10.1016/j.str.2019.04.017. |
||
![]() ![]()
Oxidoreductases (Monotopic)
|
|||
Sulfide:quinone oxidoreductase in complex with decylubiquinone: Aquifex aeolicus B Bacteria, 2.0 Å
"as-purified" protein, 2.30 Å: 3HYV in complex with aurachin C, 2.9 Å: 3HYX This monotopic membrane protein is thought to be buried about 12 Å in the bilayer interface. Listed under TRANSMEMBRANE PROTEINS: ALPHA-HELICAL : Oxidoreductases, MONOTOPIC MEMBRANE PROTEINS : Oxidoreductases (Monotopic). |
Marcia et al. (2009).
Marcia M, Ermler U, Peng G, & Michel H (2009). The structure of Aquifex aeolicus sulfide:quinone oxidoreductase, a basis to understand sulfide detoxification and respiration.
Proc Natl Acad Sci USA 106 :9625-9630. PubMed Id: 19487671. |
||
Sulfide:quinone oxidoreductase, selenomethionine-substituted: Homo sapiens E Eukaryota (expressed in e. coli), 2.59 Å
native protein, 2.99 Å: 6MP5 |
Jackson et al. (2019).
Jackson MR, Loll PJ, & Jorns MS (2019). X-Ray Structure of Human Sulfide:Quinone Oxidoreductase: Insights into the Mechanism of Mitochondrial Hydrogen Sulfide Oxidation.
Structure 27 5:794-805.e4. PubMed Id: 30905673. doi:10.1016/j.str.2019.03.002. |
||
Electron Transfer Flavoprotein-ubiquinone oxidoreductase (ETF-QO) with bound UQ: Sus scrofa E Eukaryota, 2.5 Å
UQ-free structure, 2.6 Å: 2GMJ. Because this is a mitochondrial respiratory chain protein, it is listed under TRANSMEMBRANE PROTEINS: ALPHA-HELICAL : Oxidoreductases and MONOTOPIC MEMBRANE PROTEINS : Oxidoreductases (Monotopic). |
Zhang et al. (2006).
Zhang J, Frerman FE, & Kim J-JP (2006). Structure of electron transfer flavoprotein-ubiquinone oxidoreductase and electron transfer to the mitochondrial ubiquinone pool.
Proc Natl Acad Sci U S A 103 :16212-16217. PubMed Id: 17050691. |
||
mitochondrial trifunctional protein: Homo sapiens E Eukaryota (expressed in E. coli), 3.6 Å
|
Xia et al. (2019).
Xia C, Fu Z, Battaile KP, & Kim JP (2019). Crystal structure of human mitochondrial trifunctional protein, a fatty acid β-oxidation metabolon.
Proc Natl Acad Sci USA 116 13:6069-6074. PubMed Id: 30850536. doi:10.1073/pnas.1816317116. |
||
Electron bifurcating flavoprotein Fix/EtfABCX: Thermotoga maritima B Bacteria (expressed in Pyrococcus furiosus), 2.90 Å
cryo-EM structure |
Feng et al. (2021).
Feng X, Schut GJ, Lipscomb GL, Li H, & Adams MWW (2021). Cryoelectron microscopy structure and mechanism of the membrane-associated electron-bifurcating flavoprotein Fix/EtfABCX.
Proc Natl Acad Sci U S A 118 2:e2016978118. PubMed Id: 33372143. doi:10.1073/pnas.2016978118. |
||
![]() ![]()
Dehydrogenases
|
|||
Glycerol-3-phosphate dehydrogenase (GlpD, native): Escherichia coli B Bacteria, 1.75 Å
SeMet-GlpD, 1.95 Å: 2R4J GlpD-2-PGA, 2.3 Å: 2R45 GlpD-PEP, 2.1 Å: 2R46 GlpD-DHAP, 2.1 Å: 2R4E Listed under MONOTOPIC MEMBRANE PROTEINS : Dehydrogenases, TRANSMEMBRANE PROTEINS: ALPHA-HELICAL : Oxidoreductases. |
Yeh et al. (2008).
Yeh JI, Chinte U, & Du S (2008). Structure of glycerol-3-phosphate dehydrogenase, an essential monotopic membrane enzyme involved in respiration and metabolism.
Proc. Natl. Acad. Sci. USA 105 :3280-3285. PubMed Id: 18296637. |
||
PutA proline utilization protein: Geobacter sulfurreducens B Bacteria (expressed in E. coli), 1.90 Å
in complex with L-tetrahydro-2-furoic acid, 2.10 Å: 4NMA in complex with L-lactate, 2.2 Å: 4NMB in complex with Zwittergent 3-12, 1.90 Å: 4NMC reduced with dithionite, 1.98 Å: 4NMD inactivated by N-propargylglycine, 2.09 Å: 4NME inactivated by N-propargylglycine and complexed with menadione bisulfite, 1.95 Å: 4NMF |
Singh et al. (2014).
Singh H, Arentson BW, Becker DF, & Tanner JJ (2014). Structures of the PutA peripheral membrane flavoenzyme reveal a dynamic substrate-channeling tunnel and the quinone-binding site.
Proc Natl Acad Sci USA 111 :3389-3394. PubMed Id: 24550478. doi:10.1073/pnas.1321621111. |
||
Iwata et al. (2012).
Iwata M, Lee Y, Yamashita T, Yagi T, Iwata S, Cameron AD, & Maher MJ (2012). The structure of the yeast NADH dehydrogenase (Ndi1) reveals overlapping binding sites for water- and lipid-soluble substrates.
Proc Natl Acad Sci USA 109 :15247-15252. PubMed Id: 22949654. doi:10.1073/pnas.1210059109 . |
|||
Feng et al. (2012).
Feng Y, Li W, Li J, Wang J, Ge J, Xu D, Liu Y, Wu K, Zeng Q, Wu JW, Tian C, Zhou B, & Yang M (2012). Structural insight into the type-II mitochondrial NADH dehydrogenases.
Nature 491 :478-482. PubMed Id: 23086143. doi:10.1038/nature11541. |
|||
NDH-2 NADH dehydrogenase: Caldalkalibacillus thermarum B Bacteria (expressed in E. coli), 2.50 Å
NDH-2 is a non-proton pumping dehydrogenase. |
Heikal et al. (2014).
Heikal A, Nakatani Y, Dunn E, Weimar MR, Day CL, Baker EN, Lott JS, Sazanov LA, & Cook GM (2014). Structure of the bacterial type II NADH dehydrogenase: a monotopic membrane protein with an essential role in energy generation.
Mol Microbiol 91 5:950-964. PubMed Id: 24444429. doi:10.1111/mmi.12507. |
||
(S)-Mandelate dehydrogenase (MDH): Pseudomonas putida B Bacteria (expressed in E. coli), 2.2 Å
|
Sukumar et al. (2018).
Sukumar N, Liu S, Li W, Mathews FS, Mitra B, & Kandavelu P (2018). Structure of the monotopic membrane protein (S)-mandelate dehydrogenase at 2.2Å resolution.
Biochimie 154 :45-54. PubMed Id: 30071260. doi:10.1016/j.biochi.2018.07.017. |
||
![]() ![]()
Decarboxylases (Monotopic)
|
|||
phosphatidylserine decarboxylase (PSD), apo-form: Escherichia coli B Bacteria, 2.60 Å
PE-bond form, 3.60 Å: 6L07 |
Watanabe et al. (2020).
Watanabe Y, Watanabe Y, & Watanabe S (2020). Structural Basis for Phosphatidylethanolamine Biosynthesis by Bacterial Phosphatidylserine Decarboxylase.
Structure 28 7:799-809.e5. PubMed Id: 32402247. doi:10.1016/j.str.2020.04.006. |
||
Cho et al. (2021).
Cho G, Lee E, & Kim J (2021). Structural insights into phosphatidylethanolamine formation in bacterial membrane biogenesis.
Sci Rep 11 1:5785. PubMed Id: 33707636. doi:10.1038/s41598-021-85195-5. |
|||
![]() ![]()
Glycosyltransferases
|
|||
Peptidoglycan Glycosyltransferase: Staphylococcus aureus B Bacteria, 2.8 Å
NOTE: The enzyme has a single TM segment, which is absent in the structure. The active site is external to the membrane, but the so-called Jaw Region contributes to membrane binding. 2OLV shows the enzyme complexed with moenomycin. 2OLU is the structure of the apoenzyme. |
Lovering et al. (2007).
Lovering AL, de Castro LH, Lim D, & Strynadka NCJ (2007). Structural insight into the transglycosylation step in bacterial cell-wall biosynthesis.
Science 315 :1402-1405. PubMed Id: 17347437. |
||
Peptidoglycan Glycosyltransferase penicillin-binding protein 1a (PBP1a): Aquifex aeolicus B Bacteria (expressed in E. coli), 2.1 Å
NOTE: The enzyme has a single TM segment, which is absent in the structure. The active site is external to the membrane. |
Yuan et al. (2007).
Yuan Y, Barrett D, Zhang Y, Kahne D, Sliz P, & Walker S. (2007). Crystal structure of a peptidoglycan glycosyltransferase suggests a model for processive glycan chain synthesis.
Proc Natl Acad Sci USA 104 :5348-5353. PubMed Id: 17360321. |
||
Peptidoglycan Glycosyltransferase penicillin-binding protein 1b (PBP1b): Escherichia coli B Bacteria, 2.16 Å
3VMA supersedes the original PDB entry 3FWM. NOTE: The single TM segment is present in this structure. The active site is external to the membrane. SeMet Protein, 3.09 Å: 3FWL |
Sung et al. (2009).
Sung MT, Lai YT, Huang CY, Chou LY, Shih HW, Cheng WC, Wong CH, & Ma C (2009). Crystal structure of the membrane-bound bifunctional transglycosylase PBP1b from Escherichia coli.
Proc Natl Acad Sci USA 106 :8824-8829. PubMed Id: 19458048. |
||
Peptidoglycan Glycosyltransferase penicillin-binding protein 1b (PBP1b): Escherichia coli B Bacteria, 3.28 Å
cryo-EM structure |
Caveney et al. (2021).
Caveney NA, Workman SD, Yan R, Atkinson CE, Yu Z, & Strynadka NCJ (2021). CryoEM structure of the antibacterial target PBP1b at 3.3 Å resolution.
Nat Commun 12 1:2775. PubMed Id: 33986273. doi:10.1038/s41467-021-23063-6. |
||
Monofunctional glycosyltransferase WaaA, substrate free: Aquifex aeolicus B Bacteria (expressed in E. coli), 2.00 Å
WaaA catalyzes the transfer of Kdo to the lipid A precursor of lipopolysaccharide. Structure with substrate, 2.42 Å: 2XCU |
Schmidt et al. (2012).
Schmidt H, Hansen G, Singh S, Hanuszkiewicz A, Lindner B, Fukase K, Woodard RW, Holst O, Hilgenfeld R, Mamat U, & Mesters JR (2012). Structural and mechanistic analysis of the membrane-embedded glycosyltransferase WaaA required for lipopolysaccharide synthesis.
Proc Natl Acad Sci USA 109 :6253-6258. PubMed Id: 22474366. doi:10.1073/pnas.1119894109. |
||
Monofunctional glycosyltransferase in complex with Lipid II analog: Staphylococcus aureus B Bacteria (expressed in E. coli), 2.30 Å
NOTE: The single TM segment is present in this structure. The active site is external to the membrane. Substrate-free protein, 2.52 Å: 3VMQ In complex with moenomycin, 3.69 Å: 3VMR In complex with NBD-Lipid II, 3.20 Å: 3VMS |
Huang et al. (2012).
Huang CY, Shih HW, Lin LY, Tien YW, Cheng TJ, Cheng WC, Wong CH, & Ma C (2012). Crystal structure of Staphylococcus aureus transglycosylase in complex with a lipid II analog and elucidation of peptidoglycan synthesis mechanism.
Proc Natl Acad Sci USA 109 :6496-6501. PubMed Id: 22493270. doi:10.1073/pnas.1203900109. |
||
Ramírez et al. (2018).
Ramírez AS, Boilevin J, Mehdipour AR, Hummer G, Darbre T, Reymond JL, & Locher KP (2018). Structural basis of the molecular ruler mechanism of a bacterial glycosyltransferase.
Nat Commun 9 1:445. PubMed Id: 29386647. doi:10.1038/s41467-018-02880-2. |
|||
![]() ![]()
GPI-Anchored Cell-Wall Proteins (GPI-CWPs)
GPIs are glycosylphophatidylinositol anchors that are post-translational modifications in eukaryotes |
|||
Dfg5 GH76 protein: Chaetomium thermophilum E Eukaryota (expressed in E. coli), 1.05 Å
in complex with mannose, 1.30 Å: 6RY1 in complex with alpha-1,2-mannobiose, 1.30 Å: 6RY2 in complex with alpha-1,6-mannobiose, 1.30 Å: 6RY5 in complex with glucosamine, 1.30 Å: 6RY6 in complex with laminaribiose, 1.30 Å: 6RY7 |
Vogt et al. (2020).
Vogt MS, Schmitz GF, Varón Silva D, Mösch HU, & Essen LO (2020). Structural base for the transfer of GPI-anchored glycoproteins into fungal cell walls.
Proc Natl Acad Sci USA 117 36:22061-22067. PubMed Id: 32839341. doi:10.1073/pnas.2010661117. |
||
![]() ![]()
Phosphoglycosyl Transferases (PGT)
These proteins catalyze the first membrane-committed step of glycoconjugates |
|||
PglC phosphoglycosyl transferase, I57M/Q175M variant: Campylobacter concisus B Bacteria (expressed in E. coli), 2.74 Å
|
Ray et al. (2018).
Ray LC, Das D, Entova S, Lukose V, Lynch AJ, Imperiali B, & Allen KN (2018). Membrane association of monotopic phosphoglycosyl transferase underpins function.
Nat Chem Biol 14 :538-541. PubMed Id: 29769739. doi:10.1038/s41589-018-0054-z. |
||
![]() ![]()
Peptidases
|
|||
LepB Signal Peptidase (SPase) in complex with a β-lactam inhibitor: Escherichia coli B Bacteria, 1.9 Å
Located in the periplasmic space, the SPase has two transmembrane segments (AAs 4-28 & 58-76), which are missing in this structure. The Ser-Lys catalytic site is part of a hydrophobic surface that interacts strongly with the membrane. |
Paetzel et al. (1998).
Paetzel M, Dalbey RE, & Strynadka NC (1998). Crystal structure of a bacterial signal peptidase in complex with a β-lactam inhibitor.
Nature 396 :186-190. PubMed Id: 9823901. |
||
LepB Signal Peptidase (SPase), apoprotein: Escherichia coli B Bacteria, 2.40 Å
Δ2-75 protein lacking the two transmembrane helices |
Paetzel et al. (2002).
Paetzel M, Dalbey RE, & Strynadka NC (2002). Crystal structure of a bacterial signal peptidase apoenzyme
J Biol Chem 277 :9512-9519. PubMed Id: 11741964. |
||
LepB Signal Peptidase (SPase) in complex with a lipopeptide inhibitor: Escherichia coli B Bacteria, 2.47 Å
This structure of the Δ2-75 protein reveals the likely position of the signal peptide in the active site. |
Paetzel et al. (2004).
Paetzel M, Goodall JJ, Kania M, Dalbey RE, & Page MG (2004). Crystallographic and biophysical analysis of a bacterial signal peptidase in complex with a lipopeptide-based inhibitor.
J Biol Chem 279 :30781-30790. PubMed Id: 15136583. |
||
Ting et al. (2016).
Ting YT, Harris PW, Batot G, Brimble MA, Baker EN, & Young PG (2016). Peptide binding to a bacterial signal peptidase visualized by peptide tethering and carrier-driven crystallization.
IUCrJ 3 :10-19. PubMed Id: 26870377. doi:10.1107/S2052252515019971. |
|||
Signal Peptide Peptidase (SppA), native protein: Escherichia coli B Bacteria, 2.55 Å
SeMet protein, 2.76 Å: 3BEZ. Long thought to be a transmembrane protein, the structure reveals a peripheral homotetramer that likely is buried in the membrane interface. Each monomer has a putative N-terminal transmembrane helix for anchoring to the membrane. This anchor was removed for crystallization. Listed under TRANSMEMBRANE PROTEINS: ALPHA-HELICAL : Intramembrane Proteases, MONOTOPIC MEMBRANE PROTEINS : Peptidases. |
Kim et al. (2008).
Kim AC, Oliver DC, & Paetzel M (2008). Crystal structure of a bacterial signal Peptide peptidase.
J Mol Biol 376 :352-366. PubMed Id: 18164727. |
||
Signal Peptide Peptidase (SppA): Bacillus subtilis B Bacteria (expressed in E. coli), 2.37 Å
Each monomer of the homooctamer has a putative N-terminal transmembrane helix for anchoring to the membrane. This anchor was removed for crystallization. Listed under TRANSMEMBRANE PROTEINS: ALPHA-HELICAL : Intramembrane Proteases, MONOTOPIC MEMBRANE PROTEINS : Peptidases. |
Nam et al. (2012).
Nam SE, Kim AC, & Paetzel M (2012). Crystal Structure of Bacillus subtilis Signal Peptide Peptidase A.
J Mol Biol 419 :347-358. PubMed Id: 22472423. doi:10.1016/j.jmb.2012.03.020. |
||
Signal Peptide Peptidase (SppA) K199A mutant showing C-terminal peptide bound in eight active sites: Bacillus subtilis B Bacteria (expressed in E. coli), 2.39 Å
Each monomer of the homooctamer has a putative N-terminal transmembrane helix for anchoring to the membrane. This anchor was removed for crystallization. Listed under TRANSMEMBRANE PROTEINS: ALPHA-HELICAL : Intramembrane Proteases, MONOTOPIC MEMBRANE PROTEINS : Peptidases. |
Nam & Paetzel (2013).
Nam SE, & Paetzel M (2013). Structure of Signal Peptide Peptidase A with C-Termini Bound in the Active Sites: Insights into Specificity, Self-Processing, and Regulation.
Biochemistry 52 :8811-8822. PubMed Id: 24228759. |
||
Meprin β sheddase (metalloproteinase), pro-form: Homo sapiens E Eukaryota (expressed in Trichoplusia ni), 1.85 Å
Mature form, 3.00 Å: 4GWN |
Arolas et al. (2012).
Arolas JL, Broder C, Jefferson T, Guevara T, Sterchi EE, Bode W, Stöcker W, Becker-Pauly C, & Gomis-Rüth FX (2012). Structural basis for the sheddase function of human meprin β metalloproteinase at the plasma membrane.
Proc Natl Acad Sci USA 109 :16131-16136. PubMed Id: 22988105. doi:10.1073/pnas.1211076109. |
||
![]() ![]()
Cytochromes P450
P450s are members of the CYP51 family involved in sterol biosynthesis |
|||
Lanosterol 14α-demethylase with bound lanosterol: Saccharomyces cerevisiae E Eukaryota, 1.90 Å
with bound itraconazole, 2.19 Å: 5EQB. Supersedes 4K0F. This is the first structure of a full-length single-span 'bitopic' membrane protein. Proteins of this structural type are anchored at the membrane surface by one or two TM segments, which are generally not seen in the structures. See, for example, 1B12. |
Monk et al. (2014).
Monk BC, Tomasiak TM, Keniya MV, Huschmann FU, Tyndall JD, O'Connell JD 3rd, Cannon RD, McDonald JG, Rodriguez A, Finer-Moore JS, & Stroud RM (2014). Architecture of a single membrane spanning cytochrome P450 suggests constraints that orient the catalytic domain relative to a bilayer.
Proc Natl Acad Sci USA 111 :3865-3870. PubMed Id: 24613931. doi:10.1073/pnas.1324245111. |
||
![]() ![]()
Dihydroorotate Dehydrogenases (DHODH, class 2)
Class 1 DHODHs are soluble proteins. Class 2 are membrane associated proteins. |
|||
Dihydroorotate Dehydrogenase: Escherichia coli B Bacteria, 1.70 Å
|
Thoden et al. (2001).
Thoden JB, Phillips GN Jr, Neal TM, Raushel FM, & Holden HM (2001). Molecular structure of dihydroorotase: a paradigm for catalysis through the use of a binuclear metal center.
Biochemistry 40 :6989-6997. PubMed Id: 11401542. |
||
Dihydroorotate Dehydrogenase: Escherichia coli B Bacteria, 1.90 Å
|
Lee et al. (2005).
Lee M, Chan CW, Mitchell Guss J, Christopherson RI, & Maher MJ (2005). Dihydroorotase from Escherichia coli: loop movement and cooperativity between subunits.
J Mol Biol 348 :523-533. PubMed Id: 15826651. |
||
Dihydroorotate Dehydrogenase in complex with atovaquone: Rattus rattus E Eukaryota (expressed in E. coli), 2.30 Å
DHO in complex with brequinar, 2.40 Å: 1UUO |
Hansen et al. (2004).
Hansen M, Le Nours J, Johansson E, Antal T, Ullrich A, Löffler M, & Larsen S (2004). Inhibitor binding in a class 2 dihydroorotate dehydrogenase causes variations in the membrane-associated N-terminal domain.
Protein Sci 13 :1031-1042. PubMed Id: 15044733. |
||
Walse et al. (2008).
Walse B, Dufe VT, Svensson B, Fritzson I, Dahlberg L, Khairoullina A, Wellmar U, & Al-Karadaghi S (2008). The structures of human dihydroorotate dehydrogenase with and without inhibitor reveal conformational flexibility in the inhibitor and substrate binding sites.
Biochemistry 47 :8929-8936. PubMed Id: 18672895. |
|||
Deng et al. (2009).
Deng X, Gujjar R, El Mazouni F, Kaminsky W, Malmquist NA, Goldsmith EJ, Rathod PK, & Phillips MA (2009). Structural plasticity of malaria dihydroorotate dehydrogenase allows selective binding of diverse chemical scaffolds.
J Biol Chem 284 :26999-27009. PubMed Id: 19640844. |
|||
Dihydroorotate Dehydrogenase with bound Inhibitor DSM679: Plasmodium falciparum E Eukaryota (expressed in E. coli), 2.41 Å
x-ray structure with bound Inhibitor DSM681, 2.10 Å: 9DIK with bound Inhibitor DSM959, 3.10 Å: 9DIZ with bound Inhibitor DSM1153, 3.15 Å: 9DKQ with bound Inhibitor DSM1174, 3.30 Å: 9DKY with bound Inhibitor DSM1398, 2.90 Å: 9DLK with bound Inhibitor DSM1211, 3.10 Å: 9DLY |
Nie et al. (2024).
Nie Z, Bonnert R, Tsien J, Deng X, Higgs C, El Mazouni F, Zhang X, Li R, Ho N, Feher V, Paulsen J, Shackleford DM, Katneni K, Chen G, Ng ACF, McInerney M, Wang W, Saunders J, Collins D, Yan D, Li P, Campbell M, Patil R, Ghoshal A, Mondal P, Kundu A, Chittimalla R, Mahadeva M, Kokkonda S, White J, Das R, Mukherjee P, Angulo-Barturen I, Jiménez-Díaz MB, Malmstrom R, Lawrenz M, Rodriguez-Granillo A, Rathod PK, Tomchick DR, Palmer MJ, Laleu B, Qin T, Charman SA, & Phillips MA (2024). Structure-Based Discovery and Development of Highly Potent Dihydroorotate Dehydrogenase Inhibitors for Malaria Chemoprevention.
J Med Chem . PubMed Id: 39710971. doi:10.1021/acs.jmedchem.4c02394. |
||
![]() ![]()
Polymerases
|
|||
Lovering et al. (2010).
Lovering AL, Lin LY, Sewell EW, Spreter T, Brown ED, & Strynadka NC (2010). Structure of the bacterial teichoic acid polymerase TagF provides insights into membrane association and catalysis.
Nat Struct Mol Biol 17 :582-589. PubMed Id: 20400947. |
|||
![]() ![]()
ADP-Ribosylation Factors
|
|||
ADP-ribosylation factor (ARF1), myristoylated: Saccharomyces cerevisiae E Eukaryota (expressed in E. coli), NMR Structure
|
Liu et al. (2009).
Liu Y, Kahn RA, & Prestegard JH (2009). Structure and Membrane Interaction of Myristoylated ARF1.
Structure 17 :79-87. PubMed Id: 19141284. |
||
ADP-ribosylation factor (ARF1*GTP), myristoylated: Saccharomyces cerevisiae E Eukaryota (expressed in E. coli), NMR Structure
|
Liu et al. (2010).
Liu Y, Kahn RA, & Prestegard JH (2010). Dynamic structure of membrane-anchored Arf*GTP.
Nature Struct Molec Biol 17 :876-881. PubMed Id: 20601958. |
||
ADP-ribosylation factor (ARF1)/AP-1 complex, with HIV1-Nef and MHC-I lipopeptide, narrow membrane tubes: Homo sapiens E Eukaryota (expressed in E.Coli), 9.60 Å
cryo-EM structure ARF1/beta AP-1 dimeric, narrow tubes, 9.30 Å: 8D4C ARF1/gamma AP-1 dimeric, narrow tubes, 9.60 Å: 8D4D wide tubes, 9.20 Å: 8D4E ARF1/beta AP-1 dimeric, wide tubes, 9.80 Å: 8D4F ARF1/gamma AP-1 dimeric, wide tubes, 11.6 Å: 8D4G gamma AP-1 centered, wide tubes, 20.0 Å: 8D9R beta AP-1 centered, wide tubes, 20.0 Å: 8D9S gamma AP-1 centered, narrow membrane, 20.0 Å: 8D9T beta AP-1 centered, narrow membrane tubes, 20.0 Å: 8D9U ARF1/gamma AP-1 homodimeric, narrow membrane tubes, 9.40 Å: 8D9V |
Hooy et al. (2022).
Hooy RM, Iwamoto Y, Tudorica DA, Ren X, & Hurley JH (2022). Self-assembly and structure of a clathrin-independent AP-1:Arf1 tubular membrane coat.
Sci Adv 8 42:eadd3914. PubMed Id: 36269825. doi:10.1126/sciadv.add3914. |
||
![]() ![]()
Isomerases
|
|||
RPE65 visual cycle retinoid isomerase: Bos taurus E Eukaryota, 2.14 Å
This retinal pigment epithelium (RPE) protein simultaneously cleaves and isomerizes all-trans-retinyl esters to 11-cis-retinol and a fatty acid. |
Kiser et al. (2009).
Kiser PD, Golczak M, Lodowski DT, Chance MR, Palczewski K (2009). Crystal structure of native RPE65, the retinoid isomerase of the visual cycle.
Proc Natl Acad Sci USA 106 :17325-17330. PubMed Id: 19805034. |
||
Kiser et al. (2012).
Kiser PD, Farquhar ER, Shi W, Sui X, Chance MR, & Palczewski K (2012). Structure of RPE65 isomerase in a lipidic matrix reveals roles for phospholipids and iron in catalysis.
Proc Natl Acad Sci USA 109 :E2747-2756. PubMed Id: 23012475. |
|||
![]() ![]()
Phosphoinositide Kinases
|
|||
Phosphatidylinositol 4-kinase IIα: Homo sapiens E Eukaryota (expressed in E. coli), 2.77 Å
|
Baumlova et al. (2014).
Baumlova A, Chalupska D, Róźycki B, Jovic M, Wisniewski E, Klima M, Dubankova A, Kloer DP, Nencka R, Balla T, & Boura E (2014). The crystal structure of the phosphatidylinositol 4-kinase II?.
EMBO Rep 15 :1085-1092. PubMed Id: 25168678. doi:10.15252/embr.201438841. |
||
Akt1 serine/threonine protein kinase: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 2.05 Å
|
Truebestein et al. (2021).
Truebestein L, Hornegger H, Anrather D, Hartl M, Fleming KD, Stariha JTB, Pardon E, Steyaert J, Burke JE, & Leonard TA (2021). Structure of autoinhibited Akt1 reveals mechanism of PIP3-mediated activation.
Proc Natl Acad Sci U S A 118 33:e2101496118. PubMed Id: 34385319. doi:10.1073/pnas.2101496118. |
||
![]() ![]()
Membrane-Shaping Proteins (monotopic)
|
|||
IST1-CHMP1B ESCRT-III copolymer: Homo sapiens E Eukaryota (expressed in E. coli), 4.00 Å
cryo-EM structure |
McCullough et al. (2015).
McCullough J, Clippinger AK, Talledge N, Skowyra ML, Saunders MG, Naismith TV, Colf LA, Afonine P, Arthur C, Sundquist WI, Hanson PI, & Frost A (2015). Structure and membrane remodeling activity of ESCRT-III helical polymers.
Science 350 6267:1548-1551. PubMed Id: 26634441. doi:10.1126/science.aad8305. |
||
ESCRT-III filament composed of CHMP1B, membrane bound: Homo sapiens E Eukaryota (expressed in E. coli), 6.20 Å
cryo-EM structure ESCRT-III filament composed of CHMP1B+IST1 (right-handed), 3.20 Å: 6TZ4 ESCRT-III filament composed of CHMP1B+IST1 (left-handed), 3.10 Å: 6TZ5 filament composed of IST1 NTD, R16E,K27E mutant, 7.2 Å: 6TZA |
Nguyen et al. (2020).
Nguyen HC, Talledge N, McCullough J, Sharma A, Moss FR 3rd, Iwasa JH, Vershinin MD, Sundquist WI, & Frost A (2020). Membrane constriction and thinning by sequential ESCRT-III polymerization.
Nat Struct Mol Biol 27 4:392-399. PubMed Id: 32251413. doi:10.1038/s41594-020-0404-x. |
||
CHMP2A-CHMP3 ESCRT-III copolymer, 430 Å diameter: Homo sapiens E Eukaryota (expressed in E. coli), 3.30 Å
cryo-EM structure 410 Å diameter, 3.60 Å: 7ZCH |
Azad et al. (2023).
Azad K, Guilligay D, Boscheron C, Maity S, De Franceschi N, Sulbaran G, Effantin G, Wang H, Kleman JP, Bassereau P, Schoehn G, Roos WH, Desfosses A, & Weissenhorn W (2023). Structural basis of CHMP2A-CHMP3 ESCRT-III polymer assembly and membrane cleavage.
Nat Struct Mol Biol 30 :81-90. PubMed Id: 36604498. doi:10.1038/s41594-022-00867-8. |
||
ESCRT-III Snf7 core domain, conformation A: Saccharomyces cerevisiae E Eukaryota (expressed in E. coli), 2.40 Å
conformation B, 1.60 Å: 5FD9 |
Tang et al. (2015).
Tang S, Henne WM, Borbat PP, Buchkovich NJ, Freed JH, Mao Y, Fromme JC, & Emr SD (2015). Structural basis for activation, assembly and membrane binding of ESCRT-III Snf7 filaments.
Elife 4 :e12548. PubMed Id: 26670543. doi:10.7554/eLife.12548. |
||
Shrub, fly ortholog of ESCRT-III SNF7/CHMP4B: Drosophila melanogaster E Eukaryota (expressed in E. coli), 2.76 Å
|
McMillan et al. (2016).
McMillan BJ, Tibbe C, Jeon H, Drabek AA, Klein T, & Blacklow SC (2016). Electrostatic Interactions between Elongated Monomers Drive Filamentation of Drosophila Shrub, a Metazoan ESCRT-III Protein.
Cell Rep 16 5:1211-1217. PubMed Id: 27452459. doi:10.1016/j.celrep.2016.06.093. |
||
Retromer Vps26-Vps29-Vps35 complex: Chaetomium thermophilum E Eukaryota (expressed in E. coli), 11.4 Å
cryo-electron tomography with subtomogram averaging Vps29 structure by x-ray diffraction, 1.52 Å: 5W8M |
Kovtun et al. (2018).
Kovtun O, Leneva N, Bykov YS, Ariotti N, Teasdale RD, Schaffer M, Engel BD, Owen DJ, Briggs JAG, & Collins BM (2018). Structure of the membrane-assembled retromer coat determined by cryo-electron tomography.
Nature 561 7724:561-564. PubMed Id: 30224749. doi:10.1038/s41586-018-0526-z. |
||
Seipin lipid droplet-formation protein: Drosophila melanogaster E Eukaryota (expressed in E. coli), 4 Å
cryo-EM structure |
Sui et al. (2018).
Sui X, Arlt H, Brock KP, Lai ZW, DiMaio F, Marks DS, Liao M, Farese RV Jr, & Walther TC (2018). Cryo-electron microscopy structure of the lipid droplet-formation protein seipin.
J Cell Biol 217 12:4080-4091. PubMed Id: 30327422. doi:10.1083/jcb.201809067. |
||
Seipin lipid droplet-formation protein: Saccharomyces cerevisiae E Eukaryota, 3.45 Å
cryo-EM structure |
Arlt et al. (2022).
Arlt H, Sui X, Folger B, Adams C, Chen X, Remme R, Hamprecht FA, DiMaio F, Liao M, Goodman JM, Farese RV Jr, & Walther TC (2022). Seipin forms a flexible cage at lipid droplet formation sites.
Nat Struct Mol Biol 29 3:194-202. PubMed Id: 35210614. doi:10.1038/s41594-021-00718-y. |
||
Mgm1 mitochondrial remodeling GTPase: Chaetomium thermophilum E Eukaryota (expressed in E. coli), 3.6 Å
by cryo-tomography: s-Mgm1 decorating the outer surface of tubulated lipid membranes, 14.7 Å: 6RZT s-Mgm1 decorating the outer surface of tubulated lipid membranes in the GTPγS bound state, 14.7 Å: 6RZU s-Mgm1 decorating the inner surface of tubulated lipid membranes, 20.6 Å: 6RZV s-Mgm1 decorating the inner surface of tubulated lipid membranes in the GTPγS bound state, 18.8 Å: 6RZW |
Faelber et al. (2019).
Faelber K, Dietrich L, Noel JK, Wollweber F, Pfitzner AK, Mühleip A, Sánchez R, Kudryashev M, Chiaruttini N, Lilie H, Schlegel J, Rosenbaum E, Hessenberger M, Matthaeus C, Kunz S, von der Malsburg A, Noé F, Roux A, van der Laan M, Kühlbrandt W, & Daumke O (2019). Structure and assembly of the mitochondrial membrane remodelling GTPase Mgm1.
Nature 571 7765:429-433. PubMed Id: 31292547. doi:10.1038/s41586-019-1372-3. |
||
Sorting nexin (SNX)-BAR Mvp1 tetramer: Saccharomyces cerevisiae E Eukaryota (expressed in E. coli), 4.20 Å
cryo-EM structure |
Sun et al. (2020).
Sun D, Varlakhanova NV, Tornabene BA, Ramachandran R, Zhang P, & Ford MGJ (2020). The cryo-EM structure of the SNX-BAR Mvp1 tetramer.
Nat Commun 11 1. PubMed Id: 32198400. doi:10.1038/s41467-020-15110-5. |
||
sorting nexin (SNX) protein SNX1, helical array: Mus musculus E Eukaryota (expressed in E. coli), 9.00 Å
cryo-EM structure 10.0 Å: 7D6E |
Zhang et al. (2021).
Zhang Y, Pang X, Li J, Xu J, Hsu VW, & Sun F (2021). Structural insights into membrane remodeling by SNX1.
Proc Natl Acad Sci U S A 118 10. PubMed Id: 33658379. doi:10.1073/pnas.2022614118. |
||
Lopez-Robles et al. (2023).
Lopez-Robles C, Scaramuzza S, Astorga-Simon EN, Ishida M, Williamson CD, Baños-Mateos S, Gil-Carton D, Romero-Durana M, Vidaurrazaga A, Fernandez-Recio J, Rojas AL, Bonifacino JS, Castaño-Díez D, & Hierro A (2023). Architecture of the ESCPE-1 membrane coat.
Nat Struct Mol Biol 30 7:958-969. PubMed Id: 37322239. doi:10.1038/s41594-023-01014-7. |
|||
myelin P2 protein, N2D variant: Homo sapiens E Eukaryota (expressed in E. coli), 1.65 Å
P2 protein is a small β-barrel protein involved in myelin sheath formation K3N mutant, 2.70 Å: 6XU9 K21Q mutant, 2.30 Å: 6XUA L27D mutantt, 2.31 Å: 6XUW R30Q mutantt, 3.00 Å: 6STS K31Q mutant, 1.80 Å: 6XVQ L35S mutant, 2.00 Å: 6XVR P38G mutant, unliganded, 1.80 Å: 6XVS K45S mutant, 2.20 Å: 4A1H K65Q mutant, 1.20 Å: 4A1Y R88Q mutant, 1.80 Å: 6XVY K112Q mutant, 1.80 Å: 4A8Z K120S mutant, 2.90 Å: 6XW9 |
Ruskamo et al. (2020).
Ruskamo S, Krokengen OC, Kowal J, Nieminen T, Lehtimäki M, Raasakka A, Dandey VP, Vattulainen I, Stahlberg H, & Kursula P (2020). Cryo-EM, X-ray diffraction, and atomistic simulations reveal determinants for the formation of a supramolecular myelin-like proteolipid lattice.
J Biol Chem 295 26:8692-8705. PubMed Id: 32265298. doi:10.1074/jbc.RA120.013087. |
||
Endophilin B1 N-BAR helical scaffold protein: Homo sapiens E Eukaryota (expressed in E. coli), 9.0 Å
cryo-EM helical scaffold, 10 Å: 6UPN |
Bhatt et al. (2021).
Bhatt VS, Ashley R, & Sundborger-Lunna A (2021). Amphipathic Motifs Regulate N-BAR Protein Endophilin B1 Auto-inhibition and Drive Membrane Remodeling.
Structure 29 1:61-69.e3. PubMed Id: 33086035. doi:10.1016/j.str.2020.09.012. |
||
Hutchings et al. (2021).
Hutchings J, Stancheva VG, Brown NR, Cheung ACM, Miller EA, & Zanetti G (2021). Structure of the complete, membrane-assembled COPII coat reveals a complex interaction network.
Nat Commun 12 1:2034. PubMed Id: 33795673. doi:10.1038/s41467-021-22110-6. |
|||
metazoan membrane-assembled retromer:SNX3, VPS35/VPS29 arch: Homo sapiens E Eukaryota (expressed in E. coli), 8.90 Å
cryo-EM structure VPS26 dimer region, 9.50 Å 7BLO Grd19 complex (Chaetomium thermophilum, 9.50 Å 7BLP Grd19 complex, Vps26 dimer region, 9.20 Å 7BLQ Vps5 (SNX-BAR) complex (Chaetomium thermophilum), 9.30 Å 7BLR |
Leneva et al. (2021).
Leneva N, Kovtun O, Morado DR, Briggs JAG, & Owen DJ (2021). Architecture and mechanism of metazoan retromer:SNX3 tubular coat assembly.
Sci Adv 7 13:eabf8598. PubMed Id: 33762348. doi:10.1126/sciadv.abf8598. |
||
Atlastin-1 GTPase (residues 1-439) bound to GDP-Mg2+: Homo sapiens E Eukaryota (expressed in E. coli), 2.20 Å
atlastin-3 (residues 1-334) bound to GDP-Mg2+, 2.10 Å 6XJO |
Kelly et al. (2021).
Kelly CM, Byrnes LJ, Neela N, Sondermann H, & O'Donnell JP (2021). The hypervariable region of atlastin-1 is a site for intrinsic and extrinsic regulation.
J Cell Biol 220 11:e202104128. PubMed Id: 34546351. doi:10.1083/jcb.202104128. |
||
caveolin-1 complex: Homo sapiens E Eukaryota (expressed in E. coli), 3.40 Å
cryo-EM structure |
Porta et al. (2022).
Porta JC, Han B, Gulsevin A, Chung JM, Peskova Y, Connolly S, Mchaourab HS, Meiler J, Karakas E, Kenworthy AK, & Ohi MD (2022). Molecular architecture of the human caveolin-1 complex.
Sci Adv 8 19:eabn7232. PubMed Id: 35544577. doi:10.1126/sciadv.abn7232. |
||
Eps15-homology domain containing proteins (EHDs), EHD4 complex: Mus musculus E Eukaryota (expressed in E. coli), 7.60 Å
cryo-EM structure by cryo-EM tomography |
Melo et al. (2022).
Melo AA, Sprink T, Noel JK, Vázquez-Sarandeses E, van Hoorn C, Mohd S, Loerke J, Spahn CMT, & Daumke O (2022). Cryo-electron tomography reveals structural insights into the membrane remodeling mode of dynamin-like EHD filaments.
Nat Commun 13 1:7641. PubMed Id: 36496453. doi:10.1038/s41467-022-35164-x. |
||
![]() ![]()
Membrane Trafficking Proteins
|
|||
BBSome (complex of 7 Bardet–Biedl syndrome, BBS, proteins), apo form: Bos taurus E Eukaryota, 3.44 Å
cryo-EM structure BBSome-ARL6 complex, 4.00 Å: 6VOA |
Yang et al. (2020).
Yang S, Bahl K, Chou HT, Woodsmith J, Stelzl U, Walz T, & Nachury MV (2020). Near-atomic structures of the BBSome reveal the basis for BBSome activation and binding to GPCR cargoes.
Elife 9 :e55954. PubMed Id: 32510327. doi:10.7554/eLife.55954. |
||
![]() ![]()
Cell Adhesion Molecules
|
|||
Opioid Binding Protein/Cell Adhesion Molecule Like (OPCML): Homo sapiens E Eukaryota (expressed in Trichoplusia ni), 2.65 Å
|
Birtley et al. (2019).
Birtley JR, Alomary M, Zanini E, Antony J, Maben Z, Weaver GC, Von Arx C, Mura M, Marinho AT, Lu H, Morecroft EVN, Karali E, Chayen NE, Tate EW, Jurewicz M, Stern LJ, Recchi C, & Gabra H (2019). Inactivating mutations and X-ray crystal structure of the tumor suppressor OPCML reveal cancer-associated functions.
Nat Commun 10 1. PubMed Id: 31316070. doi:10.1038/s41467-019-10966-8. |
||
Aparicio et al. (2020).
Aparicio D, Scheffer MP, Marcos-Silva M, Vizarraga D, Sprankel L, Ratera M, Weber MS, Seybert A, Torres-Puig S, Gonzalez-Gonzalez L, Reitz J, Querol E, Piñol J, Pich OQ, Fita I, & Frangakis AS (2020). Structure and mechanism of the Nap adhesion complex from the human pathogen Mycoplasma genitalium.
Nat Commun 11 1:2877. PubMed Id: 32513917. doi:10.1038/s41467-020-16511-2. |
|||
![]() ![]()
Guanosine Triphosphatases
|
|||
Lysosomal Folliculin Complex (FLCN-FNIP2-RagA-RagC-Ragulator): Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.6 Å
cryo-EM structure |
Lawrence et al. (2019).
Lawrence RE, Fromm SA, Fu Y, Yokom AL, Kim DJ, Thelen AM, Young LN, Lim CY, Samelson AJ, Hurley JH, & Zoncu R (2019). Structural mechanism of a Rag GTPase activation checkpoint by the lysosomal folliculin complex.
Science 366 6468:971-977. PubMed Id: 31672913. doi:10.1126/science.aax0364. |
||
FLCN-FNIP2-Rag-Ragulator complex: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.31 Å
cryo-EM structure |
Shen et al. (2019).
Shen K, Rogala KB, Chou HT, Huang RK, Yu Z, & Sabatini DM (2019). Cryo-EM Structure of the Human FLCN-FNIP2-Rag-Ragulator Complex.
Cell 179 6:1319-1329.e8. PubMed Id: 31704029. doi:10.1016/j.cell.2019.10.036. |
||
![]() ![]()
Phospholipid Phosphatases
|
|||
MTMR8 catalytic phosphatase domain: Homo sapiens E Eukaryota (expressed in E. coli), 2.8 Å
|
Yoo et al. (2015).
Yoo KY, Son JY, Lee JU, Shin W, Im DW, Kim SJ, Ryu SE, & Heo YS (2015). Structure of the catalytic phosphatase domain of MTMR8: implications for dimerization, membrane association and reversible oxidation.
Acta Crystallogr. D Biol. Crystallogr. 71 :1528-1539. PubMed Id: 26143924. doi:10.1107/S139900471500927X. |
||
lipin/Pah phosphatidic acid phosphatase: Tetrahymena thermophila B Bacteria (expressed in E. coli), 3 Å
Lipin Phosphatidic Acid Phosphatase with Magnesium, 3 Å: 6TZZ |
Khayyo et al. (2020).
Khayyo VI, Hoffmann RM, Wang H, Bell JA, Burke JE, Reue K, & Airola MVV (2020). Crystal structure of a lipin/Pah phosphatidic acid phosphatase.
Nat Commun 11 1:1309. PubMed Id: 32161260. doi:10.1038/s41467-020-15124-z. |
||
![]() ![]()
Sorting Nexins
|
|||
Xu et al. (2020).
Xu T, Gan Q, Wu B, Yin M, Xu J, Shu X, & Liu J (2020). Molecular Basis for PI(3,5)P2 Recognition by SNX11, a Protein Involved in Lysosomal Degradation and Endosome Homeostasis Regulation.
J Mol Biol 432 16:4750-4761. PubMed Id: 32561432. doi:10.1016/j.jmb.2020.06.010. |
|||
![]() ![]()
Pro-apoptotic BCL-2 Family
|
|||
BAK core domain BH3-groove in complex with E. coli lipid: Homo sapiens E Eukaryota (expressed in E. coli), 2.49 Å
in complex with phosphatidylserine, 2.49 Å: 6UXN in complex with DDM, 1.80 Å: 6UXO in complex with phosphatidylglycerol, 2.49 Å: 6UXP in complex with POPC and C8E4, 1.70 Å: 6UXQ in complex with LysoPC, 1.80 Å: 6UXR |
Cowan et al. (2020).
Cowan AD, Smith NA, Sandow JJ, Kapp EA, Rustam YH, Murphy JM, Brouwer JM, Bernardini JP, Roy MJ, Wardak AZ, Tan IK, Webb AI, Gulbis JM, Smith BJ, Reid GE, Dewson G, Colman PM, & Czabotar PE (2020). BAK core dimers bind lipids and can be bridged by them.
Nat Struct Mol Biol 27 11:1024-1031. PubMed Id: 32929280. doi:10.1038/s41594-020-0494-5. |
||
Bax core dimer in bicelles: Homo sapiens E Eukaryota (expressed in E coli), NMR structure
|
Lv et al. (2021).
Lv F, Qi F, Zhang Z, Wen M, Kale J, Piai A, Du L, Wang S, Zhou L, Yang Y, Wu B, Liu Z, Del Rosario J, Pogmore J, Chou JJ, Andrews DW, Lin J, & OuYang B (2021). An amphipathic Bax core dimer forms part of the apoptotic pore wall in the mitochondrial␣membrane.
EMBO J 40 14:e106438. PubMed Id: 34101209. doi:10.15252/embj.2020106438. |
||
Bak transmembrane helix in DPC micelles: Homo sapiens E Eukaryota (expressed in E. coli), NMR structure
in lipid nanodiscs, 7OFO |
Sperl et al. (2021).
Sperl LE, Rührnößl F, Schiller A, Haslbeck M, & Hagn F (2021). High-resolution analysis of the conformational transition of pro-apoptotic Bak at the lipid membrane.
EMBO J 40 20:e107159. PubMed Id: 34523144. doi:10.15252/embj.2020107159. |
||
![]() ![]()
Variant Surface Glycoproteins (VSG)
|
|||
N-terminal Domain of VSG2 (MITat 1.2): Trypanosoma brucei B Bacteria, 2.90 Å
|
Freymann et al. (1990).
Freymann D, Down J, Carrington M, Roditi I, Turner M, & Wiley D (1990). 2.9 Å resolution structure of the N-terminal domain of a variant surface glycoprotein from Trypanosoma brucei.
J Mol Biol 216 1:141-160. PubMed Id: 2231728. |
||
N-terminal of VSG ILTat 1.24: Trypanosoma brucei B Bacteria, 2.70 Å
|
Blum et al. (1993).
Blum ML, Down JA, Gurnett AM, Carrington M, Turner MJ, & Wiley DC (1993). A structural motif in the variant surface glycoproteins of Trypanosoma brucei.
Nature 362 6421:603-609. PubMed Id: 8464512. |
||
N-terminal domain of VSG M1.1: Trypanosoma brucei B Bacteria, 1.65 Å
C-terminal domain of VSG M1.1 (NMR structure) 5M4T |
Bartossek et al. (2017).
Bartossek T, Jones NG, Schäfer C, Cvitković M, Glogger M, Mott HR, Kuper J, Brennich M, Carrington M, Smith AS, Fenz S, Kisker C, & Engstler M (2017). Structural basis for the shielding function of the dynamic trypanosome variant surface glycoprotein coat.
Nat Microbiol 2 11:1523-1532. PubMed Id: 28894098. doi:10.1038/s41564-017-0013-6. |
||
N-terminal Domain of VSG3: Trypanosoma brucei B Bacteria, 1.41 Å
|
Pinger et al. (2018).
Pinger J, Nešić D, Ali L, Aresta-Branco F, Lilic M, Chowdhury S, Kim HS, Verdi J, Raper J, Ferguson MAJ, Papavasiliou FN, & Stebbins CE (2018). African trypanosomes evade immune clearance by O-glycosylation of the VSG surface coat.
Nat Microbiol 3 8:932-938. PubMed Id: 29988048. doi:10.1038/s41564-018-0187-6. |
||
Variant Surface Glycoproteins VSGsur & VSG13: Trypanosoma brucei E Eukaryota, 1.21 Å
VSGsur bound to suramin, 1.86 Å 6Z7B VSGsur mutant H122A, 1.64 Å 6Z7C H122A soaked in 0.77 mM Suramin, 1.75 Å 6Z7D H122A soaked in 7.7 mM suramin, 1.66 Å 6Z7E VSG13 soaked in 0.5 M used to phase VSG13, 1.56 Å 6Z8G Variant Surface Glycoprotein VSG13, 1.38 Å 6Z8H VSGsur, I3C ("Magic Triangle") derivative, 1.92 Å 6Z79 |
Zeelen et al. (2021).
Zeelen J, van Straaten M, Verdi J, Hempelmann A, Hashemi H, Perez K, Jeffrey PD, Hälg S, Wiedemar N, Mäser P, Papavasiliou FN, & Stebbins CE (2021). Structure of trypanosome coat protein VSGsur and function in suramin resistance.
Nat Microbiol 6 3:392-400. PubMed Id: 33462435. doi:10.1038/s41564-020-00844-1. |
||
![]() ![]() ![]()
TRANSMEMBRANE PROTEINS: BETA-BARREL
|
|||
![]() ![]()
Adventitious Membrane Proteins: Beta-sheet Pore-forming Toxins/Attack Complexes
|
|||
α-hemolysin: Staphylococcus aureus B Bacteria, 1.9 Å
|
Song et al. (1996).
Song L, Hobaugh MR, Shustak C, Cheley S, Bayley H, & Gouaux JE (1996). Structure of staphylococcal a -hemolysin, a heptameric transmembrane pore.
Science 274 :1859-1866. PubMed Id: 8943190. |
||
Banerjee et al. (2010).
Banerjee A, Mikhailova E, Cheley S, Gu LQ, Montoya M, Nagaoka Y, Gouaux E, & Bayley H (2010). Molecular bases of cyclodextrin adapter interactions with engineered protein nanopores.
Proc Natl Acad Sci USA 107 :8165-8170. PubMed Id: 20400691. doi:10.1073/pnas.0914229107 . |
|||
α-hemolysin: Staphylococcus aureus B Bacteria (expressed in E. coli), 2.30 Å
Crystals were prepared using 2-methyl-2,4-pentanediol without detergent. |
Tanaka et al. (2011).
Tanaka Y, Hirano N, Kaneko J, Kamio Y, Yao M, & Tanaka I (2011). 2-Methyl-2,4-pentanediol induces spontaneous assembly of staphylococcal α-hemolysin into heptameric pore structure.
Protein Sci 20 :448-456. PubMed Id: 21280135. doi:10.1002/pro.579. |
||
Liu et al. (2020).
Liu J, Kozhaya L, Torres VJ, Unutmaz D, & Lu M (2020). Structure-based discovery of a small-molecule inhibitor of methicillin-resistant Staphylococcus aureus virulence.
J Biol Chem 295 18:5944-5959. PubMed Id: 32179646. doi:10.1074/jbc.RA120.012697. |
|||
α-hemolysin: Vibrio campbelli B Bacteria (expressed in E. coli), 2.00 Å
X-ray structure assembled heptamer, cryo-EM structure, 2.06 Å: 8JC7 |
Chiu et al. (2023).
Chiu YC, Yeh MC, Wang CH, Chen YA, Chang H, Lin HY, Ho MC, & Lin SM (2023). Structural basis for calcium-stimulating pore formation of Vibrio α-hemolysin.
Nat Commun 14 1:5946. PubMed Id: 37741869. doi:10.1038/s41467-023-41579-x. |
||
γ-hemolysin composed of LukF and Hlg2: Staphylococcus aureus B Bacteria (expressed in E. coli), 2.50 Å
|
Yamashita et al. (2011).
Yamashita K, Kawai Y, Tanaka Y, Hirano N, Kaneko J, Tomita N, Ohta M, Kamio Y, Yao M, & Tanaka I (2011). Crystal structure of the octameric pore of staphylococcal γ-hemolysin reveals the β-barrel pore formation mechanism by two components.
Proc Natl Acad Sci USA 108 :17314-17319. PubMed Id: 21969538. doi:10.1073/pnas.1110402108. |
||
γ-hemolysin prepore: Staphylococcus aureus B Bacteria (expressed in E. coli), 2.99 Å
|
Yamashita et al. (2014).
Yamashita D, Sugawara T, Takeshita M, Kaneko J, Kamio Y, Tanaka I, Tanaka Y, & Yao M (2014). Molecular basis of transmembrane beta-barrel formation of staphylococcal pore-forming toxins.
Nat Commun 5 :4897. PubMed Id: 25263813. doi:10.1038/ncomms5897. |
||
Olson et al. (1999).
Olson R, Nariya H, Yokota K, Kamio Y, & Gouaux E (1999). Crystal structure of Staphylococcal LukF delineates conformational changes accompanying formation of a transmembrane channel.
Nature Struc. Biol 6 :134-140. PubMed Id: 10048924. |
|||
LUK prepore formed from LukF & LukS: Staphylococcus aureus B Bacteria (expressed in E. coli), 2.40 Å
|
Yamashita et al. (2014).
Yamashita D, Sugawara T, Takeshita M, Kaneko J, Kamio Y, Tanaka I, Tanaka Y, & Yao M (2014). Molecular basis of transmembrane beta-barrel formation of staphylococcal pore-forming toxins.
Nat Commun 5 :4897. PubMed Id: 25263813. doi:10.1038/ncomms5897. |
||
LukGH octamer: Staphylococcus aureus B Bacteria (expressed in E. coli), 2.80 Å
|
Badarau et al. (2015).
Badarau A, Rouha H, Malafa S, Logan DT, Håkansson M, Stulik L, Dolezilkova I, Teubenbacher A, Gross K, Maierhofer B, Weber S, Jägerhofer M, Hoffman D, & Nagy E (2015). Structure-function analysis of heterodimer formation, oligomerization, and receptor binding of the Staphylococcus aureus bi-component toxin LukGH.
J Biol Chem 290 1:142-156. PubMed Id: 25371205. doi:10.1074/jbc.M114.598110. |
||
Leukocidin (LukFG) in complex with mouse CD11b I-domain (CD11b-I): Staphylococcus aureus B Bacteria (expressed in E. coli), 2.29 Å
in complex with human CD11b I-domain (CD11b-I), 2.75 Å: 6RHW |
Trstenjak et al. (2020).
Trstenjak N, Milić D, Graewert MA, Rouha H, Svergun D, Djinović-Carugo K, Nagy E, & Badarau A (2020). Molecular mechanism of leukocidin GH-integrin CD11b/CD18 recognition and species specificity.
Proc Natl Acad Sci USA 117 1:317-327. PubMed Id: 31852826. doi:10.1073/pnas.1913690116. |
||
Liu et al. (2020).
Liu J, Kozhaya L, Torres VJ, Unutmaz D, & Lu M (2020). Structure-based discovery of a small-molecule inhibitor of methicillin-resistant Staphylococcus aureus virulence.
J Biol Chem 295 18:5944-5959. PubMed Id: 32179646. doi:10.1074/jbc.RA120.012697. |
|||
Lambey et al. (2022).
Lambey P, Otun O, Cong X, Hoh F, Brunel L, Verdié P, Grison CM, Peysson F, Jeannot S, Durroux T, Bechara C, Granier S, & Leyrat C (2022). Structural insights into recognition of chemokine receptors by Staphylococcus aureus leukotoxins.
Elife 11 :e72555. PubMed Id: 35311641. doi:10.7554/eLife.72555. |
|||
Panton-Valentine leukocidin (PVL) with bound C14PC: Staphylococcus aureus B Bacteria (expressed in E. coli), 2.04 Å
|
Liu et al. (2020).
Liu J, Kozhaya L, Torres VJ, Unutmaz D, & Lu M (2020). Structure-based discovery of a small-molecule inhibitor of methicillin-resistant Staphylococcus aureus virulence.
J Biol Chem 295 18:5944-5959. PubMed Id: 32179646. doi:10.1074/jbc.RA120.012697. |
||
NetB Necrotic B-like enteritis toxin: Clostridium perfringens B Bacteria (expressed in E. coli), 3.90 Å
|
Savva et al. (2013).
Savva CG, Fernandes da Costa SP, Bokori-Brown M, Naylor CE, Cole AR, Moss DS, Titball RW, & Basak AK (2013). Molecular architecture and functional analysis of NetB, a pore-forming toxin from Clostridium perfringens.
J Biol Chem 288 5:3512-3522. PubMed Id: 23239883. doi:10.1074/jbc.M112.430223. |
||
Perfringolysin O (PFO) protomer: Clostridium perfringens B Bacteria (expressed in E. coli), 2.20 Å
The protein is a thiol-activated cytolysin that uses membrane cholesterol as a receptor. 40 or more protomers assemble into a large pore anchored in the bilayer by the β-sheets of domain 4. Space group is C2221. P21212 space group, 3.0 Å: 1M3J. P31 space group, 2.90 Å: 1M3I. |
Rossjohn et al. (1997).
Rossjohn J, Feil SC, McKinstry WJ, Tweten RK, & Parker MW (1997). Structure of a cholesterol-binding, thiol-activated cytolysin and a model of its membrane form.
Cell 89 :685-692. PubMed Id: 9182756. |
||
Anthrax Protective Antigen (PA) and Lethal Factor (LF) Prechannel Complex: Bacillus anthraciss B Bacteria (expressed in E. coli), 3.10 Å
The structure is the PA8LF4 prechannel. |
Feld et al. (2010).
Feld GK, Thoren KL, Kintzer AF, Sterling HJ, Tang II, Greenberg SG, Williams ER, & Krantz BA (2010). Structural basis for the unfolding of anthrax lethal factor by protective antigen oligomers.
Nat Struct Mol Biol 17 :1383-1390. PubMed Id: 21037566. |
||
Anthrax protective antigen pore: Bacillus anthracis B Bacteria (expressed in E. coli), 2.9 Å
cryo-EM structure |
Jiang et al. (2015).
Jiang J, Pentelute BL, Collier RJ, & Zhou ZH (2015). Atomic structure of anthrax protective antigen pore elucidates toxin translocation.
Nature 521 :545-549. PubMed Id: 25778700. doi:10.1038/nature14247. |
||
Anthrax octamer prechannel bound to full-length edema factor (EF): Bacillus anthracis B Bacteria (expressed in E. coli), 3.30 Å
cryo-EM structure bound to full-length lethal factor (LF), 3.80 Å: 6WJJ |
Zhou et al. (2020).
Zhou K, Liu S, Hardenbrook NJ, Cui Y, Krantz BA, & Zhou ZH (2020). Atomic Structures of Anthrax Prechannel Bound with Full-Length Lethal and Edema Factors.
Structure 28 8:879-887.e3. PubMed Id: 32521227. doi:10.1016/j.str.2020.05.009. |
||
Anthrax protective antigen pore translating N-terminal of LF: Bacillus anthracis B Bacteria (expressed in E. coli), 3.30 Å
cryo-EM structure |
Machen et al. (2021).
Machen AJ, Fisher MT, & Freudenthal BD (2021). Anthrax toxin translocation complex reveals insight into the lethal factor unfolding and refolding mechanism.
Sci Rep 11 1:13038. PubMed Id: 34158520. doi:10.1038/s41598-021-91596-3. |
||
Lymphocyte perforin monomer: Mus musculus E Eukaryota (expressed in S. frugiperda), 2.75 Å
The multimeric pore structure has been visualized by cryo-EM. |
Law et al. (2010).
Law RH, Lukoyanova N, Voskoboinik I, Caradoc-Davies TT, Baran K, Dunstone MA, D'Angelo ME, Orlova EV, Coulibaly F, Verschoor S, Browne KA, Ciccone A, Kuiper MJ, Bird PI, Trapani JA, Saibil HR, & Whisstock JC (2010). The structural basis for membrane binding and pore formation by lymphocyte perforin.
Nature 468 :447-451. PubMed Id: 21037563. |
||
Lymphocyte perforin pore: Mus musculus E Eukaryota (expressed in Spodoptera frugiperda), 4.00 Å
cryo-EM structure |
Ivanova et al. (2022).
Ivanova ME, Lukoyanova N, Malhotra S, Topf M, Trapani JA, Voskoboinik I, & Saibil HR (2022). The pore conformation of lymphocyte perforin.
Sci Adv 8 6:eabk3147. PubMed Id: 35148176. doi:10.1126/sciadv.abk3147. |
||
Macrophage-expressed gene 1 (MPEG1/Perforin-2), wild-type soluble pre-pore: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.49 Å
cryo-EM structure L425K, alpha conformation pre-pore, 2.37 Å: 6U2J L425K, alpha conformation pre-pore, monomer, 2.93 Å: 6U2K L425K soluble pre-pore complex, 2.83 Å: 6U2L L425K pre-pore complex bound to liposome, 3.63 Å: 6U2W |
Pang et al. (2019).
Pang SS, Bayly-Jones C, Radjainia M, Spicer BA, Law RHP, Hodel AW, Parsons ES, Ekkel SM, Conroy PJ, Ramm G, Venugopal H, Bird PI, Hoogenboom BW, Voskoboinik I, Gambin Y, Sierecki E, Dunstone MA, & Whisstock JC (2019). The cryo-EM structure of the acid activatable pore-forming immune effector Macrophage-expressed gene 1.
Nat Commun 10 1. PubMed Id: 31537793. doi:10.1038/s41467-019-12279-2. |
||
Macrophage-expressed gene 1 (MPEG1/Perforin-2), pore in ring form: Mus musculus E Eukaryota (expressed in HEK293 cells), 3.00 Å
cryo-EM structure pore in twisted form, 4.00 Å: 8A1S |
Yu et al. (2022).
Yu X, Ni T, Munson G, Zhang P, & Gilbert RJC (2022). Cryo-EM structures of perforin-2 in isolation and assembled on a membrane suggest a mechanism for pore formation.
EMBO J 41 23:e111857. PubMed Id: 36245269. doi:10.15252/embj.2022111857. |
||
Cytolysin pore-forming toxin: Vibrio cholerae B Bacteria (expressed in E. coli), 2.88 Å
Reveals the full structure of the assembled heptameric pore. The pore has a novel ring of tryptophan residues lining the narrowest constriction. |
De & Olson (2011).
De S & Olson R. (2011). Crystal structure of the Vibrio cholerae cytolysin heptamer reveals common features among disparate pore-forming toxins
Proc Natl Acad Sci USA 108 :7385-7390. PubMed Id: 21502531. doi:10.1073/pnas.1017442108. |
||
Cytolysin pore-forming toxin protomer: Vibrio cholerae B Bacteria (expressed in E. coli), 2.30 Å
|
Olson & Gouaux (2005).
Olson R & Gouaux E (2005). Crystal structure of the Vibrio cholerae cytolysin (VCC) pro-toxin and its assembly into a heptameric transmembrane pore
J Mol Biol 350 :997-1016. PubMed Id: 15978620 . doi:10.1016/j.jmb.2005.05.045. |
||
Streptolysin O pore-forming toxin: Streptococcus pyogenes B Bacteria (expressed in E. coli), 2.10 Å
|
Feil et al. (2014).
Feil SC, Ascher DB, Kuiper MJ, Tweten RK, & Parker MW (2014). Structural Studies of Streptococcus pyogenes Streptolysin O Provide Insights into the Early Steps of Membrane Penetration.
J Mol Biol 426 :785-792. PubMed Id: 24316049. doi:10.1016/j.jmb.2013.11.020. |
||
Degiacomi et al. (2013).
Degiacomi MT, Iacovache I, Pernot L, Chami M, Kudryashev M, Stahlberg H, van der Goot FG, & Dal Peraro M (2013). Molecular assembly of the aerolysin pore reveals a swirling membrane-insertion mechanism.
Nat Chem Biol 9 10:623-629. PubMed Id: 23912165. doi:10.1038/nchembio.1312. |
|||
Monalysin pore-forming toxin, cleaved form: Pseudomonas entomophila B Bacteria (expressed in E. coli), 1.70 Å
mutant deleted of the membrane-spanning domain, 2.65 Å: 4MKQ EM structure deposited in EMBD as EMD-2698. |
Leone et al. (2015).
Leone P, Bebeacua C, Opota O, Kellenberger C, Klaholz B, Orlov I, Cambillau C, Lemaitre B, & Roussel A (2015). X-ray and Cryo-electron Microscopy Structures of Monalysin Pore-forming Toxin Reveal Multimerization of the Pro-form.
J Biol Chem 290 :13191-13201. PubMed Id: 25847242. doi:10.1074/jbc.M115.646109. |
||
poly-C9 component of the complement membrane attack Complex: Homo sapiens E Eukaryota, 8 Å
model from cryo-EM |
Dudkina et al. (2016).
Dudkina NV, Spicer BA, Reboul CF, Conroy PJ, Lukoyanova N, Elmlund H, Law RH, Ekkel SM, Kondos SC, Goode RJ, Ramm G, Whisstock JC, Saibil HR, & Dunstone MA (2016). Structure of the poly-C9 component of the complement membrane attack complex.
Nat Commun 7 . PubMed Id: 26841934. doi:10.1038/ncomms10588. See also: Serna et al. (2016). Serna M, Giles JL, Morgan BP, & Bubeck D (2016). Structural basis of complement membrane attack complex formation.
Nat Commun 7 :10587. PubMed Id: 26841837. doi:10.1038/ncomms10587. |
||
poly-C9 component of the complement membrane attack Complex: Homo sapiens E Eukaryota (expressed in Expi293 cells), 3.9 Å
cryo-EM structure |
Spicer et al. (2018).
Spicer BA, Law RHP, Caradoc-Davies TT, Ekkel SM, Bayly-Jones C, Pang SS, Conroy PJ, Ramm G, Radjainia M, Venugopal H, Whisstock JC, & Dunstone MA (2018). The first transmembrane region of complement component-9 acts as a brake on its self-assembly.
Nat Commun 9 1:3266. PubMed Id: 30111885. doi:10.1038/s41467-018-05717-0. |
||
Membrane attack complex (MAC) in open conformation: Homo sapiens E Eukaryota, 5.6 Å
cryo-EM structure closed conformation, 5.6 Å: 6H04 |
Menny et al. (2018).
Menny A, Serna M, Boyd CM, Gardner S, Joseph AP, Morgan BP, Topf M, Brooks NJ, & Bubeck D (2018). CryoEM reveals how the complement membrane attack complex ruptures lipid bilayers.
Nat Commun 9 1. PubMed Id: 30552328. doi:10.1038/s41467-018-07653-5. |
||
3C9-sMAC Complement membrane attack complex packaged for clearance: Homo sapiens E Eukaryota, 3.54 Å
cryo-EM structure 2C9-sMAC, 3.27 Å 7NYD |
Menny et al. (2021).
Menny A, Lukassen MV, Couves EC, Franc V, Heck AJR, & Bubeck D (2021). Structural basis of soluble membrane attack complex packaging for clearance.
Nat Commun 12 1:6086. PubMed Id: 34667172. doi:10.1038/s41467-021-26366-w. |
||
Couves et al. (2023).
Couves EC, Gardner S, Voisin TB, Bickel JK, Stansfeld PJ, Tate EW, & Bubeck D (2023). Structural basis for membrane attack complex inhibition by CD59.
Nat Commun 14 1:890. PubMed Id: 36797260. doi:10.1038/s41467-023-36441-z. |
|||
monomeric C9 component of the complement membrane attack Complex: Mus musculus E Eukaryota (expressed in Expi293 cells), 2.2 Å
|
Spicer et al. (2018).
Spicer BA, Law RHP, Caradoc-Davies TT, Ekkel SM, Bayly-Jones C, Pang SS, Conroy PJ, Ramm G, Radjainia M, Venugopal H, Whisstock JC, & Dunstone MA (2018). The first transmembrane region of complement component-9 acts as a brake on its self-assembly.
Nat Commun 9 1:3266. PubMed Id: 30111885. doi:10.1038/s41467-018-05717-0. |
||
Lysenin Pore complex: Eisenia fetida B Bacteria (expressed in E. coli), 3.1 Å
cryo-EM structure |
Bokori-Brown et al. (2016).
Bokori-Brown M, Martin TG, Naylor CE, Basak AK, Titball RW, & Savva CG (2016). Cryo-EM structure of lysenin pore elucidates membrane insertion by an aerolysin family protein.
Nat Commun 7 :11293. PubMed Id: 27048994. doi:10.1038/ncomms11293. |
||
ILYml Cholesterol-dependent cytolysin, CD59-responsive: Streptococcus intermedius B Bacteria (expressed in E. coli), 2.89 Å
ILYml = monomer-locked via a disulfide. Bound to CD59D22A, 2.7 Å: 5IMT |
Lawrence et al. (2016).
Lawrence SL, Gorman MA, Feil SC, Mulhern TD, Kuiper MJ, Ratner AJ, Tweten RK, Morton CJ, & Parker MW (2016). Structural Basis for Receptor Recognition by the Human CD59-Responsive Cholesterol-Dependent Cytolysins.
Structure 24 :1488-1498. PubMed Id: 27499440. doi:10.1016/j.str.2016.06.017. |
||
VLYml Cholesterol-dependent cytolysin, CD-59 responsive, bound to CD59D22A: Gardnerella vaginalis B Bacteria (expressed in E. coli), 2.4 Å
VLYml = monomer locked via a disulfide |
Lawrence et al. (2016).
Lawrence SL, Gorman MA, Feil SC, Mulhern TD, Kuiper MJ, Ratner AJ, Tweten RK, Morton CJ, & Parker MW (2016). Structural Basis for Receptor Recognition by the Human CD59-Responsive Cholesterol-Dependent Cytolysins.
Structure 24 :1488-1498. PubMed Id: 27499440. doi:10.1016/j.str.2016.06.017. |
||
van Pee et al. (2017).
van Pee K, Neuhaus A, D'Imprima E, Mills DJ, Kühlbrandt W, & Yildiz Ö (2017). CryoEM structures of membrane pore and prepore complex reveal cytolytic mechanism of Pneumolysin.
Elife 6 :e23644. PubMed Id: 28323617. doi:10.7554/eLife.23644. |
|||
Epsilon toxin (Etx): Clostridium perfringens B Bacteria (expressed in E. coli), 3.2 Å
cryo-EM structure |
Savva et al. (2019).
Savva CG, Clark AR, Naylor CE, Popoff MR, Moss DS, Basak AK, Titball RW, & Bokori-Brown M (2019). The pore structure of Clostridium perfringens epsilon toxin.
Nat Commun 10 1. PubMed Id: 31201325. doi:10.1038/s41467-019-10645-8. |
||
Yamada et al. (2020).
Yamada T, Yoshida T, Kawamoto A, Mitsuoka K, Iwasaki K, & Tsuge H (2020). Cryo-EM structures reveal translocational unfolding in the clostridial binary iota toxin complex.
Nat Struct Mol Biol 27 3:288-296. PubMed Id: 32123390. doi:10.1038/s41594-020-0388-6. |
|||
Xu et al. (2020).
Xu X, Godoy-Ruiz R, Adipietro KA, Peralta C, Ben-Hail D, Varney KM, Cook ME, Roth BM, Wilder PT, Cleveland T, Grishaev A, Neu HM, Michel SLJ, Yu W, Beckett D, Rustandi RR, Lancaster C, Loughney JW, Kristopeit A, Christanti S, Olson JW, MacKerell AD, Georges AD, Pozharski E, & Weber DJ (2020). Structure of the cell-binding component of the Clostridium difficile binary toxin reveals a di-heptamer macromolecular assembly.
Proc Natl Acad Sci USA 117 2:1049-1058. PubMed Id: 31896582. doi:10.1073/pnas.1919490117. |
|||
Kawamoto et al. (2022).
Kawamoto A, Yamada T, Yoshida T, Sato Y, Kato T, & Tsuge H (2022). Cryo-EM structures of the translocational binary toxin complex CDTa-bound CDTb-pore from Clostridioides difficile.
Nat Commun 13 1:6119. PubMed Id: 36253419. doi:10.1038/s41467-022-33888-4. |
|||
![]() ![]()
De novo Designed β-barrel Membrane Proteins
β-barrel Proteins Designed from First Principles |
|||
de novo designed β-barrel TMB2.3: de novo designed U Unclassified (expressed in E. coli), NMR structure
de novo designed TMB2.17, crystal structure, 2.07 Å: 6X9Z |
Vorobieva et al. (2021).
Vorobieva AA, White P, Liang B, Horne JE, Bera AK, Chow CM, Gerben S, Marx S, Kang A, Stiving AQ, Harvey SR, Marx DC, Khan GN, Fleming KG, Wysocki VH, Brockwell DJ, Tamm LK, Radford SE, & Baker D (2021). De novo design of transmembrane β barrels.
Science 371 6531. PubMed Id: 33602829. doi:10.1126/science.abc8182. |
||
![]() ![]()
Beta-Barrel Membrane Proteins: Porins and Relatives
|
|||
Porin: Rhodobacter capsulatus B Bacteria, 1.8 Å
|
Weiss & Schulz (1992).
Weiss MS & Schulz GE (1992). Structure of porin refined at 1.8 Å resolution.
J. Mol. Biol. 227 :493-509. PubMed Id: 1328651. |
||
Porin: Rhodopeudomonas blastica B Bacteria, 1.96 Å
|
Kreusch & Schulz (1994).
Kreusch A & Schulz GE (1994). Refined structure of the porin from Rhodopseudomonas blastica. Comparison with the porin from Rhodobacter capsulatus.
J Mol Biol 243 :891-905. PubMed Id: 7525973. doi:10.1006/jmbi.1994.1690. See also: Kreusch et al. (1994). Kreusch A, Neubüser A, Schiltz E, Weckesser J, & Schulz GE (1994). Structure of the membrane channel porin from Rhodopseudomonas blastica at 2.0 Å resolution.
Protein Sci 3 :58-63. PubMed Id: 8142898. doi:10.1002/pro.5560030108. |
||
Porin, E1M/A116K Mutant: Rhodopseudomonas blastica B Bacteria (expressed in E. coli), 2.19 Å
E1M/E99W/A116W mutant, 1.93 Å: 2PRN E1M/A104W mutant, 1.90 Å: 3PRN E1M/Y96W/S119W mutant, 2.00 Å: 5PRN E1M/K50A/R52A mutant, 2.04 Å: 6PRN E1M/D97A/E99A mutant, 2.25 Å: 7PRN E1M/K50A/R52A/D97A/E99A mutant, 2.30 Å: 8PRN |
Schmid et al. (1998).
Schmid B, Maveyraud L, Krömer M, & Schulz GE (1998). Porin mutants with new channel properties.
Protein Sci 7 :1603-1611. PubMed Id: 9684893. doi:10.1002/pro.5560070714. |
||
Porin: Rhodopseudomonas blastica B Bacteria (expressed in E. coli), 3.00 Å
Positively charged peptide GGGGPKLAKMEKARGGGG inserted in periplasmic turn. |
Bannwarth & Schulz (2002).
Bannwarth M & Schulz GE (2002). Asymmetric conductivity of engineered porins.
Protein Eng 15 :799-804. PubMed Id: 12468713. doi:10.1093/protein/15.10.799. |
||
OmpK36 osmoporin: Klebsiella pneumoniae B Bacteria, 3.2 Å
|
Dutzler et al. (1999).
Dutzler R, Rummel G, Alberti S, Hernandez-Alles S, Phale P, Rosenbusch J, Benedi V, & Schirmer T (1999). Crystal structure and functional characterization of OmpK36, the osmoporin of Klebsiella pneumoniae.
Structure Fold. Des 7 :425-434. PubMed Id: 10196126. |
||
Wong et al. (2019).
Wong JLC, Romano M, Kerry LE, Kwong HS, Low WW, Brett SJ, Clements A, Beis K, & Frankel G (2019). OmpK36-mediated Carbapenem resistance attenuates ST258 Klebsiella pneumoniae in vivo.
Nat Commun 10 1. PubMed Id: 31477712. doi:10.1038/s41467-019-11756-y. |
|||
OmpK36 osmoporin, native-SAD structure determined at wavelength 4.13 Å: Klebsiella pneumoniae B Bacteria (expressed in E. coli), 2.70 Å
X-ray Structure |
El Omari et al. (2023).
El Omari K, Duman R, Mykhaylyk V, Orr CM, Latimer-Smith M, Winter G, Grama V, Qu F, Bountra K, Kwong HS, Romano M, Reis RI, Vogeley L, Vecchia L, Owen CD, Wittmann S, Renner M, Senda M, Matsugaki N, Kawano Y, Bowden TA, Moraes I, Grimes JM, Mancini EJ, Walsh MA, Guzzo CR, Owens RJ, Jones EY, Brown DG, Stuart DI, Beis K, & Wagner A (2023). Experimental phasing opportunities for macromolecular crystallography at very long wavelengths.
Commun Chem 6 1:219. PubMed Id: 37828292. doi:10.1038/s42004-023-01014-0. |
||
Omp32 anion-selective porin: Comamonas acidovorans B Bacteria, 2.1 Å
|
Zeth et al. (2000).
Zeth K, Diederichs K, Welte W, & Engelhardt H (2000). Crystal structure of Omp32, the anion-selective porin from Comamonas acidovorans, in complex with a periplasmic peptide at 2.1 A resolution.
Structure 8 :981-992. PubMed Id: 10986465. |
||
Zachariae et al. (2006).
Zachariae U, Kluhspies T, De S, Engelhardt H, & Zeth K (2006). High resolution crystal structures and molecular dynamics studies reveal substrate binding in the porin omp32.
J Biol Chem 281 :7413-7420. PubMed Id: 16434398. |
|||
OmpF Porin: Escherichia coli B Bacteria, 2.4 Å
Note: Also see BtuB with bound colicin E3 R-domain, below. |
Cowan et al. (1992).
Cowan SW, Schirmer T, Rummel G, Steiert M, Ghosh R, Pauptit RA, Jansonius JN, & Rosenbusch JP (1992). Crystal structures explain functional properties of two Escherichia coli porins.
Nature 358 :727-733. PubMed Id: 1380671. |
||
OmpF Porin from colicin-resistant E. coli: Escherichia coli B Bacteria, 3.00 Å
|
Jeanteur et al. (1994).
Jeanteur D, Schirmer T, Fourel D, Simonet V, Rummel G, Widmer C, Rosenbusch JP, Pattus F, & Pagès JM (1994). Structural and functional alterations of a colicin-resistant mutant of OmpF porin from Escherichia coli.
Proc Natl Acad Sci USA 91 :10675-10679. PubMed Id: 7524100. |
||
OmpF Porin: Escherichia coli B Bacteria, 3.20 Å
Tetragonal crystal form. |
Cowan et al. (1995).
Cowan SW, Garavito RM, Jansonius JN, Jenkins JA, Karlsson R, König N, Pai EF, Pauptit RA, Rizkallah PJ, Rosenbusch JP, Rummel G, & Schirmer T (1995). The structure of OmpF porin in a tetragonal crystal form.
Structure 3 :1041-1050. PubMed Id: 8589999. doi:10.1016/S0969-2126(01)00240-4. |
||
Lou et al. (1996).
Lou KL, Saint N, Prilipov A, Rummel G, Benson SA, Rosenbusch JP, & Schirmer T (1996). Structural and functional characterization of OmpF porin mutants selected for larger pore size. I. Crystallographic analysis.
J Biol Chem 271 :20669-20675. PubMed Id: 8702816. doi:10.1074/jbc.271.34.20669 . |
|||
OmpF Porin, D74A mutant: Escherichia coli B Bacteria (expressed in Escherichia coli B), 3.00 Å
|
Phale et al. (1998).
Phale PS, Philippsen A, Kiefhaber T, Koebnik R, Phale VP, Schirmer T, & Rosenbusch JP (1998). Stability of trimeric OmpF porin: the contributions of the latching loop L2.
Biochemistry 37 :15663-15670. PubMed Id: 9843370. doi:10.1021/bi981215c. |
||
Phale et al. (2001).
Phale PS, Philippsen A, Widmer C, Phale VP, Rosenbusch JP, & Schirmer T (2001). Role of charged residues at the OmpF porin channel constriction probed by mutagenesis and simulation.
Biochemistry 40 :6319-6325. PubMed Id: 11371193. doi:10.1021/bi010046k. |
|||
OmpF Porin: Escherichia coli B Bacteria, 1.6 Å
With inserted 83 residue N-terminal peptide of colicin E3, 3.0 Å: 2ZLD |
Yamashita et al. (2008).
Yamashita E, Zhalnina MV, Zakharov SD, Sharma O, & Cramer WA (2008). Crystal structures of the OmpF porin: function in a colicin translocon.
EMBO J 27 :2171-2180. PubMed Id: 18636093. |
||
OmpF porin with a synthetic dibenzo-18-crown-6: Escherichia coli B Bacteria, 3.40 Å
|
Reitz et al. (2009).
Reitz S, Cebi M, Reiss P, Studnik G, Linne U, Koert U, & Essen LO (2009). On the function and structure of synthetically modified porins.
Angew Chem Int Ed Engl 48 :4853-4857. PubMed Id: 19322865. doi:10.1002/anie.200900457. |
||
OmpF Porin in complex with colicin peptide OBS1: Escherichia coli B Bacteria, 3.01 Å
Shows colicin bound within porin lumen spanning the membrane bilayer |
Housden et al. (2010).
Housden NG, Wojdyla JA, Korczynska J, Grishkovskaya I, Kirkpatrick N, Brzozowski AM, & Kleanthous C. (2010). Directed epitope delivery across the Escherichia coli outer membrane through the porin OmpF.
Proc Natl Acad Sci USA 107 :21412-21417. PubMed Id: 21098297. |
||
OmpF Porin: Escherichia coli B Bacteria, 2.61 Å
Cation-selective pathway revealed by anomalous x-ray diffraction. Structure at 3.00 Å: 3HWB |
Dhakshnamoorthy et al. (2010).
Dhakshnamoorthy B, Raychaudhury S, Blachowicz L, & Roux B (2010). Cation-selective pathway of OmpF porin revealed by anomalous X-ray diffraction.
J Mol Biol 396 :293-300. PubMed Id: 19932117. doi:10.1016/j.jmb.2009.11.042. |
||
OmpF Porin in presence of foscholine-12: Escherichia coli B Bacteria, 3.79 Å
Structure at 4.39 Å: 3K1B |
Kefala et al. (2010).
Kefala G, Ahn C, Krupa M, Esquivies L, Maslennikov I, Kwiatkowski W, & Choe S (2010). Structures of the OmpF porin crystallized in the presence of foscholine-12.
Protein Sci 19 :1117-1125. PubMed Id: 20196071. doi:10.1002/pro.369. |
||
OmpF porin in lipidic cubic phase: Escherichia coli B Bacteria, 2.80 Å
|
Efremov & Sazanov (2012).
Efremov RG, & Sazanov LA (2012). Structure of Escherichia coli OmpF porin from lipidic mesophase.
J Struct Biol 178 3:311-318. PubMed Id: 22484237. doi:10.1016/j.jsb.2012.03.005. |
||
OmpF Porin: Escherichia coli B Bacteria, 3.5 Å
I2 space group |
Chaptal et al. (2016).
Chaptal V, Kilburg A, Flot D, Wiseman B, Aghajari N, Jault JM, & Falson P (2016). Two different centered monoclinic crystals of the E. coli outer-membrane protein OmpF originate from the same building block.
Biochim Biophy Acta 1858 :326-332. PubMed Id: 26620074. doi:10.1016/j.bbamem.2015.11.021. |
||
OmpF Porin: Escherichia coli B Bacteria, 2.54 Å
cryo-EM structure |
Su et al. (2021).
Su CC, Lyu M, Morgan CE, Bolla JR, Robinson CV, & Yu EW (2021). A 'Build and Retrieve' methodology to simultaneously solve cryo-EM structures of membrane proteins.
Nat Methods 18 1:69-75. PubMed Id: 33408407. doi:10.1038/s41592-020-01021-2. |
||
OmpF and BtuB Porin in complex with colicin E9 (colE9): Escherichia coli E Eukaryota, 4.70 Å
cryo-EM structure ColicinE9 partial translocation complex, 3.70 Å 7NST |
Francis et al. (2021).
Francis MR, Webby MN, Housden NG, Kaminska R, Elliston E, Chinthammit B, Lukoyanova N, & Kleanthous C (2021). Porin threading drives receptor disengagement and establishes active colicin transport through Escherichia coli OmpF.
EMBO J 40 21:e108610. PubMed Id: 34515361. doi:10.15252/embj.2021108610. |
||
Omp35 (OmpF): Enterobacter aerogenes B Bacteria (expressed in E. coli), 2.85 Å
|
Acosta-Gutiérrez et al. (2018).
Acosta-Gutiérrez S, Ferrara L, Pathania M, Masi M, Wang J, Bodrenko I, Zahn M, Winterhalter M, Stavenger RA, Pagès JM, Naismith JH, van den Berg B, Page MGP, & Ceccarelli M (2018). Getting Drugs into Gram-Negative Bacteria: Rational Rules for Permeation through General Porins.
ACS Infect Dis 4 10:1487-1498. PubMed Id: 29962203. doi:10.1021/acsinfecdis.8b00108. |
||
OmpF Porin: Salmonella typhi B Bacteria (expressed in E. coli), 2.79 Å
|
Balasubramaniam et al. (2012).
Balasubramaniam D, Arockiasamy A, Kumar PD, Sharma A, & Krishnaswamy S (2012). Asymmetric pore occupancy in crystal structure of OmpF porin from Salmonella typhi.
J Struc Biol 178 :233-244. PubMed Id: 22525817. doi:10.1016/j.jsb.2012.04.005. |
||
OmpE35 (OmpF): Enterobacter cloacae B Bacteria (expressed in E. coli), 2.3 Å
|
Acosta-Gutiérrez et al. (2018).
Acosta-Gutiérrez S, Ferrara L, Pathania M, Masi M, Wang J, Bodrenko I, Zahn M, Winterhalter M, Stavenger RA, Pagès JM, Naismith JH, van den Berg B, Page MGP, & Ceccarelli M (2018). Getting Drugs into Gram-Negative Bacteria: Rational Rules for Permeation through General Porins.
ACS Infect Dis 4 10:1487-1498. PubMed Id: 29962203. doi:10.1021/acsinfecdis.8b00108. |
||
OmpK35 (OmpF): Klebsiella pneumoniae B Bacteria (expressed in E. coli), 1.5 Å
|
Acosta-Gutiérrez et al. (2018).
Acosta-Gutiérrez S, Ferrara L, Pathania M, Masi M, Wang J, Bodrenko I, Zahn M, Winterhalter M, Stavenger RA, Pagès JM, Naismith JH, van den Berg B, Page MGP, & Ceccarelli M (2018). Getting Drugs into Gram-Negative Bacteria: Rational Rules for Permeation through General Porins.
ACS Infect Dis 4 10:1487-1498. PubMed Id: 29962203. doi:10.1021/acsinfecdis.8b00108. |
||
OmpC Osmoporin: Escherichia coli B Bacteria, 2.0 Å
|
Baslé et al. (2006).
Baslé A, Rummel G, Storici P, Rosenbusch J, & Schirmer T (2006). Crystal Structure of Osmoporin OmpC from E. coli at 2.0 Å.
J Mol Biol 362 :933-942. PubMed Id: 16949612. |
||
Lou et al. (2011).
Lou H, Chen M, Black SS, Bushell SR, Ceccarelli M, Mach T, Beis K, Low AS, Bamford VA, Booth IR, Bayley H, & Naismith JH (2011). Altered antibiotic transport in OmpC mutants isolated from a series of clinical strains of multi-drug resistant E. coli.
PLoS One 6 :e25825. PubMed Id: 22053181. doi:10.1371/journal.pone.0025825. |
|||
OmpC Osmoporin: Escherichia coli B Bacteria, 2.56 Å
cryo-EM structure |
Su et al. (2021).
Su CC, Lyu M, Morgan CE, Bolla JR, Robinson CV, & Yu EW (2021). A 'Build and Retrieve' methodology to simultaneously solve cryo-EM structures of membrane proteins.
Nat Methods 18 1:69-75. PubMed Id: 33408407. doi:10.1038/s41592-020-01021-2. |
||
OmpC-MlaA: Escherichia coli B Bacteria (expressed in E.coli), 2.93 Å
cryo-EM structure OmpC-MlaA-MlaC, 3.25 Å: 8I8X |
Yeow et al. (2023).
Yeow J, Luo M, & Chng SS (2023). Molecular mechanism of phospholipid transport at the bacterial outer membrane interface.
Nat Commun 14 1:8285. PubMed Id: 38092770. doi:10.1038/s41467-023-44144-8. |
||
OmpK36 (OmpC): Klebsiella pneumoniae B Bacteria (expressed in E. coli), 1.65 Å
|
Acosta-Gutiérrez et al. (2018).
Acosta-Gutiérrez S, Ferrara L, Pathania M, Masi M, Wang J, Bodrenko I, Zahn M, Winterhalter M, Stavenger RA, Pagès JM, Naismith JH, van den Berg B, Page MGP, & Ceccarelli M (2018). Getting Drugs into Gram-Negative Bacteria: Rational Rules for Permeation through General Porins.
ACS Infect Dis 4 10:1487-1498. PubMed Id: 29962203. doi:10.1021/acsinfecdis.8b00108. |
||
Omp36 (OmpC): Klebsiella aerogenes B Bacteria (expressed in E. coli), 2.47 Å
|
Acosta-Gutiérrez et al. (2018).
Acosta-Gutiérrez S, Ferrara L, Pathania M, Masi M, Wang J, Bodrenko I, Zahn M, Winterhalter M, Stavenger RA, Pagès JM, Naismith JH, van den Berg B, Page MGP, & Ceccarelli M (2018). Getting Drugs into Gram-Negative Bacteria: Rational Rules for Permeation through General Porins.
ACS Infect Dis 4 10:1487-1498. PubMed Id: 29962203. doi:10.1021/acsinfecdis.8b00108. |
||
OmpC homolog (OmpE36) with bound lipopolysaccharide (LPS): Enterobacter cloacae B Bacteria (expressed in E. coli), 1.45 Å
|
Arunmanee et al. (2016).
Arunmanee W, Pathania M, Solovyova AS, Le Brun AP, Ridley H, Baslé A, van den Berg B, & Lakey JH (2016). Gram-negative trimeric porins have specific LPS binding sites that are essential for porin biogenesis.
Proc Natl Acad Sci USA 113 34:E5034-E5043. PubMed Id: 27493217. doi:10.1073/pnas.1602382113. |
||
OmpG *monomeric* porin: Escherichia coli B Bacteria, 2.3 Å
|
Subbarao and van den Berg (2006).
Subbarao GV & van den Berg B (2006). Crystal structure of the monomeric porin OmpG.
J Mol Biol 360 :750-759. PubMed Id: 16797588. |
||
OmpG *monomeric* porin in open state: Escherichia coli B Bacteria, 2.3 Å
OmpG in closed state, 2.73 Å: 2IWW |
Yildiz et al. (2006).
Yildiz O, Vinothkumar KR, Goswami P, & Kuhlbrandt W (2006). Structure of the monomeric outer-membrane porin OmpG in the open and closed conformation.
EMBO J. 25 :3702-3713. PubMed Id: 16888630. |
||
OmpG *monomeric* porin: Escherichia coli B Bacteria, 2.18 Å
His231A/His261A mutant stable in open state |
Korkmaz-Ozkan et al. (2010).
Korkmaz-Özkan F, Köster S, Kühlbrandt W, Mäntele W, & Yildiz O (2010). Correlation between the OmpG secondary structure and its pH-dependent alterations monitored by FTIR.
J Mol Biol 401 :56-67. PubMed Id: 20561532. doi:10.1016/j.jmb.2010.06.015. |
||
OmpG *monomeric* porin: Escherichia coli B Bacteria, NMR Structure (DPC micelles)
|
Liang & Tamm (2007).
Liang B & Tamm LK (2007). Structure of outer membrane protein G by solution NMR Spectroscopy.
Proc Natl Acad Sci USA 104 :16140-16145. PubMed Id: 17911261. |
||
OmpG *monomeric* porin: Escherichia coli B Bacteria, solid-state NMR structure
protein embedded in E. coli lipid extracts |
Retel et al. (2017).
Retel JS, Nieuwkoop AJ, Hiller M, Higman VA, Barbet-Massin E, Stanek J, Andreas LB, Franks WT, van Rossum BJ, Vinothkumar KR, Handel L, de Palma GG, Bardiaux B, Pintacuda G, Emsley L, Kühlbrandt W, & Oschkinat H (2017). Structure of outer membrane protein G in lipid bilayers.
Nat Commun 8 1:2073. PubMed Id: 29233991. doi:10.1038/s41467-017-02228-2. |
||
OmpG ΔL6-ΔD215 mutant, "quiet" porin: Escherichia coli B Bacteria, NMR Structure
|
Sanganna Gari et al. (2019).
Sanganna Gari RR, Seelheim P, Liang B, & Tamm LK (2019). Quiet Outer Membrane Protein G (OmpG) Nanopore for Biosensing.
ACS Sens 4 5:1230-1235. PubMed Id: 30990011. doi:10.1021/acssensors.8b01645. |
||
Pathania et al. (2018).
Pathania M, Acosta-Gutierrez S, Bhamidimarri SP, Baslé A, Winterhalter M, Ceccarelli M, & van den Berg B (2018). Unusual Constriction Zones in the Major Porins OmpU and OmpT from Vibrio cholerae.
Structure 26 5:708-721.e4. PubMed Id: 29657131. doi:10.1016/j.str.2018.03.010. |
|||
OmpU: Vibrio cholerae B Bacteria (expressed in E. coli), 2.22 Å
|
Li et al. (2018).
Li H, Zhang W, & Dong C (2018). Crystal structure of the outer membrane protein OmpU from Vibrio cholerae at 2.2 Å resolution.
Acta Crystallogr D Struct Biol 74 :21-29. PubMed Id: 29372896. doi:10.1107/S2059798317017697. |
||
Pathania et al. (2018).
Pathania M, Acosta-Gutierrez S, Bhamidimarri SP, Baslé A, Winterhalter M, Ceccarelli M, & van den Berg B (2018). Unusual Constriction Zones in the Major Porins OmpU and OmpT from Vibrio cholerae.
Structure 26 5:708-721.e4. PubMed Id: 29657131. doi:10.1016/j.str.2018.03.010. |
|||
PhoE: Escherichia coli B Bacteria, 3.0 Å
|
Cowan et al. (1992).
Cowan SW, Schirmer T, Rummel G, Steiert M, Ghosh R, Pauptit RA, Jansonius JN, & Rosenbusch JP (1992). Crystal structures explain functional properties of two Escherichia coli porins.
Nature 358 :727-733. PubMed Id: 1380671. |
||
LamB Maltoporin: Salmonella typhimurium B Bacteria, 2.4 Å
|
Meyer et al. (1997).
Meyer JEW, Hofnung M, & Schulz GE (1997). Structure of maltoporin from Salmonella typhimurium ligated with a nitrophenyl-maltotrioside.
J. Mol. Biol 266 :761-775. PubMed Id: 9102468. |
||
LamB Maltoporin: Escherichia coli B Bacteria, 3.1 Å
|
Schirmer et al. (1995).
Schirmer T, Keller TA, Wang YF, & Rosenbusch JP (1995). Structural basis for sugar translocation through maltoporin channels at 3.1 Å resolution.
Science 267 :512-4. PubMed Id: 7824948. |
||
Dutzler et al. (1996).
Dutzler R, Wang YF, Rizkallah P, Rosenbusch JP, Schirmer T (1996). Crystal structures of various maltooligosaccharides bound to maltoporin reveal a specific sugar translocation pathway.
Structure 4 :127-134. PubMed Id: 8805519. |
|||
LamB Maltoporin in complex with sucrose: Escherichia coli B Bacteria, 2.4 Å
In complex with trehalose, 3.0 Å: 1MPQ |
Wang et al. (1997).
Wang YF, Dutzler R, Rizkallah PJ, Rosenbusch JP, & Schirmer T (1997). Channel specificity: structural basis for sugar discrimination and differential flux rates in maltoporin.
J Mol Biol 272 :56-63. PubMed Id: 9299337. |
||
ScrY sucrose-specific porin: Salmonella typhimurium B Bacteria, 2.4 Å
Complexed Form, 1A0T. Uncomplexed form, 1A0S. |
Forst et al. (1998).
Forst D, Welte W, Wacker T, & Diederichs K (1998). Structure of the sucrose-specific porin ScrY from Salmonella typhimurium and its complex with sucrose.
Nature Structural Biol 5 :37-46. PubMed Id: 9437428. |
||
MspA mycobacterial porin: Mycobacterium smegmatis B Bacteria, 2.5 Å
Homooctamer |
Faller et al. (2004).
Faller M, Niederweis M, & Schulz GE (2004). The structure of a mycobacterial outer-membrane channel.
Science 303 :1189-1192. PubMed Id: 14976314. |
||
OprB carbohydrate-specific transporter at high pH: Pseudomonas putida B Bacteria (expressed in E. coli), 2.70 Å
low-pH structure, 3.10 Å: 4GF4 |
van den Berg (2012).
van den Berg B (2012). Structural basis for outer membrane sugar uptake in pseudomonads.
J Biol Chem 287 :41044-41052. PubMed Id: 23066028. doi:10.1074/jbc.M112.408518. |
||
OprO diphosphate-specific transporter: Pseudomonas aeruginosa B Bacteria, 1.52 Å
F62Y/D114Y mutant, 1.54 Å: 4RJX |
Modi et al. (2015).
Modi N, Ganguly S, Bárcena-Uribarri I, Benz R, van den Berg B, & Kleinekathöfer U (2015). Structure, Dynamics, and Substrate Specificity of the OprO Porin from Pseudomonas aeruginosa.
Biophys J 109 :1429-1438. PubMed Id: 26445443. doi:10.1016/j.bpj.2015.07.035. |
||
OprP phosphate-specific transporter: Pseudomonas aeruginosa B Bacteria, 1.9 Å
Contains a novel nine-residue arginine ladder |
Moraes et al. (2007).
Moraes TF, Bains M, Hancock REW & Strynadka NCJ (2007). An arginine ladder in OprP mediates phosphate-specific transfer across the outer membrane.
Nature Struc Mol Biol 14 :85-87. PubMed Id: 17187075. |
||
PorB outer membrane protein, native structure: Neisseria meningitidis B Bacteria (expressed in E. coli), 2.30 Å
The second most common OMP of Neisseria, PorB is required for pathogenesis. Former 3A2R, 3A2T, and 3A2U superseded by 3VZT, 3VZW, and 3VZU, respectively. In complex with sucrose, 2.20 Å: 3A2S In complex with galactose, 3.20 Å: 3VZW In complex with AMP-PNP, 2.90 Å: 3ZVU |
Tanabe et al. (2010).
Tanabe M, Nimigean CM, & Iverson TM (2010). Structural basis for solute transport, nucleotide regulation, and immunological recognition of Neisseria meningitidis PorB.
Proc Natl Acad Sci USA 107 :6811-6816. PubMed Id: 20351243. |
||
PorB outer membrane protein: Neisseria meningitidis B Bacteria (expressed in E. coli), 3.32 Å
Loop 7 mutant, 2.40 Å: 3WI5 |
Kattner et al. (2014).
Kattner C, Toussi DN, Zaucha J, Wetzler LM, Rüppel N, Zachariae U, Massari P, & Tanabe M (2014). Crystallographic analysis of Neisseria meningitidis PorB extracellular loops potentially implicated in TLR2 recognition.
J Struct Biol 185 3:440-447. PubMed Id: 24361688. doi:10.1016/j.jsb.2013.12.006. |
||
PorB outer membrane protein, G103K mutant: Neisseria meningitidis B Bacteria (expressed in E. coli), 2.76 Å
|
Bartsch et al. (2021).
Bartsch A, Ives CM, Kattner C, Pein F, Diehn M, Tanabe M, Munk A, Zachariae U, Steinem C, & Llabrás S (2021). An antibiotic-resistance conferring mutation in a neisserial porin: Structure, ion flux, and ampicillin binding.
Biochim Biophys Acta Biomembr 1863 6:183601. PubMed Id: 33675718. doi:10.1016/j.bbamem.2021.183601. |
||
PorB outer membrane protein: Neisseria gonorrhoeae B Bacteria, 3.20 Å
|
Zeth et al. (2013).
Zeth K, Kozjak-Pavlovic V, Faulstich M, Fraunholz M, Hurwitz R, Kepp O, & Rudel T (2013). Structure and function of the PorB porin from disseminating Neisseria gonorrhoeae.
Biochem J 449 3:631-642. PubMed Id: 23095086. doi:10.1042/BJ20121025. |
||
KdgM *monomeric* porin in complex with disordered oligogalacturonate, wild-type: Dickeya dadantii B Bacteria (expressed in E. coli), 2.10 Å
K161S mutant in complex with disordered oligogalacturonate, 2.10 Å: 4PR7 |
Hutter et al. (2014).
Hutter CA, Lehner R, Wirth Ch, Condemine G, Peneff C, & Schirmer T (2014). Structure of the oligogalacturonate-specific KdgM porin.
Acta Crystallogr. D Biol. Crystallogr. 70 :1770-1778. PubMed Id: 24914987. doi:10.1107/S1399004714007147. |
||
van den Berg et al. (2015).
van den Berg B, Prathyusha Bhamidimarri S, Dahyabhai Prajapati J, Kleinekathöfer U, & Winterhalter M (2015). Outer-membrane translocation of bulky small molecules by passive diffusion.
Proc Natl Acad Sci USA 112 :E2991-E2999. PubMed Id: 26015567. doi:10.1073/pnas.1424835112. |
|||
COG4313 outer membrane channel: Pseudomonas putida B Bacteria (expressed in E. coli), 2.30 Å
|
van den Berg et al. (2015).
van den Berg B, Bhamidimarri SP, & Winterhalter M (2015). Crystal structure of a COG4313 outer membrane channel.
Sci Rep 5 :11927. PubMed Id: 26149193. doi:10.1038/srep11927. |
||
OprG outer membrane amino acid transporter: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), NMR structure
P92A mutant, NMR structure: 2N6P |
Kucharska et al. (2015).
Kucharska I, Seelheim P, Edrington T, Liang B, & Tamm LK (2015). OprG Harnesses the Dynamics of its Extracellular Loops to Transport Small Amino Acids across the Outer Membrane of Pseudomonas aeruginosa.
Structure 23 :2234-2245. PubMed Id: 26655471. doi:10.1016/j.str.2015.10.009. |
||
MOMP major outer membrane protein: Campylobacter jejuni (expressed in E. coli), 2.1 Å
expressed in C. jejuni, 2.88 Å: 5LDT |
Ferrara et al. (2016).
Ferrara LG, Wallat GD, Moynié L, Dhanasekar NN, Aliouane S, Acosta-Gutiérrez S, Pagès JM, Bolla JM, Winterhalter M, Ceccarelli M, & Naismith JH (2016). MOMP from Campylobacter jejuni Is a Trimer of 18-Stranded β-Barrel Monomers with a Ca2+ Ion Bound at the Constriction Zone.
J Mol Biol 428 :4528-4543. PubMed Id: 27693650. doi:10.1016/j.jmb.2016.09.021. |
||
Omp-Pst1 type-A porin: Providencia stuartii B Bacteria (expressed in E. coli), 3.2 Å
Structures reveal that these porins can self-associate to form dimers of trimers Omp-Pst1 type-B, 2.7 Å: 5NXR Omp-Pst1 type-B in complex with maltose, 3 Å: 5NXU Omp-Pst2 reveals dimer of trimers, 2.2 Å: 4D65 283-LGNY-286, steric zipper that supports dimerization of Pst2, 0.997 Å: 5N9H 206-GVVTSE-211 steric zipper that supports dimerization of Pst1, 1.91 Å: 5N9I Pst1 L5 deletion, 3.12 Å: 5NXN |
El-Khatib et al. (2018).
El-Khatib M, Nasrallah C, Lopes J, Tran QT, Tetreau G, Basbous H, Fenel D, Gallet B, Lethier M, Bolla JM, Pagès JM, Vivaudou M, Weik M, Winterhalter M, & Colletier JP (2018). Porin self-association enables cell-to-cell contact inProvidencia stuartiifloating communities.
Proc Natl Acad Sci USA 115 10:E2220-E2228. PubMed Id: 29476011. doi:10.1073/pnas.1714582115. |
||
Aunkham et al. (2018).
Aunkham A, Zahn M, Kesireddy A, Pothula KR, Schulte A, Baslá A, Kleinekathöfer U, Suginta W, & van den Berg B (2018). Structural basis for chitin acquisition by marine Vibrio species.
Nat Commun 9 1. PubMed Id: 29335469. doi:10.1038/s41467-017-02523-y. |
|||
Rouse et al. (2017).
Rouse SL, Hawthorne WJ, Berry JL, Chorev DS, Ionescu SA, Lambert S, Stylianou F, Ewert W, Mackie U, Morgan RML, Otzen D, Herbst FA, Nielsen PH, Dueholm M, Bayley H, Robinson CV, Hare S, & Matthews S (2017). A new class of hybrid secretion system is employed in Pseudomonas amyloid biogenesis.
Nat Commun 8 1. PubMed Id: 28811582. doi:10.1038/s41467-017-00361-6. |
|||
DcaP outer membrane channel: Acinetobacter baumannii B Bacteria (expressed in E. coli), 2.2 Å
|
Bhamidimarri et al. (2019).
Bhamidimarri SP, Zahn M, Prajapati JD, Schleberger C, Söderholm S, Hoover J, West J, Kleinekathöfer U, Bumann D, Winterhalter M, & van den Berg B (2019). A Multidisciplinary Approach toward Identification of Antibiotic Scaffolds for Acinetobacter baumannii.
Structure 27 2:268-280.e6. PubMed Id: 30554842. doi:10.1016/j.str.2018.10.021. |
||
MtrAB electron transporter complex: Shewanella baltica B Bacteria (expressed in Shewanella oneidensis), 2.70 Å
MtrC, 2.29 Å: 6QYC |
Edwards et al. (2020).
Edwards MJ, White GF, Butt JN, Richardson DJ, & Clarke TA (2020). The Crystal Structure of a Biological Insulated Transmembrane Molecular Wire.
Cell 181 3:665-673.e10. PubMed Id: 32289252. doi:10.1016/j.cell.2020.03.032. |
||
![]() ![]()
Outer Membrane Carboxylate Channels (Occ)
These outer membrane proteins require substrates to have a carboxyl group for efficient transport. OccD channels are selective for basic amino acids. OccK channels prefer cyclic substrates. See Eren et al. (2012). |
|||
OccD1 (OprD) basic amino acid uptake channel: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 2.9 Å
|
Biswas et al. (2007).
Biswas S, Mohammad MM, Patel DR, Movileanu L, & van den Berg B (2007). Structural insight into OprD substrate specificity.
Nature Struct Mol Biol 14 :1108-1109. PubMed Id: 17952093. |
||
OccD1 (OprD) basic amino acid uptake channel: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 2.15 Å
|
Eren et al. (2012).
Eren E, Vijayaraghavan J, Liu J, Cheneke BR, Touw DS, Lepore BW, Indic M, Movileanu L, & van den Berg B (2012). Substrate Specificity within a Family of Outer Membrane Carboxylate Channels.
PLoS Biol 10 :e1001242. PubMed Id: 22272184. doi:10.1371/journal.pbio.1001242. |
||
OccD2 (OpdC) basic amino acid uptake channel: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 2.80 Å
|
Eren et al. (2012).
Eren E, Vijayaraghavan J, Liu J, Cheneke BR, Touw DS, Lepore BW, Indic M, Movileanu L, & van den Berg B (2012). Substrate Specificity within a Family of Outer Membrane Carboxylate Channels.
PLoS Biol 10 :e1001242. PubMed Id: 22272184. doi:10.1371/journal.pbio.1001242. |
||
OccD3 (OpdP) basic amino acid uptake channel: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 2.70 Å
|
Eren et al. (2012).
Eren E, Vijayaraghavan J, Liu J, Cheneke BR, Touw DS, Lepore BW, Indic M, Movileanu L, & van den Berg B (2012). Substrate Specificity within a Family of Outer Membrane Carboxylate Channels.
PLoS Biol 10 :e1001242. PubMed Id: 22272184. doi:10.1371/journal.pbio.1001242. |
||
OccK1 (OpdK) benzoate channel: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 2.8 Å
Binds vanillate. Forms labile trimer. |
Biswas et al. (2008).
Biswas S, Mohammad MM, Movileanu L, & van den Berg B (2008). Crystal structure of the outer membrane protein OpdK from Pseudomonas aeruginosa.
Structure 16 :1027-1035. PubMed Id: 18611376. |
||
OccK1 (OpdK) benzoate channel: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 1.65 Å
|
Eren et al. (2012).
Eren E, Vijayaraghavan J, Liu J, Cheneke BR, Touw DS, Lepore BW, Indic M, Movileanu L, & van den Berg B (2012). Substrate Specificity within a Family of Outer Membrane Carboxylate Channels.
PLoS Biol 10 :e1001242. PubMed Id: 22272184. doi:10.1371/journal.pbio.1001242. |
||
OccK2 (OpdF) glucuronate channel: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 2.30 Å
|
Eren et al. (2012).
Eren E, Vijayaraghavan J, Liu J, Cheneke BR, Touw DS, Lepore BW, Indic M, Movileanu L, & van den Berg B (2012). Substrate Specificity within a Family of Outer Membrane Carboxylate Channels.
PLoS Biol 10 :e1001242. PubMed Id: 22272184. doi:10.1371/journal.pbio.1001242. |
||
OccK3 (OpdO) aromatic hydrocarbon channel: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 1.45 Å
|
Eren et al. (2012).
Eren E, Vijayaraghavan J, Liu J, Cheneke BR, Touw DS, Lepore BW, Indic M, Movileanu L, & van den Berg B (2012). Substrate Specificity within a Family of Outer Membrane Carboxylate Channels.
PLoS Biol 10 :e1001242. PubMed Id: 22272184. doi:10.1371/journal.pbio.1001242. |
||
OccK4 (OpdL) aromatic hydrocarbon channel: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 2.10 Å
|
Eren et al. (2012).
Eren E, Vijayaraghavan J, Liu J, Cheneke BR, Touw DS, Lepore BW, Indic M, Movileanu L, & van den Berg B (2012). Substrate Specificity within a Family of Outer Membrane Carboxylate Channels.
PLoS Biol 10 :e1001242. PubMed Id: 22272184. doi:10.1371/journal.pbio.1001242. |
||
OccK5 (OpdH) aromatic hydrocarbon channel: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 2.60 Å
|
Eren et al. (2012).
Eren E, Vijayaraghavan J, Liu J, Cheneke BR, Touw DS, Lepore BW, Indic M, Movileanu L, & van den Berg B (2012). Substrate Specificity within a Family of Outer Membrane Carboxylate Channels.
PLoS Biol 10 :e1001242. PubMed Id: 22272184. doi:10.1371/journal.pbio.1001242. |
||
OccK6 (OpdQ) aromatic hydrocarbon channel: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 2.35 Å
|
Eren et al. (2012).
Eren E, Vijayaraghavan J, Liu J, Cheneke BR, Touw DS, Lepore BW, Indic M, Movileanu L, & van den Berg B (2012). Substrate Specificity within a Family of Outer Membrane Carboxylate Channels.
PLoS Biol 10 :e1001242. PubMed Id: 22272184. doi:10.1371/journal.pbio.1001242. |
||
BenF-like Porin (putative) benzoate channel: Pseudomonas fluorescens B Bacteria, 2.60 Å
Probably belongs to OccK subfamily |
Sampathkumar et al. (2010).
Sampathkumar P, Lu F, Zhao X, Li Z, Gilmore J, Bain K, Rutter ME, Gheyi T, Schwinn KD, Bonanno JB, Pieper U, Fajardo JE, Fiser A, Almo SC, Swaminathan S, Chance MR, Baker D, Atwell S, Thompson DA, Emtage JS, Wasserman SR, Sali A, Sauder JM, &Burley SK (2010). Structure of a putative BenF-like porin from Pseudomonas fluorescens Pf-5 at 2.6 Å resolution.
Proteins 78 :3056-3062. PubMed Id: 20737437. |
||
OccAB1 outer membrane channel: Acinetobacter baumannii B Bacteria (expressed in E. coli), 2.05 Å
|
Zahn et al. (2016).
Zahn M, Bhamidimarri SP, Baslé A, Winterhalter M, & van den Berg B (2016). Structural Insights into Outer Membrane Permeability of Acinetobacter baumannii.
Structure 24 :221-231. PubMed Id: 26805524. doi:10.1016/j.str.2015.12.009. |
||
OccAB2 outer membrane channel: Acinetobacter baumannii B Bacteria (expressed in E. coli), 2.9 Å
|
Zahn et al. (2016).
Zahn M, Bhamidimarri SP, Baslé A, Winterhalter M, & van den Berg B (2016). Structural Insights into Outer Membrane Permeability of Acinetobacter baumannii.
Structure 24 :221-231. PubMed Id: 26805524. doi:10.1016/j.str.2015.12.009. |
||
OccAB3 outer membrane channel: Acinetobacter baumannii B Bacteria (expressed in E. coli), 1.75 Å
|
Zahn et al. (2016).
Zahn M, Bhamidimarri SP, Baslé A, Winterhalter M, & van den Berg B (2016). Structural Insights into Outer Membrane Permeability of Acinetobacter baumannii.
Structure 24 :221-231. PubMed Id: 26805524. doi:10.1016/j.str.2015.12.009. |
||
OccAB4 outer membrane channel: Acinetobacter baumannii B Bacteria (expressed in E. coli), 2.2 Å
|
Zahn et al. (2016).
Zahn M, Bhamidimarri SP, Baslé A, Winterhalter M, & van den Berg B (2016). Structural Insights into Outer Membrane Permeability of Acinetobacter baumannii.
Structure 24 :221-231. PubMed Id: 26805524. doi:10.1016/j.str.2015.12.009. |
||
![]() ![]()
Beta-Barrel Membrane Proteins: Monomeric/Dimeric
|
|||
TolC outer membrane protein: Escherichia coli B Bacteria, 2.1 Å
NOTE: Functional protein is a homotrimer. Each monomer contributes 4 strands to a single barrel. |
Koronakis et al. (2000).
Koronakis V, Sharff A, Koronakis E, Luisi B, & Hughes C (2000). Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export.
Nature 405 :914-919. PubMed Id: 10879525. |
||
TolC outer membrane protein, ligand blocked: Escherichia coli B Bacteria, 2.75 Å
|
Higgins et al. (2004).
Higgins MK, Eswaran J, Edwards P, Schertler GF, Hughes C, & Koronakis V (2004). Structure of the ligand-blocked periplasmic entrance of the bacterial multidrug efflux protein TolC.
J Mol Biol 342 :697-702. PubMed Id: 15342230. |
||
TolC outer membrane protein (Y362F, R367E), partially open state: Escherichia coli B Bacteria, 3.2 Å
2VDE is P212121 form. C2 form, 3.30 Å: 2VDD |
Bavro et al. (2008).
Bavro VN, Pietras Z, Furnham N, Pérez-Cano L, Fernández-Recio J, Pei XY, Misra R, & Luisi B (2008). Assembly and channel opening in a bacterial drug efflux machine.
Mol Cell 30 :114-121. PubMed Id: 18406332. |
||
TolC outer membrane protein in a nanodisc with colicin E1 fragment: Escherichia coli B Bacteria, 3.09 Å
cryo-EM structure TolC alone, 2.84 Å 6WXI |
Budiardjo et al. (2022).
Budiardjo SJ, Stevens JJ, Calkins AL, Ikujuni AP, Wimalasena VK, Firlar E, Case DA, Biteen JS, Kaelber JT, & Slusky JSG (2022). Colicin E1 opens its hinge to plug TolC.
Elife 11 :e73297. PubMed Id: 35199644. doi:10.7554/eLife.73297. |
||
Housden et al. (2021).
Housden NG, Webby MN, Lowe ED, El-Baba TJ, Kaminska R, Redfield C, Robinson CV, & Kleanthous C (2021). Toxin import through the antibiotic efflux channel TolC.
Nat Commun 12 1:4625. PubMed Id: 34330923. doi:10.1038/s41467-021-24930-y. |
|||
CmeC bacterial multi-drug efflux transporter outer membrane channel: Campylobacter jejuni B Bacteria, 2.37 Å
|
Su et al. (2014).
Su CC, Radhakrishnan A, Kumar N, Long F, Bolla JR, Lei HT, Delmar JA, Do SV, Chou TH, Rajashankar KR, Zhang Q, & Yu EW (2014). Crystal structure of the Campylobacter jejuni CmeC outer membrane channel.
Protein Sci 23 7:954-961. PubMed Id: 24753291. doi:10.1002/pro.2478. |
||
VceC outer membrane protein: Vibrio cholerae B Bacteria, 1.8 Å
NOTE: Functional protein is a homotrimer. Each monomer contributes 4 strands to a single barrel. |
Federici et al. (2005).
Federici L, Du D, Walas F, Matsumura H, Fernandez-Recio J, McKeegan KS, Borges-Walmsley MI, Luisi BF, & Walmsley AR (2005). The Crystal Structure of the Outer Membrane Protein VceC from the Bacterial Pathogen Vibrio cholerae at 1.8 A Resolution.
J Biol Chem 280 :15307-15314. PubMed Id: 15684414. |
||
OprM drug discharge outer membrane protein: Pseudomonas aeruginosa B Bacteria, 2.56 Å
Functional protein is a homotrimer. Each monomer contributes 4 strands to a single barrel. H32 space group. OprM is the discharge channel for the tripartite efflux complex MexAB-OprM. The structures of MexB (the inner membrane efflux pump) and MexA (periplasmic fusion protein) are known. See 2V50 and 1T5E, respectively. See 6IOK for structure of entire complex. |
Akama et al. (2004).
Akama H, Kanemaki M, Yoshimura M, Tsukihara T, Kashiwagi T, Yoneyama H, Narita S, Nakagawa A, & Nakae T (2004). Crystal structure of the drug discharge outer membrane protein, OprM, of Pseudomonas aeruginosa: dual modes of membrane anchoring and occluded cavity end.
J Biol Chem 279 :52816-52819. PubMed Id: 15507433. |
||
OprM drug discharge outer membrane protein: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 2.40 Å
Structure of OprM in a non-symmetrical space group, P212121 |
Phan et al. (2010).
Phan G, Benabdelhak H, Lascombe MB, Benas P, Rety S, Picard M, Ducruix A, Etchebest C, & Broutin I (2010). Structural and dynamical insights into the opening mechanism of P. aeruginosa OprM channel.
Structure 18 :507-517. PubMed Id: 20399187. |
||
OprN drug discharge outer membrane protein, I4 space group: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 1.69 Å
P321 space group, 2.70 Å: 5AZP |
Yonehara et al. (2016).
Yonehara R, Yamashita E, & Nakagawa A (2016). Crystal structures of OprN and OprJ, outer membrane factors of multidrug tripartite efflux pumps of Pseudomonas aeruginosa.
Proteins 84 6:759-769. PubMed Id: 26914226. doi:10.1002/prot.25022. |
||
OprJ drug discharge outer membrane protein: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 3.10 Å
|
Yonehara et al. (2016).
Yonehara R, Yamashita E, & Nakagawa A (2016). Crystal structures of OprN and OprJ, outer membrane factors of multidrug tripartite efflux pumps of Pseudomonas aeruginosa.
Proteins 84 6:759-769. PubMed Id: 26914226. doi:10.1002/prot.25022. |
||
ST50 discharge outer membrane protein: Salmonella enterica B Bacteria (expressed in E. coli), 2.98 Å
Functional protein is a homotrimer. Each monomer contributes 4 strands to a single barrel. |
Guan et al. (2015).
Guan HH, Yoshimura M, Chuankhayan P, Lin CC, Chen NC, Yang MC, Ismail A, Fun HK, & Chen CJ (2015). Crystal structure of an antigenic outer-membrane protein from Salmonella Typhi suggests a potential antigenic loop and an efflux mechanism.
Sci Rep 5 :16441. PubMed Id: 26563565. doi:10.1038/srep16441. |
||
CusC heavy metal discharge outer membrane protein: Escherichia coli B Bacteria, 2.30 Å
NOTE: Functional protein is a homotrimer. Each monomer contributes 4 strands to a single barrel. H32 space group. |
Kulathila et al. (2011).
Kulathila R, Kulathila R, Indic M, & van den Berg B (2011). Crystal structure of Escherichia coli CusC, the outer membrane component of a heavy metal efflux pump.
PLoS One 6 :e15610. PubMed Id: 21249122. doi:10.1371/journal.pone.0015610. |
||
Lei et al. (2014).
Lei HT, Bolla JR, Bishop NR, Su CC, & Yu EW (2014). Crystal Structures of CusC Review Conformational Changes Accompanying Folding and Transmembrane Channel Formation.
J Mol Biol 426 :403-411. PubMed Id: 24099674. doi:10.1016/j.jmb.2013.09.042. |
|||
Chimento et al. (2003).
Chimento DP, Mohanty AK, Kadner RJ, & Wiener MC (2003). Substrate-induced transmembrane signaling in the cobalamin transporter BtuB.
Nat Struct Biol. 10 :394-401. PubMed Id: 12652322. |
|||
BtuB with bound colicin E3 R-domain: Escherichia coli B Bacteria, 2.75 Å
NOTE: The 135-residue coiled-coil R-domain is believed to deliver the colicin to OmpF (above). |
Kurisu et al. (2003).
Kurisu G, Zakharov SD, Zhalnina MV, Bano S, Eroukova VY, Rokitskaya TI, Antonenko YN, Wiener MC, & Cramer WA (2003). The structure of BtuB with bound colicin E3 R-domain implies a translocon.
Nat. Struct. Biol. 10 :948-954. PubMed Id: 14528295. |
||
apo BtuB by in meso crystallization: Escherichia coli B Bacteria, 1.95 Å
NOTE: Crystals were prepared from cubic phase lipids. This is the first β-barrel protein prepared by this method. |
Cherezov et al. (2006).
Cherezov V, Yamashita E, Liu W, Zhalnina M, Cramer WA & Caffrey M (2006). In meso structure of the cobalamin transporter, BtuB, at 1.95 Å resolution.
J Mol Biol 364 :716-734. PubMed Id: 17028020. |
||
BtuB in complex with TonB: Escherichia coli B Bacteria, 2.1 Å
|
Shultis et al. (2006).
Shultis DD, Purdy MD, Banchs CN, & Wiener MC (2006). Outer membrane active transport: structure of the BtuB:TonB complex.
Science 312 :1396-1399. PubMed Id: 16741124. |
||
BtuB with bound colicin E2 R-domain: Escherichia coli B Bacteria, 3.50 Å
|
Sharma et al. (2007).
Sharma O, Yamashita E, Zhalnina MV, Zakharov SD, Datsenko KA, Wanner BL, & Cramer WA (2007). Structure of the complex of the colicin E2 R-domain and its BtuB receptor. The outer membrane colicin translocon.
J Biol Chem 282 :23163-23170. PubMed Id: 17548346. |
||
apo BtuB V10R1 spin-labeled: Escherichia coli B Bacteria, 2.44 Å
Spin-labeled BtuB V10R1 with bound calcium and cyanocobalamin, 2.44 Å: 3M8D |
Freed et al. (2010).
Freed DM, Horanyi PS, Wiener MC, & Cafiso DS (2010). Conformational exchange in a membrane transport protein is altered in protein crystals.
Biophys J 99 :1604-1610. PubMed Id: 20816073. doi:10.1016/j.bpj.2010.06.026. |
||
Colicin I receptor Cir in complex with Colicin Ia binding domain: Escherichia coli B Bacteria, 2.5 Å
Cir Colicin I receptor alone, 2.65 Å: 2HDF |
Buchanan et al. (2007).
Buchanan S, Lukacik P, Grizot S, Ghirlando R, Ali MMU, Barnard TJ, Jakes S, Kienker PK, & Esser L. (2007). Structure of colicin I receptor bound to the R-domain of colicin Ia: Implications for protein import.
EMBO J 26 :2594-2604. PubMed Id: 17464289. |
||
OmpA: Escherichia coli B Bacteria, 2.50 Å
|
Pautsch & Schulz (1998).
Pautsch A & Schulz GE (1998). Structure of the outer membrane protein A transmembrane domain.
Nature Struct Biol 5 :1013-1017. PubMed Id: 9808047. |
||
OmpA: Escherichia coli B Bacteria, 1.60 Å
|
Pautsch & Schulz (2000).
Pautsch A & Schulz GE (2000). High-resolution structure of the OmpA membrane domain.
J Mol Biol 298 :273-282. PubMed Id: 10764596. |
||
OmpA: Escherichia coli B Bacteria, NMR Structure
in DPC micelles |
Arora et al. (2001).
Arora A, Abildgaard F, Bushweller JH, & Tamm LK (2001). Structure of outer membrane protein A transmembrane domain by NMR spectroscopy.
Nature Structural Biol. 8 :334-338. PubMed Id: 11276254. |
||
OmpA: Escherichia coli B Bacteria, NMR structure
DPC micelles. High-resolution structure determined using residual dipolar couplings. |
Cierpicki et al. (2006).
Cierpicki T, Liang B, Tamm LK, & Bushweller JH (2006). Increasing the accuracy of solution NMR structures of membrane proteins by application of residual dipolar couplings. High-resolution structure of outer membrane protein A.
J Am Chem Soc 128 :6947-6951. PubMed Id: 16719475. |
||
OmpA with four shortened loops: Escherichia coli B Bacteria, NMR Structure
DHPC micelles. Called β-barrel platform (BBP). |
Johansson et al. (2007).
Johansson MU, Alioth S, Hu K, Walser R, Koebnik R, & Pervushin K (2007). A minimal transmembrane β-barrel platform protein studied by nuclear magnetic resonance.
Biochemistry 46 :1128-1140. PubMed Id: 17260943. |
||
OmpA: Klebsiella pneumoniae B Bacteria (expressed in E. coli), NMR Structure
DHPC micelles |
Renault et al. (2009).
Renault M, Saurel O, Czaplicki J, Demange P, Gervais V, Löhr F, Réat V, Piotto M, & Milon A (2009). Solution state NMR structure and dynamics of KpOmpA, a 210 residue transmembrane domain possessing a high potential for immunological applications
J Mol Biol 385 :117-130. PubMed Id: 18952100. doi:10.1016/j.jmb.2008.10.021. |
||
OmpT outer membrane protease: Escherichia coli B Bacteria, 2.6 Å
|
Vandeputte-Rutten et al. (2001).
Vandeputte-Rutten L, Kramer RA, Kroon J, Dekker N, Egmond, MR, & Gros P (2001). Crystal structure of the outer membrane protease OmpT from Eschericia coli suggests a novel catalytic site.
EMBO J 20 :5033-5039. PubMed Id: 11566868. |
||
Eren et al. (2010).
Eren E, Murphy M, Goguen J, & van den Berg B. (2010). An active site water network in the plasminogen activator Pla from Yersinia pestis.
Structure 18 :809-818. PubMed Id: 20637417. |
|||
OmpW outer membrane protein: Escherichia coli B Bacteria, 2.7 Å
2F1V is orthorhomibic form. Trigonal form, 3.0 Å: 2F1T |
Hong et al. (2006).
Hong H, Patel DR, Tamm LK, & van den Berg B (2006). The Outer Membrane Protein OmpW Forms an Eight-stranded beta-Barrel with a Hydrophobic Channel.
J Biol Chem 281 :7568-7577. PubMed Id: 16414958. |
||
OmpW outer membrane protein: Escherichia coli B Bacteria, NMR structure
30-Fos detergent |
Horst et al. (2014).
Horst R, Stanczak P, & Wüthrich K (2014). NMR polypeptide backbone conformation of the E. coli outer membrane protein W.
Structure 22 :1204-1209. PubMed Id: 25017731. doi:10.1016/j.str.2014.05.016. |
||
AlkL passive importer of hydrophobic molecules in DMPC lipid bilayer: Pseudomonas oleovorans B Bacteria (expressed in E. coli), NMR structure
Solution NMR structure, 6QAM |
Schubeis et al. (2020).
Schubeis T, Le Marchand T, Daday C, Kopec W, Tekwani Movellan K, Stanek J, Schwarzer TS, Castiglione K, de Groot BL, Pintacuda G, & Andreas LB (2020). A β-barrel for oil transport through lipid membranes: Dynamic NMR structures of AlkL.
Proc Natl Acad Sci USA 117 35:21014-21021. PubMed Id: 32817429. doi:10.1073/pnas.2002598117. |
||
Zahn et al. (2015).
Zahn M, D'Agostino T, Eren E, Baslé A, Ceccarelli M, & van den Berg B (2015). Small-Molecule Transport by CarO, an Abundant Eight-Stranded β-Barrel Outer Membrane Protein from Acinetobacter baumannii.
J Mol Biol 427 :2329-2339. PubMed Id: 25846137. doi:10.1016/j.jmb.2015.03.016. |
|||
OprF outer membrane protein, N-terminal β-barrel domain: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 1.6 Å
|
Zahn et al. (2015).
Zahn M, D'Agostino T, Eren E, Baslé A, Ceccarelli M, & van den Berg B (2015). Small-Molecule Transport by CarO, an Abundant Eight-Stranded β-Barrel Outer Membrane Protein from Acinetobacter baumannii.
J Mol Biol 427 :2329-2339. PubMed Id: 25846137. doi:10.1016/j.jmb.2015.03.016. |
||
OprG outer membrane protein: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 2.4 Å
Potential channel for hydrophobic molecule transport |
Touw et al. (2010).
Touw DS, Patel DR, & van den Berg B (2010). The crystal structure of OprG from Pseudomonas aeruginosa, a potential channel for transport of hydrophobic molecules across the outer membrane.
PLoS One 5 :e15016. PubMed Id: 21124774. doi:10.1371/journal.pone.0015016. |
||
OprH, outer membrane protein H: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), NMR Structure
Structure determined in DHPC micelles. Eight strands. Chemical-shift measurements identify likely lipopolysaccharide interaction sites. |
Edrington et al. (2011).
Edrington TC, Kintz E, Goldberg JB, & Tamm LK (2011). Structural Basis for the Interaction of Lipopolysaccharide with Outer Membrane Protein H (OprH) from Pseudomonas aeruginosa
J Biol Chem 286 :39211-39223. PubMed Id: 21865172. doi:10.1074/jbc.M111.280933. |
||
Vogt & Schulz (1999).
Vogt J & Schulz GE (1999). The structure of the outer membrane protein OmpX from Escherichia coli reveals possible mechanisms of virulence.
Structure Fold.Des. 7 :1301-1309. PubMed Id: 10545325. |
|||
OmpX: Escherichia coli B Bacteria, NMR (DHPC micelles)
|
Fernández et al. (2001).
Fernández C, Adeishvili K, & Wüthrich K (2001). Transverse relaxation-optimized NMR spectroscopy with the outer membrane protein OmpX in dihexanoyl phosphatidylcholine micelles.
Proc Natl Acad Sci USA 98 :2358-2363. PubMed Id: 11226244. |
||
OmpX: Escherichia coli B Bacteria, NMR (DPC micelles, with H-bond constraints)
For structure without H-bond constraints, see 1Q9G |
Fernández et al. (2004).
Fernández C, Hilty C, Wider G, Guntert P, & Wüthrich K (2004). NMR structure of the integral membrane protein OmpX.
J Mol Biol. 336 :1211-1221. PubMed Id: 15037080. |
||
OmpX in optimized nanodiscs: Escherichia coli B Bacteria, NMR Structure
In DPC micelles, NMR Structure: 2M07 |
Hagn et al. (2013).
Hagn F, Etzkorn M, Raschle T, & Wagner G (2013). Optimized phospholipid bilayer nanodiscs facilitate high-resolution structure determination of membrane proteins.
J Am Chem Soc 135 :1919-1925. PubMed Id: 23294159. doi:10.1021/ja310901f. |
||
Ail adhesion protein: Yersinia pestis B Bacteria (expressed in E. coli), 1.80 Å
In complex with sucrose octasulfate (SOS), 1.85 Å: 3QRC |
Yamashita et al. (2011).
Yamashita S, Lukacik P, Barnard TJ, Noinaj N, Felek S, Tsang TM, Krukonis ES, Hinnebusch BJ, & Buchanan SK (2011). Structural Insights into Ail-Mediated Adhesion in Yersinia pestis.
Structure 19 :1672-1682. PubMed Id: 22078566. doi:10.1016/j.str.2011.08.010. |
||
Ail adhesion protein, decylphosphocholine micelles: Yersinia pestis B Bacteria (expressed in E. coli), NMR structure
in decylphosphocholine micelles calculated with implicit membrane solvation, NMR structure: 2N2L |
Marassi et al. (2015).
Marassi FM, Ding Y, Schwieters CD, Tian Y, & Yao Y (2015). Backbone structure of Yersinia pestis Ail determined in micelles by NMR-restrained simulated annealing with implicit membrane solvation.
J Biomol NMR 63 :59-65. PubMed Id: 26143069. doi:10.1007/s10858-015-9963-2. |
||
Ail adhesion protein: Yersinia pestis B Bacteria (expressed in E. coli), NMR structure
Structure of protein in phospholipid nano-disc. Examines the effect of KDO2-lipid A. |
Dutta et al. (2017).
Dutta SK, Yao Y, & Marassi FM (2017). Structural Insights into the Yersinia pestis Outer Membrane Protein Ail in Lipid Bilayers.
J Phys Chem B 121 :7561-7570. PubMed Id: 28726410. doi:10.1021/acs.jpcb.7b03941. |
||
TtoA Outer Membrane Protein (OMP): Thermus thermophilus HB27 B Bacteria, 2.8 Å
First structure of an OMP from a thermophile |
Brosig et al. (2009).
Brosig A, Nesper J, Boos W, Welte W, & Diederichs K (2009). Crystal structure of a major outer membrane protein from Thermus thermophilus HB27.
J Mol Biol 385 :1445-1455. PubMed Id: 19101566. |
||
OmpLA (PldA) outer membrane phospholipase A monomer: Escherichia coli B Bacteria, 2.17 Å
Dimer, 2.10 Å: 1QD6 |
Snijder et al. (1999).
Snijder HJ, Ubarretxena-Belandia I, Blaauw M, Kalk KH, Verheij HM, Egmond MR, Dekker N, & Dijkstra BW (1999). Structural evidence for dimerization-regulated activation of an integral membrane phospholipase.
Nature 401 :717-721. PubMed Id: 10537112. |
||
OmpLA (PldA) outer membrane phospholipase A monomer with Ca++: Escherichia coli B Bacteria, 2.60 Å
Dimer, 2.80 Å: 1FW3 |
Snijder et al. (2001).
Snijder HJ, Kingma RL, Kalk KH, Dekker N, Egmond MR, & Dijkstra BW (2001). Structural investigations of calcium binding and its role in activity and activation of outer membrane phospholipase A from Escherichia coli.
J Mol Biol 309 :477-489. PubMed Id: 11371166. |
||
Snijder et al. (2001).
Snijder HJ, Van Eerde JH, Kingma RL, Kalk KH, Dekker N, Egmond MR, & Dijkstra BW (2001). Structural investigations of the active-site mutant Asn156Ala of outer membrane phospholipase A: function of the Asn-His interaction in the catalytic triad.
Protein Sci 10 :1962-1969. PubMed Id: 11567087. |
|||
OpcA adhesin protein: Neisseria meningitidis B Bacteria, 2.0 Å
|
Prince et al. (2002).
Prince SM, Achtman M, & Derrick JP (2002). Crystal structure of the OpcA integral membrane adhesin from Neisseria meningitidis.
Proc. Natl. Acad. Sci. USA 99 :3417-3421. PubMed Id: 11891340. |
||
OpcA adhesin protein: Neisseria meningitidis B Bacteria (expressed in E. coli), 1.95 Å
In meso crystallization |
Cherezov et al. (2008).
Cherezov V, Liu W, Derrick JP, Luan B, Aksimentiev A, Katritch V, & Caffrey M (2008). In meso crystal structure and docking simulations suggest an alternative proteoglycan binding site in the OpcA outer membrane adhesin.
Proteins 71 :24-34. PubMed Id: 18076035. doi:10.1002/prot.21841. |
||
NspA surface protein: Neisseria meningitidis B Bacteria, 2.55 Å
|
Vandeputte-Rutten et al. (2003).
Vandeputte-Rutten L, Bos MP, Tommassen J, & Gros P (2003). Crystal structure of Neisserial surface protein A (NspA), a conserved outer membrane protein with vaccine potential.
J. Biol. Chem. 278 :24825-24830. PubMed Id: 12716881. |
||
NanC Porin, model for KdgM porin family: Escherichia coli B Bacteria, 1.80 Å
H3 space group. See also 2WJQ, p6322 space group, 2.0 Å resolution. |
Wirth et al. (2009).
Wirth C, Condemine G, Boiteux C, Bernèche S, Schirmer T, & Peneff CM (2009). NanC Crystal Structure, a Model for Outer-Membrane Channels of the Acidic Sugar-Specific KdgM Porin Family.
J Mol Biol 394 :718-731. PubMed Id: 19796645. |
||
PagL LPS 3-O-deacylase: Pseudomonas aeruginosa B Bacteria, 2.00 Å
|
Rutten et al. (2006).
Rutten L, Geurtsen J, Lambert W, Smolenaers JJ, Bonvin AM, de Haan A, van der Ley P, Egmond MR, Gros P, & Tommassen J (2006). Crystal structure and catalytic mechanism of the LPS 3-O-deacylase PagL from Pseudomonas aeruginosa.
Proc Natl Acad Sci USA 103 :7071-7076. PubMed Id: 16632613. doi:10.1073/pnas.0509392103. |
||
LpxR lipid A deacylase: Salmonella typhimurium B Bacteria (expressed in E. coli), 1.90 Å
|
Rutten et al. (2009).
Rutten L, Mannie JP, Stead CM, Raetz CR, Reynolds CM, Bonvin AM, Tommassen JP, Egmond MR, Trent MS, & Gros P (2009). Active-site architecture and catalytic mechanism of the lipid A deacylase LpxR of Salmonella typhimurium.
Proc Natl Acad Sci USA 106 :1960-1964. PubMed Id: 19174515. doi:10.1073/pnas.0813064106 . |
||
PagP outer membrane palimitoyl transferease: Escherichia coli B Bacteria, NMR
1MM4 is Structure in DPC micelles. Structure in OG micelles: 1MM5 |
Hwang et al. (2002).
Hwang PM, Choy WY, Lo EI, Chen L, Forman-Kay JD, Raetz CR, Privé GG, Bishop RE, Kay LE (2002). Solution structure and dynamics of the outer membrane enzyme PagP by NMR.
Proc Natl Acad Sci USA 99 :13560-13565. PubMed Id: 12357033. |
||
PagP outer membrane palimitoyl transferease: Escherichia coli B Bacteria, 1.90 Å
|
Ahn et al. (2004).
Ahn VE, Lo EI, Engel CK, Chen L, Hwang PM, Kay LE, Bishop RE, & Prive GG (2004). A hydrocarbon ruler measures palmitate in the enzymatic acylation of endotoxin.
EMBO J. 23 :2931-2941. PubMed Id: 15272304. |
||
PagP outer membrane palimitoyl transferease crystallized from SDS/Co-solvent: Escherichia coli B Bacteria, 1.40 Å
Reveals phospholipid access route (crenel between strands F and G) |
Cuesta-Seijo et al. (2010).
Cuesta-Seijo JA, Neale C, Khan MA, Moktar J, Tran CD, Bishop RE, Pomès R, & Privé GG (2010). PagP crystallized from SDS/cosolvent reveals the route for phospholipid access to the hydrocarbon ruler.
Structure 18 :1210-1219. PubMed Id: 20826347. |
||
FadL long-chain fatty acid transporter: Escherichia coli B Bacteria, 2.6 Å
1T16 is from Monoclinic crystals. From hexagonal crystals, 2.8 Å: 1T1L |
van den Berg et al. (2004).
van den Berg B, Black PN, Clemons WM Jr, & Rapoport TA (2004). Crystal structure of the long-chain fatty acid transporter FadL.
Science 304 :1506-1509. PubMed Id: 15178802. |
||
FadL long-chain fatty acid transporter A77E/S100R mutant: Escherichia coli B Bacteria, 2.5 Å
Mutants show that channel wall opening for passage of fatty acids into inner layer of outer membrane is likely. ΔS3 kink, 2.60 Å: 2R88 P34A mutant, 3.3 Å: 2R4L N33A mutant, 3.2 Å: 2R4N ΔNPA mutant, 3.6 Å: 2R4O G212E mutant, 2.9 Å: 2R4P |
Hearn et al. (2009).
Hearn EM, Patel DR, Lepore BW, Indic M, van den Berg B (2009). Transmembrane passage of hydrophobic compounds through a protein channel wall.
Nature 458 :367-370. PubMed Id: 19182779. |
||
FadL long-chain fatty acid transporter D348R mutant: Escherichia coli B Bacteria, 2.60 Å
This and associated structures in conjunction with in vivo transport assays and Trp fluorescence demonstrate ligand gating of the β-barrel protein. delta N3 mutant, 3.40 Å: 2R89 D348A mutant, 2.70 Å: 3PF1 F3E mutant, 1.70 Å: 3PGU F3G mutant, 1.90 Å: 3PGS |
Lepore et al. (2011).
Lepore BW, Indic M, Pham H, Hearn EM, Patel DR, & van den Berg B (2011). Ligand-gated diffusion across the bacterial outer membrane
Proc Natl Acad Sci USA 108 :10121-10126. PubMed Id: 21593406. doi:10.1073/pnas.1018532108. |
||
FadL homologue long-chain fatty acid transporter: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 2.2 Å
Shows break in channel wall for passage of fatty acids into inner layer of outer membrane in a species other than E. coli. Residues 22-463. |
Hearn et al. (2009).
Hearn EM, Patel DR, Lepore BW, Indic M, van den Berg B (2009). Transmembrane passage of hydrophobic compounds through a protein channel wall.
Nature 458 :367-370. PubMed Id: 19182779. |
||
YebT lipid transporter, domains 1-4: Escherichia coli B Bacteria, 3.1 Å
cryo-EM structure domains 5-7, 3 Å: 6KZ4 |
Liu et al. (2020).
Liu C, Ma J, Wang J, Wang H, & Zhang L (2020). Cryo-EM Structure of a Bacterial Lipid Transporter YebT.
J Mol Biol 432 4:1008-1019. PubMed Id: 31870848. doi:10.1016/j.jmb.2019.12.008. |
||
FauA alcaligin outer membrane transporter: Bordetella pertussis B Bacteria (expressed in E. coli), 2.3 Å
|
Brillet et al. (2009).
Brillet K, Meksem A, Lauber E, Reimmann & C, Cobessi D (2009). Use of an in-house approach to study the three-dimensional structures of various outer membrane proteins: structure of the alcaligin outer membrane transporter FauA from Bordetella pertussis.
Acta Crystallogr D Biol Crystallogr 65 :326-331. PubMed Id: 19307713. |
||
TodX hydrocarbon transporter: Pseudomonas putida B Bacteria, 2.6 Å
3BS0 is P1 space group, 2 molecules in asymmetric unit. I222 space group, 3.2 Å: 3BRZ |
Hearn et al. (2008).
Hearn EM, Patel DR, & van den Berg BO (2008). Outer-membrane transport of aromatic hydrocarbons as a first step in biodegradation.
Proc Natl Acad Sci USA 105 :8601-8606. PubMed Id: 18559855. |
||
TbuX hydrocarbon transporter: Ralstonia pickettii B Bacteria, 3.2 Å
|
Hearn et al. (2008).
Hearn EM, Patel DR, & van den Berg BO (2008). Outer-membrane transport of aromatic hydrocarbons as a first step in biodegradation.
Proc Natl Acad Sci USA 105 :8601-8606. PubMed Id: 18559855. |
||
Ye and van den Berg (2004).
Ye J & van den Berg B (2004). Crystal structure of the bacterial nucleoside transporter Tsx.
EMBO J. 23 :3187-3195. PubMed Id: 15272310. |
|||
FhuA, Ferrichrome-iron receptor without ligand: Escherichia coli B Bacteria, 2.7 Å
With ligand: 1BY5 |
Locher et al. (1998).
Locher KP, Rees B, Koebnik R, Mitschler A, Moulinier L, Rosenbusch JP, & Moras D (1998). Transmembrane signaling across the ligand-gated FhuA receptor: crystal structures of free and ferrichrome-bound states reveal allosteric changes.
Cell 11 :771-8. PubMed Id: 9865695. |
||
FhuA: Escherichia coli B Bacteria, 2.50 Å
Includes the structure of a bound lipopolysaccharide (LPS) molecule In complex with ferrichrome-iron, 2.70 Å: 1FCP |
Ferguson et al. (1998).
Ferguson AD, Hofmann E, Coulton JW, Diederichs K, & Welte W (1998). Siderophore-mediated iron transport: crystal structure of FhuA with bound lipopolysaccharide.
Protein Sci 9 :956-963. PubMed Id: 9856937. |
||
FhuA-AW140-LPS: Escherichia coli B Bacteria, 2.5 Å
Structure of lipopolysaccharide (LPS) in complex with FhuA. FhuA-DL41-LPS-ferricrocin, 2.7 Å: 1QFF |
Ferguson et al. (2000).
Ferguson AD, Welte W, Hofmann E, Lindner B, Holst O, Coulton JW, & Diederichs K (2000). A conserved structural motif for lipopolysaccharide recognition by procaryotic and eucaryotic proteins.
Structure 8 :585-592. PubMed Id: 10873859. |
||
FhuA in complex with albomycin: Escherichia coli B Bacteria, 3.10 Å
In complex with phenylferricrocin, 2.95 Å: 1QJQ |
Ferguson et al. (2000).
Ferguson AD, Braun V, Fiedler HP, Coulton JW, Diederichs K, & Welte W (2000). Crystal structure of the antibiotic albomycin in complex with the outer membrane transporter FhuA.
Science 282 :2215-2220. PubMed Id: 10850805. |
||
FhuA in complex with lipopolysaccharide and rifamycin CGP4832: Escherichia coli B Bacteria, 2.90 Å
|
Ferguson et al. (2001).
Ferguson AD, Ködding J, Walker G, Bös C, Coulton JW, Diederichs K, Braun V, & Welte W (2001). Active transport of an antibiotic rifamycin derivative by the outer-membrane protein FhuA.
Structure 9 :707-716. PubMed Id: 11587645. |
||
FhuA in complex withTonB: Escherichia coli B Bacteria, 3.3 Å
|
Pawelek et al. (2006).
Pawelek PD, Croteau N, Ng-Thow-Hing C, Khursigara CM, Moiseeva N, Allaire M, & Coulton JW (2006). Structure of TonB in complex with FhuA, E. coli outer membrane receptor.
Science 312 :1399-1402. PubMed Id: 16741125. |
||
FhuA in complex with lasso peptide microcin J25 (MccJ25): Escherichia coli B Bacteria, 2.30 Å
|
Mathavan et al. (2014).
Mathavan I, Zirah S, Mehmood S, Choudhury HG, Goulard C, Li Y, Robinson CV, Rebuffat S, & Beis K (2014). Structural basis for hijacking siderophore receptors by antimicrobial lasso peptides.
Nat Chem Biol 10 5:340-342. PubMed Id: 24705590. doi:10.1038/nchembio.1499. |
||
FhuA in complex with superinfection exclusion (SE) lipoprotein Llp: Escherichia coli B Bacteria, 3.37 Å
In complex with T5 phage receptor-binding protein (RBP) pb5, cryo-EM structure, 3.1 Å: 8A8C |
van den Berg et al. (2022).
van den Berg B, Silale A, Baslé A, Brandner AF, Mader SL, & Khalid S (2022). Structural basis for host recognition and superinfection exclusion by bacteriophage T5.
Proc Natl Acad Sci U S A 119 42:e2211672119. PubMed Id: 36215462. doi:10.1073/pnas.2211672119. |
||
FyuA siderophore transporter: Yersinia pestis B Bacteria (expressed in E. coli), 3.20 Å
pesticin bacteriocin toxin, 2.09 Å: 4EPF phage lysin containing the binding domain of pesticin and the killing domain of T4-lysozyme, 2.60 Å: 4EXM pesticin-T4 lysozyme hybrid stabilized by engineered disulfide bonds, 1.74 Å: 4EPI |
Lukacik et al. (2012).
Lukacik P, Barnard TJ, Keller PW, Chaturvedi KS, Seddiki N, Fairman JW, Noinaj N, Kirby TL, Henderson JP, Steven AC, Hinnebusch BJ, & Buchanan SK (2012). Structural engineering of a phage lysin that targets gram-negative pathogens.
Proc Natl Acad Sci USA 109 25:9857-9862. PubMed Id: 22679291. doi:10.1073/pnas.1203472109. |
||
FepA, Ferric enterobactin receptor: Escherichia coli B Bacteria, 2.4 Å
|
Buchanan et al. (1999).
Buchanan S, Smith BS, Venkatramani L, Xia D, Esser L, Palnitkar M, Chakraborty R, van der Helm D, & Deisenhofer J. (1999). Crystal Structure of the outer membrane active transporter FepA from Escherichia coli.
Nature Structural Biol 6 :56-63. PubMed Id: 9886293. |
||
Grinter & Lithgow (2019).
Grinter R, & Lithgow T (2019). The structure of the bacterial iron-catecholate transporter Fiu suggests that it imports substrates via a two-step mechanism.
J Biol Chem 294 51:19523-19534. PubMed Id: 31712312. doi:10.1074/jbc.RA119.011018. |
|||
Ferguson et al. (2002).
Ferguson AD, Chakraborty R, Smith BS, Esser L, van der Helm D, & Deisenhofer, J (2002). Structural basis of gating by the outer Membrane transporter FecA.
Science 295 :1715-1719. PubMed Id: 11872840. |
|||
Yue et al. (2003).
Yue WW, Grizot S, & Buchanan SK (2003). Structural evidence for iron-free citrate and ferric citrate binding to the TonB-dependent outer membrane transporter FecA.
J Mol Biol 332 :353-368. PubMed Id: 12948487. |
|||
FecA, siderophore transporter periplasmic signalling domain: Escherichia coli B Bacteria, NMR Structure
Shows the signalling domain not seen x-ray structures |
Garcia-Herrero & Vogel (2005).
Garcia-Herrero A & Vogel HJ (2005). Nuclear magnetic resonance solution structure of the periplasmic signalling domain of the TonB-dependent outer membrane transporter FecA from Escherichia coli.
Mol Microbiol 58 :1226-1237. PubMed Id: 16313612. |
||
PiuA siderophore receptor: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 1.90 Å
|
Moyniéet al. (2017).
Moynié L, Luscher A, Rolo D, Pletzer D, Tortajada A, Weingart H, Braun Y, Page MG, Naismith JH, & Köhler T (2017). Structure and Function of the PiuA and PirA Siderophore-Drug Receptors from Pseudomonas aeruginosa and Acinetobacter baumannii.
Antimicrob Agents Chemother 61 4. PubMed Id: 28137795. doi:10.1128/AAC.02531-16. |
||
PiuD siderophore receptor: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 2.30 Å
|
Luscher et al. (2018).
Luscher A, Moynié L, Auguste PS, Bumann D, Mazza L, Pletzer D, Naismith JH, & Köhler T (2018). TonB-Dependent Receptor Repertoire of Pseudomonas aeruginosa for Uptake of Siderophore-Drug Conjugates.
Antimicrob Agents Chemother 62 6. PubMed Id: 29555629. doi:10.1128/AAC.00097-18. |
||
PiuA siderophore receptor: Acinetobacter baumannii B Bacteria (expressed in E. coli), 1.94 Å
|
Moyniéet al. (2017).
Moynié L, Luscher A, Rolo D, Pletzer D, Tortajada A, Weingart H, Braun Y, Page MG, Naismith JH, & Köhler T (2017). Structure and Function of the PiuA and PirA Siderophore-Drug Receptors from Pseudomonas aeruginosa and Acinetobacter baumannii.
Antimicrob Agents Chemother 61 4. PubMed Id: 28137795. doi:10.1128/AAC.02531-16. |
||
PirA siderophore receptor: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 2.97 Å
|
Moyniéet al. (2017).
Moynié L, Luscher A, Rolo D, Pletzer D, Tortajada A, Weingart H, Braun Y, Page MG, Naismith JH, & Köhler T (2017). Structure and Function of the PiuA and PirA Siderophore-Drug Receptors from Pseudomonas aeruginosa and Acinetobacter baumannii.
Antimicrob Agents Chemother 61 4. PubMed Id: 28137795. doi:10.1128/AAC.02531-16. |
||
PirA siderophore receptor: Acinetobacter baumannii B Bacteria (expressed in E. coli), 2.83 Å
|
Moyniéet al. (2017).
Moynié L, Luscher A, Rolo D, Pletzer D, Tortajada A, Weingart H, Braun Y, Page MG, Naismith JH, & Köhler T (2017). Structure and Function of the PiuA and PirA Siderophore-Drug Receptors from Pseudomonas aeruginosa and Acinetobacter baumannii.
Antimicrob Agents Chemother 61 4. PubMed Id: 28137795. doi:10.1128/AAC.02531-16. |
||
Krieg et al. (2009).
Krieg S, Huché F, Diederichs K, Izadi-Pruneyre N, Lecroisey A, Wandersman C, Delepelaire P, & Welte W. (2009). Heme uptake across the outer membrane as revealed by crystal structures of the receptor-hemophore complex.
Proc Natl Acad Sci USA 106 :1045-1050. PubMed Id: 19144921. |
|||
ShuA heme-uptake receptor in complex with HasA hemophore and heme: Shigella dysenteriae B Bacteria (expressed in E. coli), 2.6 Å
|
Cobessi et al. (2010).
Cobessi D, Meksem A, & Brillet K (2010). Structure of the heme/hemoglobin outer membrane receptor ShuA from Shigella dysenteriae: heme binding by an induced fit mechanism.
Proteins 78 :286-294. PubMed Id: 19731368. doi:10.1002/prot.22539. |
||
FptA pyochelin siderophore transporter: Pseudomonas aeruginosa B Bacteria, 2.0 Å
|
Cobessi et al. (2005).
Cobessi D, Celia H, Pattus F (2005). Crystal structure at high resolution of ferric-pyochelin and its membrane receptor FptA from Pseudomonas aeruginosa.
J Mol Biol 352 :893-904. PubMed Id: 16139844. |
||
FptA pyochelin siderophore transporter: Pseudomonas fluorescens B Bacteria, 3.26 Å
|
Brillet et al. (2011).
Brillet K, Reimmann C, Mislin GL, Noël S, Rognan D, Schalk IJ, & Cobessi D (2011). Pyochelin enantiomers and their outer-membrane siderophore transporters in fluorescent pseudomonads: structural bases for unique enantiospecific recognition.
J Am Chem Soc 133 41:16503-16509. PubMed Id: 21902256. doi:10.1021/ja205504z. |
||
FpvA, Pyoverdine receptor: Pseudomonas aeruginosa B Bacteria, 3.6 Å
|
Cobessi et al. (2005).
Cobessi D, Celia H, Folschweiller N, Schaik IJ, Abdallah MA, & Pattus F (2005). The crystal structure of the pyoverdine outer membrane receptor FpvA from Pseudomonas aeruginosa at 3.6 Å resolution.
J Mol Biol 347 :121-134. PubMed Id: 15733922. |
||
FpvA, Pyoverdine receptor (apo form): Pseudomonas aeruginosa B Bacteria, 2.77 Å
|
Brillet et al. (2007).
Brillet K, Journet L, Célia H, Paulus L, Stahl A, Pattus F, & Cobessi D (2007). A β strand lock exchange for signal transduction in TonB-dependent transducers on the basis of a common structural motif.
Structure 15 :1383-1391. PubMed Id: 17997964. |
||
FpvA, Full-length structure bound to iron-pyoverdine: Pseudomonas aeruginosa B Bacteria, 2.73 Å
|
Wirth et al. (2007).
Wirth C, Meyer-Klaucke W, Pattus F, & Cobessi D (2007). From the periplasmic signaling domain to the extracellular face of an outer membrane signal transducer of Pseudomonas aeruginosa: crystal structure of the ferric pyoverdine outer membrane receptor.
J Mol Biol 368 :398-406. PubMed Id: 17349657. |
||
AlgE alginate export protein: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 2.30 Å
18-stranded β-barrel with a highly electropositive pore constriction that acts as a selectivity filter for negatively charged alginate. |
Whitney et al. (2011).
Whitney JC, Hay ID, Li C, Eckford PD, Robinson H, Amaya MF, Wood LF, Ohman DE, Bear CE, Rehm BH, & Lynne Howell P (2011). Structural basis for alginate secretion across the bacterial outer membrane.
Proc Natl Acad Sci USA 108 :13083-13088. PubMed Id: 21778407. doi:10.1073/pnas.1104984108. |
||
Tan et al. (2014).
Tan J, Rouse SL, Li D, Pye VE, Vogeley L, Brinth AR, El Arnaout T, Whitney JC, Howell PL, Sansom MS, & Caffrey M (2014). A conformational landscape for alginate secretion across the outer membrane of Pseudomonas aeruginosa.
Acta Crystallogr D Biol Crystallogr 70 :2054-2068. PubMed Id: 25084326. doi:10.1107/S1399004714001850. |
|||
AlgE alginate export protein at 100 K: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 2.90 Å
data collected at 293 K, 2.80 Å: 4XNK Structures determined by serial x-ray crystallography |
Huang et al. (2015).
Huang CY, Olieric V, Ma P, Panepucci E, Diederichs K, Wang M, & Caffrey M (2015). In meso in situ serial X-ray crystallography of soluble and membrane proteins.
Acta Crystallogr D Biol Crystallogr 71 :1238-1256. PubMed Id: 26057665. doi:10.1107/S1399004715005210. |
||
AlgE alginate export protein, native-SAD structure determined at wavelength 2.755 Å: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 1.77 Å
X-ray Structure |
El Omari et al. (2023).
El Omari K, Duman R, Mykhaylyk V, Orr CM, Latimer-Smith M, Winter G, Grama V, Qu F, Bountra K, Kwong HS, Romano M, Reis RI, Vogeley L, Vecchia L, Owen CD, Wittmann S, Renner M, Senda M, Matsugaki N, Kawano Y, Bowden TA, Moraes I, Grimes JM, Mancini EJ, Walsh MA, Guzzo CR, Owens RJ, Jones EY, Brown DG, Stuart DI, Beis K, & Wagner A (2023). Experimental phasing opportunities for macromolecular crystallography at very long wavelengths.
Commun Chem 6 1:219. PubMed Id: 37828292. doi:10.1038/s42004-023-01014-0. |
||
AlgE alginate export protein in 7.10 monoacylglycerol (MAG): Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 1.45 Å
X-ray structure |
Krawinski et al. (2024).
Krawinski P, Smithers L, van Dalsen L, Boland C, Ostrovitsa N, Pérez J, & Caffrey M (2024). 7.10 MAG. A Novel Host Monoacylglyceride for In Meso (Lipid Cubic Phase) Crystallization of Membrane Proteins.
Cryst Growth Des 24 7:2985-3001. PubMed Id: 38585376. doi:10.1021/acs.cgd.4c00087. |
||
AlgK–AlgX alginate export protein complex: Pseudomonas putida B Bacteria (expressed in E. coli), 2.46 Å
|
Gheorghita et al. (2022).
Gheorghita AA, Li YE, Kitova EN, Bui DT, Pfoh R, Low KE, Whitfield GB, Walvoort MTC, Zhang Q, Codée JDC, Klassen JS, & Howell PL (2022). Structure of the AlgKX modification and secretion complex required for alginate production and biofilm attachment in Pseudomonas aeruginosa.
Nat Commun 13 1:7631. PubMed Id: 36494359. doi:10.1038/s41467-022-35131-6. |
||
P pilus usher translocation domain, PapC130-640: Escherichia coli B Bacteria, 3.2 Å
|
Remaut et al. (2008).
Remaut H, Tang C, Henderson NS, Pinkner JS, Wang T, Hultgren SJ, Thanassi DG, Waksman G, & Li H (2008). Fiber formation across the bacterial outer membrane by the chaperone/usher pathway.
Cell 133 :640-652. PubMed Id: 18485872. |
||
P pilus usher translocation domain, PapC146-637: Escherichia coli B Bacteria, 3.15 Å
|
Huang et al. (2009).
Huang Y, Smith BS, Chen LX, Baxter RH, & Deisenhofer J (2009). Insights into pilus assembly and secretion from the structure and functional characterization of usher PapC.
Proc Natl Acad Sci USA 106 18:7403-7407. PubMed Id: 19380723. doi:10.1073/pnas.0902789106. |
||
P pilus FimD usher bound to FimC:FimH substrate: Escherichia coli B Bacteria, 2.80 Å
FimD translocation domain, 3.01 Å: 3OHN |
Phan et al. (2011).
Phan G, Remaut H, Wang T, Allen WJ, Pirker KF, Lebedev A, Henderson NS, Geibel S, Volkan E, Yan J, Kunze MB, Pinkner JS, Ford B, Kay CW, Li H, Hultgren SJ, Thanassi DG, & Waksman G (2011). Crystal structure of the FimD usher bound to its cognate FimC-FimH substrate.
Nature 474 :49-53. PubMed Id: 21637253. doi:10.1038/nature10109. |
||
P pilus FimD usher in complex with FimC:FimF:FimG:FimH: Escherichia coli B Bacteria, 3.80 Å
This is the complete structure of the tip complex assembly in which the FimC:FimF:FimG:FimH complex passes through FimD. |
Geibel et al. (2013).
Geibel S, Procko E, Hultgren SJ, Baker D, & Waksman G (2013). Structural and energetic basis of folded-protein transport by the FimD usher.
Nature 496 :243-246. PubMed Id: 23579681. doi:10.1038/nature12007. |
||
P pilus assembly intermediate (FimD-FimC-FimF-FimG-FimH), conformer 1: Escherichia coli B Bacteria, 4 Å
cryo-EM structure conformer 2, 5.1 Å: 6E15 |
Du et al. (2018).
Du M, Yuan Z, Yu H, Henderson N, Sarowar S, Zhao G, Werneburg GT, Thanassi DG, & Li H (2018). Handover mechanism of the growing pilus by the bacterial outer-membrane usher FimD.
Nature 562 7727:444-447. PubMed Id: 30283140. doi:10.1038/s41586-018-0587-z. |
||
Du et al. (2021).
Du M, Yuan Z, Werneburg GT, Henderson NS, Chauhan H, Kovach A, Zhao G, Johl J, Li H, & Thanassi DG (2021). Processive dynamics of the usher assembly platform during uropathogenic Escherichia coli P pilus biogenesis.
Nat Commun 12 1:5207. PubMed Id: 34471127. doi:10.1038/s41467-021-25522-6. |
|||
Transferrin binding protein A (TbpA) in complex with human transferrin: Neisseria meningitidis serogroup b B Bacteria (expressed in E. coli), 2.60 Å
TbpA in complex with human transferrin C-lobe, 3.10 Å: 3V89 Diferric human transferrin, 2.10 Å: 3V83 Apo-human transferrin C-lobe with bound sulfate ions, 1.70 Å: 3SKP Transferrin binding protein B (TbpB), 2.40 Å: 3V8U |
Noinaj et al. (2012).
Noinaj N, Easley NC, Oke M, Mizuno N, Gumbart J, Boura E, Steere AN, Zak O, Aisen P, Tajkhorshid E, Evans RW, Gorringe AR, Mason AB, Steven AC, & Buchanan SK (2012). Structural basis for iron piracy by pathogenic Neisseria.
Nature 483 :53-58. PubMed Id: 22327295. doi:10.1038/nature10823. |
||
Wzi outer-membrane lectin: Escherichia coli B Bacteria, 2.64 Å
Assists in the formation of the bacterial capsule via direct interaction with capsular polysaccharides. |
Bushell et al. (2013).
Bushell SR, Mainprize IL, Wear MA, Lou H, Whitfield C, & Naismith JH (2013). Wzi Is an Outer Membrane Lectin that Underpins Group 1 Capsule Assembly in Escherichia coli.
Structure 21 :844-853. PubMed Id: 23623732. doi:10.1016/j.str.2013.03.010. |
||
Opa60 for receptor-mediated engulfment, EXPLOR refined: Neisseria gonorrhoeae B Bacteria, NMR strucuture
MD/EXPLOR refined structure, NMR structure: 2MAF |
Fox et al. (2014).
Fox DA, Larsson P, Lo RH, Kroncke BM, Kasson PM, & Columbus L (2014). Structure of the neisserial outer membrane protein opa60: loop flexibility essential to receptor recognition and bacterial engulfment.
J Am Chem Soc 136 :9938-9946. PubMed Id: 24813921. doi:10.1021/ja503093y. |
||
Opa60 for receptor-mediated engulfment, proton-detected magic-angle spinning nuclear magnetic resonance (MAS NMR) used: Neisseria gonorrhoeae B Bacteria (expressed in E. coli), NMR structure
|
Forster et al. (2024).
Forster MC, Tekwani Movellan K, Najbauer EE, Becker S, & Andreas LB (2024). Magic-angle spinning NMR structure of Opa60 in lipid bilayers.
J Struct Biol X 9 :100098. PubMed Id: 39010882. doi:10.1016/j.yjsbx.2024.100098. |
||
CsgG bacterial amyloid secretion channel: Escherichia coli B Bacteria, 3.59 Å
Pre-pore conformation, 2.80 Å: 4UV2 |
Goyal et al. (2014).
Goyal P, Krasteva PV, Van Gerven N, Gubellini F, Van den Broeck I, Troupiotis-Tsaïlaki A, Jonckheere W, Péhau-Arnaudet G, Pinkner JS, Chapman MR, Hultgren SJ, Howorka S, Fronzes R, & Remaut H (2014). Structural and mechanistic insights into the bacterial amyloid secretion channel CsgG.
Nature 516 7530:250-253. PubMed Id: 25219853. doi:10.1038/nature13768. |
||
CsgG bacterial amyloid secretion channel: Escherichia coli B Bacteria, 3.10 Å
|
Cao et al. (2014).
Cao B, Zhao Y, Kou Y, Ni D, Zhang XC, & Huang Y (2014). Structure of the nonameric bacterial amyloid secretion channel.
Proc Natl Acad Sci USA 111 50:E5439-E5444. PubMed Id: 25453093. doi:10.1073/pnas.1411942111. |
||
Zhang et al. (2020).
Zhang M, Shi H, Zhang X, Zhang X, & Huang Y (2020). Cryo-EM structure of the nonameric CsgG-CsgF complex and its implications for controlling curli biogenesis in Enterobacteriaceae.
PLoS Biol 18 6. PubMed Id: 32559189. doi:10.1371/journal.pbio.3000748. |
|||
CsgG-CsgF complex involved in curli biogenesis: Escherichia coli B Bacteria, 3.38 Å
cryo-EM structure complex with substrate CsgAN6 peptide, 3.34 Å: 6L7C |
Yan et al. (2020).
Yan Z, Yin M, Chen J, & Li X (2020). Assembly and substrate recognition of curli biogenesis system.
Nat Commun 11 1:241. PubMed Id: 31932609. doi:10.1038/s41467-019-14145-7. |
||
CsgG-CsgF complex involved in curli biogenesis: Escherichia coli B Bacteria, 3.40 Å
cryo-EM structure |
Van der Verren et al. (2020).
Van der Verren SE, Van Gerven N, Jonckheere W, Hambley R, Singh P, Kilgour J, Jordan M, Wallace EJ, Jayasinghe L, & Remaut H (2020). A dual-constriction biological nanopore resolves homonucleotide sequences with high fidelity.
Nat Biotechnol 38 12:1415-1420. PubMed Id: 32632300. doi:10.1038/s41587-020-0570-8. |
||
FusA plant-ferredoxin receptor: Pectobacterium atrosepticum B Bacteria (expressed in E. coli), 3.2 Å
|
Grinter et al. (2016).
Grinter R, Josts I, Mosbahi K, Roszak AW, Cogdell RJ, Bonvin AM, Milner JJ, Kelly SM, Byron O, Smith BO, & Walker D (2016). Structure of the bacterial plant-ferredoxin receptor FusA.
Nat Commun 7 :13308. PubMed Id: 27796364. doi:10.1038/ncomms13308. |
||
Omp33 outer membrane protein: Acinetobacter baumannii B Bacteria (expressed in E. coli), 2.2 Å
|
Abellón-Ruiz et al. (2018).
Abellón-Ruiz J, Zahn M, Baslé A, & van den Berg B (2018). Crystal structure of the Acinetobacter baumannii outer membrane protein Omp33.
Acta Crystallogr D Struct Biol 74 :852-860. PubMed Id: 30198896. doi:10.1107/S205979831800904X. |
||
Saleem et al. (2013).
Saleem M, Prince SM, Rigby SE, Imran M, Patel H, Chan H, Sanders H, Maiden MC, Feavers IM, & Derrick JP (2013). Use of a molecular decoy to segregate transport from antigenicity in the FrpB iron transporter from Neisseria meningitidis.
PLoS ONE 8 2. PubMed Id: 23457610. doi:10.1371/journal.pone.0056746. |
|||
FhuE TonB-dependent transporter: Escherichia coli B Bacteria, 2 Å
|
Grinter & Lithgow (2019).
Grinter R, & Lithgow T (2019). Determination of the molecular basis for coprogen import by Gram-negative bacteria.
IUCrJ 6 :401-411. PubMed Id: 31098021. doi:10.1107/S2052252519002926. |
||
YncD TonB-dependent transporter: Escherichia coli B Bacteria, 2.96 Å
|
Grinter & Lithgow (2020).
Grinter R, & Lithgow T (2020). The crystal structure of the TonB-dependent transporter YncD reveals a positively charged substrate-binding site.
Acta Crystallogr D Struct Biol 76 :484-495. PubMed Id: 32355044. doi:10.1107/S2059798320004398. |
||
PfeA ferric enterobactin receptor, apo form: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 2.12 Å
in complex with enterobactin, 2.7 Å: 6Q5E in complex with azotochelin, 2.78 Å: 5NR2 in complex with protochelin, 2.8 Å: 5NC4 R480A, Q482A mutant, 2.67 Å: 5MZS G324V mutant, 2.9 Å: 5OUT R480A mutant in complex with enterobactin, 3.11 Å: 6R1F Q482A mutant in complex with enterobactin, 2.96 Å: 6I2J |
Moynié et al. (2019).
Moynié L, Milenkovic S, Mislin GLA, Gasser V, Malloci G, Baco E, McCaughan RP, Page MGP, Schalk IJ, Ceccarelli M, & Naismith JH (2019). The complex of ferric-enterobactin with its transporter from Pseudomonas aeruginosa suggests a two-site model.
Nat Commun 10 1. PubMed Id: 31413254. doi:10.1038/s41467-019-11508-y. |
||
PfeA ferric enterobactin receptor in complex with TCV: Pseudomonas aeruginosa E Eukaryota (expressed in E. coli), 2.57 Å
in complex with BCV, 2.71 Å: 6Z33 in complex with TCV-L6, 2.66 Å: 7OBW in complex with TCV_L5, 2.72 Å: 6YY5 in complex with BCV-L6, 3.03 Å: 6Z2N in complex with BCV-L5, 3.04 Å: 6Y47 |
Moynié et al. (2022).
Moynié L, Hoegy F, Milenkovic S, Munier M, Paulen A, Gasser V, Faucon AL, Zill N, Naismith JH, Ceccarelli M, Schalk IJ, & Mislin GLA (2022). Hijacking of the Enterobactin Pathway by a Synthetic Catechol Vector Designed for Oxazolidinone Antibiotic Delivery in Pseudomonas aeruginosa.
ACS Infect Dis 8 9:1894-1904. PubMed Id: 35881068. doi:10.1021/acsinfecdis.2c00202. |
||
BcsC cellulose synthase outer membrane channel: Escherichia coli B Bacteria, 1.85 Å
See inner membrane components structures: 4HG6 |
Acheson et al. (2019).
Acheson JF, Derewenda ZS, & Zimmer J (2019). Architecture of the Cellulose Synthase Outer Membrane Channel and Its Association with the Periplasmic TPR Domain.
Structure 27 12:1855-1861.e3. PubMed Id: 31604608. doi:10.1016/j.str.2019.09.008. |
||
BcsC cellulose synthase outer membrane channel: Escherichia coli B Bacteria, 3.40 Å
cryo-EM structure with bound cellotetraose, 3.80 Å: 9B8H |
Verma et al. (2024).
Verma P, Ho R, Chambers SA, Cegelski L, & Zimmer J (2024). Insights into phosphoethanolamine cellulose synthesis and secretion across the Gram-negative cell envelope.
Nat Commun 15 1:7798. PubMed Id: 39242554. doi:10.1038/s41467-024-51838-0. |
||
ZnuD zinc transporter: Neisseria meningitidis B Bacteria (expressed in E. coli), 3.20 Å
|
Calmettes et al. (2015).
Calmettes C, Ing C, Buckwalter CM, El Bakkouri M, Chieh-Lin Lai C, Pogoutse A, Gray-Owen SD, Pomès R, & Moraes TF (2015). The molecular mechanism of Zinc acquisition by the neisserial outer-membrane transporter ZnuD.
Nat Commun 6 :7996. PubMed Id: 26282243. doi:10.1038/ncomms8996. |
||
MtrE Outer Membrane Channel: Neisseria gonorrhoeae B Bacteria (expressed in E. coli), 3.29 Å
Multidrug efflux transporter. See 4MT1 |
Lei et al. (2014).
Lei HT, Chou TH, Su CC, Bolla JR, Kumar N, Radhakrishnan A, Long F, Delmar JA, Do SV, Rajashankar KR, Shafer WM, & Yu EW (2014). Crystal structure of the open state of the Neisseria gonorrhoeae MtrE outer membrane channel.
PLoS ONE 9 6. PubMed Id: 24901251. doi:10.1371/journal.pone.0097475. |
||
LetB lipophilic Envelope-spanning Tunnel B, model 1: Escherichia coli B Bacteria, 3.46 Å
cryo-EM structure model 2, 3.49 Å: 6V0D model 3, 3.06 Å: 6V0E model 4, 2.96 Å: 6V0F model 5, 3.03 Å: 6V0G model 6, 3.60 Å: 6V0H model 7, 3.43 Å: 6V0I model 8, 3.78 Å: 6V0J domains MCE2-MCE3 by x-ray, 2.15 Å: 6VCI |
Isom et al. (2020).
Isom GL, Coudray N, MacRae MR, McManus CT, Ekiert DC, & Bhabha G (2020). LetB Structure Reveals a Tunnel for Lipid Transport across the Bacterial Envelope.
Cell 181 3:653-664.e19. PubMed Id: 32359438. doi:10.1016/j.cell.2020.03.030. |
||
PcoB copper transporter: Escherichia coli B Bacteria, 2.00 Å
|
Li et al. (2022).
Li P, Nayeri N, Górecki K, Becares ER, Wang K, Mahato DR, Andersson M, Abeyrathna SS, Lindkvist-Petersson K, Meloni G, Missel JW, & Gourdon P (2022). PcoB is a defense outer membrane protein that facilitates cellular uptake of copper.
Protein Sci 31 7:e4364. PubMed Id: 35762724. doi:10.1002/pro.4364. |
||
outer membrane porin OmpW: Klebsiella pneumoniae B Bacteria (expressed in E. coli), 3.20 Å
X-ray structure |
Seddon et al. (2024).
Seddon C, Frankel G, & Beis K (2024). Structure of the outer membrane porin OmpW from the pervasive pathogen Klebsiella pneumoniae.
Acta Crystallogr F Struct Biol Commun 80 :22-27. PubMed Id: 38206593. doi:10.1107/S2053230X23010579. |
||
![]() ![]()
Outer Membrane Autotransporters
|
|||
NalP autotransporter translocator domain: Neisseria meningitidis B Bacteria (expressed in E. coli), 2.60 Å
p6122 space group. See also 1UYO, C2221 space group, 3.2 Å resolution. |
Oomen et al. (2004).
Oomen CJ, Van Ulsen P, Van Gelder P, Feijen M, Tommassen J, & Gros P (2004). Structure of the translocator domain of a bacterial autotransporter.
EMBO J 23 :1257-1266. PubMed Id: 15014442. |
||
Hia1022-1098 trimeric autotransporter: Haemophilus influenzae B Bacteria (expressed in E. coli), 2.0 Å
Hia992-1098, 2.3 Å: 2GR7 |
Meng et al. (2006).
Meng G, Surana NK, St Geme JW 3rd, Waksman G (2006). Structure of the outer membrane translocator domain of the Haemophilus influenzae Hia trimeric autotransporter.
EMBO J 25 :2297-2304. PubMed Id: 16688217. |
||
EspP autotransporter, post-cleavage state: Escherichia coli B Bacteria, 2.7 Å
|
Barnard et al. (2007).
Barnard TJ, Dautin N, Lukacik P, Bernstein HD, & Buchanan SK (2007). Autotransporter structure reveals intra-barrel cleavage followed by conformational changes.
Nature Struc Mol Biol 14 :1214-1220. PubMed Id: 17994105. |
||
Barnard et al. (2012).
Barnard TJ, Gumbart J, Peterson JH, Noinaj N, Easley NC, Dautin N, Kuszak AJ, Tajkhorshid E, Bernstein HD, & Buchanan SK (2012). Molecular Basis for the Activation of a Catalytic Asparagine Residue in a Self-Cleaving Bacterial Autotransporter.
J Mol Biol 415 :128-142. PubMed Id: 22094314. doi:10.1016/j.jmb.2011.10.049. |
|||
EspP autotransporter passenger domain: Escherichia coli B Bacteria, 2.50 Å
Like a number of other auto-cleaved passengers, a parallel β-helix is a characteristic feature. |
Khan et al. (2011).
Khan S, Mian HS, Sandercock LE, Chirgadze NY, & Pai EF (2011). Crystal Structure of the Passenger Domain of the Escherichia coli Autotransporter EspP.
J Mol Biol 413 :985-1000. PubMed Id: 21964244. doi:10.1016/j.jmb.2011.09.028. |
||
AIDA-I autotransport unit (AIDA = adhesin involved in diffuse adherence): Escherichia coli B Bacteria, 3.00 Å
|
Gawarzewski et al. (2014).
Gawarzewski I, DiMaio F, Winterer E, Tschapek B, Smits SHJ, Jose J, & Schmitt L (2014). Crystal structure of the transport unit of the autotransporter adhesin involved in diffuse adherence from Escherichia coli.
J Struct Biol 187 1:20-29. PubMed Id: 24841284. doi:10.1016/j.jsb.2014.05.003. |
||
Hbp (hemoglobin protease) self-cleaving autotransporter with truncated passenger: Escherichia coli B Bacteria, 2.00 Å
The structure shows the pre-cleavage state. |
Tajima et al. (2010).
Tajima N, Kawai F, Park SY, & Tame JR (2010). A novel intein-like autoproteolytic mechanism in autotransporter proteins.
J Mol Biol 402 :645-656. PubMed Id: 20615416. doi:10.1016/j.jmb.2010.06.068. |
||
Hbp (hemoglobin protease) full-length passenger domain: Escherichia coli B Bacteria, 2.20 Å
The passenger domain has a prominent β-helix domain. |
Otto et al. (2005).
Otto BR, Sijbrandi R, Luirink J, Oudega B, Heddle JG, Mizutani K, Park SY, & Tame JR (2005). Crystal structure of hemoglobin protease, a heme binding autotransporter protein from pathogenic Escherichia coli.
J Biol Chem 280 :17339-17345. PubMed Id: 15728184. doi:10.1074/jbc.M412885200. |
||
EstA Autotransporter, full length: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 2.50 Å
This is the first full-length structure of an autotransporter. The passenger is not cleaved physiologically, but rather presents an esterase domain to the external world. |
van den Berg (2010).
van den Berg B (2010). Crystal Structure of a Full-Length Autotransporter.
J Mol Biol 396 :627-633. PubMed Id: 20060837. |
||
IcsA autotransporter (autochaperone region only): Shigella flexneri B Bacteria (expressed in E. coli), 2.00 Å
|
Kühnel & Diezmann (2011).
Kühnel K & Diezmann D (2011). Crystal structure of the autochaperone region from the Shigella flexneri autotransporter IcsA.
J Bacteriol 193 :2042-2045 . PubMed Id: 21335457. doi:10.1128/JB.00790-10. |
||
Intimin outer membrane β-domain: Escherichia coli B Bacteria, 1.86 Å
The C-terminal passenger domain, not present in this structure, is involved in adhesion to host cells. |
Fairman et al. (2012).
Fairman JW, Dautin N, Wojtowicz D, Liu W, Noinaj N, Barnard TJ, Udho E, Przytycka TM, Cherezov V, & Buchanan SK (2012). Crystal structures of the outer membrane domain of intimin and invasin from enterohemorrhagic E. coli and enteropathogenic Y. pseudotuberculosis.
Structure 20 :1233-1243. PubMed Id: 22658748. doi:10.1016/j.str.2012.04.011. |
||
Intimin C-terminal passenger domain in complex with receptor: Escherichia coli B Bacteria, 2.90 Å
|
Luo et al. (2000).
Luo Y, Frey EA, Pfuetzner RA, Creagh AL, Knoechel DG, Haynes CA, Finlay BB, & Strynadka NC (2000). Crystal structure of enteropathogenic Escherichia coli intimin-receptor complex.
Nature 405 :1073-1077. PubMed Id: 10890451. doi:10.1038/35016618. See also: Batchelor et al. (2000). Batchelor M, Prasannan S, Daniell S, Reece S, Connerton I, Bloomberg G, Dougan G, Frankel G, & Matthews S (2000). Structural basis for recognition of the translocated intimin receptor (Tir) by intimin from enteropathogenic Escherichia coli.
EMBO J 19 :2452-2464. PubMed Id: 10835344. |
||
Invasin outer membrane β-domain: Yersinia pseudotuberculosis B Bacteria (expressed in E. coli), 2.26 Å
The C-terminal passenger domain, not present in this structure, is involved in adhesion to host cells. |
Fairman et al. (2012).
Fairman JW, Dautin N, Wojtowicz D, Liu W, Noinaj N, Barnard TJ, Udho E, Przytycka TM, Cherezov V, & Buchanan SK (2012). Crystal structures of the outer membrane domain of intimin and invasin from enterohemorrhagic E. coli and enteropathogenic Y. pseudotuberculosis.
Structure 20 :1233-1243. PubMed Id: 22658748. doi:10.1016/j.str.2012.04.011. |
||
Invasin C-terminal passenger domain: Yersinia pseudotuberculosis B Bacteria (expressed in E. coli), 2.30 Å
|
Hamburger et al. (1999).
Hamburger ZA, Brown MS, Isberg RR, & Bjorkman PJ (1999). Crystal structure of invasin: a bacterial integrin-binding protein.
Science 286 :291-295. PubMed Id: 10514372. |
||
YadA trimeric adhesin autotransporter: Yersinia enterocolitica subsp. enterocolitica 8081 B Bacteria (expressed in E. coli), NMR Structure
Structure determined from microcrystals using solid-state NMR |
Shahid et al. (2012).
Shahid SA, Bardiaux B, Franks WT, Krabben L, Habeck M, van Rossum BJ, & Linke D (2012). Membrane-protein structure determination by solid-state NMR spectroscopy of microcrystals.
Nature Methods 9 :1212-1217. PubMed Id: 23142870. |
||
TamA Autotransporter, full length: Escherichia coli B Bacteria, 2.25 Å
TamA POTRA domains 1-3, 1.84 Å: 4BZA |
Gruss et al. (2013).
Gruss F, Zähringer F, Jakob RP, Burmann BM, Hiller S, & Maier T (2013). The structural basis of autotransporter translocation by TamA.
Nat Struct Mol Biol 20 :1318-1320. PubMed Id: 24056943. doi:10.1038/nsmb.2689. |
||
TibC dodecameric glycosyltransferase (type V secretion system): Escherichia coli ETEC H10407 B Bacteria (expressed in E. coli), 2.88 Å
in complex with ADP-D-beta-D-heptose, 3.88 Å: 4RB4 Cryo-EM structures of the TibC12-TibA6 are available in the EM Databank with accession numbers EMD-2755, -2756, -2757, and -2758. |
Yao et al. (2014).
Yao Q, Lu Q, Wan X, Song F, Xu Y, Hu M, Zamyatina A, Liu X, Huang N, Zhu P, & Shao F (2014). A structural mechanism for bacterial autotransporter glycosylation by a dodecameric heptosyltransferase family.
Elife 3 . PubMed Id: 25310236. doi:10.7554/eLife.03714. |
||
BrkA autotransport β-domain: Bordetella pertussis B Bacteria (expressed in E. coli), 3.00 Å
|
Zhai et al. (2011).
Zhai Y, Zhang K, Huo Y, Zhu Y, Zhou Q, Lu J, Black I, Pang X, Roszak AW, Zhang X, Isaacs NW, & Sun F (2011). Autotransporter passenger domain secretion requires a hydrophobic cavity at the extracellular entrance of the β-domain pore.
Biochem J 435 3:577-587. PubMed Id: 21306302. doi:10.1042/BJ20101548. |
||
CdiB autotransporter: Acinetobacter baumannii B Bacteria (expressed in E. coli), 2.40 Å
A type Vb secretion system that export CdiA toxins. |
Guerin et al. (2020).
Guerin J, Botos I, Zhang Z, Lundquist K, Gumbart JC, & Buchanan SK (2020). Structural insight into toxin secretion by contact-dependent growth inhibition transporters.
Elife 9 :e58100. PubMed Id: 33089781. doi:10.7554/eLife.58100. |
||
CdiB autotransporter: Escherichia coli B Bacteria, 2.60 Å
A type Vb secretion system that export CdiA toxins. |
Guerin et al. (2020).
Guerin J, Botos I, Zhang Z, Lundquist K, Gumbart JC, & Buchanan SK (2020). Structural insight into toxin secretion by contact-dependent growth inhibition transporters.
Elife 9 :e58100. PubMed Id: 33089781. doi:10.7554/eLife.58100. |
||
BpaC, C-terminal head domain of the trimeric autotransporter adhesin fused to a GCN4 anchor: Burkholderia pseudomallei B Bacteria (expressed in E. coli), 1.40 Å
|
Kiessling et al. (2022).
Kiessling AR, Harris SA, Weimer KM, Wells G, & Goldman A (2022). The C-terminal head domain of Burkholderia pseudomallei BpaC has a striking hydrophilic core with an extensive solvent network.
Mol Microbiol 118 :77-91. PubMed Id: 35703459. doi:10.1111/mmi.14953. |
||
![]() ![]()
Omp85-TpsB Outer Membrane Transporter Superfamily
|
|||
FhaC Filamentous Hemagglutinin Transporter: Bordetella pertussis B Bacteria (expressed in E. coli), 3.15 Å
The first outer membrane protein from the Omp85–two-partner secretion B (TpsB) superfamily. Supersedes 2QDZ. |
Clantin et al. (2007).
Clantin B, Delattre AS, Rucktooa P, Saint N, Meli AC, Locht C, Jacob-Dubuisson F, & Villeret V (2007). Structure of the membrane protein FhaC: a member of the Omp85-TpsB transporter superfamily.
Science 317 :957-961. PubMed Id: 17702945. |
||
FhaC Filamentous Hemagglutinin Transporter, R450A mutant: Bordetella pertussis B Bacteria (expressed in E. coli), 3.50 Å
|
Delattre et al. (2010).
Delattre AS, Clantin B, Saint N, Locht C, Villeret V, & Jacob-Dubuisson F (2010). Functional importance of a conserved sequence motif in FhaC, a prototypic member of the TpsB/Omp85 superfamily.
FEBS J 277 :4755-4765. PubMed Id: 20955520. doi:10.1111/j.1742-4658.2010.07881.x. |
||
TeOmp85-N POTRA domains: Thermosynechococcus elongatus B Bacteria (expressed in E. coli), 1.97 Å
Structure is of complete N-terminus containing three POTRA domains. The polypeptide transport-associated (POTRA) domains link to a transmembrane β-barrel, which is absent in this structure. |
Arnold et al. (2010).
Arnold T, Zeth K, & Linke D (2010). Omp85 from the thermophilic cyanobacterium thermosynechococcus elongatus differs from proteobacterial Omp85 in structure and domain composition.
J Biol Chem 285 :18003-18015. PubMed Id: 20351097. |
||
anaOmp85-N POTRA domains (hexagonal crystals): Anabaena sp. PCC7120 B Bacteria (expressed in E. coli), 2.20 Å
Structure is of complete N-terminus containing three POTRA domains. The polypeptide transport-associated (POTRA) domains link to a transmembrane β-barrel, which is absent in this structure. Tetragonal crystals, 2.59 Å: 3MC8 |
Koenig et al. (2010).
Koenig P, Mirus O, Haarmann R, Sommer M, Sinning I, Schleiff E, & Tews I (2010). Conserved properties of POTRA domains derived from cyanobacterial OMP85.
J Biol Chem 285 :18016-18024. PubMed Id: 20348103. |
||
BamA without POTRA domains.: Escherichia coli B Bacteria, 2.60 Å
|
Ni et al. (2014).
Ni D, Wang Y, Yang X, Zhou H, Hou X, Cao B, Lu Z, Zhao X, Yang K, & Huang Y (2014). Structural and functional analysis of the β-barrel domain of BamA from Escherichia coli.
FASEB J 28 6:2677-2685. PubMed Id: 24619089. doi:10.1096/fj.13-248450. |
||
BamA in complex with darobactin B: Escherichia coli B Bacteria, 2.50 Å
|
Böhringer et al. (2021).
Böhringer N, Green R, Liu Y, Mettal U, Marner M, Modaresi SM, Jakob RP, Wuisan ZG, Maier T, Iinishi A, Hiller S, Lewis K, & Schäberle TF (2021). Mutasynthetic Production and Antimicrobial Characterization of Darobactin Analogs.
Microbiol Spectr 9 3:e0153521. PubMed Id: 34937193. doi:10.1128/spectrum.01535-21. |
||
BamA in complex with dynobactin A: Escherichia coli B Bacteria, 2.50 Å
X-ray Structure |
Miller et al. (2022).
Miller RD, Iinishi A, Modaresi SM, Yoo BK, Curtis TD, Lariviere PJ, Liang L, Son S, Nicolau S, Bargabos R, Morrissette M, Gates MF, Pitt N, Jakob RP, Rath P, Maier T, Malyutin AG, Kaiser JT, Niles S, Karavas B, Ghiglieri M, Bowman SEJ, Rees DC, Hiller S, & Lewis K (2022). Computational identification of a systemic antibiotic for gram-negative bacteria.
Nat Microbiol 7 10:1661-1672. PubMed Id: 36163500. doi:10.1038/s41564-022-01227-4. |
||
BamA with POTRA domains 1 - 5: Neisseria gonorrhoeae B Bacteria (expressed in E. coli), 3.20 Å
This is the full-length BamA structure. |
Noinaj et al. (2013).
Noinaj N, Kuszak AJ, Gumbart JC, Lukacik P, Chang H, Easley NC, Lithgow T, & Buchanan SK (2013). Structural insight into the biogenesis of β-barrel membrane proteins.
Nature 501 :385-390. PubMed Id: 23995689. doi:10.1038/nature12521. |
||
BamA with POTRA domains 4 & 5: Haemophilus ducreyi B Bacteria (expressed in E. coli), 2.91 Å
|
Noinaj et al. (2013).
Noinaj N, Kuszak AJ, Gumbart JC, Lukacik P, Chang H, Easley NC, Lithgow T, & Buchanan SK (2013). Structural insight into the biogenesis of β-barrel membrane proteins.
Nature 501 :385-390. PubMed Id: 23995689. doi:10.1038/nature12521. |
||
BamA21-351 POTRA domains (periplasmic fragment, P212121): Escherichia coli B Bacteria, 2.2 Å
BamA was formerly named YaeT. The polypeptide transport-associated (POTRA) domains link to a transmembrane β-barrel, which is absent in this structure. P21212 space group, 2.2 Å: 2QDF |
Kim et al. (2007).
Kim S, Malinverni JC, Sliz P, Silhavy TJ, Harrison SC, & Kahne D (2007). Structure and function of an essential component of the outer membrane protein assembly machine.
Science 317 :961-964. PubMed Id: 17702946. |
||
BamA21-410 POTRA domains (periplasmic fragment): Escherichia coli B Bacteria, 3.3 Å
BamA was formerly named YaeT. The polypeptide transport-associated (POTRA) domains link to a transmembrane β-barrel, which is absent in this structure. Structure shows the first four POTRA domains in an extended conformation. |
Gatzeva-Topalova et al. (2008).
Gatzeva-Topalova PZ, Walton TA, & Sousa MC (2008). Crystal Structure of YaeT: Conformational flexibility and substrate recognition.
Structure 16 :1873-1881. PubMed Id: 19081063. |
||
BamA21-174 POTRA domains 1 and 2: Escherichia coli B Bacteria, NMR Structure
BamA was formerly named YaeT. |
Knowles et al. (2008).
Knowles TJ, Jeeves M, Bobat S, Dancea F, McClelland D, Palmer T, Overduin M, & Henderson IR (2008). Fold and function of polypeptide transport-associated domains responsible for delivering unfolded proteins to membranes.
Mol Microbiol 68 :1216-1227. PubMed Id: 18430136. |
||
BamA264-424 POTRA domains 4 and 5: Escherichia coli B Bacteria, 2.69 Å
BamA was formerly named YaeT. From this structure and earlier ones (above), Gatzeva-Topalova et al. have constructed a 'spliced' model for the complete POTRA1-5 structure. |
Gatzeva-Topalova et al. (2010).
Gatzeva-Topalova PZ, Warner LR, Pardi A, & Sousa MC (2010). Structure and Flexibility of the Complete Periplasmic Domain of BamA: The Protein Insertion Machine of the Outer Membrane.
Structure 18 :1492-1501. PubMed Id: 21070948. |
||
BamA266-420 POTRA domains 4 and 5: Escherichia coli B Bacteria, 1.5 Å
BamA formerly named YaeT. |
Zhang et al. (2011).
Zhang H, Gao ZQ, Hou HF, Xu JH, Li LF, Su XD, & Dong YH (2011). High-resolution structure of a new crystal form of BamA POTRA4-5 from Escherichia coli.
Acta Crystallogr Sect F Struct Biol Cryst Commun F67 :734-738. PubMed Id: 21795783. doi:10.1107/S1744309111014254. |
||
BamA with POTRA domain 5: Escherichia coli B Bacteria, 3.00 Å
|
Albrecht et al. (2014).
Albrecht R, Schütz M, Oberhettinger P, Faulstich M, Bermejo I, Rudel T, Diederichs K, & Zeth K (2014). Structure of BamA, an essential factor in outer membrane protein biogenesis.
Acta Crystallogr D Biol Crystallogr 70 :1779-1789. PubMed Id: 24914988. doi:10.1107/S1399004714007482. |
||
BamA421-810 (without POTRA domains) with a 9 AA (MENVALDFS) C-terminal extension: Escherichia coli B Bacteria, 2.2 Å
This structure was part of an effort to obtain NMR data. The work resulted in 70% complete sequence-specific NMR spectra. |
Hartmann et al. (2018).
Hartmann JB, Zahn M, Burmann IM, Bibow S, & Hiller S (2018). Sequence-Specific Solution NMR Assignments of the β-Barrel Insertase BamA to Monitor Its Conformational Ensemble at the Atomic Level.
J Am Chem Soc 140 36:11252-11260. PubMed Id: 30125090. doi:10.1021/jacs.8b03220. |
||
Kaur et al. (2019).
Kaur H, Hartmann JB, Jakob RP, Zahn M, Zimmermann I, Maier T, Seeger MA, & Hiller S (2019). Identification of conformation-selective nanobodies against the membrane protein insertase BamA by an integrated structural biology approach.
J Biomol NMR 73 :375-384. PubMed Id: 31073665. doi:10.1007/s10858-019-00250-8. |
|||
BamB component of the Bam β-barrel assembly machine: Escherichia coli B Bacteria, 1.80 Å
|
Heuck et al. (2011).
Heuck A, Schleiffer A, & Clausen T (2011). Augmenting β-Augmentation: Structural Basis of How BamB Binds BamA and May Support Folding of Outer Membrane Proteins.
J Mol Biol 406 :659-666. PubMed Id: 21236263. |
||
BamB component of the Bam β-barrel assembly machine: Escherichia coli B Bacteria, 2.60 Å
|
Kim & Paetzel (2011).
Kim KH & Paetzel M (2011). Crystal Structure of Escherichia coli BamB, a Lipoprotein Component of the β-Barrel Assembly Machinery Complex.
J Mol Biol 406 :667-678. PubMed Id: 21168416. |
||
Noinaj et al. (2011).
Noinaj N, Fairman JW, & Buchanan SK (2011). Crystal structures The Crystal Structure of BamB Suggests Interactions with BamA and Its Role within the BAM Complex.
J Mol Biol 407 :248-260. PubMed Id: 21277859. |
|||
BamB component of the Bam β-barrel assembly machine: Escherichia coli B Bacteria, 2.60 Å
|
Albrecht & Zeth (2011).
Albrecht R & Zeth K (2011). Structural basis of outer membrane protein biogenesis in bacteria.
J Biol Chem 286 :27792-27803. PubMed Id: 21586578. doi:10.1074/jbc.M111.238931. |
||
BamB component of the Bam β-barrel assembly machine: Escherichia coli B Bacteria, 2.00 Å
|
Dong et al. (2012).
Dong C, Yang X, Hou HF, Shen YQ, & Dong YH (2012). Structure of Escherichia coli BamB and its interaction with POTRA domains of BamA.
Acta Crystallogr D Biol Crystallogr D68 :1134-1139. PubMed Id: 22948914. doi:10.1107/S0907444912023141. |
||
BamB in complex with POTRA 3-4 domains of BamA: Escherichia coli B Bacteria, 2.15 Å
|
Chen et al. (2016).
Chen Z, Zhan LH, Hou HF, Gao ZQ, Xu JH, Dong C, & Dong YH (2016). Structural basis for the interaction of BamB with the POTRA3-4 domains of BamA.
Acta Crystallogr D Struct Biol 72 :236-244. PubMed Id: 26894671. doi:10.1107/S2059798315024729. |
||
BamC component of the Bam β-barrel assembly machine: Escherichia coli B Bacteria, 1.55 Å
C-terminal domain, residues 101-212 |
Albrecht & Zeth (2011).
Albrecht R & Zeth K (2011). Structural basis of outer membrane protein biogenesis in bacteria.
J Biol Chem 286 :27792-27803. PubMed Id: 21586578. doi:10.1074/jbc.M111.238931. |
||
BamC component of the Bam β-barrel assembly machine: Escherichia coli B Bacteria, 1.25 Å
N-terminal domain, residues 25-143 |
Albrecht & Zeth (2011).
Albrecht R & Zeth K (2011). Structural basis of outer membrane protein biogenesis in bacteria.
J Biol Chem 286 :27792-27803. PubMed Id: 21586578. doi:10.1074/jbc.M111.238931. |
||
BamC component of the Bam β-barrel assembly machine (N-term, 101-212): Escherichia coli B Bacteria, NMR Structure
Structure obtained Using Rosetta with a limited NMR data set. C-term domain, 229-344: 2LAE |
Warner et al. (2011).
Warner LR, Varga K, Lange OF, Baker SL, Baker D, Sousa MC, & Pardi A (2011). Structure of the BamC two-domain protein obtained by Rosetta with a limited NMR data set.
J Mol Biol 411 :83-95. PubMed Id: 21624375. doi:10.1016/j.jmb.2011.05.022. |
||
BamC component of the Bam β-barrel assembly machine (C-term, 224-343): Escherichia coli B Bacteria, 1.50 Å
|
Kim et al. (2011).
Kim KH, Aulakh S, Tan W, & Paetzel M (2011). Crystallographic analysis of the C-terminal domain of the Escherichia coli lipoprotein BamC.
Acta Crystallogr Sect F Struct Biol Cryst Commun 67 :1350-1358. PubMed Id: 22102230. doi:10.1107/S174430911103363X. |
||
BamD component of the Bam β-barrel assembly machine: Rhodothermus marinus B Bacteria (expressed in E. coli), 2.15 Å
BamD associates with the membrane using a lipidated amino-terminal cysteine. BamE and BamC are thought to bind to the C-terminus of BamD. |
Sandoval et al. (2011).
Sandoval CM, Baker SL, Jansen K, Metzner SI, & Sousa MC (2011). Crystal Structure of BamD: An Essential Component of the β-Barrel Assembly Machinery of Gram-Negative Bacteria
J Mol Biol 409 :348-357. PubMed Id: 21463635. doi:10.1016/j.jmb.2011.03.035. |
||
BamD component of the Bam β-barrel assembly machine: Escherichia coli B Bacteria, 1.80 Å
|
Albrecht & Zeth (2011).
Albrecht R & Zeth K (2011). Structural basis of outer membrane protein biogenesis in bacteria.
J Biol Chem 286 :27792-27803. PubMed Id: 21586578. doi:10.1074/jbc.M111.238931. |
||
BamD component of the Bam β-barrel assembly machine: Escherichia coli B Bacteria, 2.60 Å
|
Dong et al. (2012).
Dong C, Hou HF, Yang X, Shen YQ, & Dong YH (2012). Structure of Escherichia coli BamD and its functional implications in outer membrane protein assembly.
Acta Crystallogr D68 :95-101. PubMed Id: 22281737. doi:10.1107/S0907444911051031. |
||
BamD component of the Bam β-barrel assembly machine: Neisseria gonorrhoeae B Bacteria (expressed in E. coli), 2.50 Å
|
Sikora et al. (2018).
Sikora AE, Wierzbicki IH, Zielke RA, Ryner RF, Korotkov KV, Buchanan SK, & Noinaj N (2018). Structural and functional insights into the role of BamD and BamE within the ?-barrel assembly machinery in Neisseria gonorrhoeae.
J Biol Chem 293 :1106-1119. PubMed Id: 29229778. doi:10.1074/jbc.RA117.000437. |
||
BamE component of the Bam β-barrel assembly machine: Escherichia coli B Bacteria, NMR structure
|
Knowles et al. (2011).
Knowles TJ, Browning DF, Jeeves M, Maderbocus R, Rajesh S, Sridhar P, Manoli E, Emery D, Sommer U, Spencer A, Leyton DL, Squire D, Chaudhuri RR, Viant MR, Cunningham AF, Henderson IR, Overduin M (2011). Structure and function of BamE within the outer membrane and the β-barrel assembly machine.
EMBO Rep 12 :123-128. PubMed Id: 21212804. |
||
BamE component of the Bam β-barrel assembly machine: Escherichia coli B Bacteria, 1.80 Å
|
Albrecht & Zeth (2011).
Albrecht R & Zeth K (2011). Structural basis of outer membrane protein biogenesis in bacteria.
J Biol Chem 286 :27792-27803. PubMed Id: 21586578. doi:10.1074/jbc.M111.238931. |
||
BamE component of the Bam β-barrel assembly machine: Neisseria gonorrhoeae B Bacteria (expressed in E. coli), 2.45 Å
|
Sikora et al. (2018).
Sikora AE, Wierzbicki IH, Zielke RA, Ryner RF, Korotkov KV, Buchanan SK, & Noinaj N (2018). Structural and functional insights into the role of BamD and BamE within the ?-barrel assembly machinery in Neisseria gonorrhoeae.
J Biol Chem 293 :1106-1119. PubMed Id: 29229778. doi:10.1074/jbc.RA117.000437. |
||
BamCD complex of the Bam β-barrel assembly machine: Escherichia coli B Bacteria, 2.90 Å
The BamC component is the N-terminal domain, residues 26-217. The BamD component includes residues 32-240. |
Kim et al. (2011).
Kim KH, Aulakh S, & Paetzel M (2011). Crystal Structure of β-Barrel Assembly Machinery BamCD Protein Complex
J Biol Chem 286 :39116-39121. PubMed Id: 21937441. doi:10.1074/jbc.M111.298166. |
||
BamACDE complex of the Bam β-barrel assembly machine: Escherichia coli B Bacteria, 3.4 Å
|
Bakelar et al. (2016).
Bakelar J, Buchanan SK, & Noinaj N (2016). The structure of the β-barrel assembly machinery complex.
Science 351 :180-186. PubMed Id: 26744406. doi:10.1126/science.aad3460. |
||
BepA (YfgC) BAM assembly-enhancing protease: Escherichia coli B Bacteria, 2.60 Å
|
Shahrizal et al. (2018).
Shahrizal M, Daimon Y, Tanaka Y, Hayashi Y, Nakayama S, Iwaki S, Narita SI, Kamikubo H, Akiyama Y, & Tsukazaki T (2018). Structural Basis for the Function of the β-Barrel Assembly-Enhancing Protease BepA.
J Mol Biol . PubMed Id: 30521812. doi:10.1016/j.jmb.2018.11.024. |
||
BamA-POTRA4-5-BamD fusion complex of the Bam β-barrel assembly machine: Rhodothermus marinus B Bacteria (expressed in E. coli), 2.0 Å
|
Bergal et al. (2016).
Bergal HT, Hopkins AH, Metzner SI, & Sousa MC (2016). The Structure of a BamA-BamD Fusion Illuminates the Architecture of the β-Barrel Assembly Machine Core.
Structure 24 :243-251. PubMed Id: 26749448. doi:10.1016/j.str.2015.10.030. |
||
BamABCDE complex of the Bam β-barrel assembly machine: Escherichia coli B Bacteria, 2.90 Å
BAM ACDE complex, 3.90 Å: 5D0Q |
Gu et al. (2016).
Gu Y, Li H, Dong H, Zeng Y, Zhang Z, Paterson NG, Stansfeld PJ, Wang Z, Zhang Y, Wang W, & Dong C (2016). Structural basis of outer membrane protein insertion by the BAM complex.
Nature 531 :64-69. PubMed Id: 26901871. doi:10.1038/nature17199. |
||
BamABCDE complex of the Bam β-barrel assembly machine: Escherichia coli B Bacteria, 3.56 Å
|
Han et al. (2016).
Han L, Zheng J, Wang Y, Yang X, Liu Y, Sun C, Cao B, Zhou H, Ni D, Lou J, Zhao Y, & Huang Y (2016). Structure of the BAM complex and its implications for biogenesis of outer-membrane proteins.
Nat Struct Mol Biol 23 :192-196. PubMed Id: 26900875. doi:10.1038/nsmb.3181. |
||
BamABCDE complex of the Bam β-barrel assembly machine: Escherichia coli B Bacteria, 4.9 Å
cryo-EM structure showing lateral opening of complex |
Iadanza et al. (2016).
Iadanza MG, Higgins AJ, Schiffrin B, Calabrese AN, Brockwell DJ, Ashcroft AE, Radford SE, & Ranson NA (2016). Lateral opening in the intact β-barrel assembly machinery captured by cryo-EM.
Nat Commun 7 :12865. PubMed Id: 27686148. doi:10.1038/ncomms12865. |
||
BamABCDE complex of the Bam β-barrel assembly machine engaged in folding BamA: Escherichia coli B Bacteria, 4.10 Å
cryo-EM structure |
Tomasek et al. (2020).
Tomasek D, Rawson S, Lee J, Wzorek JS, Harrison SC, Li Z, & Kahne D (2020). Structure of a nascent membrane protein as it folds on the BAM complex.
Nature 583 7816:473-478. PubMed Id: 32528179. doi:10.1038/s41586-020-2370-1. |
||
BamA in complex with RcsF: Escherichia coli B Bacteria, 3.79 Å
|
Rodríguez-Alonso et al. (2020).
Rodríguez-Alonso R, Létoquart J, Nguyen VS, Louis G, Calabrese AN, Iorga BI, Radford SE, Cho SH, Remaut H, & Collet JF (2020). Structural insight into the formation of lipoprotein-β-barrel complexes.
Nat Chem Biol 16 9:1019-1025. PubMed Id: 32572278. doi:10.1038/s41589-020-0575-0. |
||
BamABCDE complex in MSP1D1 nanodisc: Escherichia coli B Bacteria, 6.65 Å
cryo-EM structure ensemble 0-2, 9.50 Å: 6SN2 ensemble 0-3, 8.40 Å: 6SN3 ensemble 0-4, 9.50 Å: 6SN4 ensemble 0-5, 9.80 Å: 6SN5 ensemble 0-6, 8.90 Å: 6SN7 ensemble 0-7, 8.40 Å: 6SN8 ensemble 0-8, 9.80 Å: 6SN9 ensemble 1-4, 8.50 Å: 6SOB ensemble 1-5, 9.00 Å: 6SOC ensemble 1-6, 8.30 Å: 6SOG ensemble 1-6, 9.50 Å: 6SOH ensemble 1-8, 10.40 Å: 6SOJ |
Iadanza et al. (2020).
Iadanza MG, Schiffrin B, White P, Watson MA, Horne JE, Higgins AJ, Calabrese AN, Brockwell DJ, Tuma R, Kalli AC, Radford SE, & Ranson NA (2020). Distortion of the bilayer and dynamics of the BAM complex in lipid nanodiscs.
Commun Biol 3 1:776. PubMed Id: 33318620. doi:10.1038/s42003-020-01419-w. |
||
BamABCDE complex of the Bam β-barrel assembly machine, Lid-locked (LL), BamA E435C S665C: Escherichia coli B Bacteria, 4.10 Å
cryo-EM structure BamA E435C S665C, lateral open conformation, 4.80 Å: 7NBX BamABCDE bound to a bactericidal Fab fragment, lateral open state, 5.20 Å: 7ND0 BamA E435C S665C, BamBDCE bound by a bactericidal Fab fragment, lateral open state, 7.10 Å: 7NCS |
White et al. (2021).
White P, Haysom SF, Iadanza MG, Higgins AJ, Machin JM, Whitehouse JM, Horne JE, Schiffrin B, Carpenter-Platt C, Calabrese AN, Storek KM, Rutherford ST, Brockwell DJ, Ranson NA, & Radford SE (2021). The role of membrane destabilisation and protein dynamics in BAM catalysed OMP folding.
Nat Commun 12 1:4174. PubMed Id: 34234105. doi:10.1038/s41467-021-24432-x. |
||
Xiao et al. (2021).
Xiao L, Han L, Li B, Zhang M, Zhou H, Luo Q, Zhang X, & Huang Y (2021). Structures of the β-barrel assembly machine recognizing outer membrane protein substrates.
FASEB J 35 1:e21207. PubMed Id: 33368572. doi:10.1096/fj.202001443RR. |
|||
Kaur et al. (2021).
Kaur H, Jakob RP, Marzinek JK, Green R, Imai Y, Bolla JR, Agustoni E, Robinson CV, Bond PJ, Lewis K, Maier T, & Hiller S (2021). The antibiotic darobactin mimics a β-strand to inhibit outer membrane insertase.
Nature 593 7857:125-129. PubMed Id: 33854236. doi:10.1038/s41586-021-03455-w. |
|||
BamABCDE complex in MSP1D1 nanodisc: Escherichia coli B Bacteria, 8.00 Å
cryo-EM structure in MSP2N2 nanodisc, 7.50 Å 7RI8 in MSP1E3D1 nanodisc, 6.90 Å 7RI9 in MSP1E3D1 nanodisc, 4.00 Å 7RI5 MSP1E3D1 nanodisc using E. coli outer membranes, 5.90 Å 7RI6 in complex with EspP, 7RJ5 BAM/EspP(beta9-12) hybrid-barrel intermediate, 3.40 Å 7RI4 |
Wu et al. (2021).
Wu R, Bakelar JW, Lundquist K, Zhang Z, Kuo KM, Ryoo D, Pang YT, Sun C, White T, Klose T, Jiang W, Gumbart JC, & Noinaj N (2021). Plasticity within the barrel domain of BamA mediates a hybrid-barrel mechanism by BAM.
Nat Commun 12 1:7131. PubMed Id: 34880256. doi:10.1038/s41467-021-27449-4. |
||
BamABCDE complex with bound EspP: Escherichia coli B Bacteria, 3.60 Å
cryo-EM structure class 1, 4.50 Å 7TSZ class 2, 4.30 Å 7TT0 class 3, 4.20 Å 7TT2 class 4, 4.30 Å 7TT1 class 5, 4.30 Å 7TT3 class 6, 4.20 Å 7TT4 open-sheet EspP state, 4.30 Å 7TT5 intermediate-open EspP state, 4.30 Å 7TT6 barrelized EspP/continuous open BamA state, 4.80 Å 7TT7 |
Doyle et al. (2022).
Doyle MT, Jimah JR, Dowdy T, Ohlemacher SI, Larion M, Hinshaw JE, & Bernstein HD (2022). Cryo-EM structures reveal multiple stages of bacterial outer membrane protein folding.
Cell 185 7:1143-1156.e13. PubMed Id: 35294859. doi:10.1016/j.cell.2022.02.016. |
||
BamABCDE complex with bound darobactin 22: Escherichia coli B Bacteria, 3.00 Å
cryo-EM structure with bound darobactin 9, 3.40 Å: 8ADi |
Seyfert et al. (2023).
Seyfert CE, Porten C, Yuan B, Deckarm S, Panter F, Bader CD, Coetzee J, Deschner F, Tehrani KHME, Higgins PG, Seifert H, Marlovits TC, Herrmann J, & Müller R (2023). Darobactins Exhibiting Superior Antibiotic Activity by Cryo-EM Structure Guided Biosynthetic Engineering.
Angew Chem Int Ed Engl 62 2:e202214094. PubMed Id: 36308277. doi:10.1002/anie.202214094. |
||
BamABCDE complex, wild-type: Escherichia coli B Bacteria, 3.50 Å
cryo-EM structure with bound darobactin B, 3.30 Å: 8BVQ |
Haysom et al. (2023).
Haysom SF, Machin J, Whitehouse JM, Horne JE, Fenn K, Ma Y, El Mkami H, Böhringer N, Schäberle TF, Ranson NA, Radford SE, & Pliotas C (2023). Darobactin B Stabilises a Lateral-Closed Conformation of the BAM Complex in E. coli Cells.
Angew Chem Int Ed Engl :e202218783. PubMed Id: 37162386. doi:10.1002/anie.202218783. |
||
Shen et al. (2023).
Shen C, Chang S, Luo Q, Chan KC, Zhang Z, Luo B, Xie T, Lu G, Zhu X, Wei X, Dong C, Zhou R, Zhang X, Tang X, & Dong H (2023). Structural basis of BAM-mediated outer membrane β-barrel protein assembly.
Nature 617 7959:185-193. PubMed Id: 37100902. doi:10.1038/s41586-023-05988-8. |
|||
BamABCDE complex with bound dynobactin A: Escherichia coli B Bacteria, 3.60 Å
cryo-EM structure |
Miller et al. (2022).
Miller RD, Iinishi A, Modaresi SM, Yoo BK, Curtis TD, Lariviere PJ, Liang L, Son S, Nicolau S, Bargabos R, Morrissette M, Gates MF, Pitt N, Jakob RP, Rath P, Maier T, Malyutin AG, Kaiser JT, Niles S, Karavas B, Ghiglieri M, Bowman SEJ, Rees DC, Hiller S, & Lewis K (2022). Computational identification of a systemic antibiotic for gram-negative bacteria.
Nat Microbiol 7 10:1661-1672. PubMed Id: 36163500. doi:10.1038/s41564-022-01227-4. |
||
![]() ![]()
Mitochondrial Outer Membrane Beta Barrel Proteins
|
|||
VDAC-1 voltage dependent anion channel: Homo sapiens E Eukaryota (expressed in E. coli), NMR structure
Structure determined in LDAO micelles. |
Hiller et al. (2008).
Hiller S, Garces RG, Malia TJ, Orekhov VY, Colombini M, & Wagner G (2008). Solution structure of the integral human membrane protein VDAC-1 in detergent micelles.
Science 321 :1206-1210. PubMed Id: 18755977. |
||
VDAC-1 voltage dependent anion channel: Homo sapiens E Eukaryota (expressed in E. coli), 4 Å
Structure determined by combining x-ray and NMR data. |
Bayrhuber et al. (2008).
Bayrhuber M, Meins T, Habeck M, Becker S, Giller K, Villinger S, Vonrhein C, Griesinger C, Zweckstetter M, & Zeth K (2008). Structure of the human voltage-dependent anion channel.
Proc Natl Acad Sci USA 105 :15370-15375. PubMed Id: 18832158. |
||
VDAC-1 voltage dependent anion channel in complex with β-NADH: Homo sapiens E Eukaryota (expressed in E. coli), NMR structure
structure determined in LDAO micelles VDAC-1 alone, refined structure. 6TIQ |
Böhm et al. (2020).
Böhm R, Amodeo GF, Murlidaran S, Chavali S, Wagner G, Winterhalter M, Brannigan G, & Hiller S (2020). The Structural Basis for Low Conductance in the Membrane Protein VDAC upon β-NADH Binding and Voltage Gating.
Structure 28 2:206-214.e4. PubMed Id: 31862297. doi:10.1016/j.str.2019.11.015. |
||
VDAC-1 voltage dependent anion channel, E73V/C127A/C232S mutant in DMPC: Homo sapiens E Eukaryota (expressed in E. coli), NMR structure
|
Najbauer et al. (2022).
Najbauer EE, Tekwani Movellan K, Giller K, Benz R, Becker S, Griesinger C, & Andreas LB (2022). Structure and Gating Behavior of the Human Integral Membrane Protein VDAC1 in a Lipid Bilayer.
J Am Chem Soc 144 7:2953-2967. PubMed Id: 35164499. doi:10.1021/jacs.1c09848. |
||
VDAC-1 voltage dependent anion channel: Mus musculus E Eukaryota (expressed in E. coli), 2.3 Å
Reveals the voltage-sensing N-terminal α-helix. |
Ujwal et al. (2008).
Ujwal R, Cascio D, Colletier JP, Faham S, Zhang J, Toro L, Ping P, & Abramson J (2008). The crystal structure of mouse VDAC1 at 2.3 Å resolution reveals mechanistic insights into metabolite gating.
Proc Natl Acad Sci USA 105 :17742-17747. PubMed Id: 18988731. |
||
VDAC-1 voltage dependent anion channel with bound ATP: Mus musculus E Eukaryota (expressed in E. coli), 2.28 Å
|
Choudhary et al. (2014).
Choudhary OP, Paz A, Adelman JL, Colletier JP, Abramson J, & Grabe M (2014). Structure-guided simulations illuminate the mechanism of ATP transport through VDAC1.
Nat Struct Mol Biol 21 7:626-632. PubMed Id: 24908397. doi:10.1038/nsmb.2841. |
||
VDAC-1 voltage dependent anion channel by micro electron diffraction (microED): Mus musculus E Eukaryota (expressed in E. coli), 3.12 Å
|
Martynowycz et al. (2020).
Martynowycz MW, Khan F, Hattne J, Abramson J, & Gonen T (2020). MicroED structure of lipid-embedded mammalian mitochondrial voltage-dependent anion channel.
Proc Natl Acad Sci U S A 117 51:32380-32385. PubMed Id: 33293416. doi:10.1073/pnas.2020010117. |
||
VDAC-2 voltage dependent anion channel: Danio rerio E Eukaryota (expressed in E. coli), 2.80 Å
Double electron-electron resonance measurements indicate a population of oligomers. |
Schredelseker et al. (2014).
Schredelseker J, Paz A, López CJ, Altenbach C, Leung CS, Drexler MK, Chen JN, Hubbell WL, & Abramson J (2014). High-Resolution Structure and Double Electron-Electron Resonance of the Zebrafish Voltage Dependent Anion Channel 2 Reveal an Oligomeric Population.
J Biol Chem 289 :12566-12577. PubMed Id: 24627492. doi:10.1074/jbc.M113.497438. |
||
Translocase of outer mitochondrial membrane (TOM) complex, model: Neurospora crassa E Eukaryota, 6.8 Å
single-particle cryo-EM structure |
Bausewein et al. (2017).
Bausewein T, Mills DJ, Langer JD, Nitschke B, Nussberger S, & Kühlbrandt W (2017). Cryo-EM Structure of the TOM Core Complex from Neurospora crassa.
Cell 170 :693-700.e7. PubMed Id: 28802041. doi:10.1016/j.cell.2017.07.012. |
||
Translocase of outer mitochondrial membrane (TOM) core complex: Neurospora crassa E Eukaryota, 3.30 Å
cryo-EM structure |
Ornelas et al. (2023).
Ornelas P, Bausewein T, Martin J, Morgner N, Nussberger S, & Kühlbrandt W (2023). Two conformations of the Tom20 preprotein receptor in the TOM holo complex.
Proc Natl Acad Sci U S A 120 34:e2301447120. PubMed Id: 37579144. doi:10.1073/pnas.2301447120. |
||
translocase of the outer mitochondrial membrane (TOM) complex: Saccharomyces cerevisiae E Eukaryota, 3.81 Å
cryo-EM structure The TOM complex is comprised of the Tom40, Tom20, Tom22, and Tom70 receptors and the Tom5, Tom6, and Tom70 regulators. |
Araiso et al. (2019).
Araiso Y, Tsutsumi A, Qiu J, Imai K, Shiota T, Song J, Lindau C, Wenz LS, Sakaue H, Yunoki K, Kawano S, Suzuki J, Wischnewski M, Schütze C, Ariyama H, Ando T, Becker T, Lithgow T, Wiedemann N, Pfanner N, Kikkawa M, & Endo T (2019). Structure of the mitochondrial import gate reveals distinct preprotein paths.
Nature 575 7782:395-401. PubMed Id: 31600774. doi:10.1038/s41586-019-1680-7. |
||
translocase of the outer mitochondrial membrane (TOM) complex, dimer: Saccharomyces cerevisiae E Eukaryota, 3.06 Å
cryo-EM structure tetramer, 4.1 Å: 6UCV |
Tucker & Park (2019).
Tucker K, & Park E (2019). Cryo-EM structure of the mitochondrial protein-import channel TOM complex at near-atomic resolution.
Nat Struct Mol Biol 26 12:1158-1166. PubMed Id: 31740857. doi:10.1038/s41594-019-0339-2. |
||
Translocase of outer mitochondrial membrane (TOM) complex, SAM-Tom40 complex: Saccharomyces cerevisiae E Eukaryota (expressed in HEK293 cells), 3.01 Å
cryo-EM structure SAM-Tom40/Tom5/Tom6 complex, 3.05 Å 7E4I |
Wang et al. (2021).
Wang Q, Guan Z, Qi L, Zhuang J, Wang C, Hong S, Yan L, Wu Y, Cao X, Cao J, Yan J, Zou T, Liu Z, Zhang D, Yan C, & Yin P (2021). Structural insight into the SAM-mediated assembly of the mitochondrial TOM core complex.
Science 373 6561:1377-1381. PubMed Id: 34446444. doi:10.1126/science.abh0704. |
||
translocase of the outer mitochondrial membrane (TOM) core complex: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.40 Å
cryo-EM structure |
Wang et al. (2020).
Wang W, Chen X, Zhang L, Yi J, Ma Q, Yin J, Zhuo W, Gu J, & Yang M (2020). Atomic structure of human TOM core complex.
Cell Discov 6 :67. PubMed Id: 33083003. doi:10.1038/s41421-020-00198-2. |
||
translocase of the outer mitochondrial membrane (TOM) core complex, dimeric complex: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.00 Å
cryo-EM structure |
Guan et al. (2021).
Guan Z, Yan L, Wang Q, Qi L, Hong S, Gong Z, Yan C, & Yin P (2021). Structural insights into assembly of human mitochondrial translocase TOM complex.
Cell Discov 7 1:22. PubMed Id: 33846286. doi:10.1038/s41421-021-00252-7. |
||
translocase of the outer mitochondrial membrane (TOM) including TOM22 and TOM20 cytosolic domains: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.53 Å
cryo-EM structure complex with cross-linking, 3.74 Å: 7VDD |
Su et al. (2022).
Su J, Liu D, Yang F, Zuo MQ, Li C, Dong MQ, Sun S, & Sui SF (2022). Structural basis of Tom20 and Tom22 cytosolic domains as the human TOM complex receptors.
Proc Natl Acad Sci U S A 119 26:e2200158119. PubMed Id: 35733257. doi:10.1073/pnas.2200158119. |
||
Sorting & assembly Machinery (SAM) complex (Sam35, Sam37, Sam50) in nanodiscs (monomer): Thermothelomyces thermophilus (Myceliophthora thermophila) E Eukaryota (expressed in S. cerevisiae), 3.4 Å
cryoEM structure dimer 1, 3.2 Å: 6WUL monomer from dimer 1, 3.0 Å: 6WUT in detergent, dimer 2, 3.6 Å: 6WUM in detergent, dimer 3, 3.9 Å: 6WUN in detergent, monomer, 3.7 Å: 6WUJ |
Diederichs et al. (2020).
Diederichs KA, Ni X, Rollauer SE, Botos I, Tan X, King MS, Kunji ERS, Jiang J, & Buchanan SK (2020). Structural insight into mitochondrial β-barrel outer membrane protein biogenesis.
Nat Commun 11 1:3290. PubMed Id: 32620929. doi:10.1038/s41467-020-17144-1. |
||
![]() ![]()
Lipopolysaccharide (LPS) Transport Proteins
|
|||
LptD-LptE lipopolysaccharide transport complex: Salmonella enterica B Bacteria (expressed in E. coli), 2.80 Å
Structure provides the basis for LPS translocation across the outer membrane. LptD comprises residues 226-786. LptE comprises residues 19 - 169. |
Dong et al. (2014).
Dong H, Xiang Q, Gu Y, Wang Z, Paterson NG, Stansfeld PJ, He C, Zhang Y, Wang W, & Dong C (2014). Structural basis for outer membrane lipopolysaccharide insertion.
Nature 511 :52-56. PubMed Id: 24990744. doi:10.1038/nature13464. |
||
LptD-LptE lipopolysaccharide transport complex: Shigella flexneri B Bacteria (expressed in E. coli), 2.39 Å
|
Qiao et al. (2014).
Qiao S, Luo Q, Zhao Y, Zhang XC, & Huang Y (2014). Structural basis for lipopolysaccharide insertion in the bacterial outer membrane.
Nature 511 :108-111. PubMed Id: 24990751. doi:10.1038/nature13484. |
||
LptE lipopolysaccharide transport protein: Escherichia coli B Bacteria, 2.34 Å
|
Malojčić et al. (2014).
Malojčić G, Andres D, Grabowicz M, George AH, Ruiz N, Silhavy TJ, & Kahne D (2014). LptE binds to and alters the physical state of LPS to catalyze its assembly at the cell surface.
Proc. Natl. Acad. Sci. U.S.A. 111 26:9467-9472. PubMed Id: 24938785. doi:10.1073/pnas.1402746111. |
||
PgaA exopolysaccharide transporter: Escherichia coli B Bacteria, 2.82 Å
|
Wang et al. (2016).
Wang Y, Andole Pannuri A, Ni D, Zhou H, Cao X, Lu X, Romeo T, & Huang Y (2016). Structural Basis for Translocation of a Biofilm-supporting Exopolysaccharide across the Bacterial Outer Membrane.
J Biol Chem 291 19:10046-10057. PubMed Id: 26957546. doi:10.1074/jbc.M115.711762. |
||
LptD-LptE lipopolysaccharide transport complex: Yersinia pestis B Bacteria (expressed in E. coli), 2.75 Å
|
Botos et al. (2016).
Botos I, Majdalani N, Mayclin SJ, McCarthy JG, Lundquist K, Wojtowicz D, Barnard TJ, Gumbart JC, & Buchanan SK (2016). Structural and Functional Characterization of the LPS Transporter LptDE from Gram-Negative Pathogens.
Structure 24 :965-976. PubMed Id: 27161977. doi:10.1016/j.str.2016.03.026. |
||
LptD-LptE lipopolysaccharide transport complex: Klebsiella pneumoniae B Bacteria (expressed in E. coli), 2.94 Å
full-length protein, 4.37 Å: 5IV9 |
Botos et al. (2016).
Botos I, Majdalani N, Mayclin SJ, McCarthy JG, Lundquist K, Wojtowicz D, Barnard TJ, Gumbart JC, & Buchanan SK (2016). Structural and Functional Characterization of the LPS Transporter LptDE from Gram-Negative Pathogens.
Structure 24 :965-976. PubMed Id: 27161977. doi:10.1016/j.str.2016.03.026. |
||
LptD-LptE lipopolysaccharide transport complex: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 2.99 Å
|
Botos et al. (2016).
Botos I, Majdalani N, Mayclin SJ, McCarthy JG, Lundquist K, Wojtowicz D, Barnard TJ, Gumbart JC, & Buchanan SK (2016). Structural and Functional Characterization of the LPS Transporter LptDE from Gram-Negative Pathogens.
Structure 24 :965-976. PubMed Id: 27161977. doi:10.1016/j.str.2016.03.026. |
||
LptD-LptE lipopolysaccharide transport complex, in complex with ProMacrobodies: Neisseria gonorrhoeae B Bacteria (expressed in E. coli), 3.40 Å
cryo-EM structure x-ray: structure of ProMacrobody 21 with bound maltose, 2.00 Å 7OMT |
Botte et al. (2022).
Botte M, Ni D, Schenck S, Zimmermann I, Chami M, Bocquet N, Egloff P, Bucher D, Trabuco M, Cheng RKY, Brunner JD, Seeger MA, Stahlberg H, & Hennig M (2022). Cryo-EM structures of a LptDE transporter in complex with Pro-macrobodies offer insight into lipopolysaccharide translocation.
Nat Commun 13 1:1826. PubMed Id: 35383177. doi:10.1038/s41467-022-29459-2. |
||
![]() ![]()
Polysaccharide Utilization Proteins
Genes of this family are part of the starch utilization system (SUS) |
|||
Glenwright et al. (2017).
Glenwright AJ, Pothula KR, Bhamidimarri SP, Chorev DS, Baslé A, Firbank SJ, Zheng H, Robinson CV, Winterhalter M, Kleinekathöfer U, Bolam DN, & van den Berg B (2017). Structural basis for nutrient acquisition by dominant members of the human gut microbiota.
Nature 541 7637:407-411. PubMed Id: 28077872. doi:10.1038/nature20828. |
|||
SusCD Fructo-oligosaccharide transporter BT 1762-63: Bacteroides thetaiotaomicron B Bacteria, 2.69 Å
Fructo-oligosaccharide transporter BT 1762-63, 2.62 Å: 6Z8I Fructo-oligosaccharide transporter BT 1762-63, 3.10 Å: 6Z9A Open-open state of the Bt1762-Bt1763 levan transport system, 6ZLT Cryo_EM: Open-closed state of the Bt1762-Bt1763 levan transport system, 4.70 Å: 6ZM1 Cryo_EM: Closed-closed state of the Bt1762-Bt1763 levan transport system, 4.20 Å: 6ZLU |
Gray et al. (2021).
Gray DA, White JBR, Oluwole AO, Rath P, Glenwright AJ, Mazur A, Zahn M, Baslé A, Morland C, Evans SL, Cartmell A, Robinson CV, Hiller S, Ranson NA, Bolam DN, & van den Berg B (2021). Insights into SusCD-mediated glycan import by a prominent gut symbiont.
Nat Commun 12 1:44. PubMed Id: 33398001. doi:10.1038/s41467-020-20285-y. |
||
SusCD fructo-oligosaccharide (FOS) transporter with bound FOS DP 8-12: Bacteroides thetaiotaomicron B Bacteria, 2.90 Å
cryo-EM structure with bound FOS DP15-25, inactive state, 2.70 Å: 8AA3 BT1760-1761 complex with bound FOS DP 8-12, 3.20 Å: 8AA0 BT1760-1761 complex with bound FOS DP 15-25, inactive state, 3.10 Å: 8AA2 SusC-BT1760-1761 complex, 3.50 Å: 8A9Y SusC only, 3.10 Å: 8AA4 |
White et al. (2023).
White JBR, Silale A, Feasey M, Heunis T, Zhu Y, Zheng H, Gajbhiye A, Firbank S, Baslé A, Trost M, Bolam DN, van den Berg B, & Ranson NA (2023). Outer membrane utilisomes mediate glycan uptake in gut Bacteroidetes.
Nature 618 7965:583-589. PubMed Id: 37286596. doi:10.1038/s41586-023-06146-w. |
||
Madej et al. (2020).
Madej M, White JBR, Nowakowska Z, Rawson S, Scavenius C, Enghild JJ, Bereta GP, Pothula K, Kleinekathoefer U, BasléA, Ranson NA, Potempa J, & van den Berg B (2020). Structural and functional insights into oligopeptide acquisition by the RagAB transporter from Porphyromonas gingivalis.
Nat Microbiol 5 :1016-1025. PubMed Id: 32393857. doi:10.1038/s41564-020-0716-y. |
|||
![]() ![]()
Type II Secretion Systems
|
|||
GspD secretin: Escherichia coli B Bacteria, 3.04 Å
cryo-EM structure |
Yan et al. (2017).
Yan Z, Yin M, Xu D, Zhu Y, & Li X (2017). Structural insights into the secretin translocation channel in the type II secretion system.
Nat Struct Mol Biol 24 :177-183. PubMed Id: 28067918. doi:10.1038/nsmb.3350. |
||
GspD secretin: Vibrio cholerae B Bacteria (expressed in E. coli), 3.26 Å
cryo-EM structure partially open state without the cap gate, 4.22 Å: 5WQ9 |
Yan et al. (2017).
Yan Z, Yin M, Xu D, Zhu Y, & Li X (2017). Structural insights into the secretin translocation channel in the type II secretion system.
Nat Struct Mol Biol 24 :177-183. PubMed Id: 28067918. doi:10.1038/nsmb.3350. |
||
bacterial type II secretion system, core architecture: Klebsiella pneumoniae B Bacteria (expressed in E.coli), 4.3 Å
cryo-EM structure The inner membrane assembly platform consists of PulC, PulE, PulL, PulM, & PulN (2:1:1:1:1) |
Chernyatina & Low (2019).
Chernyatina AA, & Low HH (2019). Core architecture of a bacterial type II secretion system.
Nat Commun 10 1. PubMed Id: 31780649. doi:10.1038/s41467-019-13301-3. |
||
secretin pore pIV: Enterobacteria phage f1 V Viruses (expressed in E. coli), 2.70 Å
cryo-EM structure |
Conners et al. (2021).
Conners R, McLaren M, Łapińska U, Sanders K, Stone MRL, Blaskovich MAT, Pagliara S, Daum B, Rakonjac J, & Gold VAM (2021). CryoEM structure of the outer membrane secretin channel pIV from the f1 filamentous bacteriophage.
Nat Commun 12 1:6316. PubMed Id: 34728631. doi:10.1038/s41467-021-26610-3. |
||
![]() ![]()
Type III Secretion Systems
|
|||
Worrall et al. (2016).
Worrall LJ, Hong C, Vuckovic M, Deng W, Bergeron JR, Majewski DD, Huang RK, Spreter T, Finlay BB, Yu Z, & Strynadka NC (2016). Near-atomic-resolution cryo-EM analysis of the Salmonella T3S injectisome basal body.
Nature 540 :597-601. PubMed Id: 27974800. doi:10.1038/nature20576. |
|||
MS-ring of the flagellar rotor protein FliF, 33mer: Salmonella enterica B Bacteria (expressed in E. coli), 3.10 Å
cryo-EM structure RBM3/collar region, 2.60 Å: 6SD1 RBM2 inner region (21-fold symmetry applied), 3.10 Å: 6SD2 34mer structure, 3.30 Å: 6SD3 RBM3/collar region (34-fold symmetry applied), 2.80 Å: 6SD4 RBM2 inner ring (22-fold symmetry applied), 3.10 Å: 6SD5 RBM3/collar region (32-fold symmetry applied), 3.30 Å: 6TRE |
Johnson et al. (2020).
Johnson S, Fong YH, Deme JC, Furlong EJ, Kuhlen L, & Lea SM (2020). Symmetry mismatch in the MS-ring of the bacterial flagellar rotor explains the structural coordination of secretion and rotation.
Nat Microbiol 5 7:966-975. PubMed Id: 32284565. doi:10.1038/s41564-020-0703-3. |
||
Majewski et al. (2021).
Majewski DD, Okon M, Heinkel F, Robb CS, Vuckovic M, McIntosh LP, & Strynadka NCJ (2021). Characterization of the Pilotin-Secretin Complex from the Salmonella enterica Type III Secretion System Using Hybrid Structural Methods.
Structure 29 2:125-138.e5. PubMed Id: 32877645. doi:10.1016/j.str.2020.08.006. |
|||
Miletic et al. (2021).
Miletic S, Fahrenkamp D, Goessweiner-Mohr N, Wald J, Pantel M, Vesper O, Kotov V, & Marlovits TC (2021). Substrate-engaged type III secretion system structures reveal gating mechanism for unfolded protein translocation.
Nat Commun 12 1:1546. PubMed Id: 33750771. doi:10.1038/s41467-021-21143-1. |
|||
Xu et al. (2021).
Xu J, Wang J, Liu A, Zhang Y, & Gao X (2021). Structural and Functional Analysis of SsaV Cytoplasmic Domain and Variable Linker States in the Context of the InvA-SsaV Chimeric Protein.
Microbiol Spectr 9 3:e01251-21. PubMed Id: 34851139. doi:10.1128/Spectrum.01251-21. |
|||
T3S FliP-FliQ-FliR core complex: Salmonella typhimurium B Bacteria (expressed in E. coli), 4.2 Å
cryo-EM structure |
Kuhlen et al. (2018).
Kuhlen L, Abrusci P, Johnson S, Gault J, Deme J, Caesar J, Dietsche T, Mebrhatu MT, Ganief T, Macek B, Wagner S, Robinson CV, & Lea SM (2018). Structure of the core of the type III secretion system export apparatus.
Nat Struct Mol Biol 25 7:583-590. PubMed Id: 29967543. doi:10.1038/s41594-018-0086-9. |
||
T3S injectisome needle complex: Periplasmic domains of PrgH and PrgK: Salmonella typhimurium B Bacteria, 3.6 Å
cryo-EM structure injectisome secretin InvG in the open gate state, 4.1 Å: 6DV3 injectisome secretin InvG (residues 176-end) in the open gate state, 3.9 Å: 6DV6 injectisome needle filament, 3.3 Å: 6DWB |
Hu et al. (2018).
Hu J, Worrall LJ, Hong C, Vuckovic M, Atkinson CE, Caveney N, Yu Z, & Strynadka NCJ (2018). Cryo-EM analysis of the T3S injectisome reveals the structure of the needle and open secretin.
Nat Commun 9 1. PubMed Id: 30242280. doi:10.1038/s41467-018-06298-8. |
||
T3S injectisome needle complex: Salmonella typhimurium B Bacteria, 5.15 Å
cryo-EM structure InvG secretin domain beta-barrel, 3.42 Å: 6PEE Focused refinement of InvGN0N1:SpaPQR:PrgHK, 3.5 Å: 6PEM Focused refinement of InvGN0N1:SpaPQR:PrgIJ, 3.8 Å: 6PEP injectisome NC-base, 3.8 Å: 6Q14 Focused refinement of InvGN0N1:PrgHK:SpaPQR:PrgIJ, 4.1 Å: 6Q16 |
Hu et al. (2019).
Hu J, Worrall LJ, Vuckovic M, Hong C, Deng W, Atkinson CE, Brett Finlay B, Yu Z, & Strynadka NCJ (2019). T3S injectisome needle complex structures in four distinct states reveal the basis of membrane coupling and assembly.
Nat Microbiol 4 11:2010-2019. PubMed Id: 31427728. doi:10.1038/s41564-019-0545-z. |
||
Lunelli et al. (2020).
Lunelli M, Kamprad A, Bürger J, Mielke T, Spahn CMT, & Kolbe M (2020). Cryo-EM structure of the Shigella type III needle complex.
PLoS Pathog 16 2. PubMed Id: 32092125. doi:10.1371/journal.ppat.1008263. |
|||
Flacht et al. (2023).
Flacht L, Lunelli M, Kaszuba K, Chen ZA, O' Reilly FJ, Rappsilber J, Kosinski J, & Kolbe M (2023). Integrative structural analysis of the type III secretion system needle complex from Shigella flexneri.
Protein Sci :e4595. PubMed Id: 36790757. doi:10.1002/pro.4595. |
|||
T3S FliP-FliQ complex: Vibrio mimicus B Bacteria (expressed in E. coli), 4.10 Å
cryo-EM structure TS3 FliPQR-FlhB complex, 3.20 Å: 6S3L |
Kuhlen et al. (2020).
Kuhlen L, Johnson S, Zeitler A, Bäurle S, Deme JC, Caesar JJE, Debo R, Fisher J, Wagner S, & Lea SM (2020). The substrate specificity switch FlhB assembles onto the export gate to regulate type three secretion.
Nat Commun 11 1:1296. PubMed Id: 32157081. doi:10.1038/s41467-020-15071-9. |
||
T3S FliPQR complex: Pseudomonas savastanoi B Bacteria (expressed in E. coli), 3.50 Å
cryo-EM structure |
Kuhlen et al. (2020).
Kuhlen L, Johnson S, Zeitler A, Bäurle S, Deme JC, Caesar JJE, Debo R, Fisher J, Wagner S, & Lea SM (2020). The substrate specificity switch FlhB assembles onto the export gate to regulate type three secretion.
Nat Commun 11 1:1296. PubMed Id: 32157081. doi:10.1038/s41467-020-15071-9. |
||
type III secretion system EspA filament: Escherichia coli B Bacteria, 3.40 Å
cryo-EM structure |
Zheng et al. (2021).
Zheng W, Peña A, Ilangovan A, Clark JN, Frankel G, Egelman EH, & Costa TRD (2021). Cryoelectron-microscopy structure of the enteropathogenic Escherichia coli type III secretion system EspA filament.
Proc Natl Acad Sci U S A 118 2:e2022826118. PubMed Id: 33397726. doi:10.1073/pnas.2022826118. |
||
type III secretion system EspA filament: Escherichia coli B Bacteria, 3.56 Å
cryo-EM structure |
Lyons et al. (2021).
Lyons BJE, Atkinson CE, Deng W, Serapio-Palacios A, Finlay BB, & Strynadka NCJ (2021). Cryo-EM structure of the EspA filament from enteropathogenic Escherichia coli: Revealing the mechanism of effector translocation in the T3SS.
Structure 29 5:479-487.e4. PubMed Id: 33453150. doi:10.1016/j.str.2020.12.009. |
||
Gilzer et al. (2022).
Gilzer D, Schreiner M, & Niemann HH (2022). Direct interaction of a chaperone-bound type III secretion substrate with the export gate.
Nat Commun 13 1:2858. PubMed Id: 35654781. doi:10.1038/s41467-022-30487-1. |
|||
![]() ![]()
Type IV Secretion Systems
|
|||
Type IV outer membrane secretion complex: Escherichia coli B Bacteria, 2.60 Å
Comprised of 14 copies each of TraF, TraO, and TraN; 590 kDa. |
Chandran et al. (2009).
Chandran V, Fronzes R, Duquerroy S, Cronin N, Navaza J, & Waksman G (2009). Structure of the outer membrane complex of a type IV secretion system.
Nature 462 :1011-1015. PubMed Id: 19946264. |
||
Chung et al. (2019).
Chung JM, Sheedlo MJ, Campbell AM, Sawhney N, Frick-Cheng AE, Lacy DB, Cover TL, & Ohi MD (2019). Structure of the Helicobacter pylori Cag type IV secretion system.
Elife 8 :e47644. PubMed Id: 31210639. doi:10.7554/eLife.47644. |
|||
Cagβ1 ATPase: Helicobacter pylori B Bacteria (expressed in E. coli), 2.80 Å
Cagβ-AAD1/CagZ, 2.10 Å: 6JHO |
Wu et al. (2023).
Wu X, Zhao Y, Zhang H, Yang W, Yang J, Sun L, Jiang M, Wang Q, Wang Q, Ye X, Zhang X, & Wu Y (2023). Mechanism of regulation of the Helicobacter pylori Cagβ ATPase by CagZ.
Nat Commun 14 1:479. PubMed Id: 36717564. doi:10.1038/s41467-023-36218-4. |
||
PilQ Type IV competence pilus secretin: Vibrio cholerae B Bacteria, 2.70 Å
cryo-EM structure |
Weaver et al. (2020).
Weaver SJ, Ortega DR, Sazinsky MH, Dalia TN, Dalia AB, & Jensen GJ (2020). CryoEM structure of the type IVa pilus secretin required for natural competence in Vibrio cholerae.
Nat Commun 11 1:5080. PubMed Id: 33033258. doi:10.1038/s41467-020-18866-y. |
||
Durie et al. (2020).
Durie CL, Sheedlo MJ, Chung JM, Byrne BG, Su M, Knight T, Swanson M, Lacy DB, & Ohi MD (2020). Structural analysis of the Legionella pneumophila Dot/Icm type IV secretion system core complex.
Elife 9 :e59530. PubMed Id: 32876045. doi:10.7554/eLife.59530. |
|||
McCallum et al. (2021).
McCallum M, Tammam S, Rubinstein JL, Burrows LL, & Howell PL (2021). CryoEM map of Pseudomonas aeruginosa PilQ enables structural characterization of TsaP.
Structure 29 5:457-466.e4. PubMed Id: 33338410. doi:10.1016/j.str.2020.11.019. |
|||
outer-membrane core complex (inner ring) from a conjugative type IV secretion system: Salmonella enterica B Bacteria (expressed in E. coli), 3.34 Å
cryo-EM structure outer ring complex, 3.40 Å 7OKO |
Amin et al. (2021).
Amin H, Ilangovan A, & Costa TRD (2021). Architecture of the outer-membrane core complex from a conjugative type IV secretion system.
Nat Commun 12 1:6834. PubMed Id: 34824240. doi:10.1038/s41467-021-27178-8. |
||
outer-membrane core complex (inner ring) encoded by multi-drug resistance F plasmids, models for C13 reconstruction: Salmonella enterica B Bacteria, 3.31 Å
cryo-EM structure Models for C17 reconstruction, 2.95 Å 7SPC Models for C13 reconstruction encoded by a plasmid overproducing TraV, TraK and TraB of pED208, 2.97 Å 7SPI Models for C17 reconstruction encoded by a plasmid overproducing TraV, TraK and TraB of pED208, 3.56 Å 7SPJ models for C16 reconstruction encoded by a plasmid overproducing TraV, TraK and TraB of pED208, 3.90 Å 7SPK |
Liu et al. (2022).
Liu X, Khara P, Baker ML, Christie PJ, & Hu B (2022). Structure of a type IV secretion system core complex encoded by multi-drug resistance F plasmids.
Nat Commun 13 1:379. PubMed Id: 35046412. doi:10.1038/s41467-022-28058-5. |
||
![]() ![]()
Type VI Secretion Systems
|
|||
Type VI secretion system, TssK-TssF-TssG baseplate subcomplex: Escherichia coli B Bacteria, 3.7 Å
cryo-EM structure |
Park et al. (2018).
Park YJ, Lacourse KD, Cambillau C, DiMaio F, Mougous JD, & Veesler D (2018). Structure of the type VI secretion system TssK-TssF-TssG baseplate subcomplex revealed by cryo-electron microscopy.
Nat Commun 9 1. PubMed Id: 30568167. doi:10.1038/s41467-018-07796-5. |
||
Flaugnatti et al. (2020).
Flaugnatti N, Rapisarda C, Rey M, Beauvois SG, Nguyen VA, Canaan S, Durand E, Chamot-Rooke J, Cascales E, Fronzes R, & Journet L (2020). Structural basis for loading and inhibition of a bacterial T6SS phospholipase effector by the VgrG spike.
EMBO J 39 11. PubMed Id: 32350888. doi:10.15252/embj.2019104129. |
|||
PbuCsx28 protein, homo-octamer: Prevotella buccae B Bacteria (expressed in E. coli), 3.65 Å
cryo-EM structure |
VanderWal et al. (2023).
VanderWal AR, Park JU, Polevoda B, Nicosia JK, Molina Vargas AM, Kellogg EH, & O'Connell MR (2023). Csx28 is a membrane pore that enhances CRISPR-Cas13b-dependent antiphage defense.
Science 380 6643:410-415. PubMed Id: 37104586. doi:10.1126/science.abm1184. |
||
![]() ![]()
Type IX Secretion Systems
|
|||
SprA-based type IX (type 9) secretion system translocon: Flavobacterium johnsoniae B Bacteria, 3.5 Å
cryo-EM structure translocon plug-complex, 3.7 Å: 6H3J |
Lauber et al. (2018).
Lauber F, Deme JC, Lea SM, & Berks BC (2018). Type 9 secretion system structures reveal a new protein transport mechanism.
Nature 564 7734:77-82. PubMed Id: 30405243. doi:10.1038/s41586-018-0693-y. |
||
![]() ![]()
Forespore Sporulation Channels
These are ring-shaped conduits that connect the mother cell and forespore during sporulation. |
|||
SpoIIIAG sporolation channel: Bacillus subtilis B Bacteria (expressed in E. coli), 3.5 Å
cryo-EM structure |
Zeytuni et al. (2017).
Zeytuni N, Hong C, Flanagan KA, Worrall LJ, Theiltges KA, Vuckovic M, Huang RK, Massoni SC, Camp AH, Yu Z, & Strynadka NC (2017). Near-atomic resolution cryoelectron microscopy structure of the 30-fold homooligomeric SpoIIIAG channel essential to spore formation in Bacillus subtilis.
Proc Natl Acad Sci USA 114 34:E7073-E7081. PubMed Id: 28784753. doi:10.1073/pnas.1704310114. |
||
![]() ![]()
Gasdermin (GSDM) Family
Gasdermins are multi-subunit β-barrel forming proteins The gasdermins are expressed in the skin, mucosa, and immune antigen-presenting cells. |
|||
Gasdermin GSDMA3-NT pore: Mus musculus E Eukaryota (expressed in E. coli), 3.8 Å
cryo-EM structure. C27-symmetry. monomer crystal structure, 1.90 Å: 5B5R |
Ruan et al. (2018).
Ruan J, Xia S, Liu X, Lieberman J, & Wu H (2018). Cryo-EM structure of the gasdermin A3 membrane pore.
Nature 557 7703:62-67. PubMed Id: 29695864. doi:10.1038/s41586-018-0058-6. |
||
Gasdermin D pore: Homo sapiens E Eukaryota (expressed in E. coli), 3.90 Å
cryo-EM structure |
Xia et al. (2021).
Xia S, Zhang Z, Magupalli VG, Pablo JL, Dong Y, Vora SM, Wang L, Fu TM, Jacobson MP, Greka A, Lieberman J, Ruan J, & Wu H (2021). Gasdermin D pore structure reveals preferential release of mature interleukin-1.
Nature 593 7860:607-611. PubMed Id: 33883744. doi:10.1038/s41586-021-03478-3. |
||
Wang et al. (2023).
Wang C, Shivcharan S, Tian T, Wright S, Ma D, Chang J, Li K, Song K, Xu C, Rathinam VA, & Ruan J (2023). Structural basis for GSDMB pore formation and its targeting by IpaH7.8.
Nature 616 7957:590-597. PubMed Id: 36991122. doi:10.1038/s41586-023-05832-z. |
|||
Zhong et al. (2023).
Zhong X, Zeng H, Zhou Z, Su Y, Cheng H, Hou Y, She Y, Feng N, Wang J, Shao F, & Ding J (2023). Structural mechanisms for regulation of GSDMB pore-forming activity.
Nature 616 7957:598-605. PubMed Id: 36991125. doi:10.1038/s41586-023-05872-5. |
|||
![]() ![]() ![]()
TRANSMEMBRANE PROTEINS: ALPHA-HELICAL
|
|||
![]() ![]()
Adventitious Membrane Proteins: Alpha-helical Pore-forming Toxins.
|
|||
Cytolysin A (ClyA, aka HlyE): Escherichia coli B Bacteria, 3.29 Å
|
Mueller et al. (2009).
Mueller M, Grauschopf U, Maier T, Glockshuber R, & Ban N (2009). The structure of a cytolytic alpha-helical toxin pore reveals its assembly mechanism.
Nature 459 :726-730. PubMed Id: 19421192. |
||
Wilson et al. (2019).
Wilson JS, Churchill-Angus AM, Davies SP, Sedelnikova SE, Tzokov SB, Rafferty JB, Bullough PA, Bisson C, & Baker PJ (2019). Identification and structural analysis of the tripartite α-pore forming toxin of Aeromonas hydrophila.
Nat Commun 10 1. PubMed Id: 31263098. doi:10.1038/s41467-019-10777-x. |
|||
Churchill-Angus et al. (2021).
Churchill-Angus AM, Schofield THB, Marlow TR, Sedelnikova SE, Wilson JS, Rafferty JB, & Baker PJ (2021). Characterisation of a tripartite ?-pore forming toxin from Serratia marcescens.
Sci Rep 11 1:6447. PubMed Id: 33742033. doi:10.1038/s41598-021-85726-0. |
|||
Cry6Aa toxin: Bacillus thuringiensis B Bacteria (expressed in Pseudomonas fluorescens), 2.7 Å
trypsin-cleaved, 2.0 Å: 5KUC supersedes 5J65. |
Dementiev et al. (2016).
Dementiev A, Board J, Sitaram A, Hey T, Kelker MS, Xu X, Hu Y, Vidal-Quist C, Chikwana V, Griffin S, McCaskill D, Wang NX, Hung SC, Chan MK, Lee MM, Hughes J, Wegener A, Aroian RV, Narva KE, & Berry C (2016). The pesticidal Cry6Aa toxin from Bacillus thuringiensis is structurally similar to HlyE-family alpha pore-forming toxins.
BMC Biol 14 :71. PubMed Id: 27576487. doi:10.1186/s12915-016-0295-9. |
||
FraC eukaryotic pore-forming toxin from sea anemone: Actinia fragacea E Eukaryota, 1.80 Å
|
Mechaly et al. (2011).
Mechaly AE, Bellomio A, Gil-Cartón D, Morante K, Valle M, González-Mañas JM, & Guérin DM (2011). Structural insights into the oligomerization and architecture of eukaryotic membrane pore-forming toxins.
Structure 19 :181-191. PubMed Id: 21300287. |
||
FraC toxin pore with bound lipids: Actinia fragacea E Eukaryota (expressed in E. coli), 3.14 Å
Water soluble monomer (I), 1.70 Å: 3VWI Water soluble monomer (II), 2.10 Å: 3W9P Dimer with phosphorylcholine (I), 1.60 Å: 4TSL Dimer with phosphorylcholine (II), 1.57 Å: 4TSN Lipid (DHPC) bound (I), 2.30 Å: 4TSO Lipid (DHPC) bound (II), 2.15 Å: 4TSP Lipid (DHPC) bound (III), 1.60 Å: 4TSQ |
Tanaka et al. (2015).
Tanaka K, Caaveiro JM, Morante K, González-Mañas JM, & Tsumoto K (2015). Structural basis for self-assembly of a cytolytic pore lined by protein and lipid.
Nat Commun 6 :6337. PubMed Id: 25716479. doi:10.1038/ncomms7337. |
||
Dermicidin hexameric anti-microbial peptide channel: Homo sapiens E Eukaryota (expressed in Synthetic construct), 2.49 Å
|
Song et al. (2013).
Song C, Weichbrodt C, Salnikov ES, Dynowski M, Forsberg BO, Bechinger B, Steinem C, de Groot BL, Zachariae U, & Zeth K (2013). Crystal structure and functional mechanism of a human antimicrobial membrane channel.
Proc Natl Acad Sci USA 110 :4586-4591. PubMed Id: 23426625. doi:10.1073/pnas.1214739110. |
||
Tc Toxin, TcA prepore (TcdA1) subunit: Photorhabdus luminescens B Bacteria (expressed in E. coli), 3.50 Å
TcB-TcC (TcdB2-TccC3) subunits, 2.17 Å: 4O9X See also EM structures deposited in Electron Microscopy Data Bank under accession numbers EMD-2551 and EMD-2552. |
Meusch et al. (2014).
Meusch D, Gatsogiannis C, Efremov RG, Lang AE, Hofnagel O, Vetter IR, Aktories K, & Raunser S (2014). Mechanism of Tc toxin action revealed in molecular detail.
Nature 508 :61-65. PubMed Id: 24572368. doi:10.1038/nature13015. |
||
Tc Toxin, TcA pore (TcdA1) embedded in lipid nanodiscs using flexible fitting: Photorhabdus luminescens B Bacteria (expressed in E. coli), 3.46 Å
cryo-EM structure. without flexible fitting, 3.46 Å: 5LKI |
Gatsogiannis et al. (2016).
Gatsogiannis C, Merino F, Prumbaum D, Roderer D, Leidreiter F, Meusch D, & Raunser S (2016). Membrane insertion of a Tc toxin in near-atomic detail.
Nat Struct Mol Biol 23 :884-890. PubMed Id: 27571177. doi:10.1038/nsmb.3281. |
||
Tc holo toxin: Photorhabdus luminescens B Bacteria (expressed in E. coli), 3.4 Å
cryo-EM structure TccC3-D651A mutant, 3.4 Å: 6SUE |
Roderer et al. (2019).
Roderer D, Hofnagel O, Benz R, & Raunser S (2019). Structure of a Tc holotoxin pore provides insights into the translocation mechanism.
Proc Natl Acad Sci USA 116 46:23083-23090. PubMed Id: 31666324. doi:10.1073/pnas.1909821116. |
||
Listeriolysin O pore-forming toxin: Listeria monocytogenes B Bacteria, 2.15 Å
A model of the assembled pore contains 36 monomers. In that configuration, the membrane-spanning region of the toxin is a mix of α-helices and β-sheets |
Köster et al. (2014).
Köster S, van Pee K, Hudel M, Leustik M, Rhinow D, Kühlbrandt W, Chakraborty T, & Yildiz O (2014). Crystal structure of listeriolysin O reveals molecular details of oligomerization and pore formation.
Nat Commun 5 :3690. PubMed Id: 24751541. doi:10.1038/ncomms4690. |
||
Schubert et al. (2018).
Schubert E, Vetter IR, Prumbaum D, Penczek PA, & Raunser S (2018). Membrane insertion of α-xenorhabdolysin in near-atomic detail.
Elife 7 :e38017. PubMed Id: 30010541. doi:10.7554/eLife.38017. |
|||
VacA vacuolating cytotoxin A oligomeric assembly OA-1: Helicobacter pylori B Bacteria, 3.2 Å
cryo-EM structure. The main structural elements are β-helices, but the pore is formed by transmembrane α-helices assembly OA-2a, 3.9 Å: 6NYG assembly OA-2b, 3.2 Å: 6NYJ assembly OA-2c, 3.7 Å: 6NYL assembly OA-2d, 3.6 Å: 6NYM assembly OA-2e, 3.5 Å: 6NYN |
Zhang et al. (2019).
Zhang K, Zhang H, Li S, Pintilie GD, Mou TC, Gao Y, Zhang Q, van den Bedem H, Schmid MF, Au SWN, & Chiu W (2019). Cryo-EM structures of Helicobacter pylori vacuolating cytotoxin A oligomeric assemblies at near-atomic resolution.
Proc Natl Acad Sci USA 116 14:6800-6805. PubMed Id: 30894496. doi:10.1073/pnas.1821959116. |
||
VacA toxin oligomer: Helicobacter pylori B Bacteria, 3.8 Å
cryo-EM structure |
Su et al. (2019).
Su M, Erwin AL, Campbell AM, Pyburn TM, Salay LE, Hanks JL, Lacy DB, Akey DL, Cover TL, & Ohi MD (2019). Cryo-EM Analysis Reveals Structural Basis of Helicobacter pylori VacA Toxin Oligomerization.
J Mol Biol 431 10:1956-1965. PubMed Id: 30954575. doi:10.1016/j.jmb.2019.03.029. |
||
RhopH erythrocyte invasion protein complex, soluble form: Plasmodium falciparum E Eukaryota, 2.92 Å
cryo-EM structure |
Schureck et al. (2021).
Schureck MA, Darling JE, Merk A, Shao J, Daggupati G, Srinivasan P, Olinares PDB, Rout MP, Chait BT, Wollenberg K, Subramaniam S, & Desai SA (2021). Malaria parasites use a soluble RhopH complex for erythrocyte invasion and an integral form for nutrient uptake.
Elife 10 :e65282. PubMed Id: 33393463. doi:10.7554/eLife.65282. |
||
Byrne et al. (2021).
Byrne MJ, Iadanza MG, Perez MA, Maskell DP, George RM, Hesketh EL, Beales PA, Zack MD, Berry C, & Thompson RF (2021). Cryo-EM structures of an insecticidal Bt toxin reveal its mechanism of action on the membrane.
Nat Commun 12 1:2791. PubMed Id: 33990582. doi:10.1038/s41467-021-23146-4. |
|||
![]() ![]()
De novo Designed Membrane Proteins
Functional Proteins Designed from First Principles |
|||
Joh et al. (2014).
Joh NH, Wang T, Bhate MP, Acharya R, Wu Y, Grabe M, Hong M, Grigoryan G, & DeGrado WF (2014). De novo design of a transmembrane Zn2+-transporting four-helix bundle.
Science 346 6216:1520-1524. PubMed Id: 25525248. doi:10.1126/science.1261172. |
|||
Transmembrane protein TMHC2_E: De novo designed protein U Unclassified (expressed in E. coli), 2.95 Å
Transmembrane protein TMHC4_R, 3.89 Å: 6B85 |
Lu et al. (2018).
Lu P, Min D, DiMaio F, Wei KY, Vahey MD, Boyken SE, Chen Z, Fallas JA, Ueda G, Sheffler W, Mulligan VK, Xu W, Bowie JU, & Baker D (2018). Accurate computational design of multipass transmembrane proteins.
Science 359 6379:1042-1046. PubMed Id: 29496880. doi:10.1126/science.aaq1739. |
||
PL5 synthetic transmembrane domain variant of human phospholamban: De novo designed U Unclassified (expressed in E. coli), 3.17 Å
For wild-type phospholamban homopentamer, see 1ZLL PL5 was expressed in E. coli as a C-terminal fusion to T4-Lysozyme . protein stabilized by van der Waals interaction, 1.9 Å: 6MCT mini-eVgL membrane protein, C2221 form-1, 2.5 Å: 6MPW mini-eVgL membrane protein, C2221 form-2, 2.5 Å: 6MQ2 |
Mravic et al. (2019).
Mravic M, Thomaston JL, Tucker M, Solomon PE, Liu L, & DeGrado WF (2019). Packing of apolar side chains enables accurate design of highly stable membrane proteins.
Science 363 6434:1418-1423. PubMed Id: 30923216. doi:10.1126/science.aav7541. |
||
Xu et al. (2020).
Xu C, Lu P, Gamal El-Din TM, Pei XY, Johnson MC, Uyeda A, Bick MJ, Xu Q, Jiang D, Bai H, Reggiano G, Hsia Y, Brunette TJ, Dou J, Ma D, Lynch EM, Boyken SE, Huang PS, Stewart L, DiMaio F, Kollman JM, Luisi BF, Matsuura T, Catterall WA, & Baker D (2020). Computational design of transmembrane pores.
Nature 585 7823:129-134. PubMed Id: 32848250. doi:10.1038/s41586-020-2646-5. |
|||
![]() ![]()
Novel Membrane Proteins
Membrane proteins that are not readily classified |
|||
Cathelicidin LL-37 antimicrobial peptide, C-terminal extension tetramer: Homo sapiens E Eukaryota (expressed in chemical synthesis), 1.83 Å
|
Sancho-Vaello et al. (2020).
Sancho-Vaello E, Gil-Carton D, François P, Bonetti EJ, Kreir M, Pothula KR, Kleinekathöfer U, & Zeth K (2020). The structure of the antimicrobial human cathelicidin LL-37 shows oligomerization and channel formation in the presence of membrane mimics.
Sci Rep 10 1:17356. PubMed Id: 33060695. doi:10.1038/s41598-020-74401-5. |
||
YeeE thiosulfate transporter: Spirochaeta thermophila B Bacteria (expressed in E. coli), 2.52 Å
inactive mutant C91A, 2.60 Å: 6LEP |
Tanaka et al. (2020).
Tanaka Y, Yoshikaie K, Takeuchi A, Ichikawa M, Mori T, Uchino S, Sugano Y, Hakoshima T, Takagi H, Nonaka G, & Tsukazaki T (2020). Crystal structure of a YeeE/YedE family protein engaged in thiosulfate uptake.
Sci Adv 6 35:eaba7637. PubMed Id: 32923628. doi:10.1126/sciadv.aba7637. |
||
Sukalskaia et al. (2021).
Sukalskaia A, Straub MS, Deneka D, Sawicka M, & Dutzler R (2021). Cryo-EM structures of the TTYH family reveal a novel architecture for lipid interactions.
Nat Commun 12 1:4893. PubMed Id: 34385445. doi:10.1038/s41467-021-25106-4. |
|||
Li et al. (2021).
Li B, Hoel CM, & Brohawn SG (2021). Structures of tweety homolog proteins TTYH2 and TTYH3 reveal a Ca2+-dependent switch from intra- to intermembrane dimerization.
Nat Commun 12 1:6913. PubMed Id: 34824283. doi:10.1038/s41467-021-27283-8. |
|||
TACAN (TMEM120A) protein, apo form: Mus musculus E Eukaryota (expressed in HEK293 cells), 3.50 Å
cryo-EM structure H196A H197A mutant form, 2.80 Å 7N0L |
Niu et al. (2021).
Niu Y, Tao X, Vaisey G, Olinares PDB, Alwaseem H, Chait BT, & MacKinnon R (2021). Analysis of the mechanosensor channel functionality of TACAN.
Elife 10 :e71188. PubMed Id: 34374644. doi:10.7554/eLife.71188. |
||
TACAN (TMEM120A) protein: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.24 Å
cryo-EM structure |
Xue et al. (2021).
Xue J, Han Y, Baniasadi H, Zeng W, Pei J, Grishin NV, Wang J, Tu BP, & Jiang Y (2021). TMEM120A is a coenzyme A-binding membrane protein with structural similarities to ELOVL fatty acid elongase.
Elife 10 :e71220. PubMed Id: 34374645. doi:10.7554/eLife.71220. |
||
TACAN (TMEM120A) protein in CoASH-bound state: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.69 Å
cryo-EM structure CoASH-free state, 4.00 Å 7F3U |
Rong et al. (2021).
Rong Y, Jiang J, Gao Y, Guo J, Song D, Liu W, Zhang M, Zhao Y, Xiao B, & Liu Z (2021). TMEM120A contains a specific coenzyme A-binding site and might not mediate poking- or stretch-induced channel activities in cells.
Elife 10 :e71474. PubMed Id: 34409941. doi:10.7554/eLife.71474. |
||
TACAN (TMEM120A) protein in a closed state: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.66 Å
cryo-EM structure |
Chen et al. (2022).
Chen X, Wang Y, Li Y, Lu X, Chen J, Li M, Wen T, Liu N, Chang S, Zhang X, Yang X, & Shen Y (2022). Cryo-EM structure of the human TACAN in a closed state.
Cell Rep 38 9:110445. PubMed Id: 35235791. doi:10.1016/j.celrep.2022.110445. |
||
marker of self 5-TM receptor CD47: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.40 Å
cryo-EM structure |
Fenalti et al. (2021).
Fenalti G, Villanueva N, Griffith M, Pagarigan B, Lakkaraju SK, Huang RY, Ladygina N, Sharma A, Mikolon D, Abbasian M, Johnson J, Hadjivassiliou H, Zhu D, Chamberlain PP, Cho H, & Hariharan K (2021). Structure of the human marker of self 5-transmembrane receptor CD47.
Nat Commun 12 1:5218. PubMed Id: 34471125. doi:10.1038/s41467-021-25475-w. |
||
Meckel-Gruber protein Meckelin: Homo spiens E Eukaryota (expressed in HEK293 cells), 3.34 Å
cryo-EM structure |
Liu et al. (2021).
Liu D, Qian D, Shen H, & Gong D (2021). Structure of the human Meckel-Gruber protein Meckelin.
Sci Adv 7 45:eabj9748. PubMed Id: 34731008. doi:10.1126/sciadv.abj9748. |
||
endoplasmic reticulum protein Jagunal (JAGN1): Homo sapiens E Eukaryota (expressed in Komagataella pastoris), 2.25 Å
The protein was stabilized for crystallization using a split superfolder green fluorescent protein (from Aequorea victoria) attached to N- and C-termini of JAGN1. |
Liu et al. (2020).
Liu S, Li S, Yang Y, & Li W (2020). Termini restraining of small membrane proteins enables structure determination at near-atomic resolution.
Sci Adv 6 51:eabe3717. PubMed Id: 33355146. doi:10.1126/sciadv.abe3717. |
||
YejM/LapB complex involved in lipopolysaccharide synthesis: Escherichia coli B Bacteria, 3.90 Å
cryo-EM structure |
Shu & Mi (2022).
Shu S & Mi W (2022). Regulatory mechanisms of lipopolysaccharide synthesis in Escherichia coli.
Nat Commun 13 1:4576. PubMed Id: 35931690. doi:10.1038/s41467-022-32277-1. |
||
Voltage-sensor protein TMEM266, coiled-coiled region: Mus musculus E Eukaryota (expressed in E. coli), 2.30 Å
|
Kawai et al. (2022).
Kawai T, Narita H, Konno K, Akter S, Andriani RT, Iwasaki H, Nishikawa S, Yokoi N, Fukata Y, Fukata M, Wiriyasermkul P, Kongpracha P, Nagamori S, Takao K, Miyakawa T, Abe M, Sakimura K, Watanabe M, Nakagawa A, & Okamura Y (2022). Insight into the function of a unique voltage-sensor protein (TMEM266) and its short form in mouse cerebellum.
Biochem J 479 11:1127-1145. PubMed Id: 35574701. doi:10.1042/BCJ20220033. |
||
TMEM87A (or Elkin1, also known as Golgi-pH-regulating cation channel (GolpHCat)): Homo sapiens E Eukaryota (expressed in sf9 cells), 4.74 Å
cryo-EM structure |
Hoel et al. (2022).
Hoel CM, Zhang L, & Brohawn SG (2022). Structure of the GOLD-domain seven-transmembrane helix protein family member TMEM87A.
Elife 11 :e81704. PubMed Id: 36373655. doi:10.7554/eLife.81704. |
||
Kang et al. (2024).
Kang H, Han AR, Zhang A, Jeong H, Koh W, Lee JM, Lee H, Jo HY, Maria-Solano MA, Bhalla M, Kwon J, Roh WS, Yang J, An HJ, Choi S, Kim HM, & Lee CJ (2024). GolpHCat (TMEM87A), a unique voltage-dependent cation channel in Golgi apparatus, contributes to Golgi-pH maintenance and hippocampus-dependent memory.
Nat Commun 15 1:5830. PubMed Id: 38992057. doi:10.1038/s41467-024-49297-8. |
|||
![]() ![]()
Mammalian Cell Entry (MCE) Proteins
These protein are involved in lipid trafficking between inner and outer bacterial membranes. The name originates from the erroneous early belief that they mediate mammalian cell entry in M. tuberculosis |
|||
Ekiert et al. (2017).
Ekiert DC, Bhabha G, Isom GL, Greenan G, Ovchinnikov S, Henderson IR, Cox JS, & Vale RD (2017). Architectures of Lipid Transport Systems for the Bacterial Outer Membrane.
Cell 169 2:273-285.e17. PubMed Id: 28388411. doi:10.1016/j.cell.2017.03.019. |
|||
MlaFB component of MlaFEDB ABC transporter complex (dimer): Escherichia coli B Bacteria, 2.90 Å
monomeric state, 2.60 Å: 6XGZ |
Kolich et al. (2020).
Kolich LR, Chang YT, Coudray N, Giacometti SI, MacRae MR, Isom GL, Teran EM, Bhabha G, & Ekiert DC (2020). Structure of MlaFB uncovers novel mechanisms of ABC transporter regulation.
Elife 9 . PubMed Id: 32602838. doi:10.7554/eLife.60030. |
||
MlaFEDB in nanodiscs with phospholipid substrates: Escherichia coi B Bacteria, 3.05 Å
cryo-EM structure |
Coudray et al. (2020).
Coudray N, Isom GL, MacRae MR, Saiduddin MN, Bhabha G, & Ekiert DC (2020). Structure of bacterial phospholipid transporter MlaFEDB with substrate bound.
Elife 9 :e62518. PubMed Id: 33236984. doi:10.7554/eLife.62518. |
||
Tang et al. (2021).
Tang X, Chang S, Qiao W, Luo Q, Chen Y, Jia Z, Coleman J, Zhang K, Wang T, Zhang Z, Zhang C, Zhu X, Wei X, Dong C, Zhang X, & Dong H (2021). Structural insights into outer membrane asymmetry maintenance in Gram-negative bacteria by MlaFEDB.
Nat Struct Mol Biol 28 1:81-91. PubMed Id: 33199922. doi:10.1038/s41594-020-00532-y. |
|||
Chi et al. (2020).
Chi X, Fan Q, Zhang Y, Liang K, Wan L, Zhou Q, & Li Y (2020). Structural mechanism of phospholipids translocation by MlaFEDB complex.
Cell Res 30 12:1127-1135. PubMed Id: 32884137. doi:10.1038/s41422-020-00404-6. |
|||
Zhang et al. (2020).
Zhang Y, Fan Q, Chi X, Zhou Q, & Li Y (2020). Cryo-EM structures of Acinetobacter baumannii glycerophospholipid transporter.
Cell Discov 6 1:86. PubMed Id: 33298869. doi:10.1038/s41421-020-00230-5. |
|||
Zhou et al. (2021).
Zhou C, Shi H, Zhang M, Zhou L, Xiao L, Feng S, Im W, Zhou M, Zhang X, & Huang Y (2021). Structural Insight into Phospholipid Transport by the MlaFEBD Complex from P. aeruginosa.
J Mol Biol 433 13:166986. PubMed Id: 33845086. doi:10.1016/j.jmb.2021.166986. |
|||
Chen et al. (2023).
Chen J, Fruhauf A, Fan C, Ponce J, Ueberheide B, Bhabha G, & Ekiert DC (2023). Structure of an endogenous mycobacterial MCE lipid transporter.
Nature 620 7973:445-452. PubMed Id: 37495693. doi:10.1038/s41586-023-06366-0. |
|||
![]() ![]()
Outer Membrane Proteins
|
|||
Wza translocon for capsular polysaccharides: Escherichia coli B Bacteria, 2.25 Å
The first outer membrane protein that penetrates the membrane as an alpha-helix bundle. The intact protein is comprised of eight monomers. |
Dong et al. (2006).
Dong C, Beis K, Nesper J, Brunkan-LaMontagne AL, Clarke BR JM, Whitfield C, & Naismith JH (2006). Wza the translocon for E. coli. capsular polysaccharides defines a new class of membrane protein.
Nature 444 :226-229. PubMed Id: 17086202. |
||
Ziegler et al. (2008).
Ziegler K, Benz R, & Schulz GE (2008). A putative alpha-helical porin from Corynebacterium glutamicum.
J Mol Biol 379 :482-491. PubMed Id: 18462756. |
|||
Abellón-Ruiz et al. (2017).
Abellón-Ruiz J, Kaptan SS, Baslé A, Claudi B, Bumann D, Kleinekathöfer U, & van den Berg B (2017). Structural basis for maintenance of bacterial outer membrane lipid asymmetry.
Nat Microbiol 2 12:1616-1623. PubMed Id: 29038444. doi:10.1038/s41564-017-0046-x. |
|||
KpsMT-KspE translocon complex for capsular polysaccharides, apo form, state 1: Caldimonas thermodepolymerans B Bacteria (expressed in E. coli), 3.10 Å
cryo-EM structure KpsMT(E151Q mutant)-KpsE complex, with bound ATP, 3.10 Å: 8TSH with bound ADP and AlF4-, 4.40 Å: 8TSI KpsMT-KspE-KspE complex, apo form, state 2, 3.40 Å: 8TSL KpsMT-KspE-KspE complex, in glycolipid, state 1, 3.40 Å: 8TUN KpsMT-KspE-KspE complex, in glycolipid, state 2, 3.40 Å: 8TT3 |
Kuklewicz & Zimmer (2024).
Kuklewicz J, & Zimmer J (2024). Molecular insights into capsular polysaccharide secretion.
Nature 628 8009:901-909. PubMed Id: 38570679. doi:10.1038/s41586-024-07248-9. |
||
![]() ![]()
Bacterial Cell Divison Proteins
These proteins comprise the so-called 'divisome' |
|||
CrgA cell division structural & regulatory protein: Mycobacterium tuberculosis B Bacteria (expressed in E. coli), NMR Structure
Structure of protein determined using both oriented sample and magic-angle spinning NMR data from liquid-crystalline lipid bilayer preparation. |
Das et al. (2015).
Das N, Dai J, Hung I, Rajagopalan MR, Zhou HX, & Cross TA (2015). Structure of CrgA, a cell division structural and regulatory protein from Mycobacterium tuberculosis, in lipid bilayers.
Proc Natl Acad Sci USA 112 2:E119-E126. PubMed Id: 25548160. doi:10.1073/pnas.1415908112. |
||
Nguyen et al. (2023).
Nguyen HTV, Chen X, Parada C, Luo AC, Shih O, Jeng US, Huang CY, Shih YL, & Ma C (2023). Structure of the heterotrimeric membrane protein complex FtsB-FtsL-FtsQ of the bacterial divisome.
Nat Commun 14 1:1903. PubMed Id: 37019934. doi:10.1038/s41467-023-37543-4. |
|||
FtsE-FtsX complex: Mycobacterium tuberculosis B Bacteria (expressed in expressed in E. coli), 3.90 Å
cryo-EM structure FtsE-FtsX complex belongs to the type VII subfamily of ABC transporters. with bound RipC, 3.90 Å: 8IDC with bound RipC and ATP, complex type 1, 4.00 Å: 8IDD with bound RipC and ADP, complex type 2, 5.70 Å: 8IGQ FtsE(E165Q)-FtsX with bound RipC and ATP, 3.90 Å: 8JIA |
Li et al. (2023).
Li J, Xu X, Shi J, Hermoso JA, Sham LT, & Luo M (2023). Regulation of the cell division hydrolase RipC by the FtsEX system in Mycobacterium tuberculosis.
Nat Commun 14 1:7999. PubMed Id: 38044344. doi:10.1038/s41467-023-43770-6. |
||
Xu et al. (2023).
Xu X, Li J, Chua WZ, Pages MA, Shi J, Hermoso JA, Bernhardt T, Sham LT, & Luo M (2023). Mechanistic insights into the regulation of cell wall hydrolysis by FtsEX and EnvC at the bacterial division site.
Proc Natl Acad Sci U S A 120 21:e2301897120. PubMed Id: 37186861. doi:10.1073/pnas.2301897120. |
|||
Hao et al. (2024).
Hao A, Suo Y, & Lee SY (2024). Structural insights into the FtsEX-EnvC complex regulation on septal peptidoglycan hydrolysis in Vibrio cholerae.
Structure 32 2:188-199.e5. PubMed Id: 38070498. doi:10.1016/j.str.2023.11.007. |
|||
![]() ![]()
Chemotaxis Protein Complexes
|
|||
Core Chemotaxis Signaling Unit, carrying QQQQ receptor mutation: Escherichia coli B Bacteria, 8.38 Å
cryo-EM structure 2D array with subtomogram averaging |
Cassidy et al. (2020).
Cassidy CK, Himes BA, Sun D, Ma J, Zhao G, Parkinson JS, Stansfeld PJ, Luthey-Schulten Z, & Zhang P (2020). Structure and dynamics of the E. coli chemotaxis core signaling complex by cryo-electron tomography and molecular simulations.
Commun Biol 3 1. PubMed Id: 31925330. doi:10.1038/s42003-019-0748-0. |
||
![]() ![]()
Autoinducer Export Superfamily
Proteins in this family are involved in cell-to-cell comminications, such as quorum sensing (QS) |
|||
TqsA autoinducer-2 exporter: Escherichia coli B Bacteria, 3.30 Å
cryo-EM structure |
Khera et al. (2022).
Khera R, Mehdipour AR, Bolla JR, Kahnt J, Welsch S, Ermler U, Muenke C, Robinson CV, Hummer G, Xie H, & Michel H (2022). Cryo-EM structures of pentameric autoinducer-2 exporter from Escherichia coli reveal its transport mechanism.
EMBO J 41 18:e109990. PubMed Id: 35698912. doi:10.15252/embj.2021109990. |
||
YdiK autoinducer-2 exporter: Escherichia coli B Bacteria, 2.80 Å
cryo-EM structure |
Khera et al. (2022).
Khera R, Mehdipour AR, Bolla JR, Kahnt J, Welsch S, Ermler U, Muenke C, Robinson CV, Hummer G, Xie H, & Michel H (2022). Cryo-EM structures of pentameric autoinducer-2 exporter from Escherichia coli reveal its transport mechanism.
EMBO J 41 18:e109990. PubMed Id: 35698912. doi:10.15252/embj.2021109990. |
||
![]() ![]()
Tetraspanins
Mediate essential functions in the immune, reproductive, genitourinary, and auditory systems |
|||
CD53 full-length tetraspanin: Homo sapiens E Eukaryota (expressed in Komagataella pastoris), 2.90 Å
|
Yang et al. (2020).
Yang Y, Liu XR, Greenberg ZJ, Zhou F, He P, Fan L, Liu S, Shen G, Egawa T, Gross ML, Schuettpelz LG, & Li W (2020). Open conformation of tetraspanins shapes interaction partner networks on cell membranes.
EMBO J 39 18:e105246. PubMed Id: 32974937. doi:10.15252/embj.2020105246. |
||
CD81 full-length tetraspanin: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.95 Å
|
Zimmerman et al. (2016).
Zimmerman B, Kelly B, McMillan BJ, Seegar TC, Dror RO, Kruse AC, & Blacklow SC (2016). Crystal Structure of a Full-Length Human Tetraspanin Reveals a Cholesterol-Binding Pocket.
Cell 167 4:1041-1051. PubMed Id: 27881302. doi:10.1016/j.cell.2016.09.056. |
||
CD81 full-length tetraspanin in complex with CD19 bound to coltuximab Fab fragment: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.80 Å
cryo-EM structure |
Susa et al. (2021).
Susa KJ, Rawson S, Kruse AC, & Blacklow SC (2021). Cryo-EM structure of the B cell co-receptor CD19 bound to the tetraspanin CD81.
Science 371 6526:300-305. PubMed Id: 33446559. doi:10.1126/science.abd9836. |
||
CD9 full-length tetraspanin: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.70 Å
|
Umeda et al. (2020).
Umeda R, Satouh Y, Takemoto M, Nakada-Nakura Y, Liu K, Yokoyama T, Shirouzu M, Iwata S, Nomura N, Sato K, Ikawa M, Nishizawa T, & Nureki O (2020). Structural insights into tetraspanin CD9 function.
Nat Commun 11 1. PubMed Id: 32231207. doi:10.1038/s41467-020-15459-7. |
||
Perioherin-2 (PRPH2)-Rod out segment membrane protein 1 (ROM1) hetero-dimer: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.70 Å
cryo-EM structure |
El Mazouni & Gros (2022).
El Mazouni D, & Gros P (2022). Cryo-EM structures of peripherin-2 and ROM1 suggest multiple roles in photoreceptor membrane morphogenesis.
Sci Adv 8 45:eadd3677. PubMed Id: 36351012. doi:10.1126/sciadv.add3677. |
||
![]() ![]()
Membrane-Spanning 4-Domain (MS4) Family
|
|||
Integral membrane protein cluster of differentiation 20 (CD20) in complex with rituximab Fab: Homo sapiens E Eukaryota (expressed in Trichoplusia ni), 3.30 Å
cryo-EM structure |
Rougé et al. (2020).
Rougé L, Chiang N, Steffek M, Kugel C, Croll TI, Tam C, Estevez A, Arthur CP, Koth CM, Ciferri C, Kraft E, Payandeh J, Nakamura G, Koerber JT, & Rohou A (2020). Structure of CD20 in complex with the therapeutic monoclonal antibody rituximab.
Science 367 6483:1224-1230. PubMed Id: 32079680. doi:10.1126/science.aaz9356. |
||
![]() ![]()
Autonomously Folding "Membrane Proteins" (Sec-independent)
|
|||
Mistic membrane-integrating protein: Bacillus subtilis B Bacteria, NMR structure
Note: This is not a membrane protein. It is included here because of general interest. |
Roosild et al. (2005).
Roosild TP, Greenwald J, Vega M, Castronovo S, Riek R, & Choe S (2005). NMR structure of Mistic, a membrane-integrating protein for membrane protein expression.
Science 307 :1317-1321. PubMed Id: 15731457. |
||
![]() ![]()
Virus Coat Proteins
|
|||
M13 Major Coat Protein in Dodecylphosphocholine micelles: Enterobacteria phage m13 V Viruses (expressed in E. coli), NMR Structure
In SDS micelles: 2CPS |
Papavoine et al. (1998).
Papavoine CH, Christiaans BE, Folmer RH, Konings RN, & Hilbers CW (1998). Solution structure of the M13 major coat protein in detergent micelles: a basis for a model of phage assembly involving specific residues.
J Mol Biol 282 :401-419. PubMed Id: 9735296. doi:10.1006/jmbi.1998.1860. |
||
Pf1 Major Coat Protein: Pseudomonas phage Pf1 V Viruses, NMR Structure
The structure was determined by solid-state NMR using magnetically aligned bacteriophage particles. |
Thiriot et al. (2004).
Thiriot DS, Nevzorov AA, Zagyanskiy L, Wu CH, & Opella SJ (2004). Structure of the coat protein in Pf1 bacteriophage determined by solid-state NMR spectroscopy.
J Mol Biol 341 :869-879. PubMed Id: 15288792. doi:10.1016/j.jmb.2004.06.038. |
||
Pf1 Major Coat Protein in lipid bilayers: Pseudomonas phage Pf1 V Viruses, NMR Structure
|
Park et al. (2010).
Park SH, Marassi FM, Black D, & Opella SJ (2010). Structure and dynamics of the membrane-bound form of Pf1 coat protein: implications of structural rearrangement for virus assembly.
Biophys J 99 :1465-1474. PubMed Id: 20816058. doi:10.1016/j.bpj.2010.06.009. |
||
fd bacteriophage pVIII coat protein in lipid bilayers: Enterobacteria phage fd V Viruses, NMR Structure
|
Marassi & Opella (2003).
Marassi FM & Opella SJ (2003). Simultaneous assignment and structure determination of a membrane protein from NMR orientational restraints.
Protein Sci 12 :403-411. PubMed Id: 12592011. doi:10.1110/ps.0211503. |
||
fd bacteriophage pVIII coat protein in SDS micelles: Enterobacteria phage fd V Viruses, NMR Structure
|
Almeida & Opella (1997).
Almeida FC & Opella SJ (1997). fd coat protein structure in membrane environments: structural dynamics of the loop between the hydrophobic trans-membrane helix and the amphipathic in-plane helix.
J Mol Biol 270 :481-495. PubMed Id: 9237913. doi:10.1006/jmbi.1997.1114. |
||
HIV-1 Envelope spike (Env) protein: Human immunodeficiency virus 1 V Viruses (expressed in E. coli), NMR structure
Reconstituted in bicelles. Well-ordered trimer. |
Dev et al. (2016).
Dev J, Park D, Fu Q, Chen J, Ha HJ, Ghantous F, Herrmann T, Chang W, Liu Z, Frey G, Seaman MS, Chen B, & Chou JJ (2016). Structural basis for membrane anchoring of HIV-1 envelope spike.
Science 353 :172-175. PubMed Id: 27338706. doi:10.1126/science.aaf7066. |
||
![]() ![]()
Glycoproteins
|
|||
Glycophorin A (GpA) transmembrane-domain dimer: Homo sapiens E Eukaryota (expressed in E. coli), NMR Structure
GpA in dodecylphosphocholine micelles. |
MacKenzie et al. (1997).
MacKenzie KR, Prestegard JH, & Engelman DM (1997). A transmembrane helix dimer: structure and implications.
Science 276 :131-133. PubMed Id: 9082985. |
||
Glycophorin A (GpA) transmembrane-domain dimer: Homo sapiens E Eukaryota (expressed in E. coli), NMR structure
GpA in DMPC/DHPC bicelles. in DPC micelles, 2KPE |
Mineev et al. (2011).
Mineev KS, Bocharov EV, Volynsky PE, Goncharuk MV, Tkach EN, Ermolyuk YS, Schulga AA, Chupin VV, Maslennikov IV, Efremov RG, & Arseniev AS (2011). Dimeric structure of the transmembrane domain of glycophorin a in lipidic and detergent environments.
Acta Naturae 3 2:90-98. PubMed Id: 22649687. |
||
Glycophorin A (GpA) transmembrane-domain dimer: Homo sapiens E Eukaryota (expressed in E. coli), 2.81 Å
Type 1 Lipidic cubic phase crystals showing GpA in bilayer environment |
Trenker et al. (2015).
Trenker R, Call ME, & Call MJ (2015). Crystal Structure of the Glycophorin A Transmembrane Dimer in Lipidic Cubic Phase.
J Am Chem Soc 137 50:15676-15679. PubMed Id: 26642914. doi:10.1021/jacs.5b11354. |
||
Benton et al. (2018).
Benton DJ, Nans A, Calder LJ, Turner J, Neu U, Lin YP, Ketelaars E, Kallewaard NL, Corti D, Lanzavecchia A, Gamblin SJ, Rosenthal PB, & Skehel JJ (2018). Influenza hemagglutinin membrane anchor.
Proc Natl Acad Sci USA 115 40:10112-10117. PubMed Id: 30224494. doi:10.1073/pnas.1810927115. |
|||
Influenza Hemagglutinin, ectodomain of X-31 Haemagglutinin at pH 8: influenza virus V Viruses (expressed in Gallus gallus), 3.00 Å
cryo-EM structure. Influenza virus unidentified. at pH 5 (State I), 3.00 Å: 6Y5H at pH 5 (State II), 5.50 Å: 6Y5I form 2 at pH 5 (State III), 5.60 Å: 6Y5J extended intermediate at pH5 (State IV), 4.20 Å: 6Y5K Signal Subtracted Extended Intermediate form at pH 5 (State IV), 3.60 Å: 6Y5L |
Benton et al. (2020).
Benton DJ, Gamblin SJ, Rosenthal PB, & Skehel JJ (2020). Structural transitions in influenza haemagglutinin at membrane fusion pH.
Nature 583 7814:150-153. PubMed Id: 32461688. doi:10.1038/s41586-020-2333-6. |
||
![]() ![]()
High-Density Lipoprotein (HDL) Receptors
|
|||
C-terminal transmembrane domain of scavenger receptor BI (SR-BI): Mus musculus E Eukaryota (expressed in E. coli), NMR structure
The C-terminal domain contains a leucine zipper dimerization motif |
Chadwick et al. (2017).
Chadwick AC, Jensen DR, Hanson PJ, Lange PT, Proudfoot SC, Peterson FC, Volkman BF, & Sahoo D (2017). NMR Structure of the C-Terminal Transmembrane Domain of the HDL Receptor, SR-BI, and a Functionally Relevant Leucine Zipper Motif.
Structure 25 :446-457. PubMed Id: 28162952. doi:10.1016/j.str.2017.01.001. |
||
![]() ![]()
Tumor Necrosis Factor (TNF) Receptor Superfamily
|
|||
p75 neurotrophin receptor transmembrane domain: Rattus norvegicus E Eukaryota (expressed in E. coli), NMR structure
Structure determined in DPC micelles. The transmembrane domain includes residues 245-284 from the complete receptor. C257A mutant, 2MJO |
Nadezhdin et al. (2016).
Nadezhdin KD, García-Carpio I, Goncharuk SA, Mineev KS, Arseniev AS, & Vilar M (2016). Structural Basis of p75 Transmembrane Domain Dimerization.
J Biol Chem 291 23:12346-12357. PubMed Id: 27056327. doi:10.1074/jbc.M116.723585. |
||
Tumor necrosis factor receptor 1 (TNFR1) in lipid bicelles: Homo sapiens E Eukaryota (expressed in E. coli), NMR structure
|
Zhao et al. (2020).
Zhao L, Fu Q, Pan L, Piai A, & Chou JJ (2020). The Diversity and Similarity of Transmembrane Trimerization of TNF Receptors.
Front Cell Dev Biol 8 . PubMed Id: 33163490. doi:10.3389/fcell.2020.569684. |
||
Glucocorticoid-induced TNF receptor (GITR): Mus musculus E Eukaryota (expressed in HEK293 cells), 4.40 Å
cryo-EM structure |
He et al. (2022).
He C, Maniyar RR, Avraham Y, Zappasodi R, Rusinova R, Newman W, Heath H, Wolchok JD, Dahan R, Merghoub T, & Meyerson JR (2022). Therapeutic antibody activation of the glucocorticoid-induced TNF receptor by a clustering mechanism.
Sci Adv 8 8:eabm4552. PubMed Id: 35213218. doi:10.1126/sciadv.abm4552. |
||
![]() ![]()
B Cell Receptor Complexes
These complexes are involved B cell development and immune responses |
|||
B-Cell receptor in complex with IgG: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.03 Å
cryo-EM structure |
Ma et al. (2022).
Ma X, Zhu Y, Dong D, Chen Y, Wang S, Yang D, Ma Z, Zhang A, Zhang F, Guo C, & Huang Z (2022). Cryo-EM structures of two human B cell receptor isotypes.
Science 377 6608:880-885. PubMed Id: 35981028. doi:10.1126/science.abo3828. |
||
B-Cell receptor in complex with IgM: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.63 Å
cryo-EM structure |
Ma et al. (2022).
Ma X, Zhu Y, Dong D, Chen Y, Wang S, Yang D, Ma Z, Zhang A, Zhang F, Guo C, & Huang Z (2022). Cryo-EM structures of two human B cell receptor isotypes.
Science 377 6608:880-885. PubMed Id: 35981028. doi:10.1126/science.abo3828. |
||
B-Cell receptor in complex with IgM: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.30 Å
cryo-EM structure |
Su et al. (2022).
Su Q, Chen M, Shi Y, Zhang X, Huang G, Huang B, Liu D, Liu Z, & Shi Y (2022). Cryo-EM structure of the human IgM B cell receptor.
Science 377 6608:875-880. PubMed Id: 35981043. doi:10.1126/science.abo3923. |
||
![]() ![]()
Receptor Tyrosine Kinase (RTK) Family
Single-span TM proteins important in cellular signalling |
|||
Insulin receptor TM domain (AAs 940-980): Homo sapiens E Eukaryota (expressed in E. coli), NMR Structure
|
Li et al. (2014).
Li Q, Wong YL, & Kang C (2014). Solution structure of the transmembrane domain of the insulin receptor in detergent micelles.
Biochim Biophys Acta 1838 :1313-1321. PubMed Id: 24440425. doi:10.1016/j.bbamem.2014.01.005. |
||
insulin receptor bound with A62 DNA aptamer: Homo sapiens E Eukaryota (expressed in HEK293 cells), 4.18 Å
cryo-EM structure bound with A62 DNA aptamer and insulin, 4.27 Å: 7YQ5 aptamer and insulin - locally refined, 3.95 Å: 7QY4 bound with A43 DNA aptamer and insulin, 3.60 Å: 7YQ3 bound with two insulin molecules, 4.18 Å: 8GUY |
Kim et al. (2022).
Kim J, Yunn NO, Park M, Kim J, Park S, Kim Y, Noh J, Ryu SH, & Cho Y (2022). Functional selectivity of insulin receptor revealed by aptamer-trapped receptor structures.
Nat Commun 13 1:6500. PubMed Id: 36310231. doi:10.1038/s41467-022-34292-8. |
||
![]() ![]()
Epidermal Growth Factor Receptors (EGFRs)
ErbB (or HER) family of receptor tyrosine kinases (RTKs) |
|||
ErbB2 transmembrane segment dimer: Homo sapiens E Eukaryota (expressed in E. coli), NMR Structure
TM fragment 641-684 of ErbB2 gene. Structure determined in DMPC/DHPC bicelles. |
Bocharov et al. (2008).
Bocharov EV, Mineev KS, Volynsky PE, Ermolyuk YS, Tkach EN, Sobol AG, Chupin VV, Kirpichnikov MP, Efremov RG, & Arseniev AS (2008). Spatial structure of the dimeric transmembrane domain of the growth factor receptor ErbB2 presumably corresponding to the receptor active state.
J Biol Chem 283 :6950-6956. PubMed Id: 18178548. doi:10.1074/jbcM709202200. |
||
ErbB2 (HER2) transmembrane segment dimer with juxtamembrane region: Homo sapiens E Eukaryota (expressed in E. coli), NMR structure
in DPC micelles |
Bragin et al. (2016).
Bragin PE, Mineev KS, Bocharova OV, Volynsky PE, Bocharov EV, & Arseniev AS (2016). HER2 Transmembrane Domain Dimerization Coupled with Self-Association of Membrane-Embedded Cytoplasmic Juxtamembrane Regions.
J Mol Biol 428 :52-61. PubMed Id: 26585403. doi:10.1016/j.jmb.2015.11.007. |
||
ErbB1/ErbB2 transmembrane segment heterodimer: Homo sapiens E Eukaryota (expressed in E. coli), NMR Structure
TM fragment 634-677 of ErbB1 gene. TM fragment 641-685 of ErbB2 gene. Structure determined in DMPC/DHPC bicelles. |
Mineev et al. (2010).
Mineev KS, Bocharov EV, Pustovalova YE, Bocharova OV, Chupin VV, & Arseniev AS (2010). Spatial structure of the transmembrane domain heterodimer of ErbB1 and ErbB2 receptor tyrosine kinases.
J Mol Biol 400 :231-243. PubMed Id: 20471394. doi:10.1016/j.jmb.2010.05.016. |
||
ErbB1 transmembrane segment homodimer: Homo sapiens E Eukaryota (expressed in E. coli), NMR structure
|
Bocharov et al. (2017).
Bocharov EV, Bragin PE, Pavlov KV, Bocharova OV, Mineev KS, Polyansky AA, Volynsky PE, Efremov RG, & Arseniev AS (2017). The Conformation of the Epidermal Growth Factor Receptor Transmembrane Domain Dimer Dynamically Adapts to the Local Membrane Environment.
Biochemistry 56 12:1697-1705. PubMed Id: 28291355. doi:10.1021/acs.biochem.6b01085. |
||
ErbB3 transmembrane segment dimer: Homo sapiens E Eukaryota (expressed in E. coli), NMR Structure
TM fragment 639-667 of ErbB3 gene. Structure determined in DPC micelles. |
Mineev et al. (2011).
Mineev KS, Khabibullina NF, Lyukmanova EN, Dolgikh DA, Kirpichnikov MP, & Arseniev AS (2011). Spatial structure and dimer--monomer equilibrium of the ErbB3 transmembrane domain in DPC micelles.
Biochim Biophys Acta 1808 :2081-2088. PubMed Id: 21575594. doi:10.1016/j.bbamem.2011.04.017. |
||
ErbB4 transmembrane segment dimer: Homo sapiens E Eukaryota (expressed in E. coli), NMR Structure
TM fragment 651-678 of ErbB4 gene. Structure determined in DMPC/DHPC bicelles. |
Bocharov et al. (2012).
Bocharov EV, Mineev KS, Goncharuk MV, & Arseniev AS (2012). Structural and thermodynamic insight into the process of "weak" dimerization of the ErbB4 transmembrane domain by solution NMR.
Biochim Biophys Acta 1818 :2158-2170. PubMed Id: 22579757. doi:10.1016/j.bbamem.2012.05.001. |
||
![]() ![]()
Erythropoietin-Producing Hepatocellular Receptors
Eph family of receptor tyrosine kinases (RTKs) |
|||
EphA1 transmembrane segment dimer, pH 6.3: Homo sapiens E Eukaryota (expressed in E. coli), NMR Structure
TM fragment 536-573 of EphA1 gene. Structure determined in DMPC/DHPC bicelles. Structure at pH 4.3: 2K1K |
Bocharov et al. (2008).
Bocharov EV, Mayzel ML, Volynsky PE, Goncharuk MV, Ermolyuk YS, Schulga AA, Artemenko EO, Efremov RG, & Arseniev AS (2008). Spatial structure and pH-dependent conformational diversity of dimeric transmembrane domain of the receptor tyrosine kinase EphA1.
J Biol Chem 283 :29385-29395. PubMed Id: 18728013. doi:10.1074/jbc.M803089200. |
||
EphA2 transmembrane segment dimer: Homo sapiens E Eukaryota (expressed in E. coli), NMR Structure
TM fragment 523-563 of EphA2 gene. Structure determined in DMPC/DHPC bicelles. |
Bocharov et al. (2010).
Bocharov EV, Mayzel ML, Volynsky PE, Mineev KS, Tkach EN, Ermolyuk YS, Schulga AA, Efremov RG, & Arseniev AS (2010). Left-handed dimer of EphA2 transmembrane domain: Helix packing diversity among receptor tyrosine kinases.
Biophys J 98 :881-889. PubMed Id: 20197042. doi:10.1016/j.bpj.2009.11.008. |
||
![]() ![]()
Fibroblast Growth Factor Receptors
FGFR family of receptor tyrosine kinases (RTKs) |
|||
FGFR3 Fibroblast growth factor receptor 3 transmembrane dimer: Homo sapiens E Eukaryota (expressed in E. coli), NMR Structure
|
Bocharov et al. (2013).
Bocharov EV, Lesovoy DM, Goncharuk SA, Goncharuk MV, Hristova K, & Arseniev AS (2013). Structure of FGFR3 Transmembrane Domain Dimer: Implications for Signaling and Human Pathologies.
Structure 21 :2087-2093. PubMed Id: 24120763. doi:10.1016/j.str.2013.08.026. |
||
![]() ![]()
Vascular Endothelial Growth Factor Receptors
VEGFR family of receptor tyrosine kinases (RTKs) |
|||
Manni et al. (2014).
Manni S, Mineev KS, Usmanova D, Lyukmanova EN, Shulepko MA, Kirpichnikov MP, Winter J, Matkovic M, Deupi X, Arseniev AS, & Ballmer-Hofer K (2014). Structural and functional characterization of alternative transmembrane domain conformations in VEGF receptor 2 activation.
Structure 22 8:1077-1089. PubMed Id: 24980797. doi:10.1016/j.str.2014.05.010. |
|||
![]() ![]()
Integrin Adhesion Receptors
|
|||
Human Integrin αIIbβ3 transmembrane-cytoplasmic heterodimer: Homo sapiens E Eukaryota (expressed in E. coli), NMR Structure
|
Yang et al. (2009).
Yang J, Ma YQ, Page RC, Misra S, Plow EF, & Qin J (2009). Structure of an integrin αIIbβ3 transmembrane-cytoplasmic heterocomplex provides insight into integrin activation.
Proc Natl Acad Sci U S A 106 :17729-17734. PubMed Id: 19805198. |
||
integrin αIIb(W968V)β3 transmembrane complex: Homo sapiens E Eukaryota (expressed in E. coli), NMR structure
|
Situ et al. (2021).
Situ AJ, Kim J, An W, Kim C, & Ulmer TS (2021). Insight Into Pathological Integrin αIIbβ3 Activation From Safeguarding The Inactive State.
J Mol Biol 433 7:166832. PubMed Id: 33539882. doi:10.1016/j.jmb.2021.166832. |
||
full-length integrin αIIbβ3 in native lipid: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.40 Å
cryo-EM structure with bound Eptifibatide, 3.10 Å: 8T2U |
Adair et al. (2023).
Adair BD, Xiong JP, Yeager M, & Arnaout MA (2023). Cryo-EM structures of full-length integrin αIIbβ3 in native lipids.
Nat Commun 14 1:4168. PubMed Id: 37443315. doi:10.1038/s41467-023-39763-0. |
||
Human Integrin αvβ6, in complex with minibinder B6_BP_dslf: Homo sapiens E Eukaryota (expressed in E. coli), 3.40 Å
cryo-EM structure |
Roy et al. (2023).
Roy A, Shi L, Chang A, Dong X, Fernandez A, Kraft JC, Li J, Le VQ, Winegar RV, Cherf GM, Slocum D, Poulson PD, Casper GE, Vallecillo-Zúniga ML, Valdoz JC, Miranda MC, Bai H, Kipnis Y, Olshefsky A, Priya T, Carter L, Ravichandran R, Chow CM, Johnson MR, Cheng S, Smith M, Overed-Sayer C, Finch DK, Lowe D, Bera AK, Matute-Bello G, Birkland TP, DiMaio F, Raghu G, Cochran JR, Stewart LJ, Campbell MG, Van Ry PM, Springer T, & Baker D (2023). De novo design of highly selective miniprotein inhibitors of integrins αvβ6 and αvβ8.
Nat Commun 14 1:5660. PubMed Id: 37704610. doi:10.1038/s41467-023-41272-z. |
||
Human Integrin αvβ8, in complex with minibinder B8_BP_dsulf: Homo sapiens E Eukaryota (expressed in E. coli), 2.90 Å
cryo-EM structure |
Roy et al. (2023).
Roy A, Shi L, Chang A, Dong X, Fernandez A, Kraft JC, Li J, Le VQ, Winegar RV, Cherf GM, Slocum D, Poulson PD, Casper GE, Vallecillo-Zúniga ML, Valdoz JC, Miranda MC, Bai H, Kipnis Y, Olshefsky A, Priya T, Carter L, Ravichandran R, Chow CM, Johnson MR, Cheng S, Smith M, Overed-Sayer C, Finch DK, Lowe D, Bera AK, Matute-Bello G, Birkland TP, DiMaio F, Raghu G, Cochran JR, Stewart LJ, Campbell MG, Van Ry PM, Springer T, & Baker D (2023). De novo design of highly selective miniprotein inhibitors of integrins αvβ6 and αvβ8.
Nat Commun 14 1:5660. PubMed Id: 37704610. doi:10.1038/s41467-023-41272-z. |
||
![]() ![]()
Adiponectin Receptors
7TM receptors with inverted topology relative to GPCR receptors Adiponectin is a protein hormone that is important in glucose & fatty acid metabolism |
|||
AdipoR1 adiponectin 1 receptor in complex with an Fv fragment: Homo sapiens E Eukaryota (expressed in Trichoplusia ni), 2.90 Å
This protein and AdipoR2 enclose a large cavity where 3 His residues coördinate a Zn ion. AdipoR2 adiponectin 2 receptor in complex with Fv fragment, 2.40 Å: 3WXW |
Tanabe et al. (2015).
Tanabe H, Fujii Y, Okada-Iwabu M, Iwabu M, Nakamura Y, Hosaka T, Motoyama K, Ikeda M, Wakiyama M, Terada T, Ohsawa N, Hato M, Ogasawara S, Hino T, Murata T, Iwata S, Hirata K, Kawano Y, Yamamoto M, Kimura-Someya T, Shirouzu M, Yamauchi T, Kadowaki T, & Yokoyama S (2015). Crystal structures of the human adiponectin receptors.
Nature 520 7547:312-316. PubMed Id: 25855295. doi:10.1038/nature14301. |
||
AdipoR1 adiponectin 1 receptor in complex with an Fv fragment: Homo sapiens E Eukaryota (expressed in Trichoplusia ni), 2.73 Å
*5LXG supersedes 3WXV. AdipoR2 adiponectin 2 receptor in complex with Fv fragment, 2.4 Å: 5LWY *5LWY supersedes 3WXW AdipoR2 in complex with a C18 free fatty acid, 2.4 Å: 5LX9 AdipoR2 in complex with a C18 free fatty acid, 3.0 Å: 5LXA |
Vasiliauskaité-Brooks et al. (2017).
Vasiliauskaité-Brooks I, Sounier R, Rochaix P, Bellot G, Fortier M, Hoh F, De Colibus L, Bechara C, Saied EM, Arenz C, Leyrat C, & Granier S (2017). Structural insights into adiponectin receptors suggest ceramidase activity.
Nature 544 :120-123. PubMed Id: 28329765. doi:10.1038/nature21714. |
||
Tanabe et al. (2020).
Tanabe H, Fujii Y, Okada-Iwabu M, Iwabu M, Kano K, Kawana H, Hato M, Nakamura Y, Terada T, Kimura-Someya T, Shirouzu M, Kawano Y, Yamamoto M, Aoki J, Yamauchi T, Kadowaki T, & Yokoyama S (2020). Human adiponectin receptor AdipoR1 assumes closed and open structures.
Commun Biol 3 1. PubMed Id: 32796916. doi:10.1038/s42003-020-01160-4. |
|||
AdipoR2 Adiponectin receptor, cryogenic Serial Crystallography (SSX) using CrystalDirect: Homo sapiens E Eukaryota (expressed in Drosophila melanogaster), 2.40 Å
Room temperature structure using CrystalDirect, 2.90 Å 6YXD Cryogenic with Tb-XO4 ligand using CrystalDirect, 3.01 Å 6YXG Cryogenic with Gd-DO3 ligand using CrystalDirect, 3.02 Å 6YXF |
Healey et al. (2021).
Healey RD, Basu S, Humm AS, Leyrat C, Cong X, Golebiowski J, Dupeux F, Pica A, Granier S, & Márquez JA (2021). An automated platform for structural analysis of membrane proteins through serial crystallography.
Cell Rep Methods 1 6:100102. PubMed Id: 34723237. doi:10.1016/j.crmeth.2021.100102. |
||
![]() ![]()
Cytokine Receptors
|
|||
Cytokine receptor IL-17RC ECD in complex with human IL-17F: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.32 Å
These receptors are anchored to the membrane by a single TM segment, not shown in the structure IL-17RC ECD in complex with human IL-17F, Crystal form II, 3.62 Å: 6HG9 IL-17RC D2-D3-D4 domains in complex with an anti-APP tag Fab, 2.60 Å: 6HGA human IL-17F, 2.10 Å: 6HGO anti-APP-tag Fab, 1.50 Å: 6HGU |
Goepfert et al. (2020).
Goepfert A, Lehmann S, Blank J, Kolbinger F, & Rondeau JM (2020). Structural Analysis Reveals that the Cytokine IL-17F Forms a Homodimeric Complex with Receptor IL-17RC to Drive IL-17RA-Independent Signaling.
Immunity 52 3:499-512.e5. PubMed Id: 32187518. doi:10.1016/j.immuni.2020.02.004. |
||
Dimeric/trimeric IL-25-IL/17 complexes: IL-17RB-IL-25 (2:2): Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.20 Å
cryo-EM structure IL-17RB-IL-25 (6:6), 4.40 Å: 7UWK IL-25-IL-17RB-IL-17RA ternary complex, 3.70 Å: 7UWL IL-17A-IL-17RA binary complex, 2.50 Å: 7UWM IL-17A-IL-17RA-IL-17RC ternary complex, 3.01 Å: 7UWN |
Wilson et al. (2022).
Wilson SC, Caveney NA, Yen M, Pollmann C, Xiang X, Jude KM, Hafer M, Tsutsumi N, Piehler J, & Garcia KC (2022). Organizing structural principles of the IL-17 ligand-receptor axis.
Nature 609 7927:622-629. PubMed Id: 35863378. doi:10.1038/s41586-022-05116-y. |
||
Saxton et al. (2023).
Saxton RA, Caveney NA, Moya-Garzon MD, Householder KD, Rodriguez GE, Burdsall KA, Long JZ, & Garcia KC (2023). Structural insights into the mechanism of leptin receptor activation.
Nat Commun 14 1:1797. PubMed Id: 37002197. doi:10.1038/s41467-023-37169-6. |
|||
IL-7R intramembrane subunit in complex with ILR gamma chain: Mus musculus, E Eukaryota (expressed in E. coli), NMR structure
|
Cai et al. (2023).
Cai T, Lenoir Capello R, Pi X, Wu H, & Chou JJ (2023). Structural basis of γ chain family receptor sharing at the membrane level.
Science 381 6657:569-576. PubMed Id: 37535730. doi:10.1126/science.add1219. |
||
IL-9R intramembrane subunit in complex with ILR gamma chain: Mus musculus E Eukaryota (expressed in E. coli), NMR structure
|
Cai et al. (2023).
Cai T, Lenoir Capello R, Pi X, Wu H, & Chou JJ (2023). Structural basis of γ chain family receptor sharing at the membrane level.
Science 381 6657:569-576. PubMed Id: 37535730. doi:10.1126/science.add1219. |
||
![]() ![]()
Toll-Like Receptors (TLR) and TLR Signalling Regulators
|
|||
Toll-like receptor TLR2, transmembrane and cytoplasmic juxtamembrane regions: Homo sapiens E Eukaryota (expressed in E. coli), NMR structure
|
Kornilov et al. (2023).
Kornilov FD, Shabalkina AV, Lin C, Volynsky PE, Kot EF, Kayushin AL, Lushpa VA, Goncharuk MV, Arseniev AS, Goncharuk SA, Wang X, & Mineev KS (2023). The architecture of transmembrane and cytoplasmic juxtamembrane regions of Toll-like receptors.
Nat Commun 14 1:1503. PubMed Id: 36932058. doi:10.1038/s41467-023-37042-6. |
||
Toll-like receptor TLR3 in complex with UNC93B1: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.40 Å
cryo-EM structure TLR7 in complex with UNC93B1, 4.20 Å 7CYN |
Ishida et al. (2021).
Ishida H, Asami J, Zhang Z, Nishizawa T, Shigematsu H, Ohto U, & Shimizu T (2021). Cryo-EM structures of Toll-like receptors in complex with UNC93B1.
Nat Struct Mol Biol 28 2:173-180. PubMed Id: 33432245. doi:10.1038/s41594-020-00542-w. |
||
Toll-like receptor TLR3, transmembrane and cytoplasmic juxtamembrane regions: Homo sapiens E Eukaryota (expressed in E. coli), NMR structure
|
Kornilov et al. (2023).
Kornilov FD, Shabalkina AV, Lin C, Volynsky PE, Kot EF, Kayushin AL, Lushpa VA, Goncharuk MV, Arseniev AS, Goncharuk SA, Wang X, & Mineev KS (2023). The architecture of transmembrane and cytoplasmic juxtamembrane regions of Toll-like receptors.
Nat Commun 14 1:1503. PubMed Id: 36932058. doi:10.1038/s41467-023-37042-6. |
||
Toll-like receptor TLR3 in complex with UNC93B1: Mus musculus E Eukaryota (expressed in HEK293 cells), 3.30 Å
cryo-EM structure |
Ishida et al. (2021).
Ishida H, Asami J, Zhang Z, Nishizawa T, Shigematsu H, Ohto U, & Shimizu T (2021). Cryo-EM structures of Toll-like receptors in complex with UNC93B1.
Nat Struct Mol Biol 28 2:173-180. PubMed Id: 33432245. doi:10.1038/s41594-020-00542-w. |
||
Toll-like receptor TLR5, transmembrane and cytoplasmic juxtamembrane regions: Homo sapiens E Eukaryota (expressed in E. coli), NMR structure
|
Kornilov et al. (2023).
Kornilov FD, Shabalkina AV, Lin C, Volynsky PE, Kot EF, Kayushin AL, Lushpa VA, Goncharuk MV, Arseniev AS, Goncharuk SA, Wang X, & Mineev KS (2023). The architecture of transmembrane and cytoplasmic juxtamembrane regions of Toll-like receptors.
Nat Commun 14 1:1503. PubMed Id: 36932058. doi:10.1038/s41467-023-37042-6. |
||
Toll-like receptor TLR9, transmembrane and cytoplasmic juxtamembrane regions: Homo sapiens E Eukaryota (expressed in E. coli), NMR structure
|
Kornilov et al. (2023).
Kornilov FD, Shabalkina AV, Lin C, Volynsky PE, Kot EF, Kayushin AL, Lushpa VA, Goncharuk MV, Arseniev AS, Goncharuk SA, Wang X, & Mineev KS (2023). The architecture of transmembrane and cytoplasmic juxtamembrane regions of Toll-like receptors.
Nat Commun 14 1:1503. PubMed Id: 36932058. doi:10.1038/s41467-023-37042-6. |
||
![]() ![]()
Novel Receptors
|
|||
Sigma-1 (σ1) receptor, with bound PD144418: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.51 Å
with bound 4-IBP, 3.2 Å: 5HK2 |
Schmidt et al. (2016).
Schmidt HR, Zheng S, Gurpinar E, Koehl A, Manglik A, & Kruse AC (2016). Crystal structure of the human σ1 receptor.
Nature 532 :527-530. PubMed Id: 27042935. doi:10.1038/nature17391. |
||
Sigma-1 (σ1) receptor, closed conformation: Xenopus laevis E Eukaryota (expressed in Komagataella pastoris), 3.20 Å
complexed with PRE084, 3.33 Å 7W2C complexed with S1RA, 3.47 Å 7W2D open-like conformation, 3.56 Å 7W2E open-like conformation complexed with PRE084 by co-crystallization, 3.10 Å 7W2F open-like conformation complexed with PRE084 by soaking, 2.85 Å 7W2G double cysteine variant complexed with S1RA, 3.80 Å 7W2H |
Meng et al. (2022).
Meng F, Xiao Y, Ji Y, Sun Z, & Zhou X (2022). An open-like conformation of the sigma-1 receptor reveals its ligand entry pathway.
Nat Commun 13 1:1267. PubMed Id: 35273182. doi:10.1038/s41467-022-28946-w. |
||
Sigma-1 (σ1) receptor complexed with progesterone by co-crstayllization, I432 space group: Xenopus laevis E Eukaryota (expressed in Komagataella pastoris), 2.15 Å
X-ray structure by soaking, 2.68 Å: 8W4C in the absence of known ligands, 2.17 Å: 8W4D complexed with DHEAS by soaking, 2.50 Å: 8WWB complexed with DHEAS by soaking, C2 space group. 3.09 Å: 8WUE side-open, C2 space group, 2.81 Å: 8W4E side-open all protomers, C2 space group, 3.12 Å: 8YBB |
Fu et al. (2024).
Fu C, Xiao Y, Zhou X, & Sun Z (2024). Insight into binding of endogenous neurosteroid ligands to the sigma-1 receptor.
Nat Commun 15 1:5619. PubMed Id: 38965213. doi:10.1038/s41467-024-49894-7. |
||
Alon et al. (2021).
Alon A, Lyu J, Braz JM, Tummino TA, Craik V, O'Meara MJ, Webb CM, Radchenko DS, Moroz YS, Huang XP, Liu Y, Roth BL, Irwin JJ, Basbaum AI, Shoichet BK, & Kruse AC (2021). Structures of the σ2 receptor enable docking for bioactive ligand discovery.
Nature 600 7890:759-764. PubMed Id: 34880501. doi:10.1038/s41586-021-04175-x. |
|||
STRA6 retinol-uptake receptor in complex with calmodulin (CaM): Danio rerio E Eukaryota (expressed in sf9 cells), 3.9 Å
cryo-EM structure |
Chen et al. (2016).
Chen Y, Clarke OB, Kim J, Stowe S, Kim YK, Assur Z, Cavalier M, Godoy-Ruiz R, von Alpen DC, Manzini C, Blaner WS, Frank J, Quadro L, Weber DJ, Shapiro L, Hendrickson WA, & Mancia F (2016). Structure of the STRA6 receptor for retinol uptake.
Science 353 . PubMed Id: 27563101. doi:10.1126/science.aad8266. |
||
![]() ![]()
Bacterial, Algal, Viral, and Unusual Rhodopsins
|
|||
Bacteriorhodopsin (BR): Halobacterium salinarum A Archaea, 3.5 Å
Electron Diffraction. The first atomic-resolution structure of bacteriorhodopsin |
Grigorieff et al. (1996).
Grigorieff N, Ceska TA, Downing KH, Baldwin JM, & Henderson R (1996). Electron-crystallographic refinement of the structure of bacteriorhodopsin.
J Mol Biol 259 :393-421. PubMed Id: 8676377. |
||
Bacteriorhodopsin (BR): Halobacterium salinarum A Archaea, 3.0 Å
Electron Diffraction |
Kimura et al. (1997).
Kimura Y, Vassylyev DG, Miyazawa A, Kidera A, Matsushima M, Mitsuok a K, Murata K, Hirai T, & Fujiyoshi Y (1997). Surface of bacteriorhodopsin revealed by high-resolution electron crystallography.
Nature 389 :206-211. PubMed Id: 8676377. |
||
Bacteriorhodopsin (BR): Halobacterium salinarum A Archaea, 2.35 Å
The first x-ray structure of bacteriorhodopsin |
Pebay-Peyroula et al. (1997).
Pebay-Peyroula E, Rummel G, Rosenbusch JP, & Landau EM (1997). X-ray structure of bacteriorhodopsin at 2.5 Å from microcrystals grown in lipidic cubic phases.
Science 277 :1676-1681. PubMed Id: 9287223. |
||
Bacteriorhodopsin (BR): Halobacterium salinarum A Archaea, 2.90 Å
|
Essen et al. (1998).
Essen L, Siegert R, Lehmann WD, & Oesterhelt D (1998). Lipid patches in membrane protein oligomers: crystal structure of the bacteriorhodopsin-lipid complex.
Proc Natl Acad Sci U S A 95 :11673-11678. PubMed Id: 9751724. |
||
Bacteriorhodopsin (BR): Halobacterium salinarum A Archaea, 2.30 Å
|
Luecke et al. (1998).
Luecke H, Richter HT, & Lanyi JK (1998). Proton transfer pathways in bacteriorhodopsin at 2.3 Angstrom resolution.
Science 280 :1934-1937. PubMed Id: 9632391. |
||
Bacteriorhodopsin (BR) dark-adapted: Halobacterium salinarum A Archaea, NMR structure
|
Patzelt et al. (2002).
Patzelt H, Simon B, terLaak A, Kessler B, Kühne R, Schmieder P, Oesterhelt D, & Oschkinat H (2002). The structures of the active center in dark-adapted bacteriorhodopsin by solution-state NMR spectroscopy.
Proc Natl Acad Sci USA 99 :9765-9770. PubMed Id: 12119389. |
||
Bacteriorhodopsin (BR), K intermediate: Halobacterium salinarum A Archaea, 2.10 Å
R-free = O.255. R-free = 0.303, 2.1 Å: 1QKO |
Edman et al. (1999).
Edman K, Nollert P, Royant A, Belrhali H, Pebay-Peyroula E, Hajdu J, Neutze R, & Landau EM (1999). High-resolution X-ray structure of an early intermediate in the bacteriorhodopsin photocycle.
Nature 401 :822-826. PubMed Id: 10548112. |
||
Bacteriorhodopsin (BR), K intermediate (illuminated): Halobacterium salinarum A Archaea, 1.43 Å
Non-illuminated, 1.47 Å: 1M0L |
Schobert et al. (2002).
Schobert B, Cupp-Vickery J, Hornak V, Smith S, & Lanyi J (2002). Crystallographic structure of the K intermediate of bacteriorhodopsin: conservation of free energy after photoisomerization of the retinal.
J. Mol. Biol. 321 :715-726. PubMed Id: 12206785. |
||
Facciotti et al. (2001).
Facciotti MT, Rouhani S, Burkard FT, Betancourt FM, Downing KH, Rose RB, McDermott G, & Glaeser RM (2001). Structure of an early intermediate in the M-state phase of the bacteriorhodopsin photocycle
Biophys J 81 :3442-3455. PubMed Id: 11721006. doi:10.1016/S0006-3495(01)75976-0. |
|||
Bacteriorhodopsin (BR): Halobacterium salinarum A Archaea, 1.90 Å
|
Belrhali et al. (1999).
Belrhali H, Nollert P, Royant A, Menzel C, Rosenbusch JP, Landau EH, & Pebay-Peyroula E (1999). Protein, lipid, and water organization in bacteriorhodopsin crystals: A molecular view of the purple membrane at 1.9 Å resolution.
Structure 7 :909-917. PubMed Id: 10467143. |
||
Bacteriorhodopsin (BR): Halobacterium salinarum A Archaea, 1.55 Å
|
Luecke et al. (1999).
Luecke H, Schobert B, Richter HT, Cartailler P, & Lanyi JK (1999). Structure of bacteriorhodopsin at 1.55 angstrom resolution.
J. Mol. Biol 291 :899-911. PubMed Id: 10452895. |
||
Bacteriorhodopsin (BR), D96N in bR state: Halobacterium salinarum A Archaea, 1.80 Å
D96N in M-state, 2.00 Å: 1C8S. |
Luecke et al. (1999).
Luecke H, Schobert B, Richter HT, Cartailler P, & Lanyi JK (1999). Structural changes in bacteriorhodopsin during ion transport at 2 angstrom resolution.
Science 286 :255-260. PubMed Id: 10514362. |
||
Bacteriorhodopsin in ground state: Halobacterium salinarum A Archaea, 1.78 Å
Ground state, after x-ray modification, 1.78 Å: 3NSB |
Borshchevskiy et al. (2011).
Borshchevskiy VI, Round ES, Popov AN, Büldt G, & Gordeliy VI (2011). X-ray-Radiation-Induced Changes in Bacteriorhodopsin Structure
J Mol Biol 409 :813-825. PubMed Id: 21530535. doi:10.1016/j.jmb.2011.04.038. |
||
Bacteriorhodopsin phototaxis signalling mutant (A215T): Halobacterium sp. nrc-1 A Archaea (expressed in Halobacterium salinarum), 3.01 Å
This mutant enables BR's photochemical reactions to transmit signals to the transducer HtrII. |
Spudich et al. (2012).
Spudich EN, Ozorowski G, Schow EV, Tobias DJ, Spudich JL, & Luecke H (2012). A transporter converted into a sensor, a phototaxis signaling mutant of bacteriorhodopsin at 3.0 Å.
J Mol Biol 415 :455-463. PubMed Id: 22123198. doi:10.1016/j.jmb.2011.11.025. |
||
Bacteriorhodopsin (BR); D96/F171C/F219L mutant: Halobacterium salinarum A Archaea, 2.65 Å
|
Wang et al. (2013).
Wang T, Sessions AO, Lunde CS, Rouhani S, Glaeser RM, Duan Y, & Facciotti MT (2013). Deprotonation of D96 in bacteriorhodopsin opens the proton uptake pathway.
Structure 21 :290-297. PubMed Id: 23394942. doi:10.1016/j.str.2012.12.018. |
||
Bacteriorhodopsin (BR) determined using serial ms crystallography (SMX): Halobacterium salinarum A Archaea, 2.40 Å
Structure by conventional crystallography, 1.90 Å:4X32 |
Nogly et al. (2015).
Nogly P, James D, Wang D, White TA, Zatsepin N, Shilova A, Nelson G, Liu H, Johansson L, Heymann M, Jaeger K, Metz M, Wickstrand C, Wu W, Båth P, Berntsen P, Oberthuer D, Panneels V, Cherezov V, Chapman H, Schertler G, Neutze R, Spence J, Moraes I, Burghammer M, Standfuss J, & Weierstall U (2015). Lipidic cubic phase serial millisecond crystallography using synchrotron radiation.
IUCrJ 2 :168-176. PubMed Id: 25866654. doi:10.1107/S2052252514026487. |
||
Bacteriorhodopsin (BR) native: Halobacterium salinarum A Archaea, 2.35 Å
Structure determind by XFEL. Crystallized from bicelles. Crystallized from Bicelles in Complex with Iodine-labeled Detergent HAD13a, 2.1 Å: 5B34 |
Nakane et al. (2016).
Nakane T, Hanashima S, Suzuki M, Saiki H, Hayashi T, Kakinouchi K, Sugiyama S, Kawatake S, Matsuoka S, Matsumori N, Nango E, Kobayashi J, Shimamura T, Kimura K, Mori C, Kunishima N, Sugahara M, Takakyu Y, Inoue S, Masuda T, Hosaka T, Tono K, Joti Y, Kameshima T, Hatsui T, Yabashi M, Inoue T, Nureki O, Iwata S, Murata M, & Mizohata E (2016). Membrane protein structure determination by SAD, SIR, or SIRAS phasing in serial femtosecond crystallography using an iododetergent.
Proc Natl Acad Sc. USA 113 :13039-13044. PubMed Id: 27799539. |
||
Bacteriorhodopsin (BR) 3D movie, ground state: Halobacterium salinarum A Archaea, 2.0 Å
See the movie: Science Magazine structures at: 16 nsec, 2.1 Å: 5B6W 40 nsec, 2.1 Å: 5H2H 110 nsec, 2.1 Å: 5H2I 290 nsec, 2.1 Å: 5H2J 760 nsec, 2.1 Å: 5B6X 2 μsec, 2.1 Å: 5H2K 5.25 μsec, 2.1 Å: 5H2L 13.8 μsec, 2.1 Å: 5H2M 36.2 μsec, 2.1 Å: 5B6Y 95.2 μsec, 2.1 Å: 5H2N 250 μsec, 2.1 Å: 5H2O 657 μsec, 2.1 Å: 5H2P 1.725 msec, 2.1 Å: 5B6Z |
Nango et al. (2016).
Nango E, Royant A, Kubo M, Nakane T, Wickstrand C, Kimura T, Tanaka T, Tono K, Song C, Tanaka R, Arima T, Yamashita A, Kobayashi J, Hosaka T, Mizohata E, Nogly P, Sugahara M, Nam D, Nomura T, Shimamura T, Im D, Fujiwara T, Yamanaka Y, Jeon B, Nishizawa T, Oda K, Fukuda M, Andersson R, Båth P, Dods R, Davidsson J, Matsuoka S, Kawatake S, Murata M, Nureki O, Owada S, Kameshima T, Hatsui T, Joti Y, Schertler G, Yabashi M, Bondar AN, Standfuss J, Neutze R, & Iwata S (2016). A three-dimensional movie of structural changes in bacteriorhodopsin.
Science 354 :1552-1557. PubMed Id: 28008064. doi:10.1126/science.aah3497. |
||
Bacteriorhodopsin (BR) retinal isomerization movie, ground state: Halobacterium salinarum A Archaea, 1.5 Å
see the movie: Science Magazine Δt 49 - 406 fs, 1.9 Å: 6G7I Δt 457-646 fs, 1.9 Å: 6G7J Δt 10 ps, 1.9 Å: 1.9 Å: 6G7K Δt 8.3 ms, 1.9 Å: 6G7L |
Nogly et al. (2018).
Nogly P, Weinert T, James D, Carbajo S, Ozerov D, Furrer A, Gashi D, Borin V, Skopintsev P, Jaeger K, Nass K, Båth P, Bosman R, Koglin J, Seaberg M, Lane T, Kekilli D, Brünle S, Tanaka T, Wu W, Milne C, White T, Barty A, Weierstall U, Panneels V, Nango E, Iwata S, Hunter M, Schapiro I, Schertler G, Neutze R, & Standfuss J (2018). Retinal isomerization in bacteriorhodopsin captured by a femtosecond x-ray laser.
Science . PubMed Id: 29903883. doi:10.1126/science.aat0094. |
||
Hasegawa et al. (2018).
Hasegawa N, Jonotsuka H, Miki K, & Takeda K (2018). X-ray structure analysis of bacteriorhodopsin at 1.3 Å resolution.
Sci Rep 8 1. PubMed Id: 30177765. doi:10.1038/s41598-018-31370-0. |
|||
Weinert et al. (2019).
Weinert T, Skopintsev P, James D, Dworkowski F, Panepucci E, Kekilli D, Furrer A, Brünle S, Mous S, Ozerov D, Nogly P, Wang M, & Standfuss J (2019). Proton uptake mechanism in bacteriorhodopsin captured by serial synchrotron crystallography.
Science 365 6448:61-65. PubMed Id: 31273117. doi:10.1126/science.aaw8634. |
|||
Bacteriorhodopsin (BR) 3D view of ultrafast dynamics, dark state cell 1: Halobacterium salinarum A Archaea, 1.7 Å
dark state cell 2, 1.8 Å: 6GA2 dark state, cell 2, refined using the same protocol as sub-ps time delays, 1.8 Å: 6RMK 33 msec state, ensemble refinement, 2.1 Å: 6GA3 1 ps state, 1.8 Å: 6GA4 3 ps state, 1.9 Å: 6GA5 10 ps state, 1.8 Å: 6GA6 0.24 ps state, 1.8 Å: 6GA7 0.33 ps state, 1.8 Å:6GA8 0.39 ps state, 1.8 Å: 6GA9 0.43 ps state, 1.8 Å: 6GAA 0.46 ps state, 1.8 Å: 6GAB 0.49 ps state, 1.8 Å: 6GAC 0.53 ps state, 1.8 Å: 6GAD 0.56 ps state, 1.8 Å: 6GAE 0.59 ps state, 1.8 Å: 6GAF 0.63 ps state, 1.8 Å: 6GAG 0.68 ps state, 1.8 Å: 6GAH 0.74 ps state, 1.8 Å: 6AGI |
Nass Kovacs et al. (2019).
Nass Kovacs G, Colletier JP, Grünbein ML, Yang Y, Stensitzki T, Batyuk A, Carbajo S, Doak RB, Ehrenberg D, Foucar L, Gasper R, Gorel A, Hilpert M, Kloos M, Koglin JE, Reinstein J, Roome CM, Schlesinger R, Seaberg M, Shoeman RL, Stricker M, Boutet S, Haacke S, Heberle J, Heyne K, Domratcheva T, Barends TRM, & Schlichting I (2019). Three-dimensional view of ultrafast dynamics in photoexcited bacteriorhodopsin.
Nat Commun 10 1:3177. PubMed Id: 31320619. doi:10.1038/s41467-019-10758-0. |
||
Bacteriorhodopsin Crystallized from Bicelles in Complex with HAD16, Determined Using 7-keV X-ray Free Electron Laser (XFEL) at SACLA: Halobacterium salinarum B Bacteria, 2.35 Å
|
Hanashima et al. (2021).
Hanashima S, Nakane T, & Mizohata E (2021). Heavy Atom Detergent/Lipid Combined X-ray Crystallography for Elucidating the Structure-Function Relationships of Membrane Proteins.
Membranes (Basel) 11 11:823. PubMed Id: 34832053. doi:10.3390/membranes11110823. |
||
Borshchevskiy et al. (2022).
Borshchevskiy V, Kovalev K, Round E, Efremov R, Astashkin R, Bourenkov G, Bratanov D, Balandin T, Chizhov I, Baeken C, Gushchin I, Kuzmin A, Alekseev A, Rogachev A, Willbold D, Engelhard M, Bamberg E, Büldt G, & Gordeliy V (2022). True-atomic-resolution insights into the structure and functional role of linear chains and low-barrier hydrogen bonds in proteins.
Nat Struct Mol Biol 29 5:440-450. PubMed Id: 35484235. doi:10.1038/s41594-022-00762-2. |
|||
Taguchi et al. (2023).
Taguchi S, Niwa S, Dao HA, Tanaka Y, Takeda R, Fukai S, Hasegawa K, & Takeda K (2023). Detailed analysis of distorted retinal and its interaction with surrounding residues in the K intermediate of bacteriorhodopsin.
Commun Biol 6 1:190. PubMed Id: 36808185. doi:10.1038/s42003-023-04554-2. |
|||
Bacteriorhodopsin (BR), trimer in asymmetric unit: Haloquadratum walsbyi A Archaea (expressed in E. coli), 1.85 Å
This BR pumps protons efficiently under acid conditions. antiparallel dimer in asymmetric unit, 2.57 Å: 4QID |
Hsu et al. (2015).
Hsu MF, Fu HY, Cai CJ, Yi HP, Yang CS, & Wang AH (2015). Structural and Functional Studies of a Newly Grouped Haloquadratum walsbyi Bacteriorhodopsin Reveal the Acid-resistant Light-driven Proton Pumping Activity.
J Biol Chem 290 :29567-29577. PubMed Id: 26483542. doi:10.1074/jbc.M115.685065. |
||
Bacteriorhodopsin (BR) crystallized from octylglucoside (OG) detergent micelles: Haloquadratum walsbyi A Archaea (expressed in E. coli), 2.18 Å
crystallized from styrene maleic acid (SMA) polymer nanodiscs, 2.0 Å: 5ITC |
Broecker et al. (2017).
Broecker J, Eger BT, & Ernst OP (2017). Crystallogenesis of Membrane Proteins Mediated by Polymer-Bounded Lipid Nanodiscs.
Structure 25 :384-392. PubMed Id: 28089451. doi:10.1016/j.str.2016.12.004. |
||
Halorhodopsin (HR): Halobacterium salinarum A Archaea, 1.8 Å
|
Kolbe et al. (2000).
Kolbe M, Besir H, Essen L-O, & Oesterhelt D (2000). Structure of the light-driven chloride pump halorhodopsin at 1.8 Å.
Science 288 :1390-1396. PubMed Id: 10827943. |
||
Melnikov et al. (2022).
Melnikov I, Orekhov P, Rulev M, Kovalev K, Astashkin R, Bratanov D, Ryzhykau Y, Balandin T, Bukhdruker S, Okhrimenko I, Borshchevskiy V, Bourenkov G, Mueller-Dieckmann C, van der Linden P, Carpentier P, Leonard G, Gordeliy V, & Popov A (2022). High-pressure crystallography shows noble gas intervention into protein-lipid interaction and suggests a model for anaesthetic action.
Commun Biol 5 1:360. PubMed Id: 35422073. doi:10.1038/s42003-022-03233-y. |
|||
Halorhodopsin (HR): Natronomonas pharaonis A Archaea, 2.0 Å
|
Kouyama et al. (2010).
Kouyama T, Kanada S, Takeguchi Y, Narusawa A, Murakami M, Ihara K. (2010). Crystal Structure of the Light-Driven Chloride Pump Halorhodopsin from Natronomonas pharaonis.
J Mol Biol 396 :564-579. PubMed Id: 19961859. |
||
Astashkin et al. (2022).
Astashkin R, Kovalev K, Bukhdruker S, Vaganova S, Kuzmin A, Alekseev A, Balandin T, Zabelskii D, Gushchin I, Royant A, Volkov D, Bourenkov G, Koonin E, Engelhard M, Bamberg E, & Gordeliy V (2022). Structural insights into light-driven anion pumping in cyanobacteria.
Nat Commun 13 1:6460. PubMed Id: 36309497. doi:10.1038/s41467-022-34019-9. |
|||
Yun et al. (2020).
Yun JH, Park JH, Jin Z, Ohki M, Wang Y, Lupala CS, Liu H, Park SY, & Lee W (2020). Structure-Based Functional Modification Study of a Cyanobacterial Chloride Pump for Transporting Multiple Anions.
J Mol Biol 432 :5273-5286. PubMed Id: 32721401. doi:10.1016/j.jmb.2020.07.016. |
|||
Sensory Rhodopsin: Anabaena (Nostoc) sp. PCC7120 B Bacteria, 2.0 Å
|
Vogeley et al. (2004).
Vogeley L, Sineshchekov OA, Trivedi VD, Sasaki J, Spudich JL, & Luecke H (2004). Anabaena sensory rhodopsin: a photochromic color sensor at 2.0 Å.
Science 306 :1390-1393. PubMed Id: 15459346. |
||
Sensory Rhodopsin: Anabaena (Nostoc) sp. PCC7120 B Bacteria (expressed in E. coli), NMR Structure
|
Wang et al. (2013).
Wang S, Munro RA, Shi L, Kawamura I, Okitsu T, Wada A, Kim SY, Jung KH, Brown LS, & Ladizhansky V (2013). Solid-state NMR spectroscopy structure determination of a lipid-embedded heptahelical membrane protein.
Nat Methods 10 :1007-1012. PubMed Id: 24013819. doi:10.1038/nmeth.2635. |
||
Sensory Rhodopsin II (SRII): Natronomonas pharaonis A Archaea, 2.40 Å
|
Luecke et al. (2001).
Luecke H, Schobert B, Lanyi JK, Spudich EN, & Spudich JL (2001). Crystal structure of sensory rhodopsin II at 2.4 Å: Insights into color tuning and transducer interaction.
Science 293 :1499-1503. PubMed Id: 11452084. |
||
Sensory Rhodopsin II (SRII): Natronomonas pharaonis A Archaea (expressed in E. coli), 2.10 Å
|
Royant et al. (2001).
Royant A, Nollert P, Edman K, Neutze R, Landau EM, & Pebay-Peyroula E. (2001). X-ray structure of sensory rhodopsin II at 2.1 Å resolution.
Proc Natl Acad Sci USA 98 :10131-10136. PubMed Id: 11504917. |
||
Sensory Rhodopsin II (SRII) with transducer: Natronomonas pharaonis A Archaea (expressed in E. coli), 1.93 Å
|
Gordeliy et al. (2002).
Gordeliy VI, Labahn J, Moukhametzianov R, Efremov R, Granzin J, Schlesinger R, Büldt G, Savopol T, Scheidig AJ, Klare JP, & Engelhard M. (2002). Molecular basis of transmembrane signalling by sensory rhodopsin II-transducer complex.
Nature 419 :484-487. PubMed Id: 12368857. |
||
Sensory Rhodopsin II (SRII): Natronomonas pharaonis A Archaea (expressed in E. coli), NMR structure
|
Gautier et al. (2010).
Gautier A, Mott HR, Bostock MJ, Kirkpatrick JP, & Nietlispach D (2010). Structure determination of the seven-helix transmembrane receptor sensory rhodopsin II by solution NMR spectroscopy.
Nat Struct Mol Biol 17 :768-774. PubMed Id: 20512150. |
||
Sensory Rhodopsin II (SRII) in active state: Natronomonas pharaonis A Archaea (expressed in E. coli), 2.50 Å
SR II in ground state, 1.90 Å: 3QAP |
Gushchin et al. (2011).
Gushchin I, Reshetnyak A, Borshchevskiy V, Ishchenko A, Round E, Grudinin S, Engelhard M, Büldt G, & Gordeliy V (2011). Active state of sensory rhodopsin II: structural determinants for signal transfer and proton pumping.
J Mol Biol 412 :591-600. PubMed Id: 21840321. doi:10.1016/j.jmb.2011.07.022. |
||
Archaerhodopsin-1 (aR-1): Halorubrum sp. aus-1 A Archaea, 3.4 Å
|
Enami et al. (2006).
Enami N, Yoshimura K, Murakami M, Okumura H, Ihara K, & Kouyama T. (2006). Crystal Structures of Archaerhodopsin-1 and -2: Common Structural Motif in Archaeal Light-driven Proton Pumps.
J Mol Biol 356 :675-685. PubMed Id: 16540121. |
||
Archaerhodopsin-2 (aR-2): Haloroubrum sp. aus-2 A Archaea, 2.5 Å
|
Enami et al. (2006).
Enami N, Yoshimura K, Murakami M, Okumura H, Ihara K, & Kouyama T. (2006). Crystal Structures of Archaerhodopsin-1 and -2: Common Structural Motif in Archaeal Light-driven Proton Pumps.
J Mol Biol 356 :675-685. PubMed Id: 16540121. |
||
Archaerhodopsin-2 (aR-2): Haloroubrum sp. aus-2 A Archaea, 2.10 Å
Crystallized with the carotenoid bacterioruberin, space group P321. Space group P63, 2.50 Å: 2Z55. |
Yoshimura & Kouyama. (2008).
Yoshimura K & Kouyama T (2008). Structural role of bacterioruberin in the trimeric structure of archaerhodopsin-2.
J Mol Biol 375 :1267-1281. PubMed Id: 18082767. |
||
Archaerhodopsin-2 (aR-2): Haloroubrum sp. aus-2 A Archaea, 1.80 Å
|
Kouyama et al. (2014).
Kouyama T, Fujii R, Kanada S, Nakanishi T, Chan SK, & Murakami M (2014). Structure of archaerhodopsin-2 at 1.8?Å resolution.
Acta Crystallogr D Biol Crystallogr 70 :2692-2701. PubMed Id: 25286853. doi:10.1107/S1399004714017313. |
||
Archaerhodopsin-3 (aR-3), Dark-adapted state at 100 K: Halorubrum sodomense A Archaea, 1.30 Å
Ground state structure at 100 K, 1.07 Å: 6S6C |
Bada Juarez et al. (2021).
Bada Juarez JF, Judge PJ, Adam S, Axford D, Vinals J, Birch J, Kwan TOC, Hoi KK, Yen HY, Vial A, Milhiet PE, Robinson CV, Schapiro I, Moraes I, & Watts A (2021). Structures of the archaerhodopsin-3 transporter reveal that disordering of internal water networks underpins receptor sensitization.
Nat Commun 12 1:629. PubMed Id: 33504778. doi:10.1038/s41467-020-20596-0. |
||
Archaerhodopsin-3 (aR-3) in the ground state from LCP crystals using a thin-film sandwich at room temperature: Halorubrum sodomense A Archaea, 1.90 Å
Dark-adapted structure, 1.85 Å 6S63 |
Axford et al. (2022).
Axford D, Judge PJ, Bada Juarez JF, Kwan TOC, Birch J, Vinals J, Watts A, & Moraes I (2022). Two states of a light-sensitive membrane protein captured at room temperature using thin-film sample mounts.
Acta Crystallogr D Struct Biol 78 :52-58. PubMed Id: 34981761. doi:10.1107/S2059798321011220. |
||
Xanthorhodopsin: Salinibacter ruber B Bacteria, 1.90 Å
Contains bound carotenoid. |
Luecke et al. (2008).
Luecke H, Schobert B, Stagno J, Imasheva ES, Wang JM, Balashov SP, & Lanyi JK (2008). Crystallographic structure of xanthorhodopsin, the light-driven proton pump with a dual chromophore.
Proc Natl Acad Sci USA 105 :16561-16565. PubMed Id: 18922772. |
||
Acetabularia Rhodopsin II (ARII): Acetabularia acetabulum E Eukaryota (expressed in cell-free expression), 3.20 Å
This the first structure of a eukaryotic light-driven proton pump |
Wada et al. (2011).
Wada T, Shimono K, Kikukawa T, Hato M, Shinya N, Kim SY, Kimura-Someya T, Shirouzu M, Tamogami J, Miyauchi S, Jung KH, Kamo N, & Yokoyama S (2011). Crystal Structure of the Eukaryotic Light-Driven Proton-Pumping Rhodopsin, Acetabularia Rhodopsin II, from Marine Alga
J Mol Biol 411 :986-998. PubMed Id: 21726566. doi:10.1016/j.jmb.2011.06.028. |
||
Channelrhodopsin (ChR) chimera between ChR1 & ChR2: Chlamydomonas reinhardtii E Eukaryota (expressed in S. frugiperda), 2.30 Å
First ChR structure. Reveals cation conduction pathway. |
Kato et al. (2012).
Kato HE, Zhang F, Yizhar O, Ramakrishnan C, Nishizawa T, Hirata K, Ito J, Aita Y, Tsukazaki T, Hayashi S, Hegemann P, Maturana AD, Ishitani R, Deisseroth K, & Nureki O (2012). Crystal structure of the channelrhodopsin light-gated cation channel.
Nature 482 :369-374. PubMed Id: 22266941. doi:10.1038/nature10870. |
||
Channelrhodopsin (ChR) chimera between ChR1 & ChR2, T198G/G202A mutant: Chlamydomonas reinhardtii E Eukaryota (expressed in S. frugiperda), 2.50 Å
Blue-shifted mutant |
Kato et al. (2015).
Kato HE, Kamiya M, Sugo S, Ito J, Taniguchi R, Orito A, Hirata K, Inutsuka A, Yamanaka A, Maturana AD, Ishitani R, Sudo Y, Hayashi S, & Nureki O (2015). Atomistic design of microbial opsin-based blue-shifted optogenetics tools.
Nat Commun 6 :7177. PubMed Id: 25975962. doi:10.1038/ncomms8177. |
||
Channelrhodopsin (ChR) chimera between ChR1 & ChR2 by serial femtosecond crystallogrphy, dark state: Chlamydomonas reinhardtii E Eukaryota (expressed in Spodoptera frugiperda), 2.30 Å
1 μsec structure, 2.50 Å: 7E6Y 50 μ structure, 2.50 Å: 7E6Z 250 μsec structure, 2.50 Å: 7E70 1 msec structure, 2.50 Å: 7E71 4 msec structure, 2.50 Å: 7E6X |
Oda et al. (2021).
Oda K, Nomura T, Nakane T, Yamashita K, Inoue K, Ito S, Vierock J, Hirata K, Maturana AD, Katayama K, Ikuta T, Ishigami I, Izume T, Umeda R, Eguma R, Oishi S, Kasuya G, Kato T, Kusakizako T, Shihoya W, Shimada H, Takatsuji T, Takemoto M, Taniguchi R, Tomita A, Nakamura R, Fukuda M, Miyauchi H, Lee Y, Nango E, Tanaka R, Tanaka T, Sugahara M, Kimura T, Shimamura T, Fujiwara T, Yamanaka Y, Owada S, Joti Y, Tono K, Ishitani R, Hayashi S, Kandori H, Hegemann P, Iwata S, Kubo M, Nishizawa T, & Nureki O (2021). Time-resolved serial femtosecond crystallography reveals early structural changes in channelrhodopsin.
Elife 10 :e62389. PubMed Id: 33752801. doi:10.7554/eLife.62389. |
||
iC++ designed anion channelrhodopsin, pH 8.5: designed U Unclassified (expressed in S. frugiperda), 2.9 Å
pH 6.5, 3.2 Å: 6CSO |
Kato et al. (2018).
Kato HE, Kim YS, Paggi JM, Evans KE, Allen WE, Richardson C, Inoue K, Ito S, Ramakrishnan C, Fenno LE, Yamashita K, Hilger D, Lee SY, Berndt A, Shen K, Kandori H, Dror RO, Kobilka BK, & Deisseroth K (2018). Structural mechanisms of selectivity and gating in anion channelrhodopsins.
Nature 561 7723:349-354. PubMed Id: 30158697. doi:10.1038/s41586-018-0504-5. |
||
Channelrhodopsin 2 (ChR2): Chlamydomonas reinhardtii E Eukaryota (expressed in Leishmania tarentolae), 2.39 Å
C128T mutant, 2.7 Å: 6EIG |
Volkov et al. (2017).
Volkov O, Kovalev K, Polovinkin V, Borshchevskiy V, Bamann C, Astashkin R, Marin E, Popov A, Balandin T, Willbold D, Büldt G, Bamberg E, Gordeliy V (2017). Structural insights into ion conduction by channelrhodopsin 2
Science 358 6366:eaan8862. PubMed Id: 29170206. doi:10.1126/science.aan8862. |
||
anion channelrhodopsin-1 (ACR1) light-gated anion channel: Guillardia theta E Eukaryota (expressed in S. frugiperda), 2.9 Å
|
Kim et al. (2018).
Kim YS, Kato HE, Yamashita K, Ito S, Inoue K, Ramakrishnan C, Fenno LE, Evans KE, Paggi JM, Dror RO, Kandori H, Kobilka BK, & Deisseroth K (2018). Crystal structure of the natural anion-conducting channelrhodopsin GtACR1.
Nature 561 7723:343-348. PubMed Id: 30158696. doi:10.1038/s41586-018-0511-6. |
||
anion channelrhodopsin-1 (ACR1) light-gated anion channel in dark (closed) state: Guillardia theta E Eukaryota (expressed in S. frugiperda), 2.9 Å
|
Li et al. (2019).
Li H, Huang CY, Govorunova EG, Schafer CT, Sineshchekov OA, Wang M, Zheng L, & Spudich JL (2019). Crystal structure of a natural light-gated anion channelrhodopsin.
Elife 8 :e41741. PubMed Id: 30614787. doi:10.7554/eLife.41741. |
||
anion channelrhodopsin-1 (ACR1) light-gated anion channel, bromide bound: Guillardia theta E Eukaryota (expressed in Komagataella pastoris), 3.20 Å
|
Li et al. (2021).
Li H, Huang CY, Govorunova EG, Sineshchekov OA, Yi A, Rothschild KJ, Wang M, Zheng L, & Spudich JL (2021). The crystal structure of bromide-bound GtACR1 reveals a pre-activated state in the transmembrane anion tunnel.
Elife 10 :e65903. PubMed Id: 33998458. doi:10.7554/eLife.65903. |
||
Channelrhodopsin Chrimson: Chlamydomonas noctigama E Eukaryota (expressed in S. frugiperda), 2.6 Å
|
Oda et al. (2018).
Oda K, Vierock J, Oishi S, Rodriguez-Rozada S, Taniguchi R, Yamashita K, Wiegert JS, Nishizawa T, Hegemann P, & Nureki O (2018). Crystal structure of the red light-activated channelrhodopsin Chrimson.
Nat Commun 9 1. PubMed Id: 30258177. doi:10.1038/s41467-018-06421-9. |
||
Proteorhodopsin (green-light absorbing): Uncultured marine gamma proteobacterium ebac31a08 B Bacteria (expressed in E. coli-based cell-free expression system), NMR Structure
|
Reckel et al. (2011).
Reckel S, Gottstein D, Stehle J, Löhr F, Verhoefen MK, Takeda M, Silvers R, Kainosho M, Glaubitz C, Wachtveitl J, Bernhard F, Schwalbe H, Güntert P, Dötsch V (2011). Solution NMR structure of proteorhodopsin.
Angew Chem Int Ed Engl 50 :11942-11946. PubMed Id: 22034093. doi:10.1002/anie.201105648. |
||
Proteorhodopsin (green-light absorbing): uncultured Gammaproteobacteria bacterium B Bacteria (expressed in E. coli), 2.93 Å
cryo-EM structure |
Hirschi et al. (2021).
Hirschi S, Kalbermatter D, Ucurum Z, Lemmin T, & Fotiadis D (2021). Cryo-EM structure and dynamics of the green-light absorbing proteorhodopsin.
Nat Commun 12 1. PubMed Id: 34226545. doi:10.1038/s41467-021-24429-6. |
||
Proteorhodopsin: Exiguobacterium sibiricum B Bacteria (expressed in E. coli), 2.30 Å
Lysine is the proton donor in this novel proteorhodopsin |
Gushchin et al. (2013).
Gushchin I, Chervakov P, Kuzmichev P, Popov AN, Round E, Borshchevskiy V, Ishchenko A, Petrovskaya L, Chupin V, Dolgikh DA, Arseniev AA, Kirpichnikov M, & Gordeliy V (2013). Structural insights into the proton pumping by unusual proteorhodopsin from nonmarine bacteria.
Proc Natl Acad Sci USA 110 :12631-12636. PubMed Id: 23872846. doi:10.1073/pnas.1221629110. |
||
Proteorhodopsin (blue-light absorbing), Med12BPR: uncultured bacterium B Bacteria (expressed in E. coli), 2.31 Å
Isolated from the Mediterranean Sea at a depth of 12 m. Oligomerizes as a hexameric ring. |
Ran et al. (2013).
Ran T, Ozorowski G, Gao Y, Sineshchekov OA, Wang W, Spudich JL, & Luecke H (2013). Cross-protomer interaction with the photoactive site in oligomeric proteorhodopsin complexes.
Acta Crystallogr D Biol Crystallogr 69 :1965-1980. PubMed Id: 24100316. |
||
Proteorhodopsin (blue-light absorbing); HOT75BPR, D97N mutant: gamma proteobacterium B Bacteria (expressed in E. coli), 2.70 Å
Isolated from the Pacific Ocean near Hawaii at a depth of 75 m. Oligomerizes as a pentameric ring. D97N/Q105L mutant, 2.60 Å: 4KNF |
Ran et al. (2013).
Ran T, Ozorowski G, Gao Y, Sineshchekov OA, Wang W, Spudich JL, & Luecke H (2013). Cross-protomer interaction with the photoactive site in oligomeric proteorhodopsin complexes.
Acta Crystallogr D Biol Crystallogr 69 :1965-1980. PubMed Id: 24100316. |
||
Cruxrhodopsin-3 (cR3), pH 5: Haloarcula vallismortis A Archaea (expressed in H. salinarum), 2.10 Å
at pH 6, 2.30 Å: 4JR8 |
Chan et al. (2014).
Chan SK, Kitajima-Ihara T, Fujii R, Gotoh T, Murakami M, Ihara K, & Kouyama T (2014). Crystal Structure of Cruxrhodopsin-3 from Haloarcula vallismortis.
PLoS ONE 9 9:e108362. PubMed Id: 25268964. doi:10.1371/journal.pone.0108362. |
||
KR2 light-driven Na+ pump, acidic conditions: Krokinobacter eikastus B Bacteria (expressed in E. coli), 2.30 Å
basic conditions, 2.30 Å: 3X3C *Species name has changed to Dokdonia eikasta. See Int J Syst Evol Microbiol (2012) doi: 10.1099/ijs.0.035253-0. But K. eikastus remains in common use in the literature.* |
Kato et al. (2015).
Kato HE, Inoue K, Abe-Yoshizumi R, Kato Y, Ono H, Konno M, Hososhima S, Ishizuka T, Hoque MR, Kunitomo H, Ito J, Yoshizawa S, Yamashita K, Takemoto M, Nishizawa T, Taniguchi R, Kogure K, Maturana AD, Iino Y, Yawo H, Ishitani R, Kandori H, & Nureki O (2015). Structural basis for Na+ transport mechanism by a light-driven Na+ pump.
Nature 521 :48-53. PubMed Id: 25849775. doi:10.1038/nature14322. |
||
KR2 light-driven Na+ pump, pentameric form at pH 6.0: Krokinobacter eikastus B Bacteria (expressed in E. coli), 2.7 Å
pentameric form at pH 5.0, 2.6 Å: 6REZ pentameric form at pH 8.0, 2.2 Å: 6REW pentameric form S254A at pH 8.0, 2.4 Å: 6RF4 pentameric form G263F ar pH 8.0, 2.4 Å: 6RF3 pentameric "wet" form, 2.8 Å: 6RF1 pentameric "dry" form, 3 Å: 6RF0 monomeric pH 6.0, 2.3 Å: 6RF5 monomeric form H30K at pH 8.0, 2.2 Å: 6RFA monomeric form at pH 8.9, Å: 6RF7 monomeric form G263F at pH 4.3, 2.0 Å: 6RFC monomeric form S254A at pH 4.3, 2.1 Å: 6RFB monomeric form at pH 8.0, 1.8 Å: 6RF6 |
Kovalev et al. (2019).
Kovalev K, Polovinkin V, Gushchin I, Alekseev A, Shevchenko V, Borshchevskiy V, Astashkin R, Balandin T, Bratanov D, Vaganova S, Popov A, Chupin V, Büldt G, Bamberg E, & Gordeliy V (2019). Structure and mechanisms of sodium-pumping KR2 rhodopsin.
Sci Adv 5 4:eaav2671. PubMed Id: 30989112. doi:10.1126/sciadv.aav2671. |
||
KR2 light-driven Na+ pump, pentameric form in O-state, pH 8: Krokinobacter eikastus B Bacteria (expressed in E. coli), 2.10 Å
D116N mutant, monomeric form, pH 4.6, 1.80 Å: 6YBY D116N mutant, pentameric form, pH 8.0, 2.35 Å: 6YBZ steady-state-SMX activated state, pentameric form at room temperature, pH 8.0, 2.70 Å: 6YC0 H30A, pentameric form, pH 8.0, 2.20 Å: 6YC1 pentameric form at room temperature, pH 8.0, 2.50 Å: 6YC2 pentameric form, pH 8.0, 2.00 Å: 6YC3 steady-state activated state, pentameric form at room temperature, pH 8.0, 2.60 Å: 6YC4 |
Kovalev et al. (2020).
Kovalev K, Astashkin R, Gushchin I, Orekhov P, Volkov D, Zinovev E, Marin E, Rulev M, Alekseev A, Royant A, Carpentier P, Vaganova S, Zabelskii D, Baeken C, Sergeev I, Balandin T, Bourenkov G, Carpena X, Boer R, Maliar N, Borshchevskiy V, Büldt G, Bamberg E, & Gordeliy V (2020). Molecular mechanism of light-driven sodium pumping.
Nat Commun 11 1:2137. PubMed Id: 32358514. doi:10.1038/s41467-020-16032-y. |
||
Gushchin et al. (2015).
Gushchin I, Shevchenko V, Polovinkin V, Kovalev K, Alekseev A, Round E, Borshchevskiy V, Balandin T, Popov A, Gensch T, Fahlke C, Bamann C, Willbold D, Büldt G, Bamberg E, & Gordeliy V (2015). Crystal structure of a light-driven sodium pump.
Nat Struct Mol Biol 22 :390-395. PubMed Id: 25849142. doi:10.1038/nsmb.3002. |
|||
KR2 light-driven Na+ pump; fsec to msec structural changes. Dark state, acidic conditions: Krokinobacter eikastus B Bacteria (expressed in E. coli), 1.60 Å
dark state, neutral conditions, 1.60 Å: 6TK6 800fs+2ps, 2.25 Å: 6TK5 1ns+16ns, 2.25 Å: 6TK4 30us+150us, 2.25 Å: 6TK3 1 msec, 2.50 Å: 6TK2 20 msec., 2.50 Å: 6TK1 |
Skopintsev et al. (2020).
Skopintsev P, Ehrenberg D, Weinert T, James D, Kar RK, Johnson PJM, Ozerov D, Furrer A, Martiel I, Dworkowski F, Nass K, Knopp G, Cirelli C, Arrell C, Gashi D, Mous S, Wranik M, Gruhl T, Kekilli D, Brünle S, Deupi X, Schertler GFX, Benoit RM, Panneels V, Nogly P, Schapiro I, Milne C, Heberle J, & Standfuss J (2020). Femtosecond-to-millisecond structural changes in a light-driven sodium pump.
Nature 583 7815:314-318. PubMed Id: 32499654. doi:10.1038/s41586-020-2307-8. |
||
Thermophilic rhodopsin: Thermus thermophilus B Bacteria (expressed in E. coli), 2.8 Å
|
Tsukamoto et al. (2016).
Tsukamoto T, Mizutani K, Hasegawa T, Takahashi M, Honda N, Hashimoto N, Shimono K, Yamashita K, Yamamoto M, Miyauchi S, Takagi S, Hayashi S, Murata T, & Sudo Y (2016). X-ray Crystallographic Structure of Thermophilic Rhodopsin.
J Biol Chem 291 23:12223-12232. PubMed Id: 27129243. doi:10.1074/jbc.M116.719815. |
||
Heliorhodopsin (HeR): Thermoplasmatales archaeon SG8-52-1 A Archaea (expressed in E. coli), 2.4 Å
|
Shihoya et al. (2019).
Shihoya W, Inoue K, Singh M, Konno M, Hososhima S, Yamashita K, Ikeda K, Higuchi A, Izume T, Okazaki S, Hashimoto M, Mizutori R, Tomida S, Yamauchi Y, Abe-Yoshizumi R, Katayama K, Tsunoda SP, Shibata M, Furutani Y, Pushkarev A, Béjà O, Uchihashi T, Kandori H, & Nureki O (2019). Crystal structure of heliorhodopsin.
Nature 574 7776:132-136. PubMed Id: 31554965. doi:10.1038/s41586-019-1604-6. |
||
Heliorhodopsin (HeR), low pH structure: Thermoplasmatales archaeon A Archaea (expressed in E. coli), 1.97 Å
|
Besaw et al. (2022).
Besaw JE, Reichenwallner J, De Guzman P, Tucs A, Kuo A, Morizumi T, Tsuda K, Sljoka A, Miller RJD, & Ernst OP (2022). Low pH structure of heliorhodopsin reveals chloride binding site and intramolecular signaling pathway.
Sci Rep 12 1:13955. PubMed Id: 35977989. doi:10.1038/s41598-022-17716-9. |
||
Heliorhodopsin (HeR) in the violet form, pH 8.8: Actinomycetia bacterium B Bacteria (expressed in E. coli), 1.5 Å
blue form at pH 4.3, 1.5 Å: 6SU4 |
Kovalev et al. (2020).
Kovalev K, Volkov D, Astashkin R, Alekseev A, Gushchin I, Haro-Moreno JM, Chizhov I, Siletsky S, Mamedov M, Rogachev A, Balandin T, Borshchevskiy V, Popov A, Bourenkov G, Bamberg E, Rodriguez-Valera F, Büldt G, & Gordeliy V (2020). High-resolution structural insights into the heliorhodopsin family.
Proc Natl Acad Sci USA 117 8:4131-4141. PubMed Id: 32034096. doi:10.1073/pnas.1915888117. |
||
Organic Lake Phycodnavirus rhodopsin II (OLPVRII): Organic Lake phycodnavirus V Viruses (expressed in E. coli), 1.9 Å
This is the first reported structure of a viral rhodopsin. |
Bratanov et al. (2019).
Bratanov D, Kovalev K, Machtens JP, Astashkin R, Chizhov I, Soloviov D, Volkov D, Polovinkin V, Zabelskii D, Mager T, Gushchin I, Rokitskaya T, Antonenko Y, Alekseev A, Shevchenko V, Yutin N, Rosselli R, Baeken C, Borshchevskiy V, Bourenkov G, Popov A, Balandin T, Büldt G, Manstein DJ, Rodriguez-Valera F, Fahlke C, Bamberg E, Koonin E, & Gordeliy V (2019). Unique structure and function of viral rhodopsins.
Nat Commun 10 1:4939. PubMed Id: 31666521. doi:10.1038/s41467-019-12718-0. |
||
Kim et al. (2016).
Kim K, Kwon SK, Jun SH, Cha JS, Kim H, Lee W, Kim JF, & Cho HS (2016). Crystal structure and functional characterization of a light-driven chloride pump having an NTQ motif.
Nat Commun 7 :12677. PubMed Id: 27554809. doi:10.1038/ncomms12677. |
|||
NTQ chloride transport rhodopsin (ClR), dark state: Nonlabens marinus B Bacteria (expressed in E. coli), 1.65 Å
Structures at different time points: 1 ps, 1.85 Å: 7CRI 2 ps, 1.85 Å: 7CRK 100 ps (0.90 mJ/mm2), 1.85 Å: 7CRS 100 ps (0.17 mJ/mm2), 1.85 Å: 7CRT 100 ps (2.63 mJ/mm2), 1.85 Å: 7CRX 100 ps (6.49 mJ/mm2), 1.85 Å: 7CRY |
Yun et al. (2021).
Yun JH, Li X, Yue J, Park JH, Jin Z, Li C, Hu H, Shi Y, Pandey S, Carbajo S, Boutet S, Hunter MS, Liang M, Sierra RG, Lane TJ, Zhou L, Weierstall U, Zatsepin NA, Ohki M, Tame JRH, Park SY, Spence JCH, Zhang W, Schmidt M, Lee W, & Liu H (2021). Early-stage dynamics of chloride ion-pumping rhodopsin revealed by a femtosecond X-ray laser.
Proc Natl Acad Sci U S A 118 13:e2020486118. PubMed Id: 33753488. doi:10.1073/pnas.2020486118. |
||
NM-R3 bacterial chloride importer, dark-state, Pulse laser (ND-1%) at 140K: Nonlabens marinus B Bacteria (expressed in E. coli), 1.9 Å
light-state, Pulse laser (ND-1%) at 140K, 2.00 Å: 6JYF dark-state, with Pulse laser (ND-1%) at 95K, 1.8 Å: 6JY6 light state, Pulse laser (ND-1%) at 95K, 1.8 Å: 6JY7 dark-state, CW laser (ND-3%) at 95K, 1.9 Å: 6JY8 light-state, CW laser (ND-3%) at 95K, 1.9 Å: 6JY9 dark-state, CW laser (ND-10%) at 95K, 1.80 Å: 6JYA light-state, CW laser (ND-10%) at 95K, 1.80 Å: 6JYB dark-state, CW laser (ND-30%) at 95K, 1.89 Å: 6JYC light-state, CW laser (ND-30%) at 95K, 2.01 Å: 6JYD |
Yun et al. (2020).
Yun JH, Ohki M, Park JH, Ishimoto N, Sato-Tomita A, Lee W, Jin Z, Tame JRH, Shibayama N, Park SY, & Lee W (2020). Pumping mechanism of NM-R3, a light-driven bacterial chloride importer in the rhodopsin family.
Sci Adv 6 6. PubMed Id: 32083178. doi:10.1126/sciadv.aay2042. |
||
Hosaka et al. (2022).
Hosaka T, Nomura T, Kubo M, Nakane T, Fangjia L, Sekine SI, Ito T, Murayama K, Ihara K, Ehara H, Kashiwagi K, Katsura K, Akasaka R, Hisano T, Tanaka T, Tanaka R, Arima T, Yamashita A, Sugahara M, Naitow H, Matsuura Y, Yoshizawa S, Tono K, Owada S, Nureki O, Kimura-Someya T, Iwata S, Nango E, & Shirouzu M (2022). Conformational alterations in unidirectional ion transport of a light-driven chloride pump revealed using X-ray free electron lasers.
Proc Natl Acad Sci U S A 119 9:e2117433119. PubMed Id: 35197289. doi:10.1073/pnas.2117433119. |
|||
NM-R3 bacterial chloride importer dark state by serial femtosecond crystallography: Nonlabens marinus B Bacteria (expressed in E. coli), 1.45 Å
dark state structure determined by serial millisecond crystallography, 1.80 Å: 7O8L Anomalous bromide substructure under dark state conditions determined at 13.7 keV, 1.75 Å: 7O8Y light state structure at 10 ps after photoexcitation, 1.90 Å: 7O8G at 10 ns after photoexcitation, 1.80 Å: 7O8H at 1 μs after photoexcitation, 1.80 Å: 7O8I at 20 μs after photoexcitation, 1.80 Å: 7O8J at 300 μs after photoexcitation, 1.90 Å: 7O8K at 2.5 ms after photoexcitation, 2.20 Å: 7O8M at 7.5 ms after photoexcitation, 2.10 Å: 7O8N at 12.5 ms after photoexcitation, 2.20 Å: 7O8O at 17.5 ms after photoexcitation, 2.40 Å: 7O8P at 22.5 ms after photoexcitation, 2.60 Å: 7O8Q at 27.5 ms after photoexcitation, 2.70 Å: 7O8R at 32.5 ms after photoexcitation, 2.50 Å: 7O8S at 45 ms after photoexcitation, 2.50 Å: 7O8U at 55 ms after photoexcitation, 2.50 Å: 7O8V Anomalous bromide substructure under continuous illumination determined at 13.7 keV, 1.80 Å: 7O8Z |
Mous et al. (2022).
Mous S, Gotthard G, Ehrenberg D, Sen S, Weinert T, Johnson PJM, James D, Nass K, Furrer A, Kekilli D, Ma P, Brünle S, Casadei CM, Martiel I, Dworkowski F, Gashi D, Skopintsev P, Wranik M, Knopp G, Panepucci E, Panneels V, Cirelli C, Ozerov D, Schertler GFX, Wang M, Milne C, Standfuss J, Schapiro I, Heberle J, & Nogly P (2022). Dynamics and mechanism of a light-driven chloride pump.
Science 375 6583:845-851. PubMed Id: 35113649. doi:10.1126/science.abj6663. |
||
Ikuta et al. (2020).
Ikuta T, Shihoya W, Sugiura M, Yoshida K, Watari M, Tokano T, Yamashita K, Katayama K, Tsunoda SP, Uchihashi T, Kandori H, & Nureki O (2020). Structural insights into the mechanism of rhodopsin phosphodiesterase.
Nat Commun 11 1:5605. PubMed Id: 33154353. doi:10.1038/s41467-020-19376-7. |
|||
cyanorhodopsin (CyR) N2098R: Calothrix sp. NIES-2098 B Bacteria (expressed in E. coli), 2.65 Å
|
Hasegawa et al. (2020).
Hasegawa M, Hosaka T, Kojima K, Nishimura Y, Nakajima Y, Kimura-Someya T, Shirouzu M, Sudo Y, & Yoshizawa S (2020). A unique clade of light-driven proton-pumping rhodopsins evolved in the cyanobacterial lineage.
Sci Rep 10 1:16752. PubMed Id: 33028840. doi:10.1038/s41598-020-73606-y. |
||
cyanorhodopsin (CyR) N4075R: Tolypothrix sp. NIES-4075 B Bacteria (expressed in E. coli), 1.90 Å
|
Hasegawa et al. (2020).
Hasegawa M, Hosaka T, Kojima K, Nishimura Y, Nakajima Y, Kimura-Someya T, Shirouzu M, Sudo Y, & Yoshizawa S (2020). A unique clade of light-driven proton-pumping rhodopsins evolved in the cyanobacterial lineage.
Sci Rep 10 1:16752. PubMed Id: 33028840. doi:10.1038/s41598-020-73606-y. |
||
Zabelskii et al. (2020).
Zabelskii D, Alekseev A, Kovalev K, Rankovic V, Balandin T, Soloviov D, Bratanov D, Savelyeva E, Podolyak E, Volkov D, Vaganova S, Astashkin R, Chizhov I, Yutin N, Rulev M, Popov A, Eria-Oliveira AS, Rokitskaya T, Mager T, Antonenko Y, Rosselli R, Armeev G, Shaitan K, Vivaudou M, Büldt G, Rogachev A, Rodriguez-Valera F, Kirpichnikov M, Moser T, Offenhäusser A, Willbold D, Koonin E, Bamberg E, & Gordeliy V (2020). Viral rhodopsins 1 are an unique family of light-gated cation channels.
Nat Commun 11 1:5707. PubMed Id: 33177509. doi:10.1038/s41467-020-19457-7. |
|||
light-driven proton pump LR (Mac): Leptosphaeria maculans E Eukaryota (expressed in Leishmania tarentolae), 2.20 Å
|
Zabelskii et al. (2021).
Zabelskii D, Dmitrieva N, Volkov O, Shevchenko V, Kovalev K, Balandin T, Soloviov D, Astashkin R, Zinovev E, Alekseev A, Round E, Polovinkin V, Chizhov I, Rogachev A, Okhrimenko I, Borshchevskiy V, Chupin V, Büldt G, Yutin N, Bamberg E, Koonin E, & Gordeliy V (2021). Structure-based insights into evolution of rhodopsins.
Commun Biol 4 1:821. PubMed Id: 34193947. doi:10.1038/s42003-021-02326-4. |
||
Bestrhodopsin (rhodopsin-rhodopsin-bestrophin) complex: Phaeocystis E Eukaryota (expressed in Spodoptera frugiperda), 3.21 Å
cryo-EM structure |
Rozenberg et al. (2022).
Rozenberg A, Kaczmarczyk I, Matzov D, Vierock J, Nagata T, Sugiura M, Katayama K, Kawasaki Y, Konno M, Nagasaka Y, Aoyama M, Das I, Pahima E, Church J, Adam S, Borin VA, Chazan A, Augustin S, Wietek J, Dine J, Peleg Y, Kawanabe A, Fujiwara Y, Yizhar O, Sheves M, Schapiro I, Furutani Y, Kandori H, Inoue K, Hegemann P, Béjà O, & Shalev-Benami M (2022). Rhodopsin-bestrophin fusion proteins from unicellular algae form gigantic pentameric ion channels.
Nat Struct Mol Biol 29 6:592-603. PubMed Id: 35710843. doi:10.1038/s41594-022-00783-x. |
||
DTG rhodopsin: Pseudomonas putida B Bacteria (expressed in E. coli), 2.84 Å
|
Suzuki et al. (2022).
Suzuki K, Del Carmen Marín M, Konno M, Bagherzadeh R, Murata T, & Inoue K (2022). Structural characterization of proton-pumping rhodopsin lacking a cytoplasmic proton donor residue by X-ray crystallography.
J Biol Chem 298 3:101722. PubMed Id: 35151692. doi:10.1016/j.jbc.2022.101722. |
||
Schizorhodopsin 4 (SzR): Asgard group archaeon A Archaea (expressed in E. coli), 2.10 Å
|
Higuchi et al. (2021).
Higuchi A, Shihoya W, Konno M, Ikuta T, Kandori H, Inoue K, & Nureki O (2021). Crystal structure of schizorhodopsin reveals mechanism of inward proton pumping.
Proc Natl Acad Sci U S A 118 14:e2016328118. PubMed Id: 33790007. doi:10.1073/pnas.2016328118. |
||
Coccomyxa subellipsoidea rhodopsin (CsR) Light-driven proton pump,: Coccomyxa subellipsoidea E Eukaryota (expressed in Spodoptera frugiperda), 2.00 Å
|
Fudim et al. (2019).
Fudim R, Szczepek M, Vierock J, Vogt A, Schmidt A, Kleinau G, Fischer P, Bartl F, Scheerer P, & Hegemann P (2019). Design of a light-gated proton channel based on the crystal structure of Coccomyxa rhodopsin.
Sci Signal 12 573:eaav4203. PubMed Id: 30890657. doi:10.1126/scisignal.aav4203. |
||
Gloeobacter rhodopsin: Gloeobacter violaceus B Bacteria (expressed in E. coli), 2.00 Å
|
Morizumi et al. (2019).
Morizumi T, Ou WL, Van Eps N, Inoue K, Kandori H, Brown LS, & Ernst OP (2019). X-ray Crystallographic Structure and Oligomerization of Gloeobacter Rhodopsin.
Sci Rep 9 1:11283. PubMed Id: 31375689. doi:10.1038/s41598-019-47445-5. |
||
Rhodopsin chloride pump: Mastigocladopsis repens B Bacteria (expressed in E.coli), 2.33 Å
Proton-pumping mutant, 2.50 Å: 6WP8 |
Besaw et al. (2020).
Besaw JE, Ou WL, Morizumi T, Eger BT, Sanchez Vasquez JD, Chu JHY, Harris A, Brown LS, Miller RJD, & Ernst OP (2020). The crystal structures of a chloride-pumping microbial rhodopsin and its proton-pumping mutant illuminate proton transfer determinants.
J Biol Chem 295 44:14793-14804. PubMed Id: 32703899. doi:10.1074/jbc.RA120.014118. |
||
Tucker et al. (2022).
Tucker K, Sridharan S, Adesnik H, & Brohawn SG (2022). Cryo-EM structures of the channelrhodopsin ChRmine in lipid nanodiscs.
Nat Commun 13 1:4842. PubMed Id: 35977941. doi:10.1038/s41467-022-32441-7. |
|||
ChRmine, pump-like channelrhodopsin: Rhodomonas lens E Eukaryota (expressed in Spodoptera frugiperda), 2.02 Å
cryo-EM structure |
Kishi et al. (2022).
Kishi KE, Kim YS, Fukuda M, Inoue M, Kusakizako T, Wang PY, Ramakrishnan C, Byrne EFX, Thadhani E, Paggi JM, Matsui TE, Yamashita K, Nagata T, Konno M, Quirin S, Lo M, Benster T, Uemura T, Liu K, Shibata M, Nomura N, Iwata S, Nureki O, Dror RO, Inoue K, Deisseroth K, & Kato HE (2022). Structural basis for channel conduction in the pump-like channelrhodopsin ChRmine.
Cell 185 4:672-689.e23. PubMed Id: 35114111. doi:10.1016/j.cell.2022.01.007. |
||
kalium channelrhodopsin 1 (KCR1) embedded in peptidisc: Hyphochytrium catenoides E Eukaryota (expressed in Komagataella pastoris), 2.88 Å
cryo-EM structure |
Morizumi et al. (2023).
Morizumi T, Kim K, Li H, Govorunova EG, Sineshchekov OA, Wang Y, Zheng L, Bertalan É, Bondar AN, Askari A, Brown LS, Spudich JL, & Ernst OP (2023). Structures of channelrhodopsin paralogs in peptidiscs explain their contrasting K+ and Na+ selectivities.
Nat Commun 14 1:4365. PubMed Id: 37474513. doi:10.1038/s41467-023-40041-2. |
||
Xenorhodopsin (XeR), ground state, pH 8.2, in the presence of sodium, 100K structure: Bacillus coahuilensis B Bacteria (expressed in expressed in E. coli), 1.70 Å
X-ray structure M state, pH 8.2, in the presence of sodium,1.70 Å: 7ZN0 L state, pH 8.2, in the presence of sodium,1.60 Å: 7ZN3 ground state, pH 7.0, in the presence of sodium, 2.20 Å: 7ZN8 M state, pH 7.0, in the presence of sodium, 2.30 Å: 7ZN9 ground state, pH 5.2, in the presence of sodium, 1.80 Å: 7ZNA M state, pH 5.2, in the presence of sodium, 1.90 Å: 7ZNB ground state, pH 7.6, 1.70 Å: 7ZNC M state, pH 7.6, 1.70 Å: 7ZND ground state, pH 8.2, room temperature (RT) structure with 7.5 ms-snapshot, 2.10 Å: 7ZNE ground state, pH 8.2, RT structure with 500 μs-snapshot, 2.30 Å: 7ZNG activated state, pH 8.2, RT structure with 250-750 μs-snapshot, 2.30 Å: 7ZNH activated state, pH 8.2, RT structure with 7.5-15 ms-snapshot, 2.20 Å: 7ZNI |
Kovalev et al. (2023).
Kovalev K, Tsybrov F, Alekseev A, Shevchenko V, Soloviov D, Siletsky S, Bourenkov G, Agthe M, Nikolova M, von Stetten D, Astashkin R, Bukhdruker S, Chizhov I, Royant A, Kuzmin A, Gushchin I, Rosselli R, Rodriguez-Valera F, Ilyinskiy N, Rogachev A, Borshchevskiy V, Schneider TR, Bamberg E, & Gordeliy V (2023). Mechanisms of inward transmembrane proton translocation.
Nat Struct Mol Biol 30 7:970-979. PubMed Id: 37386213. doi:10.1038/s41594-023-01020-9. |
||
Xenorhodopsin (XeR): Candidatus Nanosalina B Bacteria (expressed in expressed in E. coli), 2.50 Å
X-ray structure |
Shevchenko et al. (2017).
Shevchenko V, Mager T, Kovalev K, Polovinkin V, Alekseev A, Juettner J, Chizhov I, Bamann C, Vavourakis C, Ghai R, Gushchin I, Borshchevskiy V, Rogachev A, Melnikov I, Popov A, Balandin T, Rodriguez-Valera F, Manstein DJ, Bueldt G, Bamberg E, & Gordeliy V (2017). Inward H+ pump xenorhodopsin: Mechanism and alternative optogenetic approach.
Sci Adv 3 9:e1603187. PubMed Id: 28948217. doi:10.1126/sciadv.1603187. |
||
![]() ![]()
Adenylyl Cyclases
Membrane-integral adenylyl cyclases are important enzymes in G protein-dependent signal transduction |
|||
Qi et al. (2019).
Qi C, Sorrentino S, Medalia O, & Korkhov VM (2019). The structure of a membrane adenylyl cyclase bound to an activated stimulatory G protein.
Science 364 6438:389-394. PubMed Id: 31023924. doi:10.1126/science.aav0778. |
|||
Adenylyl cyclase Rv1625c/Cya in C1 symmetry: Mycobacterium tuberculosis B Bacteria (expressed in E.coli), 3.83 Å
cryo-EM structure in C2 symmetry, 3.57 Å: 7YZK |
Mehta et al. (2022).
Mehta V, Khanppnavar B, Schuster D, Kantarci I, Vercellino I, Kosturanova A, Iype T, Stefanic S, Picotti P, & Korkhov VM (2022). Structure of Mycobacterium tuberculosis Cya, an evolutionary ancestor of the mammalian membrane adenylyl cyclases.
Elife 11 :e77032. PubMed Id: 35980026. doi:10.7554/eLife.77032. |
||
![]() ![]()
Histidine Kinase Receptors
|
|||
ArcB (1-115) Aerobic Respiration Control sensor membrane domain: Escherichia coli (cell-free expression) B Bacteria, NMR Structure
|
Maslennikov et al. (2010).
Maslennikov I, Klammt C, Hwang E, Kefala G, Okamura M, Esquivies L, Mörs K, Glaubitz C, Kwiatkowski W, Jeon YH, & Choe S (2010). Membrane domain structures of three classes of histidine kinase receptors by cell-free expression and rapid NMR analysis.
Proc Natl Acad Sci USA 107 :10902-10907. PubMed Id: 20498088. |
||
QseC (1-185) Sensor protein membrane domain: Escherichia coli (cell-free expression) B Bacteria, NMR Structure
|
Maslennikov et al. (2010).
Maslennikov I, Klammt C, Hwang E, Kefala G, Okamura M, Esquivies L, Mörs K, Glaubitz C, Kwiatkowski W, Jeon YH, & Choe S (2010). Membrane domain structures of three classes of histidine kinase receptors by cell-free expression and rapid NMR analysis.
Proc Natl Acad Sci USA 107 :10902-10907. PubMed Id: 20498088. |
||
QseE histidine kinase sensor domain: Escherichia coli B Bacteria, 1.33 Å
X-ray structure |
Matsumoto et al. (2023).
Matsumoto K, Fukuda Y, & Inoue T (2023). Crystal structures of QseE and QseG: elements of a three-component system from Escherichia coli.
Acta Crystallogr F Struct Biol Commun 79 11:285-293. PubMed Id: 37877621. doi:10.1107/S2053230X23009123. |
||
Matsumoto et al. (2023).
Matsumoto K, Fukuda Y, & Inoue T (2023). Crystal structures of QseE and QseG: elements of a three-component system from Escherichia coli.
Acta Crystallogr F Struct Biol Commun 79 11:285-293. PubMed Id: 37877621. doi:10.1107/S2053230X23009123. |
|||
KdpD (397-502) Sensor protein membrane domain: Escherichia coli (cell-free expression) B Bacteria, NMR Structure
|
Maslennikov et al. (2010).
Maslennikov I, Klammt C, Hwang E, Kefala G, Okamura M, Esquivies L, Mörs K, Glaubitz C, Kwiatkowski W, Jeon YH, & Choe S (2010). Membrane domain structures of three classes of histidine kinase receptors by cell-free expression and rapid NMR analysis.
Proc Natl Acad Sci USA 107 :10902-10907. PubMed Id: 20498088. |
||
Gushchin et al. (2017).
Gushchin I, Melnikov I, Polovinkin V, Ishchenko A, Yuzhakova A, Buslaev P, Bourenkov G, Grudinin S, Round E, Balandin T, Borshchevskiy V, Willbold D, Leonard G, Büldt G, Popov A, & Gordeliy V (2017). Mechanism of transmembrane signaling by sensor histidine kinases.
Science 356 :eaah6345. PubMed Id: 28522691. doi:10.1126/science.aah6345. |
|||
NarQ histidine kinase proteolytic fragment: Escherichia coli B Bacteria, 2.3 Å
|
no PubMed entry (2020)
Gushchin I, Melnikov I, Polovinkin V, Ishchenko A, & Gordeliy V (2020). Crystal structure of a proteolytic fragment of the sensor histidine kinase NarQ
Crystals 10 :149. doi:103390/cryst10030149. |
||
histidine kinase NarQ (R50S variant) fragment: Escherichia coli B Bacteria, 2.40 Å
|
Gushchin et al. (2020).
Gushchin I, Orekhov P, Melnikov I, Polovinkin V, Yuzhakova A, & Gordeliy V (2020). Sensor Histidine Kinase NarQ Activates via Helical Rotation, Diagonal Scissoring, and Eventually Piston-Like Shifts.
Int J Mol Sci 21 9. PubMed Id: 32354084. doi:10.3390/ijms21093110. |
||
![]() ![]()
Immune Receptors
|
|||
T cell receptor-CD3 complex: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.7 Å
cryo-EM structure |
Dong et al. (2019).
Dong , Zheng L, Lin J, Zhang B, Zhu Y, Li N, Xie S, Wang Y, Gao N, & Huang Z (2019). Structural basis of assembly of the human T cell receptor-CD3 complex.
Nature 573 7775:546-552. PubMed Id: 31461748. doi:10.1038/s41586-019-1537-0. |
||
Transmembrane ζ-ζ dimer of the TCR-CD3 complex: Homo sapiens E Eukaryota (expressed in E. coli), NMR Structure
|
Call et al. (2006).
Call ME, Schnell JR, Xu C, Lutz RA, Chou JJ, & Wucherpfennig KW (2006). The structure of the zetazeta transmembrane dimer reveals features essential for its assembly with the T cell receptor.
Cell 127 :355-368. PubMed Id: 17055436. |
||
Chen et al. (2022).
Chen Y, Zhu Y, Li X, Gao W, Zhen Z, Dong , Huang B, Ma Z, Zhang A, Song X, Ma Y, Guo C, Zhang F, & Huang Z (2022). Cholesterol inhibits TCR signaling by directly restricting TCR-CD3 core tunnel motility.
Mol Cell 82 7:1278-1287.e5. PubMed Id: 35271814. doi:10.1016/j.molcel.2022.02.017. |
|||
DAP12 dimeric signaling domain in complex with activating receptor NKG2C: Homo sapiens E Eukaryota (expressed in E. coli), NMR Structure
DAP12 dimer: 2L34 |
Call et al. (2010).
Call ME, Wucherpfennig KW, & Chou JJ (2010). The structural basis for intramembrane assembly of an activating immunoreceptor complex.
Nature Immunol 11 :1023-1029. PubMed Id: 20890284. |
||
DAP12 signaling domain trimer: Homo sapiens E Eukaryota (expressed in E. coli), 1.77 Å
lipidic cubic phase crystallization DAP12 tetramer, 2.14Å: 4WO1 |
Knoblich et al. (2015).
Knoblich K, Park S, Lutfi M, van 't Hag L, Conn CE, Seabrook SA, Newman J, Czabotar PE, Im W, Call ME, & Call MJ (2015). Transmembrane Complexes of DAP12 Crystallized in Lipid Membranes Provide Insights into Control of Oligomerization in Immunoreceptor Assembly.
Cell Rep 11 :1184-1192. PubMed Id: 25981043. doi:10.1016/j.celrep.2015.04.045. |
||
CD28 dimer transmembrane domain: Homo sapiens E Eukaryota (expressed in E. coli), NMR structure
|
Wu et al. (2022).
Wu H, Cao R, Wen M, Xue H, & OuYang B (2022). Structural characterization of a dimerization interface in the CD28 transmembrane domain.
Structure 30 6:803-812.e5. PubMed Id: 35397202. doi:10.1016/j.str.2022.03.004. |
||
![]() ![]()
SNARE Protein Family
|
|||
Syntaxin 1A/SNAP-25/Synaptobrevin-2 Complex with transmembrane regions: Rattus norvegicus E Eukaryota (expressed in E. coli), 3.4 Å
I212121 space group, 4.80 Å: 3HD9. |
Stein et al. (2009).
Stein A, Weber G, Wahl MC, & Jahn R (2009). Helical extension of the neuronal SNARE complex into the membrane.
Nature 460 :525-528. PubMed Id: 19571812. |
||
Synaptobrevin, lipid-bound : Rattus norvegicus E Eukaryota (expressed in E. coli), NMR Structure
Protein is in dodecylphosphocholine (DPC) micelles |
Ellena et al. (2009).
Ellena JF, Liang B, Wiktor M, Stein A, Cafiso DS, Jahn R, & Tamm LK (2009). Dynamic structure of lipid-bound synaptobrevin suggests a nucleation-propagation mechanism for trans-SNARE complex formation.
Proc Natl Acad Sci USA 106 :20306-20311. PubMed Id: 19918058. doi:10.1073/pnas.0908317106. |
||
Syntaxin 1A in prefusion state: Rattus norvegicus E Eukaryota (expressed in E. coli), NMR Structure
Structure in DPC micelles. |
Liang et al. (2013).
Liang B, Kiessling V, & Tamm LK (2013). Prefusion structure of syntaxin-1A suggests pathway for folding into neuronal trans-SNARE complex fusion intermediate.
Proc Natl Acad Sci USA 110 :19384-19389. PubMed Id: 24218570. doi:10.1073/pnas.1314699110. |
||
Synaptotagmin-1 C2A, C2B domains and SNARE-pin proteins: Rattus norvegicus E Eukaryota (expressed in E. coli), 10.4 Å
cryo-EM structure |
Grushin et al. (2019).
Grushin K, Wang J, Coleman J, Rothman JE, Sindelar CV, & Krishnakumar SS (2019). Structural basis for the clamping and Ca2+ activation of SNARE-mediated fusion by synaptotagmin.
Nat Commun 10 1. PubMed Id: 31160571. doi:10.1038/s41467-019-10391-x. |
||
Eisemann et al. (2020).
Eisemann TJ, Allen F, Lau K, Shimamura GR, Jeffrey PD, & Hughson FM (2020). The Sec1/Munc18 protein Vps45 holds the Qa-SNARE Tlg2 in an open conformation.
Elife 9 . PubMed Id: 32804076. doi:10.7554/eLife.60724. |
|||
STX17/SNAP29/VAMP8 SNARE complex: Homo sapiens E Eukaryota (expressed in E. coli), 3.05 Å
STX17 LIR region in complex with GABARAP, 2.00 Å: 7BV4 |
Li et al. (2020).
Li Y, Cheng X, Li M, Wang Y, Fu T, Zhou Z, Wang Y, Gong X, Xu X, Liu J, & Pan L (2020). Decoding three distinct states of the Syntaxin17 SNARE motif in mediating autophagosome-lysosome fusion.
Proc Natl Acad Sci USA 117 35:21391-21402. PubMed Id: 32817423. doi:10.1073/pnas.2006997117. |
||
synaptobrevin-Munc18-1-syntaxin-1 complex class 2: Rattus norvegicus E Eukaryota (expressed in E. coli), 3.50 Å
cryo-EM structure class 1, 3.70 Å: 7UDC |
Stepien et al. (2022).
Stepien KP, Xu J, Zhang X, Bai XC, & Rizo J (2022). SNARE assembly enlightened by cryo-EM structures of a synaptobrevin-Munc18-1-syntaxin-1 complex.
Sci Adv 8 25:eabo5272. PubMed Id: 35731863. doi:10.1126/sciadv.abo5272. |
||
![]() ![]()
Claudins
Claudins form the backbone of tight junctions |
|||
Claudin-4 in complex with Clostridium perfringens enterotoxin C-terminal domain: Homo sapiens E Eukaryota (expressed in Trichoplusia ni), 3.37 Å
|
Vecchio et al. (2021).
Vecchio AJ, Rathnayake SS, & Stroud RM (2021). Structural basis for Clostridium perfringens enterotoxin targeting of claudins at tight junctions in mammalian gut.
Proc Natl Acad Sci U S A 118 15:e2024651118. PubMed Id: 33876770. doi:10.1073/pnas.2024651118. |
||
Claudin-4 in complex with Clostridium perfringens enterotoxin C-terminal domain in complex with sFab COP-2: Homo sapiens E Eukaryota (expressed in Trichoplusia ni), 6.90 Å
cryo-EM structure in complex with sFab COP-3, 5.00 Å: 7TDN |
Orlando et al. (2022).
Orlando BJ, Dominik PK, Roy S, Ogbu CP, Erramilli SK, Kossiakoff AA, & Vecchio AJ (2022). Development, structure, and mechanism of synthetic antibodies that target claudin and Clostridium perfringens enterotoxin complexes.
J Biol Chem 298 9:102357. PubMed Id: 35952760. doi:10.1016/j.jbc.2022.102357. |
||
Claudin-9 in complex with Clostridium perfringens enterotoxin C-terminal domain, closed form: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.2 Å
open form, 3.25 Å: 6OV3 |
Vecchio & Stroud (2019).
Vecchio AJ, & Stroud RM (2019). Claudin-9 structures reveal mechanism for toxin-induced gut barrier breakdown.
Proc Natl Acad Sci USA 116 36:17817-17824. PubMed Id: 31434788. doi:10.1073/pnas.1908929116. |
||
Caludin-15: Mus musculus E Eukaryota (expressed in S. frugiperda), 2.61 Å
|
Suzuki et al. (2014).
Suzuki H, Nishizawa T, Tani K, Yamazaki Y, Tamura A, Ishitani R, Dohmae N, Tsukita S, Nureki O, & Fujiyoshi Y (2014). Crystal structure of a claudin provides insight into the architecture of tight junctions.
Science 344 :304-307. PubMed Id: 24744376. doi:10.1126/science.1248571. |
||
Claudin-19 in complex with Clostridium perfringens enterotoxin: Mus musculus E Eukaryota (expressed in S. frugiperda), 3.70 Å
|
Saitoh et al. (2015).
Saitoh Y, Suzuki H, Tani K, Nishikawa K, Irie K, Ogura Y, Tamura A, Tsukita S, & Fujiyoshi Y (2015). Tight junctions. Structural insight into tight junction disassembly by Clostridium perfringens enterotoxin.
Science 347 6223:775-778. PubMed Id: 25678664. doi:10.1126/science.1261833. |
||
![]() ![]()
TMEM16 Family Proteins
A functionally diverse family of proteins also known as Anoctamins |
|||
TMEM16 Ca2+-activated lipid scramblase, crystal form 1: Nectria haematococca E Eukaryota (expressed in S. cerevisiae), 3.30 Å
Crystal form 2, 3.40 Å: 4WIT |
Brunner et al. (2014).
Brunner JD, Lim NK, Schenck S, Duerst A, & Dutzler R (2014). X-ray structure of a calcium-activated TMEM16 lipid scramblase.
Nature 516 7530:207-212. PubMed Id: 25383531. doi:10.1038/nature13984. |
||
TMEM16 Ca2+-activated lipid scramblase in nanodiscs, Ca+2-bound open state: Nectria haematococca E Eukaryota (expressed in S. cerevisiae), 3.6 Å
cryo-EM structure Ca+2-bound intermediate state, 3.7 Å: 6QMA Ca+2-bound closed state, 3.6 & Aring;:6QMB Ca+2-free state, 3.8 Å: 6QM4 in DDM, Ca+2-bound state, 3.6 Å: 6QM5 in DDM, Ca+2-free state, 3.7 Å: 6QM6 |
Kalienkova et al. (2019).
Kalienkova V, Clerico Mosina V, Bryner L, Oostergetel GT, Dutzler R, & Paulino C (2019). Stepwise activation mechanism of the scramblase nhTMEM16 revealed by cryo-EM.
Elife 8 :e44364. PubMed Id: 30785398. doi:10.7554/eLife.44364. |
||
TMEM16 Ca2+-activated lipid scramblase in nanodiscs, Ca2+-bound, L302A mutant: Nectria haematococca E Eukaryota (expressed in S. cerevisiae), 4 Å
cryo-EM structure |
Khelashvili et al. (2019).
Khelashvili G, Falzone ME, Cheng X, Lee BC, Accardi A, & Weinstein H (2019). Dynamic modulation of the lipid translocation groove generates a conductive ion channel in Ca2+-bound nhTMEM16.
Nat Commun 10 1:4972. PubMed Id: 31672969. doi:10.1038/s41467-019-12865-4. |
||
TMEM16A calcium-activated chloride channel: Mus musculus E Eukaryota (expressed in HEK293 cells), 6.6 Å
cryo-EM structure |
Paulino et al. (2017).
Paulino C, Neldner Y, Lam AK, Kalienkova V, Brunner JD, Schenck S, & Dutzler R (2017). Structural basis for anion conduction in the calcium-activated chloride channel TMEM16A.
Elife 6 :e26232. PubMed Id: 28561733. doi:10.7554/eLife.26232. |
||
TMEM16A calcium-activated chloride channel w. bound Ca2+: Mus musculus E Eukaryota (expressed in HEK293 cells), 3.75 Å
cryo-EM structure calcium-free structure, 4.06 Å: 5OYG |
Paulino et al. (2017).
Paulino C, Kalienkova V, Lam AKM, Neldner Y, & Dutzler R (2017). Activation mechanism of the calcium-activated chloride channel TMEM16A revealed by cryo-EM.
Nature 552 :421-425. PubMed Id: 29236691. doi:10.1038/nature24652. |
||
TMEM16A calcium-activated chloride channel embedded in nanodiscs: Mus musculus E Eukaryota (expressed in HEK293 cells), 3.8 Å
solubilized in LMNG, 3.8 Å: 6BGJ |
Dang et al. (2017).
Dang S, Feng S, Tien J, Peters CJ, Bulkley D, Lolicato M, Zhao J, Zuberbühler K, Ye W, Qi L, Chen T, Craik CS, Nung Jan Y, Minor DL Jr, Cheng Y, & Yeh Jan L (2017). Cryo-EM structures of the TMEM16A calcium-activated chloride channel.
Nature 552 7685:426-429. PubMed Id: 29236684. doi:10.1038/nature25024. |
||
Lam et al. (2021).
Lam AKM, Rheinberger J, Paulino C, & Dutzler R (2021). Gating the pore of the calcium-activated chloride channel TMEM16A.
Nat Commun 12 1. PubMed Id: 33542223. doi:10.1038/s41467-020-20787-9. |
|||
TMEM16A calcium-activated chloride channel with bound 1PBC and calcium: Mus musculus E Eukaryota (expressed in HEK293 cells), 2.85 Å
cryo-EM structure |
Lam et al. (2022).
Lam AKM, Rutz S, & Dutzler R (2022). Inhibition mechanism of the chloride channel TMEM16A by the pore blocker 1PBC.
Nat Commun 13 1:2798. PubMed Id: 35589730. doi:10.1038/s41467-022-30479-1. |
||
TMEM16A calcium-activated chloride channel, Ca2+ bound, L647V & I733V mutant: Mus musculus E Eukaryota (expressed in HEK293 cells), 3.29 Å
cryo-EM structure |
Lam & Dutzler (2023).
Lam AK, & Dutzler R (2023). Mechanistic basis of ligand efficacy in the calcium-activated chloride channel TMEM16A.
EMBO J 42 24:e115030. PubMed Id: 37984335. doi:10.15252/embj.2023115030. |
||
TMEM16A calcium-activated chloride channel, Ca2+ bound, in complex with Tamsulosin: Mus musculus E Eukaryota (expressed in HEK293 cells), 2.93 Å
cryo-EM structure |
Chen et al. (2024).
Chen H, Xia Z, Dong J, Huang B, Zhang J, Zhou F, Yan R, Shi Y, Gong J, Jiang J, Huang Z, & Jiang D (2024). Structural mechanism of voltage-gated sodium channel slow inactivation.
Nat Commun 15 1:3691. PubMed Id: 38693179. doi:10.1038/s41467-024-48125-3. |
||
Falzone et al. (2019).
Falzone ME, Rheinberger J, Lee BC, Peyear T, Sasset L, Raczkowski AM, Eng ET, Di Lorenzo A, Andersen OS, Nimigean CM, & Accardi A (2019). Structural basis of Ca2+-dependent activation and lipid transport by a TMEM16 scramblase.
Elife 8 :e43229. PubMed Id: 30648972. doi:10.7554/eLife.43229. |
|||
Alvadia et al. (2019).
Alvadia C, Lim NK, Clerico Mosina V, Oostergetel GT, Dutzler R, & Paulino C (2019). Cryo-EM structures and functional characterization of the murine lipid scramblase TMEM16F.
Elife 8 :e44365. PubMed Id: 30785399. doi:10.7554/eLife.44365. |
|||
Feng et al. (2019).
Feng S, Dang S, Han TW, Ye W, Jin P, Cheng T, Li J, Jan YN, Jan LY, & Cheng Y (2019). Cryo-EM Studies of TMEM16F Calcium-Activated Ion Channel Suggest Features Important for Lipid Scrambling.
Cell Rep 28 2:567-579.e4. PubMed Id: 31291589. doi:10.1016/j.celrep.2019.06.023. |
|||
TMEM16F scramblase & ion channel in digitonin, F518H mutant, Ca+2-free state: Mus musculus E Eukaryota (expressed in HEK293 cells), 3.39 Å
cryo-EM structure Ca+2-bound state, 2.96 Å: 8B8J in lipid nanodiscs, Ca+2-bound state, 2.94 Å: 8B8Q in digitonin, N562A mutant, Ca+2-bound state, open/closed form, 3.49 Å: 8B8M in digitonin, N562A mutant, Ca+2-bound state, closed/closed form, 3.01 Å: 8B8K in digitonin, F518A and Q623A mutant, Ca+2-bound state, open/closed form, 3.09 Å: 8BC0 in digitonin, F518A and Q623A mutant, Ca+2-bound state, closed/closed form, 2.93 Å: 8BC1 |
Arndt et al. (2022).
Arndt M, Alvadia C, Straub MS, Clerico Mosina V, Paulino C, & Dutzler R (2022). Structural basis for the activation of the lipid scramblase TMEM16F.
Nat Commun 13 1:6692. PubMed Id: 36335104. doi:10.1038/s41467-022-34497-x. |
||
TMEM16F scramblase & ion channel in complex with Ca2+ and PIP2, no inhibitor: Mus musculus E Eukaryota (expressed in HEK293 cells), 3.20 Å
cryo-EM structure with bound inhibitor 1PBC, 3.12 Å: 8SUN with bound inhibitor niclosamide, 3.10 Å: 8SUR class 1, no inhibitor, 3.20 Å: 8TAL class 2, no inhibitor, 3.10 Å: 8TAI |
Feng et al. (2023).
Feng S, Puchades C, Ko J, Wu H, Chen Y, Figueroa EE, Gu S, Han TW, Ho B, Cheng T, Li J, Shoichet B, Jan YN, Cheng Y, & Jan LY (2023). Identification of a drug binding pocket in TMEM16F calcium-activated ion channel and lipid scramblase.
Nat Commun 14 1:4874. PubMed Id: 37573365. doi:10.1038/s41467-023-40410-x. |
||
Bushell et al. (2019).
Bushell SR, Pike ACW, Falzone ME, Rorsman NJG, Ta CM, Corey RA, Newport TD, Christianson JC, Scofano LF, Shintre CA, Tessitore A, Chu A, Wang Q, Shrestha L, Mukhopadhyay SMM, Love JD, Burgess-Brown NA, Sitsapesan R, Stansfeld PJ, Huiskonen JT, Tammaro P, Accardi A, & Carpenter EP (2019). The structural basis of lipid scrambling and inactivation in the endoplasmic reticulum scramblase TMEM16K.
Nat Commun 10 1. PubMed Id: 31477691. doi:10.1038/s41467-019-11753-1. |
|||
![]() ![]()
XKR Family of Proteins
Kell blood group precursor proteins, often involved apoptotic lipid scrambling |
|||
XKR9 lipid scramblase, full length with synthetic nanobody: Rattus norvegicus E Eukaryota (expressed in HEK293 cells), 3.66 Å
cryo-EM structure caspase-3 cleaved, 4.3 Å: 7P16 |
Straub et al. (2021).
Straub MS, Alvadia C, Sawicka M, & Dutzler R (2021). Cryo-EM structures of the caspase-activated protein XKR9 involved in apoptotic lipid scrambling.
Elife 10 :e69800. PubMed Id: 34263724. doi:10.7554/eLife.69800. |
||
Xkr8 scramblase in complex with basigin: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.80 Å
cryo-EM structure |
Sakuragi et al. (2021).
Sakuragi T, Kanai R, Tsutsumi A, Narita H, Onishi E, Nishino K, Miyazaki T, Baba T, Kosako H, Nakagawa A, Kikkawa M, Toyoshima C, & Nagata S (2021). The tertiary structure of the human Xkr8-Basigin complex that scrambles phospholipids at plasma membranes.
Nat Struct Mol Biol 28 10:825-834. PubMed Id: 34625749. doi:10.1038/s41594-021-00665-8. |
||
![]() ![]()
Sec, Translocase, and Insertase Proteins
Membrane Proteins Involved with Protein Secretion and Insertion formerly listed as "Channels: Protein-Conducting" |
|||
SecYEβ translocon: Methanococcus jannaschii A Archaea, 3.5 Å
Coördinates of native complex: 1RHZ. Coördinates of double-mutant complex (K422R,V423T) 1RH5 (3.2 Å resolution). |
van den Berg et al. (2004).
van den Berg B, Clemons WM, Collinson I, Hartmann E, Harrison SC, & Rapoport TA (2004). X-ray structure of a protein-conducting channel.
Nature 427 :36-44. PubMed Id: 14661030. |
||
SecYEβ translocon with full-plug (TM2a) deletion: Methanococcus jannaschii A Archaea, 3.6 Å
Coördinates of mutant with half-plug deletion 2YXQ (3.5 Å resolution). |
Li et al. (2007).
Li W, Schulman S, Boyd D, Erlandson K, Beckwith J & Rapoport TA (2007). The plug domain of the SecY protein stabilizes the closed state of the translocon channel and maintains a membrane seal.
Mol Cell 26 :1409-38. PubMed Id: 17531810. |
||
SecYEβ "primed" translocon: Pyrococcus furiosus A Archaea (expressed in E. coli), 3.1 Å
|
Egea and Stroud (2010).
Egea PF & Stroud RM (2010). Lateral opening of a translocon upon entry of protein suggests the mechanism of insertion into membranes.
Proc Natl Acad Sci USA 107 :17182-17187. PubMed Id: 20855604. |
||
SecYEG translocon in complex with SecA: Thermotoga maritima B Bacteria (expressed in E. coli), 4.5 Å
|
Zimmer et al. (2008).
Zimmer J, Nam Y, & Rapoport TA (2008). Structure of a complex of the ATPase SecA and the protein-translocation channel.
Nature 455 :936-943. PubMed Id: 18923516. |
||
SecYE translocon in complex with B. subtilis SecA: Geobacillus thermodenitrificans B Bacteria (expressed in E. coli), 3.7 Å
An OmpA signal sequence is covalently inserted into SecA residue after residue 741. The insert carries a Cys residue that cross-links with a Cys residue in the so-called plug domain of SecY. |
Li et al. (2016).
Li L, Park E, Ling J, Ingram J, Ploegh H, & Rapoport TA (2016). Crystal structure of a substrate-engaged SecY protein-translocation channel.
Nature 531 :395-399. PubMed Id: 26950603. doi:10.1038/nature17163. |
||
SecA-SecYE complex in nanodiscs, substrate-engaged: Geobacillus thermodenitrificans (SecYE) and Bacillus subtilis (SecA) B Bacteria, 3.45 Å
cryo-EM structure |
Ma et al. (2019).
Ma C, Wu X, Sun D, Park E, Catipovic MA, Rapoport TA, Gao N, & Li L (2019). Structure of the substrate-engaged SecA-SecY protein translocation machine.
Nat Commun 10 1. PubMed Id: 31253804. doi:10.1038/s41467-019-10918-2. |
||
SecA/SecYE/proOMPA(4Y)-sfGFP complex with bound ADP.BeF3-: Bacillus subtillis/Geobaccilus thermodentrificans B Bacteria, 3.35 Å
cryo-EM structure with bound ADP, 3.33 Å: 7XHB |
Dong et al. (2023).
Dong L, Yang S, Chen J, Wu X, Sun D, Song C, & Li L (2023). Structural basis of SecA-mediated protein translocation.
Proc Natl Acad Sci U S A 120 2:e2208070120. PubMed Id: 36598944. doi:10.1073/pnas.2208070120. |
||
SecYEG translocon in lipid nanodiscs bound to a ribosome: Escherichia coli B Bacteria, 6 Å
cryo-EM structure |
Kater et al. (2019).
Kater L, Frieg B, Berninghausen O, Gohlke H, Beckmann R, & Kedrov A (2019). Partially inserted nascent chain unzips the lateral gate of the Sec translocon.
EMBO Rep. 20 10. PubMed Id: 31379073. doi:10.15252/embr.201948191. |
||
SecYE translocon in complex with a Fab fragment: Thermus thermophilus B Bacteria (expressed in E. coli), 3.20 Å
SecYE alone 2ZQP (6.0 Å resolution). |
Tsukazaki et al. (2008).
Tsukazaki T, Mori H, Fukai S, Ishitani R, Mori T, Dohmae N, Perederina A, Sugita Y, Vassylyev DG, Ito K, & Nureki O (2008). Conformational transition of Sec machinery inferred from bacterial SecYE structures.
Nature 455 :988-991. PubMed Id: 18923527. |
||
SecYEG translocon, I222 space group: Thermus thermophilus B Bacteria (expressed in E. coli), 2.72 Å
C2221 space group, 3.64 Å: 5CH4 |
Tanaka et al. (2015).
Tanaka Y, Sugano Y, Takemoto M, Mori T, Furukawa A, Kusakizako T, Kumazaki K, Kashima A, Ishitani R, Sugita Y, Nureki O, & Tsukazaki T (2015). Crystal Structures of SecYEG in Lipidic Cubic Phase Elucidate a Precise Resting and a Peptide-Bound State.
Cell Rep 13 :1561-1568. PubMed Id: 26586438. doi:10.1016/j.celrep.2015.10.025. |
||
Sec61 translocase opened by a signal sequence: Canis lupus familiaris E Eukaryota, 3.6 Å
cryo-EM structure |
Voorhees & Hegde (2016).
Voorhees RM, & Hegde RS (2016). Structure of the Sec61 channel opened by a signal sequence.
Science 351 :88-91. PubMed Id: 26721998. doi:10.1126/science.aad4992. |
||
Sec61 translocase in inhibited state: Canis lupus familiaris E Eukaryota, 2.69 Å
cryo-EM structure |
Gérard et al. (2020).
Gérard SF, Hall BS, Zaki AM, Corfield KA, Mayerhofer PU, Costa C, Whelligan DK, Biggin PC, Simmonds RE, & Higgins MK (2020). Structure of the Inhibited State of the Sec Translocon.
Mol Cell 79 3:406-415.e7. PubMed Id: 32692975. doi:10.1016/j.molcel.2020.06.013. |
||
Sec61 ribosome-associated translocon complex with 5 accessory factors: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.84 Å
cryo-EM structure |
McGilvray et al. (2020).
McGilvray PT, Anghel SA, Sundaram A, Zhong F, Trnka MJ, Fuller JR, Hu H, Burlingame AL, & Keenan RJ (2020). An ER translocon for multi-pass membrane protein biogenesis.
Elife 9 :e56889. PubMed Id: 32820719. doi:10.7554/eLife.56889. |
||
Sec61 translocase, partially-open apo state (class 1): Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.03 Å
cryo-EM structure partially open state (class 2), 3.40 Å: 8DNW in complex with inhibitor cotransin, 2.98 Å: 8DNX in complex with inhibitor decantransin, 2.85 Å: 8DNY in complex with inhibitor apratoxin F, 2.57 Å: 8DNZ in complex with inhibitor mycolatone, 2.86 Å: 8DO0 in complex with inhibitor ipomoeassin F, 3.01 Å: 8DO1 in complex with inhibitor cyclotriazadisulfonamide, 2.95 Å: 8DO2 in complex with inhibitor eeyarestatin I, 3.22 Å: 8DO3 |
Itskanov et al. (2023).
Itskanov S, Wang L, Junne T, Sherriff R, Xiao L, Blanchard N, Shi WQ, Forsyth C, Hoepfner D, Spiess M, & Park E (2023). A common mechanism of Sec61 translocon inhibition by small molecules.
Nat Chem Biol 19 9:1063-1071. PubMed Id: 37169959. doi:10.1038/s41589-023-01337-y. |
||
80S ribosome stalled on a 2-TMD Rhodopsin intermediate in complex with the Sec61 translocon: Oryctolagus cuniculus E Eukaryota (expressed in HEK293 cells), 3.25 Å
cryo-EM structure stalled on a 4-TMD Rhodopsin intermediate, 3.88 Å: 7TUT These important structures show that for multipass membrane proteins, the TM segments are inserted on the backside of Sec61 without passing through the Sec61 lateral gate. |
Smalinskaitė et al. (2022).
Smalinskaitė L, Kim MK, Lewis AJO, Keenan RJ, & Hegde RS (2022). Mechanism of an intramembrane chaperone for multipass membrane proteins.
Nature 611 7934:161-166. PubMed Id: 36261528. doi:10.1038/s41586-022-05336-2. |
||
Sec protein-translocation channel complex (Sec61-Sec63-Sec71-Sec72): Saccharomyces cerevisiae E Eukaryota, 3.68 Å
cryo-EM structure |
Itskanov & Park (2019).
Itskanov S, & Park E (2019). Structure of the posttranslational Sec protein-translocation channel complex from yeast.
Science 363 6422:84-87. PubMed Id: 30545845. doi:10.1126/science.aav6740. |
||
Sec protein-translocation channel complex (Sec61-Sec63-Sec71-Sec72): Saccharomyces cerevisiae E Eukaryota, 4.1 Å
cryo-EM structure |
Wu et al. (2019).
Wu X, Cabanos C, & Rapoport TA (2019). Structure of the post-translational protein translocation machinery of the ER membrane.
Nature 566 7742:136-139. PubMed Id: 30644436. doi:10.1038/s41586-018-0856-x. |
||
Sec protein-translocation channel complex (Sec61-Sec63-Sec71-Sec72) post-translational complex: Saccharomyces cerevisiae E Eukaryota, 4.40 Å
cryo-EM structure x-ray: Sec62 cytoplasmic domain, 2.54 Å: 6ZZZ |
Weng et al. (2021).
Weng TH, Steinchen W, Beatrix B, Berninghausen O, Becker T, Bange G, Cheng J, & Beckmann R (2021). Architecture of the active post-translational Sec translocon.
EMBO J 40 3:e105643. PubMed Id: 33305433. doi:10.15252/embj.2020105643. |
||
Sec protein-translocation channel complexes. Wild-type Sec61 without Sec62: Saccharomyces cerevisiae E Eukaryota, 3.10 Å
cryo-EM structure with Sec62, conformation 1 (C1), 3.20 Å: 7KAI with Sec62, conformation 2, 3.10 Å: 7KAJ Sec61 pore mutant without Sec62, 4.00 Å: 7KAO Sec61 pore mutant w. Sec62, conformation 1, 4.10 Å: 7KAP Sec61 pore mutant w. Sec62, conformation 2, 4.00 Å: 7KAQ Sec63 FN3 mutant, without Sec62, 4.00 Å: 7KAR Sec61 pore ring and Sec63 FN3 double mutant without Sec62, 4.40 Å: 7KAT Sec61 pore ring and Sec63 FN3 double mutant with Sec62, 4.00 Å: 7KAU Sec63 FN3 and residues 210-216 mutated, 3.80 Å: 7KB5 |
Itskanov et al. (2021).
Itskanov S, Kuo KM, Gumbart JC, & Park E (2021). Stepwise gating of the Sec61 protein-conducting channel by Sec63 and Sec62.
Nat Struct Mol Biol 28 2:162-172. PubMed Id: 33398175. doi:10.1038/s41594-020-00541-x. |
||
Sec protein-translocation channel complexes. Sec61 wild-type without Sec62: Thermomyces lanuginosus E Eukaryota (expressed in S. cerevisiae), 3.90 Å
cryo-EM structure wild-type Sec61 with Sec62, plug-open conformation, 4.00 Å: 7KAL wild-type Sec61 with Sec62, plug-closed conformation, 3.80 Å: 7KAM wild-type Sec61, Sec62-lacking mutant (Delta Sec62), 3.70 Å: 7KAN |
Itskanov et al. (2021).
Itskanov S, Kuo KM, Gumbart JC, & Park E (2021). Stepwise gating of the Sec61 protein-conducting channel by Sec63 and Sec62.
Nat Struct Mol Biol 28 2:162-172. PubMed Id: 33398175. doi:10.1038/s41594-020-00541-x. |
||
YidC27-266 insertase: Bacillus halodurans B Bacteria (expressed in E. coli), 2.40 Å
YidC27-267, 3.20 Å: 3WO7 |
Kumazaki et al. (2014).
Kumazaki K, Chiba S, Takemoto M, Furukawa A, Nishiyama K, Sugano Y, Mori T, Dohmae N, Hirata K, Nakada-Nakura Y, Maturana AD, Tanaka Y, Mori H, Sugita Y, Arisaka F, Ito K, Ishitani R, Tsukazaki T, & Nureki O (2014). Structural basis of Sec-independent membrane protein insertion by YidC.
Nature 509 :516-520. PubMed Id: 24739968. doi:10.1038/nature13167. |
||
YidC insertase, full length: Escherichia coli B Bacteria, 3.20 Å
|
Kumazaki et al. (2014).
Kumazaki K, Kishimoto T, Furukawa A, Mori H, Tanaka Y, Dohmae N, Ishitani R, Tsukazaki T, & Nureki O (2014). Crystal structure of Escherichia coli YidC, a membrane protein chaperone and insertase.
Sci Rep 4 :7299. PubMed Id: 25466392. doi:10.1038/srep07299. |
||
YidC insertase, full length: Escherichia coli B Bacteria, 2.8 Å
|
Tanaka et al. (2018).
Tanaka Y, Izumioka A, Abdul Hamid A, Fujii A, Haruyama T, Furukawa A, & Tsukazaki T (2018). 2.8-Å crystal structure of Escherichia coli YidC revealing all core regions, including flexible C2 loop.
Biochem Biophys Res Commun 505 1:141-145. PubMed Id: 30241934. doi:10.1016/j.bbrc.2018.09.043. |
||
YidC insertase: Thermotoga maritima B Bacteria (expressed in E. coli), 3.84 Å
Periplasmic domain alone, 2.52 Å: 5Y82 |
Xin et al. (2018).
Xin Y, Zhao Y, Zheng J, Zhou H, Zhang XC, Tian C, & Huang Y (2018). Structure of YidC from Thermotoga maritima and its implications for YidC-mediated membrane protein insertion.
FASEB J 32 5:2411-2421. PubMed Id: 29295859. doi:10.1096/fj.201700893RR. |
||
YidC insertase with N-terminal amphipathic helix resolved: Thermotoga maritima B Bacteria (expressed in E. coli), 3.40 Å
|
Nass et al. (2022).
Nass KJ, Ilie IM, Saller MJ, Driessen AJM, Caflisch A, Kammerer RA, & Li X (2022). The role of the N-terminal amphipathic helix in bacterial YidC: Insights from functional studies, the crystal structure and molecular dynamics simulations.
Biochim Biophys Acta Biomembr 1864 3:18325. PubMed Id: 34871574. doi:10.1016/j.bbamem.2021.183825. |
||
WRB/CAML/TRC40 insertase: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 4.20 Å
cryo-EM structure |
McDowell et al. (2020).
McDowell MA, Heimes M, Fiorentino F, Mehmood S, Farkas Á, Coy-Vergara J, Wu D, Bolla JR, Schmid V, Heinze R, Wild K, Flemming D, Pfeffer S, Schwappach B, Robinson CV, & Sinning I (2020). Structural Basis of Tail-Anchored Membrane Protein Biogenesis by the GET Insertase Complex.
Mol Cell 80 1:72-86.e7. PubMed Id: 32910895. doi:10.1016/j.molcel.2020.08.012. |
||
WRB/CAML/TRC40 (Get1/Get2/Get3) insertase: Homo sapiens E Eukaryota (expressed in E. coli), 3.20 Å
cryo-EM structure with helix α3’ deletion of Get2, 4.20 Å: 8CR2 |
McDowell et al. (2023).
McDowell MA, Heimes M, Enkavi G, Farkas Á, Saar D, Wild K, Schwappach B, Vattulainen I, & Sinning I (2023). The GET insertase exhibits conformational plasticity and induces membrane thinning.
Nat Commun 14 1:7355. PubMed Id: 37963916. doi:10.1038/s41467-023-42867-2. |
||
WRB/TRP40 (Get1-cytoplasmic domain/Get3) complex: Homo sapiens E Eukaryota (expressed in E. coli), 2.80 Å
X-ray structure |
McDowell et al. (2023).
McDowell MA, Heimes M, Enkavi G, Farkas Á, Saar D, Wild K, Schwappach B, Vattulainen I, & Sinning I (2023). The GET insertase exhibits conformational plasticity and induces membrane thinning.
Nat Commun 14 1:7355. PubMed Id: 37963916. doi:10.1038/s41467-023-42867-2. |
||
WRB/CAML/TRC40 (Get1/Get2/Get3) insertase in amphipol:: Chaetomium thermophilum E Eukaryota (expressed in E. coli), 5.00 Å
cryo-EM structure in nanodisc, 4.70 Å: 8ODV |
McDowell et al. (2023).
McDowell MA, Heimes M, Enkavi G, Farkas Á, Saar D, Wild K, Schwappach B, Vattulainen I, & Sinning I (2023). The GET insertase exhibits conformational plasticity and induces membrane thinning.
Nat Commun 14 1:7355. PubMed Id: 37963916. doi:10.1038/s41467-023-42867-2. |
||
DUF106 YidC-like protein: Methanocaldococcus jannaschi A Archaea (expressed in E. coli), 3.50 Å
This structure establishes the universality of the YidC/Oxa1/Alb3 family in the three domains of life |
Borowska et al. (2015).
Borowska MT, Dominik PK, Anghel SA, Kossiakoff AA, & Keenan RJ (2015). A YidC-like Protein in the Archaeal Plasma Membrane.
Structure 23 :1715-1724. PubMed Id: 26256539. doi:10.1016/j.str.2015.06.025. |
||
SecDF protein-export enhancer: Thermus thermophilus B Bacteria (expressed in E. coli), 3.30 Å
SecDF associates with SecYEG to enhance protein export using the transmembrane proton motive force (PMF). It is a member of the resistance nodulation and cell division (RND) superfamily. A related member of the RND superfamily is the AcrB multi-drug efflux transporter. P1 periplasmic domain, 2.6 Å: 3AQO P4 periplasmic domain, NMR structure: 2RRN |
Tsukazaki et al. (2011).
Tsukazaki T, Mori H, Echizen Y, Ishitani R, Fukai S, Tanaka T, Perederina A, Vassylyev DG, Kohno T, Maturana AD, Ito K, & Nureki O (2011). Structure and function of a membrane component SecDF that enhances protein export.
Nature 474 :235-238. PubMed Id: 21562494. doi:10.1038/nature09980. |
||
SecDF protein-export enhancer in super-membrane-facing (Super F) form: Thermus thermophilus B Bacteria (expressed in E. coli), 2.8 Å
|
Furukawa et al. (2018).
Furukawa A, Nakayama S, Yoshikaie K, Tanaka Y, & Tsukazaki T (2018). Remote Coupled Drastic β-Barrel to β-Sheet Transition of the Protein Translocation Motor.
Structure 26 :485-489.e2. PubMed Id: 29398525. doi:10.1016/j.str.2018.01.002. |
||
Furukawa et al. (2017).
Furukawa A, Yoshikaie K, Mori T, Mori H, Morimoto YV, Sugano Y, Iwaki S, Minamino T, Sugita Y, Tanaka Y, & Tsukazaki T (2017). Tunnel Formation Inferred from the I-Form Structures of the Proton-Driven Protein Secretion Motor SecDF.
Cell Rep 19 5:895-901. PubMed Id: 28467902. doi:10.1016/j.celrep.2017.04.030. |
|||
TatA twin-arginine translocase monomer: Bacillus subtilis B Bacteria (expressed in E. coli), NMR structure
structure determined in DPC micelles |
Hu et al. (2010).
Hu Y, Zhao E, Li H, Xia B, & Jin C (2010). Solution NMR structure of the TatA component of the twin-arginine protein transport system from gram-positive bacterium Bacillus subtilis.
J Am Chem Soc 132 :15942-15944. PubMed Id: 20726548. doi:10.1021/ja1053785. |
||
TatA twin-arginine translocase, model of oligomeric complex: Escherichia coli B Bacteria, NMR/Molecular Dynamics Model
TatA monomer, NMR Structure: 2LZR |
Rodriguez et al. (2013).
Rodriguez F, Rouse SL, Tait CE, Harmer J, De Riso A, Timmel CR, Sansom MS, Berks BC, & Schnell JR (2013). Structural model for the protein-translocating element of the twin-arginine transport system.
Proc Natl Acad Sci USA 110 :E1092-E1101. PubMed Id: 23471988. doi:10.1073/pnas.1219486110. |
||
TatC twin-arginine translocase receptor: Aquifex aeolicus B Bacteria (expressed in E. coli), 3.50 Å
Crystallized using lauryl maltose neopentyl glycol (LMNG) |
Rollauer et al. (2012).
Rollauer SE, Tarry MJ, Graham JE, Jääskeläinen M, Jäger F, Johnson S, Krehenbrink M, Liu SM, Lukey MJ, Marcoux J, McDowell MA, Rodriguez F, Roversi P, Stansfeld PJ, Robinson CV, Sansom MS, Palmer T, Högbom M, Berks BC, & Lea SM (2012). Structure of the TatC core of the twin-arginine protein transport system.
Nature 492 :210-214. PubMed Id: 23201679. doi:10.1038/nature11683. |
||
TatC twin-arginine translocase receptor: Aquifex aeolicus B Bacteria (expressed in E. coli), 4.00 Å
Crystallized using DHCP Structure using DDM for crystallization, 6.80 Å: 4HTT |
Ramasamy et al. (2013).
Ramasamy S, Abrol R, Suloway CJ, & Clemons WM Jr (2013). The Glove-like Structure of the Conserved Membrane Protein TatC Provides Insight into Signal Sequence Recognition in Twin-Arginine Translocation.
Structure 21 :777-788. PubMed Id: 23583035. doi:10.1016/j.str.2013.03.004. |
||
ER-associated protein degradation (ERAD) protein. Hrd1 channel in complex with Hrd3: Saccharomyces cerevisiae E Eukaryota, 4.1 Å
cryo-EM structure E3 ubiquitin-protein ligase component HRD3, 3.9 Å: 5V7V |
Schoebel et al. (2017).
Schoebel S, Mi W, Stein A, Ovchinnikov S, Pavlovicz R, DiMaio F, Baker D, Chambers MG, Su H, Li D, Rapoport TA, & Liao M (2017). Cryo-EM structure of the protein-conducting ERAD channel Hrd1 in complex with Hrd3.
Nature 548 :352-355. PubMed Id: 28682307. doi:10.1038/nature23314. |
||
ER-associated protein degradation (ERAD) protein Hrd1 ubiquitin ligase complex: Saccharomyces cerevisiae E Eukaryota, 4.30 Å
cryo-EM structure Hrd1-Usa1/Der1/Hrd3 complex of the expected topology, 4.30 Å: 6VJZ Hrd1-Usa1/Der1/Hrd3 of the flipped topology, 4.10 Å: 6VK0 Hrd1/Hrd3 part from Hrd1-Usa1/Der1/Hrd3 complex, 3.90 Å: 6VK1 Hrd3/Yos9 complex, 3.70 Å: 6VK3 |
Wu et al. (2020).
Wu X, Siggel M, Ovchinnikov S, Mi W, Svetlov V, Nudler E, Liao M, Hummer G, & Rapoport TA (2020). Structural basis of ER-associated protein degradation mediated by the Hrd1 ubiquitin ligase complex.
Science 368 6489. PubMed Id: 32327568. doi:10.1126/science.aaz2449. |
||
Derlin-1 ERAD retrotranslocation channel: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.80 Å
cryo-EM structure |
Rao et al. (2021).
Rao B, Li S, Yao D, Wang Q, Xia Y, Jia Y, Shen Y, & Cao Y (2021). The cryo-EM structure of an ERAD protein channel formed by tetrameric human Derlin-1.
Sci Adv 7 10:eabe8591. PubMed Id: 33658201. doi:10.1126/sciadv.abe8591. |
||
Plasmodium translocon of exported protein (PTEX) Core Complex in the Engaged (Extended) State: Plasmodium falciparum E Eukaryota, 4.16 Å
cryo-EM structure in resetting (compact) state, 4.23 Å: 6E11 |
Ho et al. (2018).
Ho CM, Beck JR, Lai M, Cui Y, Goldberg DE, Egea PF, & Zhou ZH (2018). Malaria parasite translocon structure and mechanism of effector export.
Nature 561 7721:70-75. PubMed Id: 30150771. doi:10.1038/s41586-018-0469-4. |
||
ATG9A transmembrane protein of the core autophagy machinery, State A: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.80 Å
cryo-EM structure State B, 2.90 Å: 6WR4 |
Guardia et al. (2020).
Guardia CM, Tan XF, Lian T, Rana MS, Zhou W, Christenson ET, Lowry AJ, Faraldo-Gómez JD, Bonifacino JS, Jiang J, & Banerjee A (2020). Structure of Human ATG9A, the Only Transmembrane Protein of the Core Autophagy Machinery.
Cell Rep 31 13:107837. PubMed Id: 32610138. doi:10.1016/j.celrep.2020.107837. |
||
Maeda et al. (2020).
Maeda S, Yamamoto H, Kinch LN, Garza CM, Takahashi S, Otomo C, Grishin NV, Forli S, Mizushima N, & Otomo T (2020). Structure, lipid scrambling activity and role in autophagosome formation of ATG9A.
Nat Struct Mol Biol 27 12:1194-1201. PubMed Id: 33106659. doi:10.1038/s41594-020-00520-2. |
|||
ATG9A transmembrane protein of the core autophagy machinery: Schizosaccharomyces pombe E Eukaryota (expressed in Saccharomyces cerevisiae), 3.00 Å
cryo-EM structure |
Matoba et al. (2020).
Matoba K, Kotani T, Tsutsumi A, Tsuji T, Mori T, Noshiro D, Sugita Y, Nomura N, Iwata S, Ohsumi Y, Fujimoto T, Nakatogawa H, Kikkawa M, & Noda NN (2020). Atg9 is a lipid scramblase that mediates autophagosomal membrane expansion.
Nat Struct Mol Biol 27 12:1185-1193. PubMed Id: 33106658. doi:10.1038/s41594-020-00518-w. |
||
ER membrane protein complex (EMC): Homo sapiens E Eukaryota, 6.4 Å
cryo-EM structure x-ray structure of EMC2/EMC9 complex, 2.20 Å: |
O'Donnell et al. (2020).
O'Donnell JP, Phillips BP, Yagita Y, Juszkiewicz S, Wagner A, Malinverni D, Keenan RJ, Miller EA, & Hegde RS (2020). The architecture of EMC reveals a path for membrane protein insertion.
Elife 9 :e57887. PubMed Id: 32459176. doi:10.7554/eLife.57887. |
||
ER membrane protein complex (EMC) in nanodiscs: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.40 Å
cryo-EM structure |
Pleiner et al. (2020).
Pleiner T, Tomaleri GP, Januszyk K, Inglis AJ, Hazu M, & Voorhees RM (2020). Structural basis for membrane insertion by the human ER membrane protein complex.
Science 369 6502:433-436. PubMed Id: 32439656. doi:10.1126/science.abb5008. |
||
ER membrane protein complex (EMC) in GDN detergent: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.60 Å
cryo-EM structure in lipid nanodiscs, 3.39 Å: 7ADO |
Miller-Vedam et al. (2020).
Miller-Vedam LE, Bräuning B, Popova KD, Schirle Oakdale NT, Bonnar JL, Prabu JR, Boydston EA, Sevillano N, Shurtleff MJ, Stroud RM, Craik CS, Schulman BA, Frost A, & Weissman JS (2020). Structural and mechanistic basis of the EMC-dependent biogenesis of distinct transmembrane clients.
Elife 9 :e62611. PubMed Id: 33236988. doi:10.7554/eLife.62611. |
||
ER membrane protein complex (EMC) in complex with CaV1.2 and CaVβ3: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.40 Å
cryo-EM structure |
Chen et al. (2023).
Chen Z, Mondal A, Abderemane-Ali F, Jang S, Niranjan S, Montaño JL, Zaro BW, & Minor DL Jr (2023). EMC chaperone-CaV structure reveals an ion channel assembly intermediate.
Nature 619 7969:410-419. PubMed Id: 37196677. doi:10.1038/s41586-023-06175-5. |
||
ER membrane protein complex (EMC): Saccharomyces cerevisiae E Eukaryota, 3.00 Å
cryo-EM structure |
Bai et al. (2020).
Bai L, You Q, Feng X, Kovach A, & Li H (2020). Structure of the ER membrane complex, a transmembrane-domain insertase.
Nature 584 7821:475-478. PubMed Id: 32494008. doi:10.1038/s41586-020-2389-3. |
||
ER membrane protein complex (EMC) in DDM detergent: Saccharomyces cerevisiae E Eukaryota, 4.30 Å
cryo-EM structure complex in lipid nanodiscs, 3.20 Å: 7KRA |
Miller-Vedam et al. (2020).
Miller-Vedam LE, Bräuning B, Popova KD, Schirle Oakdale NT, Bonnar JL, Prabu JR, Boydston EA, Sevillano N, Shurtleff MJ, Stroud RM, Craik CS, Schulman BA, Frost A, & Weissman JS (2020). Structural and mechanistic basis of the EMC-dependent biogenesis of distinct transmembrane clients.
Elife 9 :e62611. PubMed Id: 33236988. doi:10.7554/eLife.62611. |
||
TIM22 complex from mitochondrial inner membrane: Saccharomyces cerevisiae E Eukaryota, 3.83 Å
cryo-EM structure |
Zhang et al. (2020).
Zhang Y, Ou X, Wang X, Sun D, Zhou X, Wu X, Li Q, & Li L (2020). Structure of the mitochondrial TIM22 complex from yeast.
Cell Res . PubMed Id: 32918038. doi:10.1038/s41422-020-00399-0. |
||
TIM22 complex from mitochondrial inner membrane: Homo sapiens E Eukaryota, 3.70 Å
cryo-EM structure |
Qi et al. (2020).
Qi L, Wang Q, Guan Z, Wu Y, Shen C, Hong S, Cao J, Zhang X, Yan C, & Yin P (2020). Cryo-EM structure of the human mitochondrial translocase TIM22 complex.
Cell Res . PubMed Id: 32901109. doi:10.1038/s41422-020-00400-w. |
||
TIM23 complex (Tim17–Tim23–Tim44) from mitochondrial inner membrane: Saccharomyces cerevisiae E Eukaryota (expressed in yeast), 2.70 Å
cryo-EM structure endogenous TIM23 complex extracted from S. cerevisiae, 2.90 Å: 8E1M |
Sim et al. (2023).
Sim SI, Chen Y, Lynch DL, Gumbart JC, & Park E (2023). Structural basis of mitochondrial protein import by the TIM23 complex.
Nature 621 7979:620-626. PubMed Id: 37344598. doi:10.1038/s41586-023-06239-6. |
||
![]() ![]()
Channels: Mechanosensitive
|
|||
MscL Mechanosensitive channel: Mycobacterium tuberculosis B Bacteria, 3.5 Å
This structure supersedes 1MSL. |
Chang et al. (1998).
Chang G, Spencer RH, Lee AT, Barclay MT, & Rees DC (1998). Structure of the MscL homolog from Mycobacterium tuberculosis: A gated mechanosensitive ion channel.
Science 282 :2220-2226. PubMed Id: 9856938. |
||
MscL Mechanosensitive channel, Δ95-120: Staphylococcus aureus B Bacteria, 3.8 Å
Shows MscL in an expanded intermediate state. |
Liu et al. (2009).
Liu Z, Gandhi CS, & Rees DC (2009). Structure of a tetrameric MscL in an expanded intermediate state.
Nature 461 :120-124. PubMed Id: 19701184. |
||
MscL mechanosensitive channel in closed state: Methanosarcina acetivorans A Archaea (expressed in E. coli), 3.5 Å
expanded intermediate state, 4.1 Å: 4Y7J |
Li et al. (2015).
Li J, Guo J, Ou X, Zhang M, Li Y, & Liu Z (2015). Mechanical coupling of the multiple structural elements of the large-conductance mechanosensitive channel during expansion.
Proc Natl Acad Sci USA 112 :10726-10731. PubMed Id: 26261325. doi:10.1073/pnas.1503202112. |
||
MscS voltage-modulated mechanosensitive channel: Escherichia coli B Bacteria, 3.70 Å
This structure supersedes 1MXM. |
Bass et al. (2002).
Bass RB, Strop P, Barclay M, & Rees DC (2002). Crystal Structure of Escherichia coli MscS, a Voltage-modulated and mechanosensitive channel.
Science 298 :1582-1587. PubMed Id: 12446901. |
||
MscS mechanosensitive channel in the open form: Escherichia coli B Bacteria, 3.45 Å
|
Wang et al. (2008).
Wang W, Black SS, Edwards MD, Miller S, Morrison EL, Bartlett W, Dong C, Naismith JH, & Booth IR (2008). The structure of an open form of an E. coli mechanosensitive channel at 3.45 Å resolution.
Science 321 :1179-1183. PubMed Id: 18755969. |
||
MscS voltage-modulated mechanosensitive channel, D67R1 mutant: Escherichia coli B Bacteria, 2.99 Å
|
Pliotas et al. (2015).
Pliotas C, Dahl AC, Rasmussen T, Mahendran KR, Smith TK, Marius P, Gault J, Banda T, Rasmussen A, Miller S, Robinson CV, Bayley H, Sansom MS, Booth IR, & Naismith JH (2015). The role of lipids in mechanosensation.
Nat Struct Mol Biol 22 :991-998. PubMed Id: 26551077. doi:10.1038/nsmb.3120. |
||
MscS mechanosensitive channel embedded in nanodiscs: Escherichia coli B Bacteria, 2.9 Å
cryo-EM structure |
Rasmussen et al. (2019).
Rasmussen T, Flegler VJ, Rasmussen A, & Böttcher B (2019). Structure of the Mechanosensitive Channel MscS Embedded in the Membrane Bilayer.
J Mol Biol 431 17:3081-3090. PubMed Id: 31291591. doi:10.1016/j.jmb.2019.07.006. |
||
Reddy et al. (2019).
Reddy B, Bavi N, Lu A, Park Y, & Perozo E (2019). Molecular basis of force-from-lipids gating in the mechanosensitive channel MscS.
Elife 8 . PubMed Id: 31880537. doi:10.7554/eLife.50486. |
|||
MscS voltage-modulated mechanosensitive channel in peptidiscs: Escherichia coli B Bacteria, 3.3 Å
cryo-EM structure |
Angiulli et al. (2020).
Angiulli G, Dhupar HS, Suzuki H, Wason IS, Duong Van Hoa F, & Walz T (2020). New approach for membrane protein reconstitution into peptidiscs and basis for their adaptability to different proteins.
Elife 9 :e53530. PubMed Id: 32125274. doi:10.7554/eLife.53530. |
||
Zhang et al. (2021).
Zhang Y, Daday C, Gu RX, Cox CD, Martinac B, de Groot BL, & Walz T (2021). Visualization of the mechanosensitive ion channel MscS under membrane tension.
Nature 590 7846:509-514. PubMed Id: 33568813. doi:10.1038/s41586-021-03196-w. |
|||
MscS voltage-modulated mechanosensitive channel, DDM-solubilized, closed conformation: Escherichia coli B Bacteria, 3.90 Å
cryo-EM structure DDM-solubilized, open conformation, 3.10 Å: 7OO0 DDM-solubilized, closed conformation with added lipid, 3.10 Å: 7OO6 LMNG-solubilized, open conformation, 2.30 Å: 7ONJ LMNG-solubilized, open conformation with added lipid, 2.70 Å: 7OOA LMNG-solubilized, closed conformation with added lipid, 3.70 Å: 7OO8 |
Flegler et al. (2021).
Flegler VJ, Rasmussen A, Borbil K, Boten L, Chen HA, Deinlein H, Halang J, Hellmanzik K, Löffler J, Schmidt V, Makbul C, Kraft C, Hedrich R, Rasmussen T, & Böttcher B (2021). Mechanosensitive channel gating by delipidation.
Proc Natl Acad Sci U S A 118 33:e2107095118. PubMed Id: 34376558. doi:10.1073/pnas.2107095118. |
||
Deng et al. (2020).
Deng Z, Maksaev G, Schlegel AM, Zhang J, Rau M, Fitzpatrick JAJ, Haswell ES, & Yuan P (2020). Structural mechanism for gating of a eukaryotic mechanosensitive channel of small conductance.
Nat Commun 11 1. PubMed Id: 32704140. doi:10.1038/s41467-020-17538-1. |
|||
MSL1 MscS voltage-modulated mechanosensitive channel homolog: Arabidopsis thaliana E Eukaryota (expressed in HEK293 cells), 3.30 Å
cryo-EM structure |
Li et al. (2020).
Li Y, Hu Y, Wang J, Liu X, Zhang W, & Sun L (2020). Structural Insights into a Plant Mechanosensitive Ion Channel MSL1.
Cell Rep 30 13:4518-4527.e3. PubMed Id: 32234484. doi:10.1016/j.celrep.2020.03.026. |
||
Zhang et al. (2023).
Zhang J, Maksaev G, & Yuan P (2023). Open structure and gating of the Arabidopsis mechanosensitive ion channel MSL10.
Nat Commun 14 1:6284. PubMed Id: 37805510. doi:10.1038/s41467-023-42117-5. |
|||
Piezo1 mechanosensitive channel by cryo-EM: Mus musculus E Eukaryota (expressed in HEK293 cells), 4.8 Å
C-terminal extracellular domain by x-ray, 1.45 Å: 4RAX |
Ge et al. (2015).
Ge J, Li W, Zhao Q, Li N, Chen M, Zhi P, Li R, Gao N, Xiao B, & Yang M (2015). Architecture of the mammalian mechanosensitive Piezo1 channel.
Nature 527 7576:64-69. PubMed Id: 26390154. doi:10.1038/nature15247. |
||
Piezo1 mechanosensitive channel, closed state: Mus musculus E Eukaryota (expressed in expressed in HEK293 cells), 3.8 Å
cryo-EM structure |
Guo & MacKinnon (2017).
Guo YR, & MacKinnon R (2017). Structure-based membrane dome mechanism for Piezo mechanosensitivity.
Elife 6 :e33660. PubMed Id: 29231809. doi:10.7554/eLife.33660. |
||
Piezo1 mechanosensitive channel, closed state: Mus musculus E Eukaryota (expressed in HEK293 cells), 3.8 Å
cryo-EM structure |
Saotome et al. (2018).
Saotome K, Murthy SE, Kefauver JM, Whitwam T, Patapoutian A, & Ward AB (2018). Structure of the mechanically activated ion channel Piezo1.
Nature 554 :481-486. PubMed Id: 29261642. doi:10.1038/nature25453. |
||
Piezo1 mechanosensitive channel, closed state: Mus musculus E Eukaryota (expressed in HEK293 cells), 3.97 Å
cryo-EM structure |
Zhao et al. (2018).
Zhao Q, Zhou H, Chi S, Wang Y, Wang J, Geng J, Wu K, Liu W, Zhang T, Dong MQ, Wang J, Li X, & Xiao B (2018). Structure and mechanogating mechanism of the Piezo1 channel.
Nature 554 :487-492. PubMed Id: 29469092. doi:10.1038/nature25743. |
||
Piezo1 mechanosensitive channel: Piezo 1.1 isoform: Mus musculus E Eukaryota (expressed in HEK293 cells), 4.50 Å
cryo-EM structure |
Geng et al. (2020).
Geng J, Liu W, Zhou H, Zhang T, Wang L, Zhang M, Li Y, Shen B, Li X, & Xiao B (2020). A Plug-and-Latch Mechanism for Gating the Mechanosensitive Piezo Channel.
Neuron 106 3:438-451.e6. PubMed Id: 32142647. doi:10.1016/j.neuron.2020.02.010. |
||
Piezo1 mechanosensitive channel in a lipid bilayer, curved structure: Mus musculus E Eukaryota (expressed in HEK293 cells), 3.46 Å
cryo-EM structure Flattened Structure, 6.81 Å 7WLU |
Yang et al. (2022).
Yang X, Lin C, Chen X, Li S, Li X, & Xiao B (2022). Structure deformation and curvature sensing of PIEZO1 in lipid membranes.
Nature 604 7905:377-383. PubMed Id: 35388220. doi:10.1038/s41586-022-04574-8. |
||
Piezo1 mechanosensitive channel in complex with MyoD family inhibitor MDFIC, composite map: Mus musculus E Eukaryota (expressed in HEK293 cells), 3.66 Å
cryo-EM structure |
Zhou et al. (2023).
Zhou Z, Ma X, Lin Y, Cheng D, Bavi N, Secker GA, Li JV, Janbandhu V, Sutton DL, Scott HS, Yao M, Harvey RP, Harvey NL, Corry B, Zhang Y, & Cox CD (2023). MyoD-family inhibitor proteins act as auxiliary subunits of Piezo channels.
Science 381 6659:799-804. PubMed Id: 37590348. doi:10.1126/science.adh8190. |
||
Piezo2 mechanosensitive channel, closed state: Mus musculus E Eukaryota (expressed in HEK293 cells), 3.8 Å
cryo-EM structure |
Wang et al. (2019).
Wang L, Zhou H, Zhang M, Liu W, Deng T, Zhao Q, Li Y, Lei J, Li X, & Xiao B (2019). Structure and mechanogating of the mammalian tactile channel PIEZO2.
Nature 573 7773:225-229. PubMed Id: 31435011. doi:10.1038/s41586-019-1505-8. |
||
Hyperosmolality-gated calcium-permeable channel (OSCA) 1.1: Arabidopsis thaliana E Eukaryota (expressed in sf9 cells), 3.5 Å
(The original PDB code for this structure, 5YD1, is obsolete.) cryo-EM structure The original PDB code for this structure, 5YD1, is obsolete. OSCA 3.1, 4.8 Å: 5Z1F |
Zhang et al. (2018).
Zhang M, Wang D, Kang Y, Wu JX, Yao F, Pan C, Yan Z, Song C, & Chen L (2018). Structure of the mechanosensitive OSCA channels.
Nat Struct Mol Biol 25 9:850-858. PubMed Id: 30190597. doi:10.1038/s41594-018-0117-6. |
||
Hyperosmolality-gated calcium-permeable channel (OSCA) 1.1, extended state: Arabidopsis thaliana E Eukaryota (expressed in HEK293 cells), 2.50 Å
cryo-EM structure |
Zhang et al. (2023).
Zhang M, Shan Y, Cox CD, & Pei D (2023). A mechanical-coupling mechanism in OSCA/TMEM63 channel mechanosensitivity.
Nat Commun 14 1:3943. PubMed Id: 37402734. doi:10.1038/s41467-023-39688-8. |
||
Mechanically-activated ion channel OSCA 1.2 in nanodiscs: Arabidopsis thaliana E Eukaryota (expressed in HEK293 cells), 3.1 Å
cryo-EM structure in LMNG detergent micelles, 3.5 Å: 6MGW |
Jojoa-Cruz et al. (2018).
Jojoa-Cruz S, Saotome K, Murthy SE, Tsui CCA, Sansom MS, Patapoutian A, & Ward AB (2018). Cryo-EM structure of the mechanically activated ion channel OSCA1.2.
Elife 7 :e41845. PubMed Id: 30382939. doi:10.7554/eLife.41845. |
||
Mechanically-activated ion channel OSCA 1.2 in peptidiscs: Arabidopsis thaliana E Eukaryota (expressed in HEK293 cells), 2.80 Å
cryo-EM structure |
Jojoa-Cruz et al. (2024).
Jojoa-Cruz S, Burendei B, Lee WH, & Ward AB (2024). Structure of mechanically activated ion channel OSCA2.3 reveals mobile elements in the transmembrane domain.
Structure 32 2:157-167.e5. PubMed Id: 38103547. doi:10.1016/j.str.2023.11.009. |
||
Mechanically-activated ion channel OSCA 1.2 in liposome, inside-in open state: Arabidopsis thaliana E Eukaryota (expressed in HEK293 cells), 3.29 Å
cryo-EM structure inside-out closed state, 3.56 Å: 8XNG in DOPC detergent (1:20), contracted state 1, 3.23 Å: 8XS4 in DOPC detergent (1:20), contracted state 2, 3.33 Å: 8XS5 in DOPC detergent (1:20), expanded state, 3.32 Å: 8XVX in DOPC detergent (1:50), contracted state, 3.59 Å: 8XW2 in DOPC detergent (1:50), expanded state, 3.63 Å: 8XW3 V335W mutant in DDM detergent, 4.49 Å: 8XW1 |
Han et al. (2024).
Han Y, Zhou Z, Jin R, Dai F, Ge Y, Ju X, Ma X, He S, Yuan L, Wang Y, Yang W, Yue X, Chen Z, Sun Y, Corry B, Cox CD, & Zhang Y (2024). Mechanical activation opens a lipid-lined pore in OSCA ion channels.
Nature . PubMed Id: 38570680. doi:10.1038/s41586-024-07256-9. |
||
Mechanically-activated ion channel OSCA 1.2: Oryza sativa E Eukaryota (expressed in P. pastoris), 4.9 Å
cryo-EM structure |
Maity et al. (2019).
Maity K, Heumann JM, McGrath AP, Kopcho NJ, Hsu PK, Lee CW, Mapes JH, Garza D, Krishnan S, Morgan GP, Hendargo KJ, Klose T, Rees SD, Medrano-Soto A, Saier MH Jr, Piñeros M, Komives EA, Schroeder JI, Chang G, & Stowell MHB (2019). Cryo-EM structure of OSCA1.2 from Oryza sativa elucidates the mechanical basis of potential membrane hyperosmolality gating.
Proc Natl Acad Sci USA 116 28:14309-14318. PubMed Id: 31227607. doi:10.1073/pnas.1900774116. |
||
Mechanically-activated ion channel OSCA 2.3 in peptidiscs: Arabidopsis thaliana E Eukaryota (expressed in HEK293 cells), 2.70 Å
cryo-EM structure |
Jojoa-Cruz et al. (2024).
Jojoa-Cruz S, Burendei B, Lee WH, & Ward AB (2024). Structure of mechanically activated ion channel OSCA2.3 reveals mobile elements in the transmembrane domain.
Structure 32 2:157-167.e5. PubMed Id: 38103547. doi:10.1016/j.str.2023.11.009. |
||
Hyperosmolality-gated calcium-permeable channel (OSCA) 3.1, contracted state: Arabidopsis thaliana E Eukaryota (expressed in HEK293 cells), 3.50 Å
cryo-EM structure extended state, 3.30 Å: 8GSO |
Zhang et al. (2023).
Zhang M, Shan Y, & Pei D (2023). Mechanism underlying delayed rectifying in human voltage-mediated activation Eag2 channel.
Nat Commun 14 1:1470. PubMed Id: 36928654. doi:10.1038/s41467-023-37204-6. |
||
Mechanically-activated ion channel OSCA 3.1, Y367N/G454S/Y458I mutant, open/open state: Arabidopsis thaliana E Eukaryota (expressed in HEK293 cells), 3.84 Å
cryo-EM structure open/desensitized state, 3.89 Å: 8XS0 R611E/R619E mutant, closed/open state, 3.71 Å: 8XVY R611E/R619E mutant, closed/desensitized state, 3.78 Å: 8XVZ WT, in GDN detergent, 3.11 Å: 8XW0 |
Han et al. (2024).
Han Y, Zhou Z, Jin R, Dai F, Ge Y, Ju X, Ma X, He S, Yuan L, Wang Y, Yang W, Yue X, Chen Z, Sun Y, Corry B, Cox CD, & Zhang Y (2024). Mechanical activation opens a lipid-lined pore in OSCA ion channels.
Nature . PubMed Id: 38570680. doi:10.1038/s41586-024-07256-9. |
||
Mechanically-activated ion channel OSCA 3.1 in nanodiscs: Arabidopsis thaliana E Eukaryota (expressed in HEK293 cells), 2.60 Å
cryo-EM structure |
Jojoa-Cruz et al. (2024).
Jojoa-Cruz S, Dubin AE, Lee WH, & Ward AB (2024). Structure-guided mutagenesis of OSCAs reveals differential activation to mechanical stimuli.
Elife 12 . PubMed Id: 38592763. doi:10.7554/eLife.93147. |
||
Hypo-osmolality-gated calcium-permeable channel TMEM63A: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.30 Å
cryo-EM structure |
Zhang et al. (2023).
Zhang M, Shan Y, Cox CD, & Pei D (2023). A mechanical-coupling mechanism in OSCA/TMEM63 channel mechanosensitivity.
Nat Commun 14 1:3943. PubMed Id: 37402734. doi:10.1038/s41467-023-39688-8. |
||
Hypo-osmolality-gated calcium-permeable channel TMEM63A in nanodisc: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.80 Å
cryo-EM structure |
Zheng et al. (2023).
Zheng W, Rawson S, Shen Z, Tamilselvan E, Smith HE, Halford J, Shen C, Murthy SE, Ulbrich MH, Sotomayor M, Fu TM, & Holt JR (2023). TMEM63 proteins function as monomeric high-threshold mechanosensitive ion channels.
Neuron 111 20:3195-3210.e7. PubMed Id: 37543036. doi:10.1016/j.neuron.2023.07.006. |
||
Hypo-osmolality-gated calcium-permeable channel TMEM63B in LMNG: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.60 Å
cryo-EM structure |
Zheng et al. (2023).
Zheng W, Rawson S, Shen Z, Tamilselvan E, Smith HE, Halford J, Shen C, Murthy SE, Ulbrich MH, Sotomayor M, Fu TM, & Holt JR (2023). TMEM63 proteins function as monomeric high-threshold mechanosensitive ion channels.
Neuron 111 20:3195-3210.e7. PubMed Id: 37543036. doi:10.1016/j.neuron.2023.07.006. |
||
Hypo-osmolality-gated calcium-permeable channel TMEM63B in digitonin detergent: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.84 Å
cryo-EM structure |
Han et al. (2024).
Han Y, Zhou Z, Jin R, Dai F, Ge Y, Ju X, Ma X, He S, Yuan L, Wang Y, Yang W, Yue X, Chen Z, Sun Y, Corry B, Cox CD, & Zhang Y (2024). Mechanical activation opens a lipid-lined pore in OSCA ion channels.
Nature . PubMed Id: 38570680. doi:10.1038/s41586-024-07256-9. |
||
Hypo-osmolality-gated calcium-permeable channel TMEM63C: Mus musculus E Eukaryota (expressed in HEK293 cells), 3.56 Å
|
Qin et al. (2023).
Qin Y, Yu D, Wu D, Dong J, Li WT, Ye C, Cheung KC, Zhang Y, Xu Y, Wang Y, Shi YS, & Dang S (2023). Cryo-EM structure of TMEM63C suggests it functions as a monomer.
Nat Commun 14 1:7265. PubMed Id: 37945568. doi:10.1038/s41467-023-42956-2. |
||
Jojoa-Cruz et al. (2022).
Jojoa-Cruz S, Saotome K, Tsui CCA, Lee WH, Sansom MSP, Murthy SE, Patapoutian A, & Ward AB (2022). Structural insights into the Venus flytrap mechanosensitive ion channel Flycatcher1.
Nat Commun 13 1:850. PubMed Id: 35165281. doi:10.1038/s41467-022-28511-5. |
|||
Ynal Mechanosensitive channel in amphipols: Escherichia coli B Bacteria, 3.80 Å
cryo-EM structure |
Yu et al. (2018).
Yu J, Zhang B, Zhang Y, Xu CQ, Zhuo W, Ge J, Li J, Gao N, Li Y, & Yang M (2018). A binding-block ion selective mechanism revealed by a Na/K selective channel.
Protein Cell 9 7:629-639. PubMed Id: 28921397. doi:10.1007/s13238-017-0465-8. |
||
Ynal Mechanosensitive channel using SMA2000: Escherichia coli B Bacteria, 2.40 Å
cryo-EM structure |
Catalano et al. (2021).
Catalano C, Ben-Hail D, Qiu W, Blount P, des Georges A, & Guo Y (2021). Cryo-EM Structure of Mechanosensitive Channel YnaI Using SMA2000: Challenges and Opportunities.
Membranes (Basel) 11 11:849. PubMed Id: 34832078. doi:10.3390/membranes11110849. |
||
Jeong et al. (2022).
Jeong H, Clark S, Goehring A, Dehghani-Ghahnaviyeh S, Rasouli A, Tajkhorshid E, & Gouaux E (2022). Structures of the TMC-1 complex illuminate mechanosensory transduction.
Nature 610 7933:796-803. PubMed Id: 36224384. doi:10.1038/s41586-022-05314-8. |
|||
MscK mechanosenstive ion channel, G924S mutant in a closed conformation: Escherichia coli B Bacteria (expressed in Komagataella pastoris), 3.84 Å
cryo-EM structure Open Conformation, 3.48 Å: 7UX1 |
Mount et al. (2022).
Mount J, Maksaev G, Summers BT, Fitzpatrick JAJ, & Yuan P (2022). Structural basis for mechanotransduction in a potassium-dependent mechanosensitive ion channel.
Nat Commun 13 1:6904. PubMed Id: 36371466. doi:10.1038/s41467-022-34737-0. |
||
![]() ![]()
Channels: Potassium, Sodium, & Proton Ion-Selective
|
|||
KcsA Potassium channel, H+ gated: Streptomyces lividans B Bacteria (expressed in E. coli), 3.2 Å
|
Doyle et al. (1998).
Doyle DA, Cabral JM, Pfuetzner RA, Kuo AL, Gulbis JM, Cohen SL, Chait BT, & MacKinnon R (1998). The structure of the potassium channel: Molecular basis of K+conduction and selectivity.
Science 280 :69-77. PubMed Id: 9525859. |
||
KcsA Potassium channel, H+ gated. Complexed with Fab.: Streptomyces lividans B Bacteria (expressed in E. coli), 2.0 Å
R-free = 0.233. 1K4D, 2.3 Å, R-free = 0.235 |
Zhou et al. (2001).
Zhou Y, Morais-Cabral JH, Kaufman A, & MacKinnon R (2001). Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 Å.
Nature 414 :43-48. PubMed Id: 11689936. |
||
Full-length KcsA Potassium channel, H+ gated: Streptomyces lividans B Bacteria (expressed in E. coli), NMR structure
|
Cortes et al. (2001).
Cortes DM, Cuello LG, & Perozo E (2001). Molecular architecture of full-length KcsA: role of cytoplasmic domains in ion permeation and activation gating.
J Gen Physiol 117 2:165-180. PubMed Id: 11158168. doi:10.1085/jgp.117.2.165. |
||
KcsA Potassium channel, H+ gated. Complexed with Fab, Tl, & Tetrabutylammonium (TBA): Streptomyces lividans B Bacteria (expressed in E. coli), 2.76 Å
In complex with tetraethylarsonium (TEAS) rather than TBA, 3.01 Å: 2BOC |
Lenaeus et al. (2005).
Lenaeus MJ, Vamvouka M, Focia PJ, & Gross A (2005). Structural basis of TEA blockade in a model potassium channel.
Nat Struc Mol Biol 12 :454-459. PubMed Id: 15852022. |
||
Lockless et al. (2007).
Lockless SW, Zhou M, & MacKinnon R (2007). Structural and thermodynamic properties of selective ion binding in a K+ channel.
PLoS Biol 5 :e121. PubMed Id: 17472437. doi:10.1371/journal.pbio.0050121. |
|||
Full-length KcsA Potassium channel, H+ gated: Streptomyces lividans B Bacteria (expressed in E. coli), 3.80 Å
Crystallized with synthetic Fab2 antibodies. C-terminal domain alone (residues 129-158) crystallized with synthetic Fab4 antibodies 3EFD, 2.60 Å |
Uysal et al. (2009).
Uysal S, Vásquez V, Tereshko V, Esaki K, Fellouse FA, Sidhu SS, Koide S, Perozo E, & Kossiakoff A (2009). Crystal structure of full-length KcsA in its closed conformation.
Proc Natl Acad Sci USA 106 :6644-6649. PubMed Id: 19346472. |
||
Full-length KcsA Potassium channel, H+ gated: Streptomyces lividans B Bacteria (expressed in E. coli), 3.80 Å
Open conformation of the full-length channel. Reveals that the activation gate expands about 20 Å |
Uysal et al. (2011).
Uysal S, Cuello LG, Cortes DM, Koide S, Kossiakoff AA, & Perozo E (2011). Mechanism of activation gating in the full-length KcsA K+ channel.
Proc Natl Acad Sci USA 108 :11896-11899. PubMed Id: 21730186. doi:10.1073/pnas.1105112108. |
||
KcsA Potassium channel in the presence of 150 mM Li+ and 3 mM K+: Streptomyces lividans B Bacteria (expressed in E. coli), 2.75 Å
KcsA in the presence of 150 mM Li+ and 0 mM K+, 2.85 Å: 3GB7 |
Thompson et al. (2009).
Thompson AN, Kim I, Panosian TD, Iverson TM, Allen TW, & Nimigean CM (2009). Mechanism of potassium-channel selectivity revealed by Na+and L+binding sites within the KcsA pore.
Nat Struct Mol Biol 16 :1321-1324. PubMed Id: 19946269. |
||
Cuello et al. (2010).
Cuello LG, Jogini V, Cortes DM, & Perozo E (2010). Structural mechanism of C-type inactivation in K+channels.
Nature 466 :203-208. PubMed Id: 20613835. |
|||
KcsA Potassium channel E71H-F103A inactivated-state mutant (closed state): Streptomyces lividans B Bacteria (expressed in E. coli), 3.20 Å
KcsA open-state in the presence of Rb+, 3.30 Å: 3FB7 |
Cuello et al. (2010).
Cuello LG, Jogini V, Cortes DM, Pan AC, Gagnon DG, Dalmas O, Cordero-Morales JF, Chakrapani S, Roux B, & Perozo E (2010). Structural basis for the coupling between activation and inactivation gates in K+channels.
Nature 466 :272-275. PubMed Id: 20613845. |
||
KcsA Potassium channel E71I modal-gating mutant: Streptomyces lividans B Bacteria (expressed in E. coli), 2.30 Å
E71Q mutant, 2.70 Å: 3OR6 |
Chakrapani et al. (2011).
Chakrapani S, Cordero-Morales JF, Jogini V, Pan AC, Cortes DM, Roux B, & Perozo E (2011). On the structural basis of modal gating behavior in K+channels.
Nat Struct Mol Biol 18 :67-74. PubMed Id: 21186363. |
||
KcsA Y82C with bound Cadmium : Streptomyces lividans B Bacteria (expressed in E. coli), 2.40 Å
with nitroxide spin label, 2.50 Å: 3STZ |
Raghuraman et al. (2012).
Raghuraman H, Cordero-Morales JF, Jogini V, Pan AC, Kollewe A, Roux B, & Perozo E (2012). Mechanism of Cd2+ Coordination during Slow Inactivation in Potassium Channels.
Structure 20 :1332-1342. PubMed Id: 22771214. doi:10.1016/j.str.2012.03.027. |
||
KcsA Potassium channel Y78 ester mutant in high K+: Streptomyces lividans B Bacteria (expressed in E. coli + semi-synthesis), 2.06 Å
|
Matulef et al. (2013).
Matulef K, Komarov AG, Costantino CA, & Valiyaveetil FI (2013). Using protein backbone mutagenesis to dissect the link between ion occupancy and C-type inactivation in K+ channels.
Proc Natl Acad Sci USA 110 44:17886-17891. PubMed Id: 24128761. doi:10.1073/pnas.1314356110. |
||
Lenaeus et al. (2014).
Lenaeus MJ, Burdette D, Wagner T, Focia PJ, & Gross A (2014). Structures of KcsA in Complex with Symmetrical Quaternary Ammonium Compounds Reveal a Hydrophobic Binding Site.
Biochemistry 53 :5365-5373. PubMed Id: 25093676. doi:10.1021/bi500525s. |
|||
Matulef et al. (2016).
Matulef K, Annen AW, Nix JC, & Valiyaveetil FI (2016). Individual Ion Binding Sites in the K+ Channel Play Distinct Roles in C-type Inactivation and in Recovery from Inactivation.
Structure 24 :750-761. PubMed Id: 27150040. doi:10.1016/j.str.2016.02.021. |
|||
Cuello et al. (2017).
Cuello LG, Cortes DM, & Perozo E (2017). The gating cycle of a K+ channel at atomic resolution.
Elife 6 :e28032. PubMed Id: 29165243. doi:10.7554/eLife.28032. |
|||
Tilegenova et al. (2019).
Tilegenova C, Cortes DM, Jahovic N, Hardy E, Hariharan P, Guan L, & Cuello LG (2019). Structure, function, and ion-binding properties of a K+ channel stabilized in the 2,4-ion-bound configuration.
Proc Natl Acad Sci USA 116 34:16829-16834. PubMed Id: 31387976. doi:10.1073/pnas.1901888116. |
|||
KcsA Potassium channel, open state. Barium blocked. 1 mM BaCl2: Streptomyces lividans (expressed in E. coli), 3.24 Å
open state, 2 mM BaCl2, 3.60 Å: 6W0B open state, 4 mM BaCl2, 3.60 Å: 6W0C open state, 5 mM BaCl2, 3.64 Å: 6W0D open state, 10 BaCl2, 3.51 Å: 6W0E closed state, 5mM BaCl2, 2.40 Å: 6W0F closed state, 1 mM KCl, 5mM BaCl2, 2.60 Å: 6W0G closed state, 5mM KCl, 5mM BaCl2, 2.40 Å: 6W0H closed state, 10mM KCl, 5mM BaCl2, 2.33 Å: 6W0I closed state incubated in BaCl2 & NaCl, 2.50 Å: 6W0J |
Rohaim et al. (2020).
Rohaim A, Gong L, Li J, Rui H, Blachowicz L, & Roux B (2020). Open and Closed Structures of a Barium-Blocked Potassium Channel.
J Mol Biol 432 17:4783-4798. PubMed Id: 32615129. doi:10.1016/j.jmb.2020.06.012. |
||
Reddi et al. (2021).
Reddi R, Matulef K, Riederer E, Moenne-Loccoz P, & Valiyaveetil FI (2021). Structures of Gating Intermediates in a K+ channel.
J Mol Biol 433 23:167296. PubMed Id: 34627789. doi:10.1016/j.jmb.2021.167296. |
|||
Rohaim et al. (2022).
Rohaim A, Vermeulen BJA, Li J, Kümmerer F, Napoli F, Blachowicz L, Medeiros-Silva J, Roux B, & Weingarth M (2022). A distinct mechanism of C-type inactivation in the Kv-like KcsA mutant E71V.
Nat Commun 13 1:1574. PubMed Id: 35322021. doi:10.1038/s41467-022-28866-9. |
|||
KcsA Potassium channel, H+ gated. T75A mutant, closed and deep-inactivated conformation.: Streptomyces coelicolor B Bacteria (expressed in E. coli), 2.35 Å
Open and conductive conformation, 2.37 Å: 6BY3 |
Labro et al. (2018).
Labro AJ, Cortes DM, Tilegenova C, & Cuello LG (2018). Inverted allosteric coupling between activation and inactivation gates in K+ channels.
Proc Natl Acad Sci USA 115 21:5426-5431. PubMed Id: 29735651. doi:10.1073/pnas.1800559115. |
||
Two-Pore Domain Potassium Channel K2P1.1 (TWIK-1): Homo sapiens E Eukaryota (expressed in Pichia pastoris), 3.40 Å
The protein is a homodimer. It is sensitive to temperature, pH, and membrane stretch. The channel becomes permeable to Na+ during hypokalemia. |
Miller & Long (2012).
Miller AN & Long SB (2012). Crystal structure of the human two-pore domain potassium channel K2P1.
Science 335 :432-436. PubMed Id: 22282804. doi:10.1126/science.121327. |
||
Two-Pore Domain Potassium Channel K2P1.1 (TWIK-1) in MSP1D1 lipid nanodisc, pH 7.4: Rattus norvegicus E Eukaryota (expressed in Komagataella pastoris), 3.33 Å
cryo-EM structure in MSP1E3D1 Lipid Nanodisc at pH 5.5, 3.43 Å: 7SK1 |
Turney et al. (2022).
Turney TS, Li V, & Brohawn SG (2022). Structural Basis for pH-gating of the K+ channel TWIK1 at the selectivity filter.
Nat Commun 13 1:3232. PubMed Id: 35680900. doi:10.1038/s41467-022-30853-z. |
||
Rödström et al. (2020).
Rödström KEJ, Kiper AK, Zhang W, Rinné S, Pike ACW, Goldstein M, Conrad LJ, Delbeck M, Hahn MG, Meier H, Platzk M, Quigley A, Speedman D, Shrestha L, Mukhopadhyay SMM, Burgess-Brown NA, Tucker SJ, M¨ller T, Decher N, & Carpenter EP (2020). A lower X-gate in TASK channels traps inhibitors within the vestibule.
Nature :443-447. PubMed Id: 32499642. doi:10.1038/s41586-020-2250-8. |
|||
Two-Pore Domain Potassium Channel K2P5 (TASK2) in nanodisc at pH 6.5: Mus musculus E Eukaryota (expressed in Komagataella pastoris), 3.45 Å
cryo-EM structure pH 8.5, 3.52 Å: 6WM0 |
Li et al. (2020).
Li B, Rietmeijer RA, & Brohawn SG (2020). Structural basis for pH gating of the two-pore domain K+ channel TASK2.
Nature 586 7829:457-462. PubMed Id: 32999458. doi:10.1038/s41586-020-2770-2. |
||
Two-Pore Domain Potassium Channel K2P4.1 (TRAAK): Homo sapiens E Eukaryota (expressed in Pichia pastoris), 3.80 Å
The protein is a homodimer. This channel is sensitive to temperature, pH, voltage, lipid interactions, and membrane stretch. |
Brohawn et al. (2012).
Brohawn SG, del Mármol J, & MacKinnon R (2012). Crystal structure of the human K2P TRAAK, a lipid- and mechano-sensitive K+ ion channel.
Science 335 :436-441. PubMed Id: 22282805. doi:10.1126/science.1213808. |
||
Two-Pore Domain Potassium Channel K2P4.1 (TRAAK): Homo sapiens E Eukaryota (expressed in Pichia pastoris), 2.75 Å
This structure reveals a domain-swapped chain connectivity enabled by the helical cap that exchanges two opposing outer helices 180° around the channel. |
Brohawn et al. (2013).
Brohawn SG, Campbell EB, & Mackinnon R (2013). Domain-swapped chain connectivity and gated membrane access in a Fab-mediated crystal of the human TRAAK K+ channel.
Proc Natl Acad Sci USA 110 :2129-2134. PubMed Id: 23341632. doi:10.1073/pnas.1218950110. |
||
Two-Pore Domain Potassium Channel K2P4.1 (TRAAK) in non-conductive state in the presence of K+: Homo sapiens E Eukaryota (expressed in Pichia pastoris), 2.50 Å
Non-conductive state in the presence of Tl+, 3.01 Å: 4WFH Conductive state in the presence of K+, 2.50 Å: 4WFE Conductive state in the presence of Tl+, 3.00 Å: 4WFG |
Brohawn et al. (2014).
Brohawn SG, Campbell EB, & MacKinnon R (2014). Physical mechanism for gating and mechanosensitivity of the human TRAAK K+ channel.
Nature 516 7529:126-130. PubMed Id: 25471887. doi:10.1038/nature14013. |
||
Two-Pore Domain Potassium Channel K2P4.1 (TRAAK), G124I mutant: Homo sapiens E Eukaryota (expressed in Komagataella pastoris), 3.30 Å
W262S mutant, 3.40 Å: 4RUF |
Lolicato et al. (2014).
Lolicato M, Riegelhaupt PM, Arrigoni C, Clark KA, & Minor DL Jr (2014). Transmembrane helix straightening and buckling underlies activation of mechanosensitive and thermosensitive K2P channels.
Neuron 84 6:1198-1212. PubMed Id: 25500157. doi:10.1016/j.neuron.2014.11.017. |
||
Two-Pore Domain Potassium Channel K2P4.1 (TRAAK); FHIEG mutant A198E, conductive K+ bound state: Homo sapiens E Eukaryota (expressed in Komagataella pastoris), 2.26 Å
Tl+ bound conductive conformation, 2.77 Å 7LJA FHEIG mutant A270P in a K+ bound conductive conformation, 2.78 Å 7LJ4 G158D imutant in a K+ bound conductive conformation, 2.97 Å 7LJB |
Rietmeijer et al. (2021).
Rietmeijer RA, Sorum B, Li B, & Brohawn SG (2021). Physical basis for distinct basal and mechanically gated activity of the human K+ channel TRAAK.
Neuron 109 18:2902-2913.e4. PubMed Id: 34390650. doi:10.1016/j.neuron.2021.07.009. |
||
Two-Pore Domain Potassium Channel K2P4.1 (TRAAK) in complex with 1B10 Fab: Mus musculus E Eukaryota (expressed in Komagataella pastoris), 2.77 Å
|
Brohawn et al. (2019).
Brohawn SG, Wang W, Handler A, Campbell EB, Schwarz JR, & MacKinnon R (2019). The mechanosensitive ion channel TRAAK is localized to the mammalian node of Ranvier.
Elife 8 . PubMed Id: 31674909. doi:10.7554/eLife.50403. |
||
Lolicato et al. (2017).
Lolicato M, Arrigoni C, Mori T, Sekioka Y, Bryant C, Clark KA, & Minor DL Jr (2017). K2P2.1 (TREK-1)-activator complexes reveal a cryptic selectivity filter binding site.
Nature 7663:364-368. PubMed Id: 28693035. doi:10.1038/nature22988. |
|||
Pope et al. (2020).
Pope L, Lolicato M, & Minor DL Jr (2020). Polynuclear Ruthenium Amines Inhibit K2P Channels via a "Finger in the Dam" Mechanism.
Cell Chem Biol 27 5:511-524.e4. PubMed Id: 32059793. doi:10.1016/j.chembiol.2020.01.011. |
|||
Two-Pore Domain Potassium Channel K2P2.1 (TREK-1), 0 mM K+: Mus musculus E Eukaryota (expressed in Komagataella pastoris), 3.88 Å
1 mM K+, 3.40 Å: 6W7C 10 mM K+, 3.50 Å: 6W7D 30 mM K+, 3.29 Å: 6W7E 50 mM K+, 3.60 Å: 6W82 100 mM K+, 3.90 Å: 6W83 200 mM K+, 3.70 Å: 6W84 In complex with ML335: 0 mM K+, 3.40 Å: 6W8F 1 mM K+, 2.60 Å: 6W8C 10 mM K+, 3.00 Å: 6W8A 30 mM K+, 3.20 Å: 6W88 50 mM K+, 3.20 Å: 6W87 100 mM K+, 3.30 Å: 6W86 200 mM K+, 3.80 Å: 6W85 |
Lolicato et al. (2020).
Lolicato M, Natale AM, Abderemane-Ali F, Crottès D, Capponi S, Duman R, Wagner A, Rosenberg JM, Grabe M, & Minor DL Jr (2020). K2P channel C-type gating involves asymmetric selectivity filter order-disorder transitions.
Sci Adv 6 44. PubMed Id: 33127683. doi:10.1126/sciadv.abc9174. |
||
Dong et al. (2015).
Dong YY, Pike AC, Mackenzie A, McClenaghan C, Aryal P, Dong L, Quigley A, Grieben M, Goubin S, Mukhopadhyay S, Ruda GF, Clausen MV, Cao L, Brennan PE, Burgess-Brown NA, Sansom MS, Tucker SJ, & Carpenter EP (2015). K2P channel gating mechanisms revealed by structures of TREK-2 and a complex with Prozac.
Science 347 6227:1256-1259. PubMed Id: 25766236. doi:10.1126/science.1261512. |
|||
Two-pore channel TPC1: Arabidopsis thaliana E Eukaryota (expressed in S. cerevisiae), 2.87 Å
|
Kintzer & Stroud (2016).
Kintzer AF, & Stroud RM (2016). Structure, inhibition and regulation of two-pore channel TPC1 from Arabidopsis thaliana.
Nature 531 :258-262. PubMed Id: 26961658. doi:10.1038/nature17194. |
||
Two-pore channel TPC1: Arabidopsis thaliana E Eukaryota (expressed in Komagataella pastoris), 3.31 Å
|
Guo et al. (2016).
Guo J, Zeng W, Chen Q, Lee C, Chen L, Yang Y, Cang C, Ren D, & Jiang Y (2016). Structure of the voltage-gated two-pore channel TPC1 from Arabidopsis thaliana.
Nature 531 :196-201. PubMed Id: 26689363. doi:10.1038/nature16446. |
||
Two-pore channel TPC1 mutant, Na+ selective: Arabidopsis thaliana E Eukaryota (expressed in Komagataella pastoris), 3.3 Å
|
Guo et al. (2017).
Guo J, Zeng W, & Jiang Y (2017). Tuning the ion selectivity of two-pore channels.
Proc Natl Acad Sci USA 114 :1009-1014. PubMed Id: 28096396. doi:10.1073/pnas.1616191114. |
||
Two-pore channel TPC1 without Ca2+-chelating amino acids reconstituted in saposin A: Arabidopsis thaliana E Eukaryota (expressed in S. cerevisiae), 3.3 Å
cryo-EM structure removal of chelating amino acids: D240N, D545N, & E528Q (termed TPC1DDE) with cat06 Fab, 3.3 Å: 6E1K in state 1, 3.7 Å: 6E1N in state 2, 3.7 Å: 6E1P |
Kintzer et al. (2018).
Kintzer AF, Green EM, Dominik PK, Bridges M, Armache JP, Deneka D, Kim SS, Hubbell W, Kossiakoff AA, Cheng Y, & Stroud RM (2018). Structural basis for activation of voltage sensor domains in an ion channel TPC1.
Proc Natl Acad Sci USA 115 39:E9095-E9104. PubMed Id: 30190435. doi:10.1073/pnas.1805651115. |
||
Dickinson et al. (2022).
Dickinson MS, Lu J, Gupta M, Marten I, Hedrich R, & Stroud RM (2022). Molecular basis of multistep voltage activation in plant two-pore channel 1.
Proc Natl Acad Sci U S A 119 9:e2110936119. PubMed Id: 35210362. doi:10.1073/pnas.2110936119. |
|||
Ye et al. (2021).
Ye F, Xu L, Li X, Zeng W, Gan N, Zhao C, Yang W, Jiang Y, & Guo J (2021). Voltage-gating and cytosolic Ca2+ activation mechanisms of Arabidopsis two-pore channel AtTPC1.
Proc Natl Acad Sci U S A 118 49:e2113946118. PubMed Id: 34845029. doi:10.1073/pnas.2113946118. |
|||
Two-pore channel TPC1 with bound PtdIns(3,5)P2: Mus musculus E Eukaryota (expressed in HEK293F cells), 3.2 Å
cryo-EM structure apo protein, 3.4 Å: 6C96 |
She et al. (2018).
She J, Guo J, Chen Q, Zeng W, Jiang Y, & Bai XC (2018). Structural insights into the voltage and phospholipid activation of the mammalian TPC1 channel.
Nature 556 7699:130-134. PubMed Id: 29562233. doi:10.1038/nature26139. |
||
She et al. (2019).
She J, Zeng W, Guo J, Chen Q, Bai XC, & Jiang Y (2019). Structural mechanisms of phospholipid activation of the human TPC2 channel.
Elife 8 . PubMed Id: 30860481. doi:10.7554/eLife.45222. |
|||
Two-pore channel TPC3 in resting state: Danio rerio E Eukaryota (expressed in HEK293 cells), 3.11 Å
cryo-EM structure |
Dickinson et al. (2020).
Dickinson MS, Myasnikov A, Eriksen J, Poweleit N, & Stroud RM (2020). Resting state structure of the hyperdepolarization activated two-pore channel 3.
Proc Natl Acad Sci USA 117 4:1988-1993. PubMed Id: 31924746. doi:10.1073/pnas.1915144117. |
||
KvAP Voltage-gated potassium Channel in complex with Fab: Aeropyrum pernix A Archaea (expressed in E. coli), 3.2 Å
Voltage sensor domain, 1.9 Å: 1ORS |
Jiang et al. (2003).
Jiang Y, Lee A, Chen J, Ruta V, Cadene M, Chait BT, & MacKinnon R (2003). X-ray structure of a voltage-dependent K+channel.
Crystal structures.
Nature 423 :33-41. PubMed Id: 12721618. See also: Jiang et al. (2003). Jiang Y, Ruta V, Chen J, Lee A, & MacKinnon R (2003). The principle of gating charge movement in a voltage-dependent K+ channel.
Voltage sensor mechanism.
Nature 423 :42-48. PubMed Id: 12721619. |
||
KvAP Voltage-gated potassium Channel in complex with Fv fragments: Aeropyrum pernix A Archaea (expressed in E. coli), 3.9 Å
|
Lee et al. (2005).
Lee SY, Lee A, Chen J, & MacKinnon R (2005). Structure of the KvAP voltage-dependent K+ channel and its dependence on the lipid membrane.
Proc Natl Acad Sci USA 102 :15441-15446. PubMed Id: 16223877. |
||
KvAP Voltage-Sensing Domain in phospholipid micelles: Aeropyrum pernix A Archaea (expressed in E. coli), NMR Structure
|
Butterwick & MacKinnon (2010).
Butterwick JA & MacKinnon R (2010). Solution structure and phospholipid interactions of the isolated voltage-sensor domain from KvAP.
J Mol Biol 403 :591-606. PubMed Id: 20851706. |
||
KvAP Voltage-gated potassium Channel: Aeropyrum pernix B Bacteria (expressed in E. coli), 5.9 Å
cryo-EM structure |
Tao & MacKinnon (2019).
Tao X, & MacKinnon R (2019). Cryo-EM structure of the KvAP channel reveals a non-domain-swapped voltage sensor topology.
Elife 8 :e52164. PubMed Id: 31755864. doi:10.7554/eLife.52164. |
||
Shaker Kv channel: Drosophila melanogaster E Eukaryota (expressed in HEK293 cells), 3.00 Å
cryo-EM structure W434F mutant, 2.90 Å 7SJ1 |
Tan et al. (2022).
Tan XF, Bae C, Stix R, Fernández-Mariño AI, Huffer K, Chang TH, Jiang J, Faraldo-Gómez JD, & Swartz KJ (2022). Structure of the Shaker Kv channel and mechanism of slow C-type inactivation.
Sci Adv 8 11. PubMed Id: 35302848. doi:10.1126/sciadv.abm7814. |
||
Shaker Kv channel in low K+: Drosophila melanogaster E Eukaryota (expressed in HEK293 cells), 3.00 Å
cryo-EM structure |
Stix et al. (2023).
Stix R, Tan XF, Bae C, Fernández-Mariño AI, Swartz KJ, & Faraldo-Gómez JD (2023). Eukaryotic Kv channel Shaker inactivates through selectivity filter dilation rather than collapse.
Sci Adv 9 49:eadj5539. PubMed Id: 38064553. doi:10.1126/sciadv.adj5539. |
||
Kv1.2 Voltage-gated potassium Channel: Rattus norvegicus E Eukaryota (expressed in Pichia pastoris), 2.9 Å
|
Long et al. (2005).
Long SB, Campbell EB, & Mackinnon R (2005). Crystal Structure of a Mammalian Voltage-Dependent Shaker Family K+ Channel.
Science 309 :897-903. PubMed Id: 16002581. See also: Long et al. (2005). Long SB, Campbell EB, & Mackinnon R (2005). Voltage Sensor of Kv1.2: Structural Basis of Electromechanical Coupling.
Science 309 :903-908. PubMed Id: 16002579. |
||
Kv1.2 Voltage-gated potassium Channel (full length): Rattus norvegicus E Eukaryota (expressed in Pichia pastoris), 2.9 Å
Re-refinement of 2A79 above using normal-mode x-ray crystallographic refinement |
Chen et al. (2010).
Chen X, Wang Q, Ni F, & Ma J (2010). Structure of the full-length Shaker potassium channel Kv1.2 by normal-mode-based X-ray crystallographic refinement.
Proc Natl Acad Sci USA 107 :11352-11357. PubMed Id: 20534430. |
||
Kv1.2 Voltage-gated potassium Channel, C-type inactivation: Rattus norvegicus E Eukaryota (expressed in Komagataella pastoris), 3.10 Å
Kv 1.2 chimera-3m, 3.32 Å 7SIT |
Reddi et al. (2022).
Reddi R, Matulef K, Riederer EA, Whorton MR, & Valiyaveetil FI (2022). Structural basis for C-type inactivation in a Shaker family voltage-gated K+ channel.
Sci Adv 8 16:eabm8804. PubMed Id: 35452285. doi:10.1126/sciadv.abm8804. |
||
Kv1.2/Kv2.1 Voltage-gated potassium channel chimera: Rattus norvegicus E Eukaryota (expressed in Pichia pastoris), 2.4 Å
First Kv channel with resolved lipids. |
Long et al. (2007).
Long SB, Tao X, Campbell EB, & Mackinnon R (2007). Atomic structure of a voltage-dependent K+channel in a lipid membrane-like environment.
Nature 450 :376-382. PubMed Id: 18004376. |
||
Kv1.2/Kv2.1 Voltage-gated potassium channel chimera: Rattus norvegicus E Eukaryota (expressed in Pichia pastoris), 2.9 Å
F233W Mutant. |
Tao et al. (2010).
Tao X, Lee A, Limapichat W, Dougherty DA, & MacKinnon R (2010). A gating charge transfer center in voltage sensors.
Science 328 :67-73. PubMed Id: 20360102. |
||
Kv1.2/Kv2.1 Voltage-gated potassium channel chimera, V406W mutant: Rattus norvegicus E Eukaryota (expressed in Pichia pastoris), 3.3 Å
|
Pau et al. (2017).
Pau V, Zhou Y, Ramu Y, Xu Y, & Lu Z (2017). Crystal structure of an inactivated mutant mammalian voltage-gated K+ channel.
Nat Struct Mol Biol 24 :857-865. PubMed Id: 28846092. doi:10.1038/nsmb.3457. |
||
Matthies et al. (2018).
Matthies D, Bae C, Toombes GE, Fox T, Bartesaghi A, Subramaniam S, & Swartz KJ (2018). Single-particle cryo-EM structure of a voltage-activated potassium channel in lipid nanodiscs.
Elife 7 :e37558. PubMed Id: 30109985. doi:10.7554/eLife.37558. |
|||
Kv2.1 Voltage-gated potassium channel, wild-type: Rattus norvegicus E Eukaryota (expressed in HEK293 cells), HEK293 cells
cryo-EM structure L403A mutant, 3.32 Å: 8SDA |
Fernández-Mariño et al. (2023).
Fernández-Mariño AI, Tan XF, Bae C, Huffer K, Jiang J, & Swartz KJ (2023). Inactivation of the Kv2.1 channel through electromechanical coupling.
Nature 622 7982:410-417. PubMed Id: 37758949. doi:10.1038/s41586-023-06582-8. |
||
Kv1.3 lymphocyte Voltage-gated potassium Channel: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.20 Å
cryo-EM structure H451N mutant, 3.30 Å: 7EJ2 |
Liu et al. (2021).
Liu S, Zhao Y, Dong H, Xiao L, Zhang Y, Yang Y, Ong ST, Chandy KG, Zhang L, & Tian C (2021). Structures of wild-type and H451N mutant human lymphocyte potassium channel KV1.3.
Cell Discov 7 1:39. PubMed Id: 34059645. doi:10.1038/s41421-021-00269-y. |
||
Kv1.3 lymphocyte Voltage-gated potassium Channel with beta subunits, apo state: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.40 Å
cryo-EM structure dalazatide-bound state, 3.40 Å 7WF4 |
Tyagi et al. (2022).
Tyagi A, Ahmed T, Jian S, Bajaj S, Ong ST, Goay SSM, Zhao Y, Vorobyov I, Tian C, Chandy KG, & Bhushan S (2022). Rearrangement of a unique Kv1.3 selectivity filter conformation upon binding of a drug.
Proc Natl Acad Sci U S A 119 5:e2113536119. PubMed Id: 35091471. doi:10.1073/pnas.2113536119. |
||
Chi et al. (2022).
Chi G, Liang Q, Sridhar A, Cowgill JB, Sader K, Radjainia M, Qian P, Castro-Hartmann P, Venkaya S, Singh NK, McKinley G, Fernandez-Cid A, Mukhopadhyay SMM, Burgess-Brown NA, Delemotte L, Covarrubias M, & Dürr KL (2022). Cryo-EM structure of the human Kv3.1 channel reveals gating control by the cytoplasmic T1 domain.
Nat Commun 13 1:4087. PubMed Id: 35840580. doi:10.1038/s41467-022-29594-w. |
|||
Kv3.1 voltage-gated potassium channel, apo channel: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.65 Å
cryo-EM structure with bound modulator Lu AG00563, 3.03 Å: 7PQU |
Botte et al. (2022).
Botte M, Huber S, Bucher D, Klint JK, Rodríguez D, Tagmose L, Chami M, Cheng R, Hennig M, & Abdul Rahman W (2022). Apo and ligand-bound high resolution Cryo-EM structures of the human Kv3.1 channel reveal a novel binding site for positive modulators.
PNAS Nexus 1 3:pgac083. PubMed Id: 36741467. doi:10.1093/pnasnexus/pgac083. |
||
Kv3.1 voltage-gated potassium channel with bound modulator AUT1: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.90 Å
cryo-EM structure with bound modulator AUT5, 2.50 Å: 8QUD |
Liang et al. (2024).
Liang Q, Chi G, Cirqueira L, Zhi L, Marasco A, Pilati N, Gunthorpe MJ, Alvaro G, Large CH, Sauer DB, Treptow W, & Covarrubias M (2024). The binding and mechanism of a positive allosteric modulator of Kv3 channels.
Nat Commun 15 1:2533. PubMed Id: 38514618. doi:10.1038/s41467-024-46813-8. |
||
KV3.1 voltage-gated potassium channel (alternative name: KCNC1), apo form: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.94 Å
cryo-EM structure with bound modulator compound-4, 2.92 Å: 8F1C |
Chen et al. (2023).
Chen YT, Hong MR, Zhang XJ, Kostas J, Li Y, Kraus RL, Santarelli VP, Wang D, Gomez-Llorente Y, Brooun A, Strickland C, Soisson SM, Klein DJ, Ginnetti AT, Marino MJ, Stachel SJ, & Ishchenko A (2023). Identification, structural, and biophysical characterization of a positive modulator of human Kv3.1 channels.
Proc Natl Acad Sci U S A 120 42:e2220029120. PubMed Id: 37812700. doi:10.1073/pnas.2220029120. |
||
Kv4.2 Voltage-gated potassium Channel: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.90 Å
cryo-EM structure Kv4.2-KChIP1 complex, 3.10 Å 7F3F Kv4.2-KChIP1 complex (Octodon degus), 3.10 Å 7E84 Kv4.2-KChIP1 complex, intracellular region, 3.10 Å 7E83 Kv4.2-KChIP1 complex, transmembrane region, 3.20 Å 7E7Z Kv4.2-DPP6S complex, 4.20 Å 7E8B Kv4.2-DPP6S complex, transmembrane and intracellular region, 3.40 Å 7E87 Kv4.2-DPP6S complex, extracellular region, 4.00 Å 7E89 Kv4.2-DPP6S-KChIP1 complex, 4.50 Å 7E8H Kv4.2-DPP6S-KChIP1 complex, transmembrane and intracellular region, 3.90 Å 7E8E Kv4.2-DPP6S-KChIP1 complex, extracellular region, 4.50 Å 7E8G |
Kise et al. (2021).
Kise Y, Kasuya G, Okamoto HH, Yamanouchi D, Kobayashi K, Kusakizako T, Nishizawa T, Nakajo K, & Nureki O (2021). Structural basis of gating modulation of Kv4 channel complexes.
Nature 599 7883:158-164. PubMed Id: 34552243. doi:10.1038/s41586-021-03935-z. |
||
Kv4.2 Voltage-gated potassium Channel, in complex with KChIP2, TM region, open state: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.76 Å
cryo-EM structure inactivated state, class 1, 3.00 Å: 7UKC inactivated state, class 2, 2.88 Å: 7UKD in an intermediate state, 3.01 Å: 7UKE putative resting state, 3.02 Å:7UKF in an open state, 2.24 Å: 7UKG in an open state, intracellular region, 2.33 Å:7UKH |
Ye et al. (2022).
Ye W, Zhao H, Dai Y, Wang Y, Lo YH, Jan LY, & Lee CH (2022). Activation and closed-state inactivation mechanisms of the human voltage-gated KV4 channel complexes.
Mol Cell 82 13:2427-2442.e4. PubMed Id: 35597238. doi:10.1016/j.molcel.2022.04.032. |
||
Ma et al. (2022).
Ma D, Zhao C, Wang X, Li X, Zha Y, Zhang Y, Fu G, Liang P, Guo J, & Lai D (2022). Structural basis for the gating modulation of Kv4.3 by auxiliary subunits.
Cell Res 32 4:411-414. PubMed Id: 34997220. doi:10.1038/s41422-021-00608-4. |
|||
Eag1 (KCNH1, Kv10.1) voltage-gated K+ channel with bound calmodulin (CaM): Rattus norvegicus E Eukaryota (expressed in SF9 cells), 3.78 Å
Cryo-EM structure |
Whicher & MacKinnon (2016).
Whicher JR, & MacKinnon R (2016). Structure of the voltage-gated K+ channel Eag1 reveals an alternative voltage sensing mechanism.
Science 353 :664-669. PubMed Id: 27516594. doi:10.1126/science.aaf8070. |
||
Eag2 (KCNH5) Kv voltage-gated K+ channel, closed state 1: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.40 Å
cryo-EM structure closed state 2, 3.40 Å: 7YIE pre-open state 1, 3.50 Å: 7YIF pre-open state 2, 3.60 Å: 7YIG open state, 3.50 Å: 7YIH pore dilation but the non-conducting state, 3.80 Å: 7YIJ |
Zhang et al. (2023).
Zhang M, Shan Y, & Pei D (2023). Mechanism underlying delayed rectifying in human voltage-mediated activation Eag2 channel.
Nat Commun 14 1:1470. PubMed Id: 36928654. doi:10.1038/s41467-023-37204-6. |
||
Mandala & MacKinnon (2022).
Mandala VS, & MacKinnon R (2022). Voltage-sensor movements in the Eag Kv channel under an applied electric field.
Proc Natl Acad Sci U S A 119 46:e2214151119. PubMed Id: 36331999. doi:10.1073/pnas.2214151119. |
|||
Wang & MacKinnon (2017).
Wang W, & MacKinnon R (2017). Cryo-EM Structure of the Open Human Ether-à-go-go-Related K+ Channel hERG.
Cell 169 3:422-430.e10. PubMed Id: 28431243. doi:10.1016/j.cell.2017.03.048. |
|||
hERG voltage-dependent K+ channel, K+ bound: homo sapiens E Eukaryota (expressed in HEK293 cells), 3.90 Å
cryo-EM structure in the presence of astemizole, 3.70 Å: 7CN1 |
Asai et al. (2021).
Asai T, Adachi N, Moriya T, Oki H, Maru T, Kawasaki M, Suzuki K, Chen S, Ishii R, Yonemori K, Igaki S, Yasuda S, Ogasawara S, Senda T, & Murata T (2021). Cryo-EM Structure of K+-Bound hERG Channel Complexed with the Blocker Astemizole.
Structure 29 3:203-212.e4. PubMed Id: 33450182. doi:10.1016/j.str.2020.12.007. |
||
KvLm voltaged-gated potassium channel: C-terminal pore module: Listeria monocytogenes B Bacteria (expressed in E. coli), 3.10 Å
Shows pore in transient conformation between closed and open. Crystallized under sodium condition, 3.35 Å: 4H37 |
Santos et al. (2012).
Santos JS, Asmar-Rovira GA, Han GW, Liu W, Syeda R, Cherezov V, Baker KA, Stevens RC, & Montal M (2012). Crystal Structure of a Voltage-gated K+ Channel Pore Module in a Closed State in Lipid Membranes.
J Biol Chem 287 :43063-43070. PubMed Id: 23095758. doi:10.1074/jbc.M112.415091. |
||
MthK Potassium channel, Ca++ gated: Methanothermobacter thermautotrophicus A Archaea (expressed in E. coli), 3.3 Å
|
Jiang et al. (2002).
Jiang Y, Lee A, Chen J, Cadene M, Chait BT, MacKinnon R (2002). Crystal structure and mechanism of a calcium-gated potassium channel.
Crystal structure and mechanism.
Nature 417 :515-22. PubMed Id: 12037559. See also: Jiang et al. (2002). Jiang Y, Lee A, Chen J, Cadene M, Chait BT, MacKinnon R (2002). The open pore conformation of potassium channels.
Open pore conformation.
Nature 417 :523-6. PubMed Id: 12037560. |
||
Ye et al. (2010).
Ye S, Li Y, & Jiang Y (2010). Novel insights into K+selectivity from high-resolution structures of an open K+channel pore.
Nature Struct Molec Biol 17 :1019-1023. PubMed Id: 20676101. |
|||
MthK Potassium channel, Ca++ gated: Methanothermobacter thermautotrophicus A Archaea (expressed in E. coli), 3.40 Å
RCK domain D184N mutant, Ca2+-bound, 2.80 Å: 3RBX |
Pau et al. (2011).
Pau VP, Smith FJ, Taylor AB, Parfenova LV, Samakai E, Callaghan MM, Abarca-Heidemann K, Hart PJ, & Rothberg BS (2011). Structure and function of multiple Ca2+-binding sites in a K+ channel regulator of K+ conductance (RCK) domain.
Proc Natl Acad Sci USA 108 :17684-17689. PubMed Id: 21997217. doi:10.1073/pnas.1107229108. |
||
MthK Potassium channel gating ring with bound Ba2+: Methanothermobacter thermautotrophicus A Archaea (expressed in E. coli), 3.10 Å
|
Smith et al. (2012).
Smith FJ, Pau VP, Cingolani G, Rothberg BS (2012). Crystal Structure of a Ba2+-Bound Gating Ring Reveals Elementary Steps in RCK Domain Activation.
Structure 20 :2038-2047. PubMed Id: 23085076. doi:10.1016/j.str.2012.09.014. |
||
MthK Potassium channel pore (S68H,V77C mutant): Methanothermobacter thermautotrophicus A Archaea (expressed in E. coli), 1.65 Å
In the presence of TBSb, 1.65 Å 4HZ3 |
Posson et al. (2013).
Posson DJ, McCoy JG, & Nimigean CM (2013). The voltage-dependent gate in MthK potassium channels is located at the selectivity filter.
Nature Struc Mol Biol 20 :159-166. PubMed Id: 23262489. doi:10.1038/nsmb.2473. |
||
Smith et al. (2013).
Smith FJ, Pau VP, Cingolani G, & Rothberg BS (2013). Structural basis of allosteric interactions among Ca2+-binding sites in a K+ channel RCK domain.
Nat Commun 4 :2621. PubMed Id: 24126388. doi:10.1038/ncomms3621. |
|||
MthK Potassium channel, full length: Methanothermobacter thermautotrophicus B Bacteria (expressed in E. coli), 3.11 Å
|
Kopec et al. (2019).
Kopec W, Rothberg BS, & de Groot BL (2019). Molecular mechanism of a potassium channel gating through activation gate-selectivity filter coupling.
Nat Commun 10 1:5366. PubMed Id: 31772184. doi:10.1038/s41467-019-13227-w. |
||
MthK Potassium channel, Ca++ gated, closed state with EDTA: Methanothermobacter thermautotrophicus B Bacteria (expressed in E.coli), 3.60 Å
cryo-EM structure calcium bound, open inactivated state, 4.50 Å: 6U68 Calcium bound, open-inactivated state 2, 6.30 Å: 6U6E Calcium-bound, closed state, 3.60 Å: 6U5R Calcium-bound, gating ring state 1, 3.30 Å: 6U5P Calcium-bound, gating ring state 2, 3.20 Å: 6U5N Calcium-bound, closed state, 3.60 Å: 6U5R N-terminal truncation state 1, 6.70 Å: 6UX7 N-terminal truncation state 2 bound with calcium, 4.50 Å: 6UXA N-terminal truncation state 3 bound with calcium, 4.90 Å: 6UXB N-terminal truncation RCK domain state 1 bound with calcium, 3.50 Å: 6UWN N-terminal truncation RCK domain state 2 bound with calcium, 3.50 Å: 6UX4 |
Fan et al. (2020).
Fan C, Sukomon N, Flood E, Rheinberger J, Allen TW, & Nimigean CM (2020). Ball-and-chain inactivation in a calcium-gated potassium channel.
Nature 580 7802:288-293. PubMed Id: 32269335. doi:10.1038/s41586-020-2116-0. |
||
Boiteux et al. (2020).
Boiteux C, Posson DJ, Allen TW, & Nimigean CM (2020). Selectivity filter ion binding affinity determines inactivation in a potassium channel.
Proc Natl Acad Sci U S A 117 47:29968-29978. PubMed Id: 33154158. doi:10.1073/pnas.2009624117. |
|||
MthK Potassium channel, Ca++ gated, in nanodisc, closed form, blocker-free: Methanothermobacter thermautotrophicus A Archaea (expressed in E. coli), 3.10 Å
cryo-EM structure with bound TPeA, 3.50 Å: 5BKJ with bound bbTBA, 3.50 Å: 5BKK A90L mutant, blocker-free, 3.18 Å: 8DJB A88F mutant, with bound TPeA, 2.88 Å: 8FZ7 |
Fan et al. (2024).
Fan C, Flood E, Sukomon N, Agarwal S, Allen TW, & Nimigean CM (2024). Calcium-gated potassium channel blockade via membrane-facing fenestrations.
Nat Chem Biol 20 1:52-61. PubMed Id: 37653172. doi:10.1038/s41589-023-01406-2. |
||
Slo1 (BK) calcium-activated K+ channel: Aplysia californica E Eukaryota (expressed in Trichoplusia ni), 3.5 Å
cryo-EM structure |
Tao et al. (2017).
Tao X, Hite RK, & MacKinnon R (2017). Cryo-EM structure of the open high-conductance Ca+2-activated K+ channel.
Nature 541 :46-51. PubMed Id: 27974795. doi:10.1038/nature20608. |
||
Slo1 (BK) calcium-activated K+ channel with bound Ca2+: Aplysia californica E Eukaryota (expressed in Trichoplusia ni), 3.8 Å
cryo-EM structure |
Hite et al. (2017).
Hite RK, Tao X, & MacKinnon R (2017). Structural basis for gating the high-conductance Ca2+-activated K+ channel.
Nature 541 :52-57. PubMed Id: 27974801. doi:10.1038/nature20775. |
||
Human BK (SLO1) Channel Ca2+-activation apparatus: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.0 Å
Consists of four BK subunits organized as a ring of 8 RCK (Regulator of K+ conductance) domains. Although not a transmembrane protein, it is an important accessory structure for regulating voltage-gated potassium channels. |
Yuan et al. (2010).
Yuan P, Leonetti MD, Pico AR, Hsiung Y, & MacKinnon R (2010). Structure of the human BK channel Ca2+-activation apparatus at 3.0 A resolution.
Science 329 :182-186. PubMed Id: 20508092. |
||
Human BK (SLO1) Channel Ca2+-activation apparatus: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.1 Å
Consists of four BK subunits organized as a ring of 8 RCK (Regulator of K+ conductance) domains. Although not a transmembrane protein, it is an important accessory structure for regulating voltage-gated potassium channels. |
Wu et al. (2010).
Wu Y, Yang Y, Ye S, & Jiang Y (2010). Structure of the gating ring from the human large-conductance Ca2+-gated K(+) channel.
Nature 466 :393-397. PubMed Id: 20574420. |
||
Tao & MacKinnon (2019).
Tao X, & MacKinnon R (2019). Molecular structures of the human Slo1 K+ channel in complex with β4.
Elife 8 :e51409. PubMed Id: 31815672. doi:10.7554/eLife.51409. |
|||
Human BK (SLO1) K+ channel, L390P mutant: Homo sapiens E Eukaryota (expressed in Komagataella pastoris), 2.00 Å
|
Geng et al. (2020).
Geng Y, Deng Z, Zhang G, Budelli G, Butler A, Yuan P, Cui J, Salkoff L, & Magleby KL (2020). Coupling of Ca2+ and voltage activation in BK channels through the ?B helix/voltage sensor interface.
Proc Natl Acad Sci USA 117 25:14512-14521. PubMed Id: 32513714. doi:10.1073/pnas.1908183117. |
||
Tao et al. (2023).
Tao X, Zhao C, & MacKinnon R (2023). Membrane protein isolation and structure determination in cell-derived membrane vesicles.
Proc Natl Acad Sci U S A 120 18:e2302325120. PubMed Id: 37098056. doi:10.1073/pnas.2302325120. |
|||
BK (SLO1) Channel Ca2+ gating ring from zebra fish in the open state: Danio rerio E Eukaryota (expressed in S. frugiperda), 3.61 Å
|
Yuan et al. (2012).
Yuan P, Leonetti MD, Hsiung Y, & Mackinnon R (2012). Open structure of the Ca2+ gating ring in the high-conductance Ca2+-activated K+ channel.
Nature 481 :94-97. PubMed Id: 22139424. doi:10.1038/nature10670. |
||
Raisch et al. (2021).
Raisch T, Brockmann A, Ebbinghaus-Kintscher U, Freigang J, Gutbrod O, Kubicek J, Maertens B, Hofnagel O, & Raunser S (2021). Small molecule modulation of the Drosophila Slo channel elucidated by cryo-EM.
Nat Commun 12 1:7164. PubMed Id: 34887422. doi:10.1038/s41467-021-27435-w. |
|||
Hite et al. (2015).
Hite RK, Yuan P, Li Z, Hsuing Y, Walz T, & MacKinnon R (2015). Cryo-electron microscopy structure of the Slo2.2 Na(+)-activated K(+) channel.
Nature 527 :198-203. PubMed Id: 26436452. doi:10.1038/nature14958. |
|||
Slo2.2 Na+-activated K+ channel (complete), open conformation: Gallus gallus E Eukaryota (expressed in S. frugiperda), 3.8 Å
cryo-EM structure closed conformation, 4.3 Å: 5U76 |
Hite & MacKinnon (2017).
Hite RK, & MacKinnon R (2017). Structural Titration of Slo2.2, a Na+-Dependent K+ Channel.
Cell 168 :390-399. PubMed Id: 28111072. doi:10.1016/j.cell.2016.12.030. |
||
Slo2.2 Na+-activated K+ channel, open conformation: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.18 Å
cryo-EM structure closed confirmation, 2.95 Å: 8HKM closed confirmation, state 1, 2.64 Å: 8HK6 closed confirmation, state 2, 2.66 Å: 8HKF closed confirmation, state 3, 2.84 Å: 8HKK with bound inhibitor Compound 23, 2.90 Å: 8HKQ |
Zhang et al. (2023).
Zhang J, Liu S, Fan J, Yan R, Huang B, Zhou F, Yuan T, Gong J, Huang Z, & Jiang D (2023). Structural basis of human Slo2.2 channel gating and modulation.
Cell Rep 42 8:112858. PubMed Id: 37494189. doi:10.1016/j.celrep.2023.112858. |
||
SLO3 K+ Channel pH-sensitive Gating Ring: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.40 Å
Although not a transmembrane protein, it is an important accessory structure for regulating voltage-gated potassium channels. |
Leonetti et al. (2012).
Leonetti MD, Yuan P, Hsiung Y, & Mackinnon R (2012). Functional and structural analysis of the human SLO3 pH- and voltage-gated K+ channel.
Proc Natl Acad Sci USA 109 :19274-19279. PubMed Id: 23129643. doi:10.1073/pnas.1215078109. |
||
Lee & MacKinnon (2018).
Lee CH, & MacKinnon R (2018). Activation mechanism of a human SK-calmodulin channel complex elucidated by cryo-EM structures.
Science 360 6388:508-513. PubMed Id: 29724949. doi:10.1126/science.aas9466. |
|||
GsuK multi-ligand gated K+ channel, L97D mutant: Geobacter sulfurreducens B Bacteria (expressed in E. coli), 2.60 Å
This a multi-ligand gated channel. Both ADP and NAD+ activate the channel, whereas Ca2+ serves as an allosteric inhibitor. L97D mutant with bound ADP, 2.80 Å: 4GX1 L97D mutant with bound NAD+, 3.20 Å: 4GX2 Wild-type channel, 3.70 Å: 4GX5 RCK domain, 3.00 Å: 4GVL |
Kong et al. (2012).
Kong C, Zeng W, Ye S, Chen L, Sauer DB, Lam Y, Derebe MG, & Jiang Y (2012). Distinct gating mechanisms revealed by the structures of a multi-ligand gated K+ channel.
eLife 1 :e00184. PubMed Id: 23240087. doi:10.7554/eLife.00184. |
||
Kir2.1 Inward-Rectifier Potassium 2.1 Channel: Homo sapiens E Eukaryota (expressed in Komagataella pastoris), 4.30 Å
cryo-EM structure |
Fernandes et al. (2022).
Fernandes CAH, Zuniga D, Fagnen C, Kugler V, Scala R, Péhau-Arnaudet G, Wagner R, Perahia D, Bendahhou S, & Vénien-Bryan C (2022). Cryo-electron microscopy unveils unique structural features of the human Kir2.1 channel.
Sci Adv 8 38:eabq8489. PubMed Id: 36149965. doi:10.1126/sciadv.abq8489. |
||
Kir2.1 Inward-Rectifier Potassium 2.1 Channel, R312H mutant: Homo sapiens E Eukaryota (expressed in Komagataella pastoris), 6.00 Å
cryo-EM structure |
Zuniga et al. (2024).
Zuniga D, Zoumpoulakis A, Veloso RF, Peverini L, Shi S, Pozza A, Kugler V, Bonneté F, Bouceba T, Wagner R, Corringer PJ, Fernandes CAH, & Vénien-Bryan C (2024). Biochemical, biophysical, and structural investigations of two mutants (C154Y and R312H) of the human Kir2.1 channel involved in the Andersen-Tawil syndrome.
FASEB J 38 21:e70146. PubMed Id: 39520289. doi:10.1096/fj.202401567R. |
||
Kir2.2 Inward-Rectifier Potassium Channel (Complete): Gallus gallus E Eukaryota (expressed in Pichia pastoris), 3.1 Å
|
Tao et al (2009).
Tao X, Avalos JL, Chen J, & MacKinnon R (2009). Crystal structure of the eukaryotic strong inward-rectifier K+channel Kir2.2 at 3.1 Å resolution.
Science 326 :1668-1674. PubMed Id: 20019282. |
||
Kir2.2 Inward-Rectifier Potassium Channel in complex with PIP2: Gallus gallus E Eukaryota (expressed in Pichia pastoris), 3.31 Å
In complex with dioctanoylglycerol pyrophosphate (DGPP), 2.45 Å: 3SPC I223L mutant in complex with PIP2, 3.00 Å: 3SPH I223L mutant, apo form, 3.31 Å: 3SPJ R186A mutant in complex with PIP2, 2.61 Å: 3SPG |
Hansen et al. (2011).
Hansen SB, Tao X, & Mackinnon R (2011). Structural basis of PIP2 activation of the classical inward rectifier K+ channel Kir2.2.
Nature 477 :495-498. PubMed Id: 21874019. doi:10.1038/nature10370. |
||
Kir2.2 Inward-Rectifier Potassium Channel, K62W mutant (apo form): Gallus gallus E Eukaryota (expressed in Komagataella pastoris), 2.0 Å
in complex with PIP2, 2.8 Å: 5KUM |
Lee et al. (2016).
Lee SJ, Ren F, Zangerl-Plessl EM, Heyman S, Stary-Weinzinger A, Yuan P, & Nichols CG (2016). Structural basis of control of inward rectifier Kir2 channel gating by bulk anionic phospholipids.
J Gen Physiol 148 :227-237. PubMed Id: 27527100. doi:10.1085/jgp.201611616. |
||
Kir2.2 Inward-Rectifier Potassium Channel, forced open G178D mutant: Gallus gallus E Eukaryota (expressed in Komagataella pastoris), 3.6 Å
with bound PIP2, 2.81 Å: 6M84 |
Zangerl-Plessl et al. (2020).
Zangerl-Plessl EM, Lee SJ, Maksaev G, Bernsteiner H, Ren F, Yuan P, Stary-Weinzinger A, & Nichols CG (2020). Atomistic basis of opening and conduction in mammalian inward rectifier potassium (Kir2.2) channels.
J Gen Physiol 152 1. PubMed Id: 31744859. doi:10.1085/jgp.201912422. |
||
GIRK1 (Kir3.1) cytoplasmic domain: Mus musculus E Eukaryota (expressed in E. coli), 1.8 Å
GIRK = G-Protein-Gated Inward Rectifying Potassium Channel |
Nishida & MacKinnon (2002).
Nishida M & MacKinnon R (2002). Structural basis of inward rectification: cytoplasmic pore of the G protein-gated inward rectifier GIRK1 at 1.8 Å resolution.
Cell 111 :957-65. PubMed Id: 12507423. |
||
Kir3.1-Prokaryotic Kir Chimera: Mus musculus & Burkholderia xenovornas E Eukaryota (expressed in Escherichia coli), 2.2 Å
|
Nishida et al (2007).
Nishida M, Cadene M, Chait, BT & MacKinnon R (2007). Crystal structure of a Kir3.1-prokaryotic Kir channel chimera.
EMBO J 26 :4005-4015. PubMed Id: 17703190. |
||
Kir3.1 cytoplasmic domain: Mus musculus E Eukaryota (expressed in E. coli), 2.0 Å
|
Xu et al (2009).
Xu Y, Shin HG, Szép S, & Lu Z (2009). Physical determinants of strong voltage sensitivity of K+channel block.
Nat Struct Mol Biol 16 :1252-1258. PubMed Id: 19915587. |
||
GIRK2 (Kir3.2) G-protein-gated K+ channel: Mus musculus E Eukaryota (expressed in Pichia pastoris), 3.60 Å
First complete structure of a G-protein-gated potassium-selective channel. Wild-type protein + PIP2, 3.00 Å: 3SYA D228N mutant, 3.4 Å: 3SYC R201A mutant, 3.1 Å: 3SYP R201A mutant + PIP2, 3.45 Å: 3SYQ |
Whorton & Mackinnon (2011).
Whorton MR & Mackinnon R (2011). Crystal Structure of the Mammalian GIRK2 K+ Channel and Gating Regulation by G Proteins, PIP2, and Sodium
Cell 147 :199-208. PubMed Id: 21962516. doi:10.1016/j.cell.2011.07.046. |
||
GIRK2 (Kir3.2) G-protein-gated K+ channel in complex with βγ G-protein subunits: Mus musculus E Eukaryota (expressed in Pichia pastoris ), 3.45 Å
The β and γ subunits are from homo sapiens expressed in S. frugiperda |
Whorton & MacKinnon (2013).
Whorton MR & MacKinnon R (2013). X-ray structure of the mammalian GIRK2-βγ G-protein complex.
Nature 498 :190-197. PubMed Id: 23739333. doi:10.1038/nature12241. |
||
GIRK2 (Kir3.2) G-protein-gated K+ channel, apo form: Mus musculus E Eukaryota (expressed in Komagataella pastoris), 3.90 Å
cryo-EM structure in complex with PIP2, 3.30 Å: 6XIT |
Niu et al. (2020).
Niu Y, Tao X, Touhara KK, & MacKinnon R (2020). Cryo-EM analysis of PIP2 regulation in mammalian GIRK channels.
Elife 9 :e60552. PubMed Id: 32844743. doi:10.7554/eLife.60552. |
||
KirBac1.1 Inward-Rectifier Potassium channel (closed state): Burkholderia pseudomallei B Bacteria, 3.65 Å
For re-refined structure, see 2WLL |
Kuo et al (2003).
Kuo A, Gulbis JM, Antcliff JF, Rahman T, Lowe ED, Zimmer J, Cuthbertson J, Ashcroft FM, Ezaki T, & Doyle DA (2003). Crystal structure of the potassium channel KirBac1.1 in the closed state.
Science 300 :1922-1926. PubMed Id: 12738871. |
||
KirBac3.1 Inward-Rectifier Potassium channel (semi-latched): Magnetospirillum magnetotacticum B Bacteria (expressed in E. coli), 2.60 Å
(Re-refinement of 1XL4) Latched State, 2.80 Å: 2WLK (re-refinement of 1XL6) Semi-latched State, 3.09 Å: 2WLI Semi-latched State, 4.20 Å: 2WLO Semi-latched State, 3.61 Å: 2WLM Unlatched State, 3.44 Å: 2WLN Unlatched State, 3.28 Å: 2WLH Q170A mutant (stalled), 3.10 Å: 2X6A Q170A mutant (blocked with Ba++), 3.30 Å: 2X6B Q170A mutant (conductive), 2.70 Å: 2X6C |
Clarke et al. (2010).
Clarke OB, Caputo AT, Hill AP, Vandenberg JI, Smith BJ & Gulbis JM (2010). Domain reorientation and rotation of an intracellular assembly regulate conduction in Kir potassium channels.
Cell 141 :1018-1029. PubMed Id: 20564790. |
||
KirBac3.1 Open-State Channel (S129R mutant): Magnetospirillum magnetotacticum B Bacteria (expressed in E. coli), 3.05 Å
|
Bavro et al. (2012).
Bavro VN, De Zorzi R, Schmidt MR, Muniz JR, Zubcevic L, Sansom MS, Vénien-Bryan C, & Tucker SJ (2012). Structure of a KirBac potassium channel with an open bundle crossing indicates a mechanism of channel gating.
Nature Struc Mol Biol 19 :158-163. PubMed Id: 22231399. doi:10.1038/nsmb.2208. |
||
KirBac3.1 Open-State Channel (S129R/S205L mutant): Magnetospirillum magnetotacticum B Bacteria (expressed in E. coli), 2.46 Å
|
Zubcevic et al. (2014).
Zubcevic L, Bavro VN, Muniz JR, Schmidt MR, Wang S, De Zorzi R, Venien-Bryan C, Sansom MS, Nichols CG, & Tucker SJ (2014). Control of KirBac3.1 potassium channel gating at the interface between cytoplasmic domains.
J Biol Chem 289 :143-151. PubMed Id: 24257749. doi:10.1074/jbc.M113.501833 . |
||
Black et al. (2020).
Black KA, He S, Jin R, Miller DM, Bolla JR, Clarke OB, Johnson P, Windley M, Burns CJ, Hill AP, Laver D, Robinson CV, Smith BJ, & Gulbis JM (2020). A constricted opening in Kir channels does not impede potassium conduction.
Nat Commun 11 1:3024. PubMed Id: 32541684. doi:10.1038/s41467-020-16842-0. |
|||
KirBac3.1 Inward-Rectifier Potassium channel, C71S C262S mutant: Magnetospirillum magnetotacticum B Bacteria (expressed in E. coli), 2.40 Å
L124M mutant, 2.72 Å 7N9K |
Jin et al. (2022).
Jin R, He S, Black KA, Clarke OB, Wu D, Bolla JR, Johnson P, Periasamy A, Wardak A, Czabotar P, Colman PM, Robinson CV, Laver D, Smith BJ, & Gulbis JM (2022). Ion currents through Kir potassium channels are gated by anionic lipids.
Nat Commun 13 1:490. PubMed Id: 35079013. doi:10.1038/s41467-022-28148-4. |
||
KirBac3.1 Inward-Rectifier Potassium channel, W46R mutant: Magnetospirillum magnetotacticum B Bacteria (expressed in E. coli), 2.80 Å
|
Fagnen et al. (2021).
Fagnen C, Bannwarth L, Oubella I, Zuniga D, Haouz A, Forest E, Scala R, Bendahhou S, De Zorzi R, Perahia D, & Vénien-Bryan C (2021). Integrative Study of the Structural and Dynamical Properties of a KirBac3.1 Mutant: Functional Implication of a Highly Conserved Tryptophan in the Transmembrane Domain.
Int J Mol Sci 23 1:335. PubMed Id: 35008764. doi:10.3390/ijms23010335. |
||
SUR1/Kir6.2 pancreatic ATP-sensitive K+ channel: Cricetus cricetus/Rattus norvegicus E Eukaryota (expressed in HEK293 cells), 6.3 Å
cryo-EM strucuture. Chimeric protein, SUR1 is from hamster (C. cricetus) and Kir6.2 from rat. |
Martin et al. (2017).
Martin GM, Yoshioka C, Rex EA, Fay JF, Xie Q, Whorton MR, Chen JZ, & Shyng SL (2017). Cryo-EM structure of the ATP-sensitive potassium channel illuminates mechanisms of assembly and gating.
Elife 6 :e2419. PubMed Id: 28092267. doi:10.7554/eLife.24149. |
||
SUR1/Kir6.2 pancreatic ATP-sensitive K+ channel: C. cricetus/Rattus norvegicus E Eukaryota (expressed in INS-1 insulinoma cells), 3.63 Å
cryo-EM structure. Reveals ATP binding site. |
Martin et al. (2017).
Martin GM, Kandasamy B, DiMaio F, Yoshioka C, & Shyng SL (2017). Anti-diabetic drug binding site in a mammalian KATP channel revealed by Cryo-EM.
Elife 6 :e31054. PubMed Id: 29035201. doi:10.7554/eLife.31054. |
||
SUR1/Kir6.2 pancreatic ATP-sensitive K+ channel, SUR1 bound to ATP and repaglinide: Cricetus cricetus/Rattus norvegicus E Eukaryota (expressed in HEK293 cells), 3.65 Å
cryo-EM structure SUR1 bound to ATP and glibenclamide, 3.74 Å: 6PZA SUR1 bound to carbamazepine, 4.34 Å: 6PZC SUR1 bound to ATP only, 4.5 Å: 6PZI |
Martin et al. (2019).
Martin GM, Sung MW, Yang Z, Innes LM, Kandasamy B, David LL, Yoshioka C, & Shyng SL (2019). Mechanism of pharmacochaperoning in a mammalian KATP channel revealed by cryo-EM.
Elife 8 :e46417. PubMed Id: 31343405. doi:10.7554/eLife.46417. |
||
SUR1/Kir6.2 pancreatic ATP-sensitive K+ channel, bound to ATP and repaglinide with Kir6.2-CTD in the up conformation: Cricetus cricetus/Rattus norvegicus E Eukaryota (expressed in Rattus norvegicus), 3.41 Å
cryo-EM structure in the down conformation, 3.60 Å: 7TYT bound to ATP and repaglinide with SUR1-in conformation, 3.90 Å: 7U1Q bound to ATP and repaglinide with SUR1-out conformation, 3.80 Å: 7U1S in the presence of glibenclamide and ATP with Kir6.2-CTD in the down conformation, 7.40 Å: 7U6Y in the presence of carbamazepine and ATP with Kir6.2-CTD in the up conformation, 5.20 Å: 7U7M in the presence of carbamazepine and ATP with Kir6.2-CTD in the down conformation, 4.10 Å: 7U2X in the ATP-bound state with Kir6.2-CTD in the up conformation, 5.70 Å: 7UAA bound to ATP with Kir6.2-CTD in the down conformation, 4.52 Å: 7U1E |
Sung et al. (2022).
Sung MW, Driggers CM, Mostofian B, Russo JD, Patton BL, Zuckerman DM, & Shyng SL (2022). Ligand-mediated Structural Dynamics of a Mammalian Pancreatic KATP Channel.
J Mol Biol 434 19:e167789. PubMed Id: 35964676. doi:10.1016/j.jmb.2022.167789. |
||
SUR1/Kir6.2 pancreatic ATP-sensitive K+ channel, Q52R mutant, with bound PIP2, open conformation, NBD2 modeled: Mesocricetus auratus/Rattus norvegicus E Eukaryota (expressed in C. aethiops), 3.28 Å
cryo-EM structure NBD2 not modeled, 2.90 Å: 8TI1 |
Driggers et al. (2024).
Driggers CM, Kuo YY, Zhu P, ElSheikh A, & Shyng SL (2024). Structure of an open KATP channel reveals tandem PIP2 binding sites mediating the Kir6.2 and SUR1 regulatory interface.
Nat Commun 15 1:2502. PubMed Id: 38509107. doi:10.1038/s41467-024-46751-5. |
||
SUR1/Kir6.2 pancreatic ATP-sensitive K+ channel: Mesocricetus auratus/Mus musculus E Eukaryota (expressed in HEK293 cells), 5.6 Å
cryo-EM structure Chimeric protein, SUR1 is from golden hamster (M. auratus) and Kir6.2 from mouse (M. musculus). |
Li et al. (2017).
Li N, Wu JX, Ding D, Cheng J, Gao N, & Chen L (2017). Structure of a Pancreatic ATP-Sensitive Potassium Channel.
Cell 168 :101-110.e10. PubMed Id: 28086082. doi:10.1016/j.cell.2016.12.028. |
||
SUR1/Kir6.2 pancreatic ATP-sensitive K+ channel with bound bound with ATPγS: Mesocricetus auratus/Mus musculus E Eukaryota (expressed in HEK293 cells), 4.4 Å
cryo-EM structure with bound glibenclamide and ATPγS (focused refinement on TM) 4.11 Å: 5YKE 3D class1, 4.33 Å: 5YKF 3D class 2, 4.57 Å: 5YKG focused refinement on SUR1, 4.4 Å: 5YW7 with bound ATPγS, 5 Å: 5YW9 bound with ATPγS (CTD class 2), 6.1 Å: 5YWA with bound with Mg-ADP (CTD class1), 4.3 Å: 5YWC with Mg-ADP (CTD class2), 5.2 Å: 5YWB with Mg-ADP (focused refinement of SUR1), 4.22 Å: 5YWD |
Wu et al. (2018).
Wu JX, Ding D, Wang M, Kang Y, Zeng X, & Chen L (2018). Ligand binding and conformational changes of SUR1 subunit in pancreatic ATP-sensitive potassium channels.
Protein Cell 9 6:553-567. PubMed Id: 29594720. doi:10.1007/s13238-018-0530-y. |
||
SUR1/Kir6.2 pancreatic ATP-sensitive K+ channel with bound repaglinide: Mesocricetus auratus/Mus musculus E Eukaryota (expressed in HEK293 cells), 3.3 Å
cryo-EM structure Chimeric protein, SUR1 is from golden hamster (M. auratus) and Kir6.2 from mouse (M. musculus) SUR1 TM region, 3.5 Å: 6JB3 |
Ding et al. (2019).
Ding D, Wang M, Wu JX, Kang Y, & Chen L (2019). The Structural Basis for the Binding of Repaglinide to the Pancreatic KATP Channel.
Cell Rep 27 6:1848-1857.e4. PubMed Id: 31067468. doi:10.1016/j.celrep.2019.04.050. |
||
SUR1/Kir6.2 pancreatic ATP-sensitive K+ channel H175K mutant, pre-open state: Mesocricetus auratus/Mus musculus E Eukaryota (expressed in HEK293 cells), 2.96 Å
cryo-EM structure closed state, 3.19 Å 7W4P |
Wang et al. (2022).
Wang M, Wu JX, Ding D, & Chen L (2022). Structural insights into the mechanism of pancreatic KATP channel regulation by nucleotides.
Nat Commun 13 1:2770. PubMed Id: 35589716. doi:10.1038/s41467-022-30430-4. |
||
SUR1/Kir6.2 pancreatic ATP-sensitive K+ channel, bound to ATP and ADP in quatrefoil form: Homo sapiens E Eukaryota (expressed in HEK293S cells), 3.9 Å
cryo-EM structure bound to ATP and ADP in propeller form, 5.6 Å: 6C3P |
Lee et al. (2017).
Lee KPK, Chen J, & MacKinnon R (2017). Molecular structure of human KATP in complex with ATP and ADP.
Elife 6 :e32481. PubMed Id: 29286281. doi:10.7554/eLife.32481. |
||
KATP channel in open conformation, focused on Kir (C166S G334D double mutant) and SUR TMD0: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.10 Å
cryo-EM structure open conformation, focused on SUR, 3.30 Å 7S5V open conformation, focused on Kir and one SUR, position 1, 3.70 Å 7S5X open conformation, focused on Kir and one SUR, position 2, 3.90 Å 7S5Y open conformation, focused on Kir and one SUR, position 3, 3.90 Å 7S5Z open conformation, focused on Kir and one SUR, position 4, 3.70 Å 7S60 open conformation, focused on Kir and one SUR, position 5, 4.00 Å 7S61 |
Zhao & MacKinnon (2021).
Zhao C, & MacKinnon R (2021). Molecular structure of an open human KATP channel.
Proc Natl Acad Sci U S A 118 48:e2112267118. PubMed Id: 34815345. doi:10.1073/pnas.2112267118. |
||
SUR2A ATP-sensitive K+ channel with bound Mg-ATP/ADP and P1075: Rattus norvegicus E Eukaryota (expressed in HEK293 cells), 3.30 Å
cryo-EM structure |
Ding et al. (2022).
Ding D, Wu JX, Duan X, Ma S, Lai L, & Chen L (2022). Structural identification of vasodilator binding sites on the SUR2 subunit.
Nat Commun 13 1:2675. PubMed Id: 35562524. doi:10.1038/s41467-022-30428-y. |
||
SUR2A with bound Mg-ATP and repaglinide, inward-facing conformation: Rattus norvegicus E Eukaryota (expressed in HEK293 cells), 3.00 Å
cryo-EM structure member of ATP-binding cassette sub-family C member 9 (ABCC9) with bound Mg-ATP/ADP and repaglinide, 3.80 Å: 7Y1K |
Ding et al. (2023).
Ding D, Hou T, Wei M, Wu JX, & Chen L (2023). The inhibition mechanism of the SUR2A-containing KATP channel by a regulatory helix.
Nat Commun 14 1:3608. PubMed Id: 37330603. doi:10.1038/s41467-023-39379-4. |
||
SUR2B/Kir6.1 ATP-sensitive K+ channel with bound ATP and glibenclamide, propeller-like conformation 1: Rattus norvegicus E Eukaryota (expressed in C. aethiops), 3.40 Å
cryo-EM structure propeller-like conformation 2, 4.20 Å: 7MJP quatrefoil-like conformation 1, 4.00 Å: 7MJO quatrefoil-like conformation 2, 4.20 Å: 7MJQ |
Sung et al. (2021).
Sung MW, Yang Z, Driggers CM, Patton BL, Mostofian B, Russo JD, Zuckerman DM, & Shyng SL (2021). Vascular KATP channel structural dynamics reveal regulatory mechanism by Mg-nucleotides.
Proc Natl Acad Sci U S A 118 44:e2109441118. PubMed Id: 34711681. doi:10.1073/pnas.2109441118. |
||
Ding et al. (2022).
Ding D, Wu JX, Duan X, Ma S, Lai L, & Chen L (2022). Structural identification of vasodilator binding sites on the SUR2 subunit.
Nat Commun 13 1:2675. PubMed Id: 35562524. doi:10.1038/s41467-022-30428-y. |
|||
Ding et al. (2023).
Ding D, Hou T, Wei M, Wu JX, & Chen L (2023). The inhibition mechanism of the SUR2A-containing KATP channel by a regulatory helix.
Nat Commun 14 1:3608. PubMed Id: 37330603. doi:10.1038/s41467-023-39379-4. |
|||
NaK channel (Na+complex): Bacillus cereus B Bacteria (expressed in E. coli), 2.4 Å
K+ complex, 2.8 Å: 2AHZ. |
Shi et al. (2006).
Shi N, Ye S, Alam A, Chen L, & Jiang Y (2006). Atomic structure of a Na+- and K+-conducting channel.
Nature 440 :570-574. PubMed Id: 16467789. |
||
Alam et al. (2007).
Alam A, Shi N, & Jiang Y (2007). Structural insight into Ca2+ specificity in tetrameric cation channels.
Proc Natl Acad Sci USA 104 :15334-15339. PubMed Id: 17878296. |
|||
NaK channel in open state (NΔ19 mutant): Bacillus cereus B Bacteria (expressed in E. coli), 1.60 Å
|
Alam & Jiang (2009).
Alam A & Jiang Y (2009). High-resolution structure of the open NaK channel.
Nat Struct Mol Biol 16 :30-34. PubMed Id: 19098917. |
||
CNG-mimicking NaK channel mutant; NaK-ETPP/K+ complex: Bacillus cereus B Bacteria (expressed in E. coli), 1.95 Å
CNG-mimicking mutant; NaK-NTPP/K+ complex, 1.58 Å: 3K06 CNG-mimicking mutant; NaK-ETPP/Na+ complex, 1.95 Å: 3K0G CNG-mimicking mutant; NaK-DTPP/Na+ complex, 1.58 Å: 3K04 CNG-mimicking mutant; NaK-NTPP/Na+ complex, 1.62 Å: 3K08 |
Derebe et al. (2011).
Derebe MG, Zeng W, Li Y, Alam A, & Jiang Y (2011). Structural studies of ion permeation and Ca2+blockage of a bacterial channel mimicking the cyclic nucleotide-gated channel pore.
Proc Natl Acad Sci USA 108 :592-597. PubMed Id: 21187429. |
||
Derebe et al. (2011).
Derebe MG, Sauer DB, Zeng W, Alam A, Shi N, & Jiang Y (2011). Tuning the ion selectivity of tetrameric cation channels by changing the number of ion binding sites.
Proc Natl Acad Sci USA 108 :598-602. PubMed Id: 21187421. |
|||
Sauer et al. (2011).
Sauer DB, Zeng W, Raghunathan S, & Jiang Y (2011). Protein interactions central to stabilizing the K+ channel selectivity filter in a four-sited configuration for selective K+ permeation.
Proc Natl Acad Sci USA 108 :16634-16639. PubMed Id: 21933962. doi:10.1073/pnas.1111688108. |
|||
NaK channel: Bacillus cereus B Bacteria (expressed in E. coli), 1.53 Å
|
Roy et al. (2021).
Roy RN, Hendriks K, Kopec W, Abdolvand S, Weiss KL, de Groot BL, Lange A, Sun H, & Coates L (2021). Structural plasticity of the selectivity filter in a nonselective ion channel.
IUCrJ 8 :421-430. PubMed Id: 33953928. doi:10.1107/S205225252100213X. |
||
NaK channel chimera with grafted C-terminal region of a NaV channel: Bacillus weihenstephanensis (NaK) and Sulfitobacter pontiacus (NaV) B Bacteria (expressed in E. coli), 3.20 Å
The NaVSulP C-terminal region grafted onto the C-terminus of NaK forms a four-helix bundle. |
Irie et al. (2012).
Irie K, Shimomura T, & Fujiyoshi Y (2012). The C-terminal helical bundle of the tetrameric prokaryotic sodium channel accelerates the inactivation rate.
Nature Commun 3 :793. PubMed Id: 22531178. doi:10.1038/ncomms1797. |
||
Payandeh et al. (2011).
Payandeh J, Scheuer T, Zheng N, & Catterall WA (2011). The crystal structure of a voltage-gated sodium channel.
Nature 475 :353-358. PubMed Id: 21743477. doi:10.1038/nature10238. |
|||
Voltage-Gated Sodium Channel (NaV), wild-type: Arcobacter butzleri B Bacteria (expressed in Trichoplusia ni), 3.21 Å
Shows channel in two potentially inactivated states. |
Payandeh et al. (2012).
Payandeh J, Gamal El-Din TM, Scheuer T, Zheng N, & Catterall WA (2012). Crystal structure of a voltage-gated sodium channel in two potentially inactivated states.
Nature 486 :135-139. PubMed Id: 22678296. doi:10.1038/nature11077. |
||
Voltage-Gated Sodium Channel (NaV) in closed state (NaVAb/FY): Arcobacter butzleri B Bacteria (expressed in Trichoplusia ni), 3.2 Å
in open state (NaVAb/1-226), 2.85 Å: 5VB8 |
Lenaeus et al. (2017).
Lenaeus MJ, Gamal El-Din TM, Ing C, Ramanadane K, Pomès R, Zheng N, & Catterall WA (2017). Structures of closed and open states of a voltage-gated sodium channel.
Proc Natl Acad Sci USA 114 :E3051-E3060. PubMed Id: 28348242. doi:10.1073/pnas.1700761114. |
||
Jiang et al. (2018).
Jiang D, Gamal El-Din TM, Ing C, Lu P, Pomès R, Zheng N, & Catterall WA (2018). Structural basis for gating pore current in periodic paralysis.
Nature 557 7706:590-594. PubMed Id: 29769724. doi:10.1038/s41586-018-0120-4. |
|||
Gamal El-Din et al. (2019).
Gamal El-Din TM, Lenaeus MJ, Ramanadane K, Zheng N, & Catterall WA (2019). Molecular dissection of multiphase inactivation of the bacterial sodium channel NaVAb.
J Gen Physiol 151 2:174-185. PubMed Id: 30510035. doi:10.1085/jgp.201711884. |
|||
Gamal El-Din et al. (2018).
Gamal El-Din TM, Lenaeus MJ, Zheng N, & Catterall WA (2018). Fenestrations control resting-state block of a voltage-gated sodium channel.
Proc Natl Acad Sci USA 115 51:13111-13116. PubMed Id: 30518562. doi:10.1073/pnas.1814928115. |
|||
Voltage-Gated Sodium Channel (NaV), G94C/Q150C mutant in the activated state: Arcobacter butzleri B Bacteria (expressed in Trichoplusia ni)), 2.75 Å
V100C/Q150C disulfide cross-linked mutant in the activated state, 2.89 Å: 6P6Y N49K/L109A/M116V/G94C/Q150C disulfide cross-linked mutant in the resting state, 4 Å: 6P6W |
Wisedchaisri et al. (2019).
Wisedchaisri G, Tonggu L, McCord E, Gamal El-Din TM, Wang L, Zheng N, & Catterall WA (2019). Resting-State Structure and Gating Mechanism of a Voltage-Gated Sodium Channel.
Cell 178 4:993-1003.e12. PubMed Id: 31353218. doi:10.1016/j.cell.2019.06.031. |
||
Nax channel in complex with β3 subunit in nanodisc: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.20 Å
cryo-EM structure in glyco-diosgenin (GDN), 2.90 Å |
Noland et al. (2022).
Noland CL, Chua HC, Kschonsak M, Heusser SA, Braun N, Chang T, Tam C, Tang J, Arthur CP, Ciferri C, Pless SA, & Payandeh J (2022). Structure-guided unlocking of NaX reveals a non-selective tetrodotoxin-sensitive cation channel.
Nat Commun 13 1:1416. PubMed Id: 35301303. doi:10.1038/s41467-022-28984-4. |
||
Gao et al. (2020).
Gao S, Valinsky WC, On NC, Houlihan PR, Qu Q, Liu L, Pan X, Clapham DE, & Yan N (2020). Employing NaChBac for cryo-EM analysis of toxin action on voltage-gated Na+ channels in nanodisc.
Proc Natl Acad Sci USA 117 25:14187-14193. PubMed Id: 32513729. doi:10.1073/pnas.1922903117. |
|||
Voltage-Gated Sodium Channel (NaV): Alpha proteobacterium himb114 (Rickettsiales sp. HIMB114) B Bacteria (expressed in E. coli), 3.05 Å
Structure is probably of the channel in an inactivated state. |
Zhang et al. (2012).
Zhang X, Ren W, DeCaen P, Yan C, Tao X, Tang L, Wang J, Hasegawa K, Kumasaka T, He J, Wang J, Clapham DE, & Yan N (2012). Crystal structure of an orthologue of the NaChBac voltage-gated sodium channel.
Nature 486 :130-134. PubMed Id: 22678295. |
||
Voltage-Gated Sodium Channel (NaV): Magnetococcus marinus B Bacteria (expressed in E. coli), 3.49 Å
Shows channel in an open conformation. |
McCusker et al. (2012).
McCusker EC, Bagnéris C, Naylor CE, Cole AR, D'Avanzo N, Nichols CG, & Wallace BA (2012). Structure of a bacterial voltage-gated sodium channel pore reveals mechanisms of opening and closing.
Nat Commun 3 :1102. PubMed Id: 23033078. doi:10.1038/ncomms2077. |
||
Voltage-Gated Sodium Channel (NaV), complete structure with C-terminal domain: Magnetococcus marinus B Bacteria (expressed in E. coli), 2.92 Å
|
Bagnéris et al. (2013).
Bagnéris C, Decaen PG, Hall BA, Naylor CE, Clapham DE, Kay CW, & Wallace BA (2013). Role of the C-terminal domain in the structure and function of tetrameric sodium channels.
Nat Commun 4 :2465. PubMed Id: 24051986. doi:10.1038/ncomms3465. |
||
Voltage-Gated Sodium Channel (NaV), apo open form: Magnetococcus marinus B Bacteria (expressed in E. coli), 2.66 Å
Wild-type with Pl1 blocker by soaking crystal, 2.89 Å: 4P9O Wild-type with Pl1 blocker co-crystallized, 3.43 Å: 4PA9 T207A/F214A apo mutant, 3.08 Å: 4P2Z T207A/F214A mutant with bound Pl1, 3.31 Å: 4P30 Wild-type with bound Pl2 blocker, 2.80 Å: 4OXS Wild-type with bound Pl3 blocker, 3.25 Å: 4PA3 Wild-type with bound Pl4 blocker, 3.02 Å: 4PA4 Wild-type with bound Pl5 blocker, 2.91 Å: 4P9P Wild-type with bound Pl6 blocker, 3.36 Å: 4PA6 Wild-type with bound Pl7 blocker, 3.02 Å: 4PA7 |
Bagnéris et al. (2014).
Bagnéris C, DeCaen PG, Naylor CE, Pryde DC, Nobeli I, Clapham DE, & Wallace BA (2014). Prokaryotic NavMs channel as a structural and functional model for eukaryotic sodium channel antagonism.
Proc Natl Acad Sci USA 111 :8428-8433. PubMed Id: 24850863. doi:10.1073/pnas.1406855111. |
||
Voltage-Gated Sodium Channel (NaV) channel pore and C-terminal domain: Magnetococcus marinus B Bacteria (expressed in E. coli), 2.7 Å
E178D selectivity-filter mutant, 3.5 Å: 4X88 |
Naylor et al. (2016).
Naylor CE, Bagnéris C, DeCaen PG, Sula A, Scaglione A, Clapham DE, & Wallace BA (2016). Molecular basis of ion permeability in a voltage-gated sodium channel.
EMBO J 35 :820-830. PubMed Id: 26873592. doi:10.15252/embj.201593285. |
||
Voltage-Gated Sodium Channel (NaV), full length in activated open state: Magnetococcus marinus B Bacteria (expressed in E. coli), 2.45 Å
I218C mutant in open form, 2.6 Å: 5HVD |
Sula et al. (2017).
Sula A, Booker J, Ng LC, Naylor CE, DeCaen PG, & Wallace BA (2017). The complete structure of an activated open sodium channel.
Nat Commun 8 . PubMed Id: 28205548. doi:10.1038/ncomms14205. |
||
Voltage-Gated Sodium Channel (NaV) full length F208L mutant open-form: Magnetococcus marinus B Bacteria (expressed in E. coli), 2.20 Å
in complex with 4-hydroxytamoxifen, 2.40 Å: 6SXG F208L mutant in complex with 4-hydroxytamoxifen, 2.50 Å: 6SXC F208L mutant in complex with Endoxifen, 2.60 Å: 6SXE F208L mutant in complex with N-desmethyltamoxifen, 3.20 Å: 6Z8C F208L mutant alone, 2.50 Å: 6SX7 |
Sula et al. (2021).
Sula A, Hollingworth D, Ng LCT, Larmore M, DeCaen PG, & Wallace BA (2021). A tamoxifen receptor within a voltage-gated sodium channel.
Mol Cell 81 6:1160-1169.e5. PubMed Id: 33503406. doi:10.1016/j.molcel.2020.12.048. |
||
FPC1 cockroach voltage-gated sodium channel (NaVPaS): Periplaneta americana E Eukaryota (expressed in HEK293F), 3.8 Å
cryo-EM structure |
Shen et al. (2017).
Shen H, Zhou Q, Pan X, Li Z, Wu J, & Yan N (2017). Structure of a eukaryotic voltage-gated sodium channel at near-atomic resolution.
Science 355 :924. PubMed Id: 28183995. doi:10.1126/science.aal4326. Article summary. See Electronic Pub Id (doi) for full article |
||
Shen et al. (2018).
Shen H, Li Z, Jiang Y, Pan X, Wu J, Cristofori-Armstrong B, Smith JJ, Chin YKY, Lei J, Zhou Q, King GF, & Yan N (2018). Structural basis for the modulation of voltage-gated sodium channels by animal toxins.
Science 362 6412:eaau2596. PubMed Id: 30049784. doi:10.1126/science.aau2596. |
|||
Voltage-Gated Sodium Channel (NaV), human/cockroach chimera: Homo sapiens/Periplaneta americana E Eukaryota (expressed in HEK293 cells), 3.4 Å
cryo-EM structure with bound alpha-scorpion toxin AaH2, 3.5 Å: 6NT4 |
Clairfeuille et al. (2019).
Clairfeuille T, Cloake A, Infield DT, Llongueras JP, Arthur CP, Li ZR, Jian Y, Martin-Eauclaire MF, Bougis PE, Ciferri C, Ahern CA, Bosmans F, Hackos DH, Rohou A, & Payandeh J (2019). Structural basis of α-scorpion toxin action on Nav channels.
Science 363 6433. PubMed Id: 30733386. doi:10.1126/science.aav8573. |
||
Nav1.1-β4 complex: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.30 Å
cryo-EM structure |
Pan et al. (2021).
Pan X, Li Z, Jin X, Zhao Y, Huang G, Huang X, Shen Z, Cao Y, Dong M, Lei J, & Yan N (2021). Comparative structural analysis of human Nav1.1 and Nav1.5 reveals mutational hotspots for sodium channelopathies.
Proc Natl Acad Sci U S A 118 11:e2100066118. PubMed Id: 33712547. doi:10.1073/pnas.2100066118. |
||
NaV1.2-β2 complex with bound μ-conotoxin KIIIA: Homo sapiens/Conus kinoshitai E Eukaryota (expressed in HEK293 cells), 3 Å
cryo-EM structure |
Pan et al. (2019).
Pan X, Li Z, Huang X, Huang G, Gao S, Shen H, Liu L, Lei J, & Yan N (2019). Molecular basis for pore blockade of human Na+ channel NaV1.2 by the μ-conotoxin KIIIA.
Science 363 6433:1309-1313. PubMed Id: 30765605. doi:10.1126/science.aaw2999. |
||
NaV1.3-β1-β2 complex with bound antagonist ICA121431: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.35 Å
cryo-EM structure with bound bulleyaconitineA, 3.30 Å 7W77 |
Li et al. (2022).
Li X, Xu F, Xu H, Zhang S, Gao Y, Zhang H, Dong Y, Zheng Y, Yang B, Sun J, Zhang XC, Zhao Y, & Jiang D (2022). Structural basis for modulation of human NaV1.3 by clinical drug and selective antagonist.
Nat Commun 13 1:1286. PubMed Id: 35277491. doi:10.1038/s41467-022-28808-5. |
||
NaV1.4-β1 complex: Electrophorus electricus E Eukaryota, 4.0 Å
cryo-EM structure |
Yan et al. (2017).
Yan Z, Zhou Q, Wang L, Wu J, Zhao Y, Huang G, Peng W, Shen H, Lei J, & Yan N (2017). Structure of the Nav1.4-β1 Complex from Electric Eel.
Cell 170 :470-482.e11. PubMed Id: 28735751. doi:10.1016/j.cell.2017.06.039. |
||
NaV1.4-β1 complex: Homo sapiens E Eukaryota (expressed in sf9 cells), 3.2 Å
cryo-EM structure |
Pan et al. (2018).
Pan X, Li Z, Zhou Q, Shen H, Wu K, Huang X, Chen J, Zhang J, Zhu X, Lei J, Xiong W, Gong H, Xiao B, & Yan N (2018). Structure of the human voltage-gated sodium channel Nav1.4 in complex with β1.
Science 362 6412:eaau2486. PubMed Id: 30190309. doi:10.1126/science.aau2486. |
||
NaV1.4 C-Terminal domain in complex with apo rat calmodulin: Homo sapiens E Eukaryota (expressed in E. coli), 1.80 Å
C-Terminal (1599-1754) domain in complex with calcium-bound calmodulin, 3.3 Å: 6MC9 |
Yoder et al. (2019).
Yoder JB, Ben-Johny M, Farinelli F, Srinivasan L, Shoemaker SR, Tomaselli GF, Gabelli SB, & Amzel LM (2019). Ca2+-dependent regulation of sodium channels NaV1.4 and NaV1.5 is controlled by the post-IQ motif.
Nat Commun 10 1. PubMed Id: 30944319. doi:10.1038/s41467-019-09570-7. |
||
NaV1.5 cardiac sodium channel: Rattus norvegicus E Eukaryota (expressed in HEK293 cells), 3.5 Å
cryo-EM structure with bound flecainide, 3.24 Å: 6UZ0 |
Jiang et al. (2020).
Jiang D, Shi H, Tonggu L, Gamal El-Din TM, Lenaeus MJ, Zhao Y, Yoshioka C, Zheng N, & Catterall WA (2020). Structure of the Cardiac Sodium Channel.
Cell 180 1:122-134.e10. PubMed Id: 31866066. doi:10.1016/j.cell.2019.11.041. |
||
NaV1.5 cardiac sodium channel with bound α-toxin LqhIII from deathstalker scorpion: Rattus norvegicus E Eukaryota (expressed in HEK293 cells), 3.30 Å
cryo-EM structure |
Jiang et al. (2021).
Jiang D, Tonggu L, Gamal El-Din TM, Banh R, Pomès R, Zheng N, & Catterall WA (2021). Structural basis for voltage-sensor trapping of the cardiac sodium channel by a deathstalker scorpion toxin.
Nat Commun 12 1. PubMed Id: 33397917. doi:10.1038/s41467-020-20078-3. |
||
NaV1.5 cardiac sodium channel, open state: Rattus norvegicus E Eukaryota (expressed in Mammalian 1 orthobornavirus), 3.40 Å
cryo-EM structure |
Jiang et al. (2021).
Jiang D, Banh R, Gamal El-Din TM, Tonggu L, Lenaeus MJ, Pomès R, Zheng N, & Catterall WA (2021). Open-state structure and pore gating mechanism of the cardiac sodium channel.
Cell 184 20:5151-5162.e11. PubMed Id: 34520724. doi:10.1016/j.cell.2021.08.021. |
||
NaV1.5 cardiac sodium channel, E1784K mutant: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.30 Å
cryo-EM structure |
Li et al. (2021).
Li Z, Jin X, Wu T, Zhao X, Wang W, Lei J, Pan X, & Yan N (2021). Structure of human Nav1.5 reveals the fast inactivation-related segments as a mutational hotspot for the long QT syndrome.
Proc Natl Acad Sci U S A 118 11:e2100069118. PubMed Id: 33712541. doi:10.1073/pnas.2100069118. |
||
NaV1.6 with β1 and β2 subunits, apo state: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.40 Å
cryo-EM structure with β1 and β2-4 subunits in complex with 9-anhydro-tetrodotoxin, 3.30 Å: 8GZ2 |
Li et al. (2023).
Li Y, Yuan T, Huang B, Zhou F, Peng C, Li X, Qiu Y, Yang B, Zhao Y, Huang Z, & Jiang D (2023). Structure of human NaV1.6 channel reveals Na+ selectivity and pore blockade by 4,9-anhydro-tetrodotoxin.
Nat Commun 14 1:1030. PubMed Id: 36823201. doi:10.1038/s41467-023-36766-9. |
||
NaV1.6 voltage-gated sodium channel: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.10 Å
cryo-EM structure |
Fan et al. (2023).
Fan X, Huang J, Jin X, & Yan N (2023). Cryo-EM structure of human voltage-gated sodium channel Nav1.6.
Proc Natl Acad Sci U S A 120 5:e2220578120. PubMed Id: 36696443. doi:10.1073/pnas.2220578120. |
||
NaV1.7 VSD4 voltage dependent sodium channel: Homo sapiens E Eukaryota (expressed in Trichoplusia ni), 3.5 Å
Chimera: Portions of NaV1.7 on to the bacterial (Arcobacter butzleri) channel NaV |
Ahuja et al. (2015).
Ahuja S, Mukund S, Deng L, Khakh K, Chang E, Ho H, Shriver S, Young C, Lin S, Johnson JP Jr, Wu P, Li J, Coons M, Tam C, Brillantes B, Sampang H, Mortara K, Bowman KK, Clark KR, Estevez A, Xie Z, Verschoof H, Grimwood M, Dehnhardt C, Andrez JC, Focken T, Sutherlin DP, Safina BS, Starovasnik MA, Ortwine DF, Franke Y, Cohen CJ, Hackos DH, Koth CM, & Payandeh J (2015). Structural basis of Nav1.7 inhibition by an isoform-selective small-molecule antagonist.
Science 350 6267:1491. PubMed Id: 26680203. doi:10.1126/science.aac5464. |
||
NaV1.7 sodium channel voltage-sensor domain with bound ProTx2: Homo sapiens E Eukaryota (expressed in Trichoplusia ni), 3.54 Å
crystallographic structure. ProTx2 is from Thrixopelma pruriens Cryo-EM structures: Nav1.7 VSD2 (deactivated state) in complex with ProTx2, 4.2 Å:6N4R Nav1.7 VSD2 (activated state) in complex with ProTx2, 3.6 Å: 6N4Q |
Xu et al. (2019).
Xu H, Li T, Rohou A, Arthur CP, Tzakoniati F, Wong E, Estevez A, Kugel C, Franke Y, Chen J, Ciferri C, Hackos DH, Koth CM, & Payandeh J (2019). Structural Basis of Nav1.7 Inhibition by a Gating-Modifier Spider Toxin.
Cell 176 4:702-715.e14. PubMed Id: 30661758. doi:10.1016/j.cell.2018.12.018. |
||
NaV1.7 with β1β2 subunits in complex with huwentoxin-IV and saxitoxin (Y1755 up): Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.2 Å
cryo-EM structure in complex with huwentoxin-IV and saxitoxin (Y1755 down), 3.2 Å: 6J8H in complex with ProTx-II and tetrodotoxin (Y1755 up), 3.2 Å: 6J8I in complex with ProTx-II and tetrodotoxin (Y1755 down), 3.2 Å: 6J8J |
Shen et al. (2019).
Shen H, Liu D, Wu K, Lei J, & Yan N (2019). Structures of human NaV1.7 channel in complex with auxiliary subunits and animal toxins.
Science 363 6433:1303-1308. PubMed Id: 30765606. doi:10.1126/science.aaw2493. |
||
NaV1.7/NaVAb chimera-VS2A chimera trapped in the resting state by tarantula toxin: Homo sapiens/Arcobacter butzleri E Eukaryota (expressed in Trichoplusia ni), 3.60 Å
cryo-EM structure |
Wisedchaisri et al. (2021).
Wisedchaisri G, Tonggu L, Gamal El-Din TM, McCord E, Zheng N, & Catterall WA (2021). Structural Basis for High-Affinity Trapping of the NaV1.7 Channel in Its Resting State by Tarantula Toxin.
Mol Cell 81 1:38-48.e4. PubMed Id: 33232657. doi:10.1016/j.molcel.2020.10.039. |
||
Zhang et al. (2022).
Zhang J, Shi Y, Huang Z, Li Y, Yang B, Gong J, & Jiang D (2022). Structural basis for NaV1.7 inhibition by pore blockers.
Nat Struct Mol Biol 29 12:1208-1216. PubMed Id: 36424527. doi:10.1038/s41594-022-00860-1. |
|||
Nav1.7 voltage-gated sodium channel, with bound CBD: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.80 Å
cryo-EM structure |
Huang et al. (2023).
Huang J, Fan X, Jin X, Jo S, Zhang HB, Fujita A, Bean BP, & Yan N (2023). Cannabidiol inhibits Nav channels through two distinct binding sites.
Nat Commun 14 1:3613. PubMed Id: 37330538. doi:10.1038/s41467-023-39307-6. |
||
NaV1.7 VSD4 voltage dependent sodium channel with bound bupivacaine: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.70 Å
cryo-EM structure with bound PF-05089771, 2.70 Å: 8I5G with bound vinpocetine, 2.90 Å: 8I5X with bound vixotrigine, 2.60 Å: 8I5Y with bound hardwickiic acid, 3.00 Å: 8J4F with bound lacosamide, 2.90 Å: 8S9B with bound carbamazepine, 3.20 Å: 8S9C |
Wu et al. (2023).
Wu Q, Huang J, Fan X, Wang K, Jin X, Huang G, Li J, Pan X, & Yan N (2023). Structural mapping of Nav1.7 antagonists.
Nat Commun 14 1:3224. PubMed Id: 37270609. doi:10.1038/s41467-023-38942-3. |
||
NaV1.7 VSD4 voltage dependent sodium channel, with bound riluzole: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.90 Å
cryo-EM structure with bound lamotrigine, 2.70 Å: 8THH |
Huang et al. (2023).
Huang J, Fan X, Jin X, Teng L, & Yan N (2023). Dual-pocket inhibition of Nav channels by the antiepileptic drug lamotrigine.
Proc Natl Acad Sci U S A 120 41:e2309773120. PubMed Id: 37782796. doi:10.1073/pnas.2309773120. |
||
NaV1.7 (E406K mutant)-β1-β2 complex: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.50 Å
cryo-EM structure in complex with ProTx-II and tetrodotoxin, 3.00 Å: 7W9M in complex with huwentoxin-IV and saxitoxin, S6IV π conformation, 2.90 Å: 7W9P in complex with huwentoxin-IV and saxitoxin, S6IV α conformation, 3.00 Å: 7W9T NaV1.7 (wild type)-β1-β2 complex, 2.20 Å: 7W9K |
Huang et al. (2022).
Huang G, Liu D, Wang W, Wu Q, Chen J, Pan X, Shen H, & Yan N (2022). High-resolution structures of human Nav1.7 reveal gating modulation through α-π helical transition of S6IV.
Cell Rep 39 4:110735. PubMed Id: 35476982. doi:10.1016/j.celrep.2022.110735. |
||
Huang et al. (2022).
Huang X, Jin X, Huang G, Huang J, Wu T, Li Z, Chen J, Kong F, Pan X, & Yan N (2022). Structural basis for high-voltage activation and subtype-specific inhibition of human Nav1.8.
Proc Natl Acad Sci U S A 119 30:e220821119. PubMed Id: 35858452. doi:10.1073/pnas.2208211119. |
|||
Neumann et al. (2025).
Neumann B, McCarthy S, & Gonen S (2025). Structural basis of inhibition of human NaV1.8 by the tarantula venom peptide Protoxin-I.
Nat Commun 16 1:1459. PubMed Id: 39920100. doi:10.1038/s41467-024-55764-z. |
|||
Shaya et al. (2014).
Shaya D, Findeisen F, Abderemane-Ali F, Arrigoni C, Wong S, Nurva SR, Loussouarn G, & Minor DL Jr (2014). Structure of a Prokaryotic Sodium Channel Pore Reveals Essential Gating Elements and an Outer Ion Binding Site Common to Eukaryotic Channels.
J Mol Biol 426 :467-483. PubMed Id: 24120938. doi:10.1016/j.jmb.2013.10.010. |
|||
Li et al. (2014).
Li Q, Wanderling S, Paduch M, Medovoy D, Singharoy A, McGreevy R, Villalba-Galea CA, Hulse RE, Roux B, Schulten K, Kossiakoff A, & Perozo E (2014). Structural mechanism of voltage-dependent gating in an isolated voltage-sensing domain.
Nat Struct Mol Biol 21 :244-252. PubMed Id: 24487958. doi:10.1038/nsmb.2768. |
|||
Hv1 chimeric (VSOP/Hv1) voltage-gated proton channel: Mus musculus E Eukaryota (expressed in S. frugiperda), 3.45 Å
|
Takeshita et al. (2014).
Takeshita K, Sakata S, Yamashita E, Fujiwara Y, Kawanabe A, Kurokawa T, Okochi Y, Matsuda M, Narita H, Okamura Y, & Nakagawa A (2014). X-ray crystal structure of voltage-gated proton channel.
Nat Struct Mol Biol 21 :352-357. PubMed Id: 24584463. doi:10.1038/nsmb.2783. |
||
Hv1 voltage-gated proton channel: Homo sapiens E Eukaryota (expressed in E. coli), NMR structure
|
Bayrhuber et al. (2019).
Bayrhuber M, Maslennikov I, Kwiatkowski W, Sobol A, Wierschem C, Eichmann C, Frey L, & Riek R (2019). Nuclear Magnetic Resonance Solution Structure and Functional Behavior of the Human Proton Channel.
Biochemistry 58 39:4017-4027. PubMed Id: 31365236. doi:10.1021/acs.biochem.9b00471. |
||
Trimeric intracellular cation (TRIC) channel orthologue: Saccharolobus solfataricus B Bacteria (expressed in E. coli), 2.64 Å
|
Kasuya et al. (2016).
Kasuya G, Hiraizumi M, Maturana AD, Kumazaki K, Fujiwara Y, Liu K, Nakada-Nakura Y, Iwata S, Tsukada K, Komori T, Uemura S, Goto Y, Nakane T, Takemoto M, Kato HE, Yamashita K, Wada M, Ito K, Ishitani R, Hattori M, & Nureki O (2016). Crystal structures of the TRIC trimeric intracellular cation channel orthologues.
Cell Res 26 12:1288-1301. PubMed Id: 27909292. doi:10.1038/cr.2016.140. |
||
Trimeric intracellular cation (TRIC) channel orthologue: Rhodobacter sphaeroides B Bacteria (expressed in E. coli), 3.41 Å
|
Kasuya et al. (2016).
Kasuya G, Hiraizumi M, Maturana AD, Kumazaki K, Fujiwara Y, Liu K, Nakada-Nakura Y, Iwata S, Tsukada K, Komori T, Uemura S, Goto Y, Nakane T, Takemoto M, Kato HE, Yamashita K, Wada M, Ito K, Ishitani R, Hattori M, & Nureki O (2016). Crystal structures of the TRIC trimeric intracellular cation channel orthologues.
Cell Res 26 12:1288-1301. PubMed Id: 27909292. doi:10.1038/cr.2016.140. |
||
Trimeric intracellular cation (TRIC) channel, B1 isoform with bound Ca2+: Caenorhabditis elegans E Eukaryota (expressed in Komagataella pastoris), 3.3 Å
B2 isoform in absence of Ca2+, 2.3 Å: 5EIK |
Yang et al. (2016).
Yang H, Hu M, Guo J, Ou X, Cai T, & Liu Z (2016). Pore architecture of TRIC channels and insights into their gating mechanism.
Nature 538 :537-541. PubMed Id: 27698420. doi:10.1038/nature19767. |
||
Su et al. (2017).
Su M, Gao F, Yuan Q, Mao Y, Li DL, Guo Y, Yang C, Wang XH, Bruni R, Kloss B, Zhao H, Zeng Y, Zhang FB, Marks AR, Hendrickson WA, & Chen YH (2017). Structural basis for conductance through TRIC cation channels.
Nat Commun 8 :15103. PubMed Id: 28524849. doi:10.1038/ncomms15103. |
|||
Trimeric intracellular cation (TRIC) channel: Colwellia psychrerythraea B Bacteria (expressed in E. coli), 2.40 Å
|
Su et al. (2017).
Su M, Gao F, Yuan Q, Mao Y, Li DL, Guo Y, Yang C, Wang XH, Bruni R, Kloss B, Zhao H, Zeng Y, Zhang FB, Marks AR, Hendrickson WA, & Chen YH (2017). Structural basis for conductance through TRIC cation channels.
Nat Commun 8 :15103. PubMed Id: 28524849. doi:10.1038/ncomms15103. |
||
Trimeric intracellular cation (TRIC) channel: Saccharolobus solfataricus A Archaea (expressed in E. coli), 2.2 Å
|
Ou et al. (2017).
Ou X, Guo J, Wang L, Yang H, Liu X, Sun J, & Liu Z (2017). Ion- and water-binding sites inside an occluded hourglass pore of a trimeric intracellular cation (TRIC) channel.
BMC Biol 15 1. PubMed Id: 28431535. doi:10.1186/s12915-017-0372-8. |
||
Trimeric intracellular cation (TRIC) channel, TRIC-A subtype, SeMet protein: Gallus gallus E Eukaryota (expressed in Schizosaccharomyces pombe), 2.20 Å
native protein with bound Ca2+ (12 KeV data), 1.8 Å: 6IYX native protein with bound Ca2+ (7 KeV data), 2.0 Å: 6IZF native protein, Ca2+-free, 2.2 Å: 6IYZ K129A mutant with bound Ca2+, 2.3 Å: 6IZ0 K129Q mutant with bound Ca2+, 2.4 Å: 6IZ1 |
Wang et al. (2019).
Wang XH, Su M, Gao F, Xie W, Zeng Y, Li DL, Liu XL, Zhao H, Qin L, Li F, Liu Q, Clarke OB, Lam SM, Shui GH, Hendrickson WA, & Chen YH (2019). Structural basis for activity of TRIC counter-ion channels in calcium release.
Proc Natl Acad Sci USA 116 :4283-4243. PubMed Id: 30770441. doi:10.1073/pnas.1817271116. |
||
Trimeric intracellular cation (TRIC) channel, TRIC-B subtype, Ca2+-free, cubic (7 KeV data): Xenopus laevis E Eukaryota (expressed in Schizosaccharomyces pombe), 3.70 Å
Ca2+-free trigonal (7 KeV data), 3.8 Å: 3.79 Å: 6IZ3 Ca2+-free tetrahedral, 3.10 Å: 6IZ4 with bound Ca2+ cubic (7 KeV data), 3.29 Å: 6IZ6 |
Wang et al. (2019).
Wang XH, Su M, Gao F, Xie W, Zeng Y, Li DL, Liu XL, Zhao H, Qin L, Li F, Liu Q, Clarke OB, Lam SM, Shui GH, Hendrickson WA, & Chen YH (2019). Structural basis for activity of TRIC counter-ion channels in calcium release.
Proc Natl Acad Sci USA 116 :4283-4243. PubMed Id: 30770441. doi:10.1073/pnas.1817271116. |
||
MlotK1 cyclic nucleotide-regulated K+-channel: Mesorhizobium loti B Bacteria (expressed in E. coli), 3.1 Å
|
Clayton et al. (2008).
Clayton GM, Altieri S, Heginbotham L, Unger VM, & Morais-Cabral JH (2008). Structure of the transmembrane regions of a bacterial cyclic nucleotide-regulated channel.
Proc Natl Acad Sci U S A 105 :1511-1515. PubMed Id: 18216238. |
||
MlotK1 cyclic nucleotide-regulated K+-channel, complete structure: Mesorhizobium loti B Bacteria (expressed in E. coli), 4.5 Å
cryo-EM structure |
Kowal et al. (2018).
Kowal J, Biyani N, Chami M, Scherer S, Rzepiela AJ, Baumgartner P, Upadhyay V, Nimigean CM, & Stahlberg H (2018). High-Resolution Cryoelectron Microscopy Structure of the Cyclic Nucleotide-Modulated Potassium Channel MloK1 in a Lipid Bilayer.
Structure 26 :20-27.e3. PubMed Id: 29249605. doi:10.1016/j.str.2017.11.012. |
||
MlotK1 cyclic nucleotide-regulated K+-channel, complete structure: Mesorhizobium japonicum B Bacteria (expressed in E. coli), 4 Å
cryo-EM structure from 2D crystals class 1 (extended conformation), 5.2 Å: 6IAX class 2 (intermediate conformation), 4.7 Å: 6CQY class 3 (intermediate extended conformation), 4.4 Å: 6QCZ class 4 (compact/open conformation), 4.5 Å: 6QD0 class 5 (intermediate compact conformation), 5.4 Å: 6QD1 class 6 (intermediate compact conformation), 4.8 Å: 6QD2 class 7 (intermediate conformation), 5 Å: 6QD3 class 8 (intermediate conformation), 5.6 Å: 6QD4 |
Righetto et al. (2019).
Righetto RD, Biyani N, Kowal J, Chami M, & Stahlberg H (2019). Retrieving high-resolution information from disordered 2D crystals by single-particle cryo-EM.
Nat Commun 10 1:1722. PubMed Id: 30979902. doi:10.1038/s41467-019-09661-5. |
||
Cyclic-nucleotide-gated (CNG) channel TAX-4, liganded open state: Caenorhabditis elegans E Eukaryota (expressed in Trichoplusia ni), 3.5 Å
cryo-EM structure. |
Li et al. (2017).
Li M, Zhou X, Wang S, Michailidis I, Gong Y, Su D, Li H, Li X, & Yang J (2017). Structure of a eukaryotic cyclic-nucleotide-gated channel.
Nature 7639:60-65. PubMed Id: 28099415. doi:10.1038/nature20819. |
||
Zheng et al. (2020).
Zheng X, Fu Z, Su D, Zhang Y, Li M, Pan Y, Li H, Li S, Grassucci RA, Ren Z, Hu Z, Li X, Zhou M, Li G, Frank J, & Yang J (2020). Mechanism of ligand activation of a eukaryotic cyclic nucleotide-gated channel.
Nat Struct Mol Biol 27 7:625-634. PubMed Id: 32483338. doi:10.1038/s41594-020-0433-5. |
|||
Zheng et al. (2022).
Zheng X, Li H, Hu Z, Su D, & Yang J (2022). Structural and functional characterization of an achromatopsia-associated mutation in a phototransduction channel.
Commun Biol 5 1:190. PubMed Id: 35233102. doi:10.1038/s42003-022-03120-6. |
|||
Cyclic-nucleotide-gated (CNG) channel: Leptospira licerasiae B Bacteria (expressed in E. coli), 4.2 Å
cryo-EM structure |
James et al. (2017).
James ZM, Borst AJ, Haitin Y, Frenz B, DiMaio F, Zagotta WN, & Veesler D (2017). CryoEM structure of a prokaryotic cyclic nucleotide-gated ion channel.
Proc Natl Acad Sci USA 114 :4430-4435. PubMed Id: 28396445. doi:10.1073/pnas.1700248114. |
||
Cyclic-nucleotide-gated (CNG) channel, apo form in K+/Ca2+: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.60 Å
cryo-EM structure cGMP-bound open state, 2.90 Å: 7LFW cGMP-bound open state in Na+, 3.60 Å: 7LFY cGMP-bound open state in Na+/Ca2+, 3.10 Å: 7LFX cGMP-bound E365Q mutant in Na+/Ca2+, 2.70 Å: 7LG1 |
Xue et al. (2021).
Xue J, Han Y, Zeng W, Wang Y, & Jiang Y (2021). Structural mechanisms of gating and selectivity of human rod CNGA1 channel.
Neuron 109 8:1302-1313.e4. PubMed Id: 33651975. doi:10.1016/j.neuron.2021.02.007. |
||
photoreceptor Cyclic-nucleotide-gated (CNGA1/B1) heterotetrameric channel, apo state: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.61 Å
cryo-EM structure with CLZ coiled coil, 3.03 Å 7RHL cAMP-bound state, 2.88 Å 7RHG cGMP-bound openI state, 3.31 Å 7RHH cGMP-bound openII state, 3.31 Å 7RHI L-cis-Diltiazem-blocked open state, 2.88 Å 7RHJ L-cis-Diltiazem-trapped closed state, 3.27 Å 7RHK |
Xue et al. (2022).
Xue J, Han Y, Zeng W, & Jiang Y (2022). Structural mechanisms of assembly, permeation, gating, and pharmacology of native human rod CNG channel.
Neuron 110 1:86-95.e5. PubMed Id: 34699778. doi:10.1016/j.neuron.2021.10.006. |
||
photoreceptor Cyclic-nucleotide-gated (CNGA1/B1) heterotetrameric channel: Bos taurus E Eukaryota, 3.40 Å
cryo-EM structure |
Barret et al. (2022).
Barret DCA, Schertler GFX, Benjamin Kaupp U, & Marino J (2022). The structure of the native CNGA1/CNGB1 CNG channel from bovine retinal rods.
Nat Struct Mol Biol 29 1:32-39. PubMed Id: 34969975. doi:10.1038/s41594-021-00700-8. |
||
photoreceptor Cyclic-nucleotide-gated (CNGA1/B1) heterotetrameric channel with bound calmodulin: Bos taurus E Eukaryota, 2.76 Å
cryo-EM structure |
Barret et al. (2023).
Barret DCA, Schuster D, Rodrigues MJ, Leitner A, Picotti P, Schertler GFX, Kaupp UB, Korkhov VM, & Marino J (2023). Structural basis of calmodulin modulation of the rod cyclic nucleotide-gated channel.
Proc Natl Acad Sci U S A 120 15:e2300309120. PubMed Id: 37011209. doi:10.1073/pnas.2300309120. |
||
Rheinberger et al. (2018).
Rheinberger J, Gao X, Schmidpeter PA, & Nimigean CM (2018). Ligand discrimination and gating in cyclic nucleotide-gated ion channels from apo and partial agonist-bound cryo-EM structures.
Elife 7 :e39775. PubMed Id: 30028291. doi:10.7554/eLife.39775. |
|||
Cyclic nucleotide-gated (CNG) potassium channel SthK, cAMP-bound closed state, in the presence of detergent: Spirochaeta thermophila B Bacteria (expressed in E. coli), 3.60 Å
cryo-EM structure cAMP-bound closed state, in the presence of POPA, 2.41 Å:7TJ5 cAMP-bound open state, in the presence of POPA, 2.90 Å: 7TJ6 |
Schmidpeter et al. (2022).
Schmidpeter PAM, Wu D, Rheinberger J, Riegelhaupt PM, Tang H, Robinson CV, & Nimigean CM (2022). Anionic lipids unlock the gates of select ion channels in the pacemaker family.
Nat Struct Mol Biol 29 11:1092-1100. PubMed Id: 36352139. doi:10.1038/s41594-022-00851-2. |
||
Cyclic nucleotide-gated (CNG) potassium channel SthK, Y26F Closed State: Spirochaeta thermophila B Bacteria (expressed in E. coli), 3.00 Å
cryo-EM structure R120A Closed State, 2.90 Å: 7RTF Y26F Activated State, 3.80 Å: 7RTJ R120A Open State 1, 4.30 Å: 7RU0 R120A Open State 2, 3.70 Å: 7RYS R120A Open State 3, 3.60 Å: 7RYR |
Gao et al. (2022).
Gao X, Schmidpeter PAM, Berka V, Durham RJ, Fan C, Jayaraman V, & Nimigean CM (2022). Gating intermediates reveal inhibitory role of the voltage sensor in a cyclic nucleotide-modulated ion channel.
Nat Commun 13 1:6919. PubMed Id: 36376326. doi:10.1038/s41467-022-34673-z. |
||
AKT1 K+ hyperpolization-activated channel in MSP2N2 lipid nanodisc: Arabidopsis thaliana E Eukaryota (expressed in HEK293 cells), 2.80 Å
cryo-EM structure |
Dickinson et al. (2022).
Dickinson MS, Pourmal S, Gupta M, Bi M, & Stroud RM (2022). Symmetry Reduction in a Hyperpolarization-Activated Homotetrameric Ion Channel.
Biochemistry 61 20:2177-2181. PubMed Id: 34964607. doi:10.1021/acs.biochem.1c00654. |
||
Lu et al. (2022).
Lu Y, Yu M, Jia Y, Yang F, Zhang Y, Xu X, Li X, Yang F, Lei J, Wang Y, & Yang G (2022). Structural basis for the activity regulation of a potassium channel AKT1 from Arabidopsis.
Nat Commun 13 1:5682. PubMed Id: 36167696. doi:10.1038/s41467-022-33420-8. |
|||
HCN1 hyperpolarization-activated channel: Homo sapiens E Eukaryota (expressed in HEK293S), 3.5 Å
cryo-EM structure with bound c-AMP, 3.51 Å: 5U6P |
Lee & MacKinnon (2017).
Lee CH, & MacKinnon R (2017). Structures of the Human HCN1 Hyperpolarization-Activated Channel.
Cell 168 :111-120.e11. PubMed Id: 28086084. doi:10.1016/j.cell.2016.12.023. |
||
HCN1 hyperpolarization-activated channel in hyperpolarized conformation: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.04 Å
cryoEM structure Y289D mutant, 3.54 Å: 6UQG |
Lee & MacKinnon (2019).
Lee CH, & MacKinnon R (2019). Voltage Sensor Movements during Hyperpolarization in the HCN Channel.
Cell 179 7:1582-1589.e7. PubMed Id: 31787376. doi:10.1016/j.cell.2019.11.006. |
||
HCN3 hyperpolarization-activated channel: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.19 Å
cryo-EM structure with bound cAMP, 3.19Å: 8IO0 |
Yu et al. (2024).
Yu B, Lu Q, Li J, Cheng X, Hu H, Li Y, Che T, Hua Y, Jiang H, Zhang Y, Xian C, Yang T, Fu Y, Chen Y, Nan W, McCormick PJ, Xiong B, Duan J, Zeng B, Li Y, Fu Y, & Zhang J (2024). Cryo-EM structure of human HCN3 channel and its regulation by cAMP.
J Biol Chem 300 6:107288. PubMed Id: 38636662. doi:10.1016/j.jbc.2024.107288. |
||
Saponaro et al. (2021).
Saponaro A, Bauer D, Giese MH, Swuec P, Porro A, Gasparri F, Sharifzadeh AS, Chaves-Sanjuan A, Alberio L, Parisi G, Cerutti G, Clarke OB, Hamacher K, Colecraft HM, Mancia F, Hendrickson WA, Siegelbaum SA, DiFrancesco D, Bolognesi M, Thiel G, Santoro B, & Moroni A (2021). Gating movements and ion permeation in HCN4 pacemaker channels.
Mol Cell 81 14:2929-2943.e6. PubMed Id: 34166608. doi:10.1016/j.molcel.2021.05.033. |
|||
KCNQ1 cardiac slow-delayed rectifier K+ channel in complex with calmodulin: Xenopus laevis E Eukaryota (expressed in HEK293S cells), 3.7 Å
cryo-EM structure |
Sun & MacKinnon (2017).
Sun J, & MacKinnon R (2017). Cryo-EM Structure of a KCNQ1/CaM Complex Reveals Insights into Congenital Long QT Syndrome.
Cell 169 6:1042-1050.e9. PubMed Id: 28575668. doi:10.1016/j.cell.2017.05.019. |
||
KCNQ1 cardiac slow-delayed rectifier K+ channel in complex with calmodulin (CaM): Xenopus laevis E Eukaryota (expressed in HEK293 cells), 3.84 Å
cryo-EM structure with bound ML277, 3.90 Å 7TCI |
Willegems et al. (2022).
Willegems K, Eldstrom J, Kyriakis E, Ataei F, Sahakyan H, Dou Y, Russo S, Van Petegem F, & Fedida D (2022). Structural and electrophysiological basis for the modulation of KCNQ1 channel currents by ML277.
Nat Commun 13 1:3760. PubMed Id: 35768468. doi:10.1038/s41467-022-31526-7. |
||
Sun & MacKinnon (2020).
Sun J, & MacKinnon R (2020). Structural Basis of Human KCNQ1 Modulation and Gating.
Cell 180 2:340-347.e9. PubMed Id: 31883792. doi:10.1016/j.cell.2019.12.003. |
|||
KCNQ1 cardiac slow-delayed rectifier K+ channel voltage sensor intermediate state: Homo sapiens E Eukaryota (expressed in E. coli), NMR structure
|
Taylor et al. (2020).
Taylor KC, Kang PW, Hou P, Yang ND, Kuenze G, Smith JA, Shi J, Huang H, White KM, Peng D, George AL, Meiler J, McFeeters RL, Cui J, & Sanders CR (2020). Structure and physiological function of the human KCNQ1 channel voltage sensor intermediate state.
Elife 9 :e53901. PubMed Id: 32096762. doi:10.7554/eLife.53901. |
||
Ma et al. (2022).
Ma D, Zhong L, Yan Z, Yao J, Zhang Y, Ye F, Huang Y, Lai D, Yang W, Hou P, & Guo J (2022). Structural mechanisms for the activation of human cardiac KCNQ1 channel by electro-mechanical coupling enhancers.
Proc Natl Acad Sci U S A 119 45:e2207067119. PubMed Id: 36763058. doi:10.1073/pnas.2207067119. |
|||
Mandala & MacKinnon (2023).
Mandala VS, & MacKinnon R (2023). The membrane electric field regulates the PIP2-binding site to gate the KCNQ1 channel.
Proc Natl Acad Sci U S A 120 21:e2301985120. PubMed Id: 37192161. doi:10.1073/pnas.2301985120. |
|||
KCNQ2 rectifier K+ channel in complex with CaM, apo state: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.60 Å
cryo-EM structure in complex with ztz240 in absence of CaM, 3.40 Å: 7CR1 in complex with ztz240, 3.40 Å: 3.90 Å: 7CR4 in complex with retigabine in absence of CaM, 3.20 Å: 7CR2 in complex with retigabine, 3.70 Å: 7CR7 |
Li et al. (2020).
Li X, Zhang Q, Guo P, Fu J, Mei L, Lv D, Wang J, Lai D, Ye S, Yang H, & Guo J (2020). Molecular basis for ligand activation of the human KCNQ2 channel.
Cell Res . PubMed Id: 32884139. doi:10.1038/s41422-020-00410-8. |
||
KCNQ2 rectifier K+ channel in complex with CaM, PIP2, wild-type, closed state: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.70 Å
cryo-EM structure with bound 2 CBDs, closed state 3.00Å: 8J00 with bound 2 CBDs, 1 PIP2, open state 3.10Å: 8J01 with bound 2 HN37, closed state, 2.50Å: 8IZY with bound 2 HN37, 1 PIP2, closed state, 2.70Å: 8J04 with bound 1 HN37, 1 PIP2, open state, 3.30Å: 8W4U F104A mutant, with bound 1 CBD, closed state, 2.70Å: 8J03 F104A mutant, with bound 1 CBD, 1 PIP2, open state, 3.50Å: 8J02 |
Ma et al. (2023).
Ma D, Zheng Y, Li X, Zhou X, Yang Z, Zhang Y, Wang L, Zhang W, Fang J, Zhao G, Hou P, Nan F, Yang W, Su N, Gao Z, & Guo J (2023). Ligand activation mechanisms of human KCNQ2 channel.
Nat Commun 14 1:6632. PubMed Id: 37857637. doi:10.1038/s41467-023-42416-x. |
||
Li et al. (2021).
Li T, Wu K, Yue Z, Wang Y, Zhang F, & Shen H (2021). Structural Basis for the Modulation of Human KCNQ4 by Small-Molecule Drugs.
Mol Cell 81 1:25-37.e4. PubMed Id: 33238160. doi:10.1016/j.molcel.2020.10.037. |
|||
Zheng et al. (2022).
Zheng Y, Liu H, Chen Y, Dong S, Wang F, Wang S, Li GL, Shu Y, & Xu F (2022). Structural insights into the lipid and ligand regulation of a human neuronal KCNQ channel.
Neuron 110 2:237-247.e4. PubMed Id: 34767770. doi:10.1016/j.neuron.2021.10.029. |
|||
TMEM175 lysosomal K+ channel: Chamaesiphon minutus E Eukaryota (expressed in E. coli), 3.3 Å
|
Lee et al. (2017).
Lee C, Guo J, Zeng W, Kim S, She J, Cang C, Ren D, & Jiang Y (2017). The lysosomal potassium channel TMEM175 adopts a novel tetrameric architecture.
Nature 547 :472-475. PubMed Id: 28723891. doi:10.1038/nature23269. |
||
Oh et al. (2020).
Oh S, Paknejad N, & Hite RK (2020). Gating and selectivity mechanisms for the lysosomal K+ channel TMEM175.
Elife 9 . PubMed Id: 32228865. doi:10.7554/eLife.53430. |
|||
TMEM175 lysosomal K+ channel, open state: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.45 Å
cryo-EM structure closed state, 2.61 Å 7UNM |
Oh et al. (2022).
Oh S, Marinelli F, Zhou W, Lee J, Choi HJ, Kim M, Faraldo-Gómez JD, & Hite RK (2022). Differential ion dehydration energetics explains selectivity in the non-canonical lysosomal K+ channel TMEM175.
Elife 11 :75122. PubMed Id: 35608336. doi:10.7554/eLife.75122. |
||
TMEM175 lysosomal K+ channel, in complex with 4-aminopyridine: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.73 Å
cryo-EM structure |
Oh et al. (2022).
Oh S, Stix R, Zhou W, Faraldo-Gómez JD, & Hite RK (2022). Mechanism of 4-aminopyridine inhibition of the lysosomal channel TMEM175.
Proc Natl Acad Sci U S A 119 44:e2208882119. PubMed Id: 36279431. doi:10.1073/pnas.2208882119. |
||
TMEM175 lysosomal K+ channel, in complex with a Nanobody-MBP fusion protein: Marivirga tractuosa B Bacteria (expressed in E. coli), 2.40 Å
TMEM175 with rubidium, 3.50 Å: 6HD9 TMEM175 with cesium, 3.80 Å: 6HDA TMEM175 with zinc, 2.90 Å: 6HDB T38A variant in complex with a Nanobody-MBP fusion protein, 3.40 Å: 6HDC TMEM175 T38A mutant soaked with zinc, 3.20 Å: 6SWR |
Brunner et al. (2020).
Brunner JD, Jakob RP, Schulze T, Neldner Y, Moroni A, Thiel G, Maier T, & Schenck S (2020). Structural basis for ion selectivity in TMEM175 K+ channels.
Elife 9 . PubMed Id: 32267231. doi:10.7554/eLife.53683. |
||
Odorant-gated ion channel receptor ORCO: Apocrypta bakeri E Eukaryota (expressed in sf9 cells), 3.5 Å
cryo-EM structure |
Butterwick et al. (2018).
Butterwick JA, Del Mármol J, Kim KH, Kahlson MA, Rogow JA, Walz T, & Ruta V (2018). Cryo-EM structure of the insect olfactory receptor Orco.
Nature 560 7719:447-452. PubMed Id: 30111839. doi:10.1038/s41586-018-0420-8. |
||
KAT1 Hyperpolarization-Activated Potassium Channel, tetramer: Arabidopsis thaliana E Eukaryota (expressed in Spodoptera frugiperda), 3.50 Å
cryo-EM structure octamer, 3.80 Å: 6V1Y |
Clark et al. (2020).
Clark MD, Contreras GF, Shen R, & Perozo E (2020). Electromechanical coupling in the hyperpolarization-activated K+ channel KAT1.
Nature 583 7814:145-149. PubMed Id: 32461693. doi:10.1038/s41586-020-2335-4. |
||
KAT1 Hyperpolarization-Activated Potassium Channel: Arabidopsis thaliana E Eukaryota (expressed in Spodoptera frugiperda), 3.20 Å
cryo-EM structure |
Li et al. (2020).
Li S, Yang F, Sun D, Zhang Y, Zhang M, Liu S, Zhou P, Shi C, Zhang L, & Tian C (2020). Cryo-EM structure of the hyperpolarization-activated inwardly?rectifying potassium channel?KAT1?from?Arabidopsis.
Cell Res 30 11:1049-1052. PubMed Id: 32901112. doi:10.1038/s41422-020-00407-3. |
||
Na+ leak channel non-selective (NALCN) in complex with FAM155A, in nanodisc: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.80 Å
cryo-EM structure |
Kschonsak et al. (2020).
Kschonsak M, Chua HC, Noland CL, Weidling C, Clairfeuille T, Bahlke OØ, Ameen AO, Li ZR, Arthur CP, Ciferri C, Pless SA, & Payandeh J (2020). Structure of the human sodium leak channel NALCN.
Nature 587 7833:313-318. PubMed Id: 32698188. doi:10.1038/s41586-020-2570-8. |
||
Na+ leak channel non-selective (NALCN) in complex with FAM155A: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.10 Å
cryo-EM structure |
Xie et al. (2020).
Xie J, Ke M, Xu L, Lin S, Huang J, Zhang J, Yang F, Wu J, & Yan Z (2020). Structure of the human sodium leak channel NALCN in complex with FAM155A.
Nat Commun 11 1:5831. PubMed Id: 33203861. doi:10.1038/s41467-020-19667-z. |
||
Na+ leak channel non-selective (NALCN) in complex with FAM155A-UNC79-UNC80 with bound CaM, conformation 1/2: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.10 Å
cryo-EM structure conformation 2/2, 3.50 Å: 7SX4 |
Kschonsak et al. (2022).
Kschonsak M, Chua HC, Weidling C, Chakouri N, Noland CL, Schott K, Chang T, Tam C, Patel N, Arthur CP, Leitner A, Ben-Johny M, Ciferri C, Pless SA, & Payandeh J (2022). Structural architecture of the human NALCN channelosome.
Nature 603 7899:180-186. PubMed Id: 34929720. doi:10.1038/s41586-021-04313-5. |
||
photoreceptor Cyclic-nucleotide-gated (CNGA3/B3) heterotetrameric channel, apo state: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.93 Å
cryo-EM structure |
Zheng et al. (2022).
Zheng X, Hu Z, Li H, & Yang J (2022). Structure of the human cone photoreceptor cyclic nucleotide-gated channel.
Nat Struct Mol Biol 29 1:40-46. PubMed Id: 34969976. doi:10.1038/s41594-021-00699-y. |
||
photoreceptor Cyclic-nucleotide-gated (CNGA3/B3) heterotetrameric channel, with bound cGMP, closed-state, in the detergent glycol-diosgenin (GDN): Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.52 Å
cryo-EM structure intermediate state 1, 3.62 Å: 8EU3 intermediate state 2, 3.61 Å: 8EUC truncated CNGA3/B3 (A3: residues 152-694, B3: residues 79–809), closed state, in POPG/POPC nanodiscs, 3.11 Å: 8EV8 truncated CNGA3/B3, intermediate state 1, in POPG/POPC nanodiscs, 3.33 Å: 8EV9 truncated CNGA3/B3, intermediate state 2, in POPG/POPC nanodiscs, 3.33 Å: 8EVA truncated CNGA3/B3, pre-open state, in POPG/POPC nanodiscs, 3.60 Å: 8EVB truncated CNGA3/B3, open state, in POPG/POPC nanodiscs, 3.33 Å: 8EVC |
Hu et al. (2023).
Hu Z, Zheng X, & Yang J (2023). Conformational trajectory of allosteric gating of the human cone photoreceptor cyclic nucleotide-gated channel.
Nat Commun 14 1:4284. PubMed Id: 37463923. doi:10.1038/s41467-023-39971-8. |
||
Li et al. (2023).
Li S, Wang Y, Wang C, Zhang Y, Sun D, Zhou P, Tian C, & Liu S (2023). Cryo-EM structure reveals a symmetry reduction of the plant outward-rectifier potassium channel SKOR.
Cell Discov 9 1:67. PubMed Id: 37391403. doi:10.1038/s41421-023-00572-w. |
|||
Stelar K+ outward rectifying channel (SKOR), wild-type: Arabidopsis thaliana E Eukaryota (expressed in sf9 cells), 3.10 Å
cryo-EM structure L271P & D312N mutant, 3.40 Å: 8WUI |
Gao et al. (2024).
Gao X, Xu X, Sun T, Lu Y, Jia Y, Zhou J, Fu P, Zhang Y, & Yang G (2024). Structural changes in the conversion of an Arabidopsis outward-rectifying K+ channel into an inward-rectifying channel.
Plant Commun 5 6:100844. PubMed Id: 38341617. doi:10.1016/j.xplc.2024.100844. |
||
FMRFamide-gated Na+ channel (FaNaCs), apo form: Aplysia californica E Eukaryota (expressed in HEK293 cells), 3.00 Å
cryo-EM structure with bound FMRFamide, 2.90 Å: 7YVB |
Liu et al. (2023).
Liu F, Dang Y, Li L, Feng H, Li J, Wang H, Zhang X, Zhang Z, Ye S, Tian Y, & Chen Q (2023). Structure and mechanism of a neuropeptide-activated channel in the ENaC/DEG superfamily.
Nat Chem Biol 19 10:1276-1285. PubMed Id: 37550431. doi:10.1038/s41589-023-01401-7. |
||
Chen et al. (2024).
Chen H, Xia Z, Dong J, Huang B, Zhang J, Zhou F, Yan R, Shi Y, Gong J, Jiang J, Huang Z, & Jiang D (2024). Structural mechanism of voltage-gated sodium channel slow inactivation.
Nat Commun 15 1:3691. PubMed Id: 38693179. doi:10.1038/s41467-024-48125-3. |
|||
![]() ![]()
Channels: Calcium Ion-Selective
|
|||
Voltage-Gated Calcium Channel (CaV) created by mutation of the NaVAb channel: Arcobacter butzleri B Bacteria (expressed in Trichoplusia ni ), 2.75 Å
Mutation of the NaV pore motif 175TLESWSM181 to 175TLDDWSN181. [Ca+2] = 15 mM [Ca+2] = 0.5 mM, 3.20 Å: 4MTF [Ca+2] = 2.5 mM, 3.30 Å: 4MTG [Ca+2] = 5.0 mM, 3.40 Å: 4MTO [Ca+2] = 10.0 mM, 3.20 Å: 4MVM [Ca+2] = 15.0 mM, 3.30 Å: 4MVO [Ca+2] = 15.0 mM, 3.30 Å: 4MW3 [Ca+2] = 15.0 mM, 3.20 Å: 4MVU NaVAb mutants with 175TLESWSM181 to 175TLDDWSD181: [Ca+2] = 15.0 mM, 3.40 Å: 4MVQ [Mn+2] = 100 mM, 3.20 Å: 4MVR [Cd+2] = 100 mM, 3.30 Å: 4MVS [Ca+2] = 15.0 mM, 3.30 Å: 4MVZ NaVAb wild-type: [Ca+2] = 15.0 mM, 3.26 Å: 4MW8 |
Tang et al. (2014).
Tang L, Gamal El-Din TM, Payandeh J, Martinez GQ, Heard TM, Scheuer T, Zheng N, & Catterall WA (2014). Structural basis for Ca2+ selectivity of a voltage-gated calcium channel.
Nature 505 :56-61. PubMed Id: 24270805. doi:10.1038/nature12775. |
||
Voltage-Gated Calcium Channel (CaV) created by mutation of the NaVAb channel: Arcobacter butzleri B Bacteria (expressed in Trichoplusia ni), 2.7 Å
[Ca2+] = 5mM W195Y mutant in complex with Br-dihydropyridine derivative UK-59811, 3.3 Å: 5KLG wild-type protein in complex with Br-dihydropyridine derivative UK-59811, 3.3 &Ariing;: 5KLS wild-type in complex with amlodipine, 3.2 Å: 5KMD wild-type in complex with nimodipine, 3.2 Å: 5KMF wild-type in complex with Br-verapamil, 3.2 Å: 5KMH |
Tang et al. (2016).
Tang L, El-Din TM, Swanson TM, Pryde DC, Scheuer T, Zheng N, & Catterall WA (2016). Structural basis for inhibition of a voltage-gated Ca2+ channel by Ca2+ antagonist drugs.
Nature 537 :117-121. PubMed Id: 27556947. doi:10.1038/nature19102. |
||
CaV1.1 L-type voltage-gated calcium channel: Oryctolagus cuniculus E Eukaryota (expressed in E. coli), 4.2 Å
cryo-EM structure |
Wu et al. (2015).
Wu J, Yan Z, Li Z, Yan C, Lu S, Dong M, & Yan N (2015). Structure of the voltage-gated calcium channel Cav1.1 complex.
Science 350 6267:1492. PubMed Id: 26680202. doi:10.1126/science.aad2395. |
||
CaV1.1 L-type voltage-gated calcium channel: Oryctolagus cuniculus E Eukaryota (expressed in E. coli), 3.6 Å
cryo-EM structure class II reconstruction map, 3.9 Å: 5GJW |
Wu et al. (2016).
Wu J, Yan Z, Li Z, Qian X, Lu S, Dong M, Zhou Q, & Yan N (2016). Structure of the voltage-gated calcium channel Cav1.1 at 3.6 Å resolution.
Nature 537 :191-196. PubMed Id: 27580036. doi:10.1038/nature19321. |
||
Zhao et al. (2019).
Zhao Y, Huang G, Wu J, Wu Q, Gao S, Yan Z, Lei J, & Yan N (2019). Molecular Basis for Ligand Modulation of a Mammalian Voltage-Gated Ca2+ Channel.
Cell 177 6:1495-1506.e12. PubMed Id: 31150622. doi:10.1016/j.cell.2019.04.043. |
|||
Gao & Yan (2020).
Gao S, & Yan N (2020). Structural Basis of the Modulation of the Voltage-Gated Calcium Ion Channel Cav1.1 by Dihydropyridine Compounds.
Angew Chem Int Ed Engl 60 :3131-3137. PubMed Id: 33125829. doi:10.1002/anie.202011793. |
|||
Yao et al. (2022).
Yao X, Gao S, Wang J, Li Z, Huang J, Wang Y, Wang Z, Chen J, Fan X, Wang W, Jin X, Pan X, Yu Y, Lagrutta A, & Yan N (2022). Structural basis for the severe adverse interaction of sofosbuvir and amiodarone on L-type Cav channels.
Cell 185 25:4801-4810.e13. PubMed Id: 36417914. doi:10.1016/j.cell.2022.10.024. |
|||
Cav1.2 L-type voltage-gated calcium channel, apo form: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.90 Å
cryo-EM structure in the presence of amiodarone and sofosbuvir, 3.30 Å: 8FHS in the presence of calciseptine, 3.20 Å: 8WE7 in the presence of pinaverium, class I, 3.00 Å: 8WE9 in the presence of pinaverium, class II, 3.20 Å: 8WEA in the presence of calciseptine, amlodipine and pinaverium, 2.90 Å: 8WE8 |
Gao et al. (2023).
Gao S, Yao X, Chen J, Huang G, Fan X, Xue L, Li Z, Wu T, Zheng Y, Huang J, Jin X, Wang Y, Wang Z, Yu Y, Liu L, Pan X, Song C, & Yan N (2023). Structural basis for human Cav1.2 inhibition by multiple drugs and the neurotoxin calciseptine.
Cell 186 24:5363-5374.e16. PubMed Id: 37972591. doi:10.1016/j.cell.2023.10.007. |
||
Cav1.2 L-type voltage-gated calcium channel in complex with L-leucine: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.30 Å
cryo-EM structure See also 8EOI |
Chen et al. (2023).
Chen Z, Mondal A, Abderemane-Ali F, Jang S, Niranjan S, Montaño JL, Zaro BW, & Minor DL Jr (2023). EMC chaperone-CaV structure reveals an ion channel assembly intermediate.
Nature 619 7969:410-419. PubMed Id: 37196677. doi:10.1038/s41586-023-06175-5. |
||
Cav1.2 L-type voltage-gated calcium channel with bound gabapentin: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.10 Å
cryo-EM structure |
Chen et al. (2023).
Chen Z, Mondal A, & Minor DL Jr (2023). Structural basis for CaVα2δ:gabapentin binding.
Nat Struct Mol Biol 30 6:735-739. PubMed Id: 36973510. doi:10.1038/s41594-023-00951-7. |
||
Cav1.3 L-type voltage-gated calcium channel: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.00 Å
cryo-EM structure in the presence of cinnarizine, 3.1 Å: 7UHF |
Yao et al. (2022).
Yao X, Gao S, & Yan N (2022). Structural basis for pore blockade of human voltage-gated calcium channel Cav1.3 by motion sickness drug cinnarizine.
Cell Res 32 10:946-948. PubMed Id: 35477996. doi:10.1038/s41422-022-00663-5. |
||
Yao et al. (2022).
Yao X, Gao S, Wang J, Li Z, Huang J, Wang Y, Wang Z, Chen J, Fan X, Wang W, Jin X, Pan X, Yu Y, Lagrutta A, & Yan N (2022). Structural basis for the severe adverse interaction of sofosbuvir and amiodarone on L-type Cav channels.
Cell 185 25:4801-4810.e13. PubMed Id: 36417914. doi:10.1016/j.cell.2022.10.024. |
|||
CaV2.2 N-type voltage-gated calcium channel, apo form: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.1 Å
cryo-EM structure in the presence of ziconotide, 3.0 Å: 7MIX |
Gao et al. (2021).
Gao S, Yao X, & Yan N (2021). Structure of human Cav2.2 channel blocked by the painkiller ziconotide.
Nature 596 7870:143-147. PubMed Id: 34234349. doi:10.1038/s41586-021-03699-6. |
||
Dong et al. (2021).
Dong Y, Gao Y, Xu S, Wang Y, Yu Z, Li Y, Li B, Yuan T, Yang B, Zhang XC, Jiang D, Huang Z, & Zhao Y (2021). Closed-state inactivation and pore-blocker modulation mechanisms of human CaV2.2.
Cell Rep 37 5:109931. PubMed Id: 34731621. doi:10.1016/j.celrep.2021.109931. |
|||
Cav voltage-gated calcium channel α2δ1 subunit alone: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.23 Å
cryo-EM structure with mirogabalin, 3.23 Å: 8IF3 |
Kozai et al. (2023).
Kozai D, Numoto N, Nishikawa K, Kamegawa A, Kawasaki S, Hiroaki Y, Irie K, Oshima A, Hanzawa H, Shimada K, Kitano Y, & Fujiyoshi Y (2023). Recognition Mechanism of a Novel Gabapentinoid Drug, Mirogabalin, for Recombinant Human α2δ1, a Voltage-Gated Calcium Channel Subunit.
J Mol Biol 435 10:168049. PubMed Id: 36933823. doi:10.1016/j.jmb.2023.168049. |
||
Cav2.3 R-type voltage-gated calcium channel, wild-type: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.10 Å
cryo-EM structure ΔCH2 mutant, 3.10 Å: 8EPM |
Yao et al. (2022).
Yao X, Wang Y, Wang Z, Fan X, Wu D, Huang J, Mueller A, Gao S, Hu M, Robinson CV, Yu Y, Gao S, & Yan N (2022). Structures of the R-type human Cav2.3 channel reveal conformational crosstalk of the intracellular segments.
Nat Commun 13 1:7358. PubMed Id: 36446785. doi:10.1038/s41467-022-35026-6. |
||
Cav2.3 R-type voltage-gated calcium channel in complex with the α2δ1 and β1 subunits, ligand-free (apo) state: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.10 Å
cryo-EM structure |
Gao et al. (2023).
Gao Y, Xu S, Cui X, Xu H, Qiu Y, Wei Y, Dong Y, Zhu B, Peng C, Liu S, Zhang XC, Sun J, Huang Z, & Zhao Y (2023). Molecular insights into the gating mechanisms of voltage-gated calcium channel CaV2.3.
Nat Commun 14 1:516. PubMed Id: 36720859. doi:10.1038/s41467-023-36260-2. |
||
CaV3.1 T-type voltage-gated calcium channel: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.3 Å
cryoEM structure in complex with selective blocker Z944, 3.1 Å: 6KZP |
Zhao et al. (2019).
Zhao Y, Huang G, Wu Q, Wu K, Li R, Lei J, Pan X, & Yan N (2019). Cryo-EM structures of apo and antagonist-bound human Cav3.1.
Nature 576 7787:492-497. PubMed Id: 31766050. doi:10.1038/s41586-019-1801-3. |
||
He et al. (2022).
He L, Yu Z, Geng Z, Huang Z, Zhang C, Dong Y, Gao Y, Wang Y, Chen Q, Sun L, Ma X, Huang B, Wang X, & Zhao Y (2022). Structure, gating, and pharmacology of human CaV3.3 channel.
Nat Commun 13 1:2084. PubMed Id: 35440630. doi:10.1038/s41467-022-29728-0. |
|||
Orai Calcium release-activated calcium (CRAC) channel: Drosophila melanogaster E Eukaryota (expressed in Pichia pastoris), 3.35 Å
K163W mutant, 3.35 Å: 4HKS |
Hou et al. (2012).
Hou X, Pedi L, Diver MM, & Long SB (2012). Crystal Structure of the Calcium Release-Activated Calcium Channel Orai.
Science 338 :1308-1313. PubMed Id: 23180775. doi:10.1126/science.1228757. |
||
Orai Calcium release-activated calcium (CRAC) channel in open state, H206A gain-of-function mutant: Drosophila melanogaster E Eukaryota (expressed in Komagataella pastoris), 6.71 Å
wild-type in intermediate conformation, 6.9 Å: 6BBG K163W loss-of-function mutant (I41 form), 6.1 Å: 6BBH K163W loss-of-function mutant (P42212 form), 4.35 Å: 6BBI |
Hou et al. (2018).
Hou X, Burstein SR, & Long SB (2018). Structures reveal opening of the store-operated calcium channel Orai.
eLife 7 :e36758. PubMed Id: 30160233. doi:10.7554/eLife.36758. |
||
Orai Calcium release-activated calcium (CRAC) channel, P288L mutant: Drosophila melanogaster E Eukaryota (expressed in HEK293 cells), 4.50 Å
cryo-EM structure |
Liu et al. (2019).
Liu X, Wu G, Yu Y, Chen X, Ji R, Lu J, Li X, Zhang X, Yang X, & Shen Y (2019). Molecular understanding of calcium permeation through the open Orai channel.
PLoS Biol 17 4:e3000096. PubMed Id: 31009446. doi:10.1371/journal.pbio.3000096. |
||
Orai Calcium release-activated calcium (CRAC) channel, H206A mutant in an open conformation: Drosophila melanogaster E Eukaryota (expressed in Komagataella pastoris), 3.30 Å
cryo-EM structure |
Hou et al. (2020).
Hou X, Outhwaite IR, Pedi L, & Long SB (2020). Cryo-EM structure of the calcium release-activated calcium channel Orai in an open conformation.
Elife 9 :e62772. PubMed Id: 33252040. doi:10.7554/eLife.62772. |
||
Stromal interaction molecule 1 (STIM1) coiled-coil 1 fragment: Homo sapiens E Eukaryota (expressed in E. coli), NMR structure
STIM1 modulates CRAC channel activation |
Rathner et al. (2021).
Rathner P, Fahrner M, Cerofolini L, Grabmayr H, Horvath F, Krobath H, Gupta A, Ravera E, Fragai M, Bechmann M, Renger T, Luchinat C, Romanin C, & Müller N (2021). Interhelical interactions within the STIM1 CC1 domain modulate CRAC channel activation.
Nat Chem Biol 17 2:196-204. PubMed Id: 33106661. doi:10.1038/s41589-020-00672-8. |
||
Chang et al. (2014).
Chang Y, Bruni R, Kloss B, Assur Z, Kloppmann E, Rost B, Hendrickson WA, & Liu Q (2014). Structural basis for a pH-sensitive calcium leak across membranes.
Science 344 :1131-1135. PubMed Id: 24904158. doi:10.1126/science.1252043. |
|||
Guo et al. (2019).
Guo G, Xu M, Chang Y, Luyten T, Seitaj B, Liu W, Zhu P, Bultynck G, Shi L, Quick M, & Liu Q (2019). Ion and pH Sensitivity of a TMBIM Ca2+ Channel.
Structure 27 6:1013-1021.e3. PubMed Id: 30930064. doi:10.1016/j.str.2019.03.003. |
|||
RyR1 ryanodine receptor, closed state in complex with FKBP12. Cryo-EM structure: Oryctolagus cuniculus E Eukaryota, 3.8 Å
|
Yan et al. (2015).
Yan Z, Bai X, Yan C, Wu J, Li Z, Xie T, Peng W, Yin C, Li X, Scheres SH, Shi Y, & Yan N (2015). Structure of the rabbit ryanodine receptor RyR1 at near-atomic resolution.
Nature 517 :50-55. PubMed Id: 25517095. doi:10.1038/nature14063. |
||
RyR1 ryanodine receptor, closed state in complex with FKBP12.6. Cryo-EM structure: Oryctolagus cuniculus E Eukaryota, 4.8 Å
|
Zalk et al. (2015).
Zalk R, Clarke OB, Georges AD, Grassucci RA, Reiken S, Mancia F, Hendrickson WA, Frank J, & Marks AR (2015). Structure of a mammalian ryanodine receptor.
Nature 517 :44-49. PubMed Id: 25470061. doi:10.1038/nature13950. |
||
RyR1 ryanodine receptor Repeat12 domain: Oryctolagus cuniculus E Eukaryota (expressed in E. coli), 1.55 Å
|
Yuchi et al. (2015).
Yuchi Z, Yuen SM, Lau K, Underhill AQ, Cornea RL, Fessenden JD, & Van Petegem F (2015). Crystal structures of ryanodine receptor SPRY1 and tandem-repeat domains reveal a critical FKBP12 binding determinant.
Nat Commun 6 :7947. PubMed Id: 26245150. doi:10.1038/ncomms8947. |
||
RyR1 ryanodine receptor in lipid nanodiscs in presence of Ca2+ & ATP: Oryctolagus cuniculus E Eukaryota, 8.2 Å
cryo-EM structure in the presence of ryanodine, 7.3 Å: 6FG3 |
Willegems & Efremov (2018).
Willegems K, & Efremov RG (2018). Influence of Lipid Mimetics on Gating of Ryanodine Receptor.
Structure 26 10:1303-1313.e4. PubMed Id: 30078641. doi:10.1016/j.str.2018.06.010. |
||
RyR1 ryanodine receptor in complex with Ca2+ and chlorantraniliprole (CHL): Oryctolagus cuniculus E Eukaryota, 4.70 Å
cryo-EM structure in complex with Ca2+,CHL,Caffeine, ATP, and calmodulin, 3.80 Å: 6M2W |
Ma et al. (2020).
Ma R, Haji-Ghassemi O, Ma D, Jiang H, Lin L, Yao L, Samurkas A, Li Y, Wang Y, Cao P, Wu S, Zhang Y, Murayama T, Moussian B, Van Petegem F, & Yuchi Z (2020). Structural basis for diamide modulation of ryanodine receptor.
Nat Chem Biol 16 11:1246-1254. PubMed Id: 32807966. doi:10.1038/s41589-020-0627-5. |
||
RyR1 ryanodine receptor embedded in a lipid bilayer, primed model: Oryctolagus cuniculus E Eukaryota, 3.36 Å
cryo-EM structure open model, 3.98 Å 7M6L |
Melville et al. (2022).
Melville Z, Kim K, Clarke OB, & Marks AR (2022). High-resolution structure of the membrane-embedded skeletal muscle ryanodine receptor.
Structure 30 :172-180. PubMed Id: 34469755. doi:10.1016/j.str.2021.08.001. |
||
RyR1 ryanodine receptor in the presence of AMP-PCP in nanodisc: Oryctolagus cuniculus E Eukaryota, 4.30 Å
cryo-EM structure with AMP-PCP and high Ca2+, inactivated conformation (Dataset-A), 3.80 Å 7TDG with AMP-PCP and high Ca2+ in closed-inactivated conformation class 1(Dataset-A), 3.70 Å 7TDJ with AMP-PCP and high Ca2+ in closed-inactivated conformation class 2 (Dataset-A), 3.30 Å 7TDI with AMP-PCP and high Ca2+ in open conformation, 4.00 Å 7TDH |
Nayak & Samsó (2022).
Nayak AR, & Samsó M (2022). Ca2+ inactivation of the mammalian ryanodine receptor type 1 in a lipidic environment revealed by cryo-EM.
Elife 11 :e75568. PubMed Id: 35257661. doi:10.7554/eLife.75568. |
||
Iyer et al. (2020).
Iyer KA, Hu Y, Nayak AR, Kurebayashi N, Murayama T, & Samsó M (2020). Structural mechanism of two gain-of-function cardiac and skeletal RyR mutations at an equivalent site by cryo-EM.
Sci Adv 6 31:eabb2964. PubMed Id: 32832689. doi:10.1126/sciadv.abb2964. |
|||
RyR1 ryanodine receptor disease mutant Y523S, embedded in lipidic nanodisc, closed state, in complex with FKBP12.6: Oryctolagus cuniculus E Eukaryota (expressed in HEK293 cells), 4.00 Å
cryo-EM structure in complex with FKBP12.6, 4.05 Å: 7T65 |
Iyer et al. (2022).
Iyer KA, Hu Y, Klose T, Murayama T, & Samsó M (2022). Molecular mechanism of the severe MH/CCD mutation Y522S in skeletal ryanodine receptor (RyR1) by cryo-EM.
Proc Natl Acad Sci U S A 119 30:e2122140119. PubMed Id: 35867837. doi:10.1073/pnas.2122140119. |
||
RyR2 ryanodine receptor, closed state: Sus scrofa E Eukaryota, 4.4 Å
Cryo-EM structure open-state structure, 4.2 Å: 5GOA |
Peng et al. (2016).
Peng W, Shen H, Wu J, Guo W, Pan X, Wang R, Chen SR, & Yan N (2016). Structural basis for the gating mechanism of the type 2 ryanodine receptor RyR2.
Science 354 :301. PubMed Id: 27708056. doi:10.1126/science.aah5324. One-page Research Article Summary on p. 301. For full article, follow the DOI. |
||
RyR2 ryanodine receptor bound to FKBP12.6 interacting with human calmodulin (CaM), apo CaM state: Sus scrofa E Eukaryota, 3.6 Å
cryo-EM structure. FKBP12.6 and CaM expressed in E. coli. ATP/caffeine/low Ca/Cam-M, 4.2 Å: 6JII ATP/caffeine/low Ca, 4.2 Å: 6JI0 ATP/caffeine/low Ca/Cam-M, 4.2 /Ca-CaM, 4.2 Å: 6JIU CHAPS and DOPC treated, ATP/caffeine/low Ca, 3.9 Å: 6JRR CHAPS and DOPC treated, ATP/caffeine/low Ca/Ca-CaM, 3.7 Å: 6JRS ATP/caffeine/high Ca/Ca-CaM, 3.9 Å: 6JIY PCB95/low Ca/Ca-CaM, 4.4 Å: 6JV2 |
Gong et al. (2019).
Gong D, Chi X, Wei J, Zhou G, Huang G, Zhang L, Wang R, Lei J, Chen SRW, & Yan N (2019). Modulation of cardiac ryanodine receptor 2 by calmodulin.
Nature 572 7769:347-351. PubMed Id: 31278385. doi:10.1038/s41586-019-1377-y. |
||
Chi et al. (2019).
Chi X, Gong D, Ren K, Zhou G, Huang G, Lei J, Zhou Q, & Yan N (2019). Molecular basis for allosteric regulation of the type 2 ryanodine receptor channel gating by key modulators.
Proc Natl Acad Sci USA 116 51:25575-25582. PubMed Id: 31792195. doi:10.1073/pnas.1914451116. |
|||
RyR2 ryanodine receptor SPRY1 domain critical in binding FKBP12: Mus musculus E Eukaryota (expressed in E. coli), 1.21 Å
|
Yuchi et al. (2015).
Yuchi Z, Yuen SM, Lau K, Underhill AQ, Cornea RL, Fessenden JD, & Van Petegem F (2015). Crystal structures of ryanodine receptor SPRY1 and tandem-repeat domains reveal a critical FKBP12 binding determinant.
Nat Commun 6 :7947. PubMed Id: 26245150. doi:10.1038/ncomms8947. |
||
RyR2 ryanodine receptor, EGTA dataset, class 1&2, closed state: Mus musculus E Eukaryota (expressed in HEK293 cells), 3.30 Å
cryo-EM structure EGTA dataset, class 1, closed state, 3.50 Å: 7VMM EGTA dataset, class 2, closed state, 3.50 Å: 7VMN Ca2+ dataset, class 1, open state, 3.50 Å: 7VMO Ca2+ dataset, class 2, open state, 3.50 Å: 7VMP Ca2+ dataset, class 3, open state, 3.70 Å: 7VMQ K4593A mutant (EGTA dataset), 3.30 Å: 7VMR K4593A mutant (Ca2+ dataset), 3.80Å: 7vMS |
Kobayashi et al. (2022).
Kobayashi T, Tsutsumi A, Kurebayashi N, Saito K, Kodama M, Sakurai T, Kikkawa M, Murayama T, & Ogawa H (2022). Molecular basis for gating of cardiac ryanodine receptor explains the mechanisms for gain- and loss-of function mutations.
Nat Commun 13 1:2821. PubMed Id: 35595836. doi:10.1038/s41467-022-30429-x. |
||
InsP3R1 Inositol-1,4,5-trisphosphate receptor: Rattus norvegicus E Eukaryota, 4.7 Å
Cryo-EM structure |
Fan et al. (2015).
Fan G, Baker ML, Wang Z, Baker MR, Sinyagovskiy PA, Chiu W, Ludtke SJ, & Serysheva II (2015). Gating machinery of InsP3R channels revealed by electron cryomicroscopy.
Nature 527 :336-341. PubMed Id: 26458101. doi:10.1038/nature15249. |
||
InsP3R1 Inositol-1,4,5-trisphosphate receptor in lipid nanodisc, the apo-state: Rattus norvegicus E Eukaryota, 3.30 Å
cryo-EM structure solubilized in LNMG & lipid in the apo-state, 2.96 Å: 7LHF |
Baker et al. (2021).
Baker MR, Fan G, Seryshev AB, Agosto MA, Baker ML, & Serysheva II (2021). Cryo-EM structure of type 1 IP3R channel in a lipid bilayer.
Commun Biol 4 1:625. PubMed Id: 34035440. doi:10.1038/s42003-021-02156-4. |
||
InsP3R1 Inositol-1,4,5-trisphosphate receptor in the presence of Calcium/IP3/ATP: Rattus norvegicus E Eukaryota, 3.50 Å
cryo-EM structure in high Ca2+, 3.26 Å: 8EAQ |
Fan et al. (2022).
Fan G, Baker MR, Terry LE, Arige V, Chen M, Seryshev AB, Baker ML, Ludtke SJ, Yule DI, & Serysheva II (2022). Conformational motions and ligand-binding underlying gating and regulation in IP3R channel.
Nat Commun 13 1:6942. PubMed Id: 36376291. doi:10.1038/s41467-022-34574-1. |
||
InsP3R3 Inositol-1,4,5-trisphosphate receptor, apo state: Homo sapiens E Eukaryota (expressed in Sf9 cells), 3.49 Å
cryo-EM structure IP3-bound, class 1, 3.33 Å: 6DQN IP3-bound, class 2, 3.82 Å: 6DQV IP3-bound, class 3, 4.12 Å: 6DQS IP3-bound, class 4, 6.01 Å: 6DQZ IP3-bound, class 5, 4.47 Å: 6DR0 Ca2+ bound, 4.33 Å: 6DR2 low IP3-Ca2+ bound, 3.96 Å: 6DRA high IP3-Ca2+ bound, 3.92 Å: 6DRC |
Paknejad & Hite (2018).
Paknejad N, & Hite RK (2018). Structural basis for the regulation of inositol trisphosphate receptors by Ca2+ and IP3.
Nat Struct Mol Biol 25 8:660-668. PubMed Id: 30013099. doi:10.1038/s41594-018-0089-6. |
||
InsP3R3 Inositol-1,4,5-trisphosphate receptor and presence of self-binding peptide: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.77 Å
cryo-EM structure |
Azumaya et al. (2020).
Azumaya CM, Linton EA, Risener CJ, Nakagawa T, & Karakas E (2020). Cryo-EM structure of human type-3 inositol triphosphate receptor reveals the presence of a self-binding peptide that acts as an antagonist.
J Biol Chem 295 6:1743-1753. PubMed Id: 31915246. doi:10.1074/jbc.RA119.011570. |
||
Schmitz et al. (2022).
Schmitz EA, Takahashi H, & Karakas E (2022). Structural basis for activation and gating of IP3 receptors.
Nat Commun 13 1:1408. PubMed Id: 35301323. doi:10.1038/s41467-022-29073-2. |
|||
InsP3R3 Inositol-1,4,5-trisphosphate receptor, resting state: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.49 Å
cryo-EM structure preactivated state, 3.70 Å: 8TKD preactivated state, with bound Ca2+, 3.60 Å: activated state, 3.20 Å: 8TKF resting state, 2.50 Å: 8TKG labile resting state 1, 3.50 Å: 8TKH labile resting state 2, 3.60 Å: 8TKI resting state, 3.30 Å: 8TL9 higher-order inhibited state, 3.20 Å: 8TLA |
Paknejad et al. (2023).
Paknejad N, Sapuru V, & Hite RK (2023). Structural titration reveals Ca2+-dependent conformational landscape of the IP3 receptor.
Nat Commun 14 1:6897. PubMed Id: 37898605. doi:10.1038/s41467-023-42707-3. |
||
Mitochondrial calcium uniporter (MCU): Caenorhabditis elegans E Eukaryota (expressed in E. coli), NMR structure
|
Oxenoid et al. (2016).
Oxenoid K, Dong Y, Cao C, Cui T, Sancak Y, Markhard AL, Grabarek Z, Kong L, Liu Z, Ouyang B, Cong Y, Mootha VK, & Chou JJ (2016). Architecture of the mitochondrial calcium uniporter.
Nature 533 :269-273. PubMed Id: 27135929. doi:10.1038/nature17656. |
||
Mitochondrial calcium uniporter (MCU), full length: Neurospora crassa E Eukaryota (expressed in E. coli), 3.7 Å
cryo-EM structure |
Yoo et al. (2018).
Yoo J, Wu M, Yin Y, Herzik MA Jr, Lander GC, & Lee SY (2018). Cryo-EM structure of a mitochondrial calcium uniporter.
Science 361 6401:506-511. PubMed Id: 29954988. doi:10.1126/science.aar4056. |
||
Mitochondrial calcium uniporter (MCU), full length: Neosartorya fischeri E Eukaryota (expressed in E. coli), 3.8 Å
cryo-EM structure in complex with saposin, 5 Å: 6D80 |
Nguyen et al. (2018).
Nguyen NX, Armache JP, Lee C, Yang Y, Zeng W, Mootha VK, Cheng Y, Bai XC, & Jiang Y (2018). Cryo-EM structure of a fungal mitochondrial calcium uniporter.
Nature 559 7715:570-574. PubMed Id: 29995855. doi:10.1038/s41586-018-0333-6. |
||
Mitochondrial calcium uniporter (MCU), full length: Metarhizium acridum E Eukaryota (expressed in E. coli), 3.10 Å
soluble domain, 3.10 Å: 6C5R |
Fan et al. (2018).
Fan C, Fan M, Orlando BJ, Fastman NM, Zhang J, Xu Y, Chambers MG, Xu X, Perry K, Liao M, & Feng L (2018). X-ray and cryo-EM structures of the mitochondrial calcium uniporter.
Nature 559 7715:575-579. PubMed Id: 29995856. doi:10.1038/s41586-018-0330-9. |
||
Mitochondrial calcium uniporter (MCU), full length: Cyphellophora europaea E Eukaryota (expressed in Komagataella pastoris), 3.2 Å
cryo-EM structure |
Baradaran et al. (2018).
Baradaran R, Wang C, Siliciano AF, & Long SB (2018). Cryo-EM structures of fungal and metazoan mitochondrial calcium uniporters.
Nature 559 7715:580-584. PubMed Id: 29995857. doi:10.1038/s41586-018-0331-8. |
||
Mitochondrial calcium uniporter (MCU) in complex with EMRE: Homo Sapiens E Eukaryota (expressed in HEK293 cells), 3.8 Å
cryo-EM structure |
Wang et al. (2019).
Wang Y, Nguyen NX, She J, Zeng W, Yang Y, Bai XC, & Jiang Y (2019). Structural Mechanism of EMRE-Dependent Gating of the Human Mitochondrial Calcium Uniporter.
Cell 177 5:1252-1261.e13. PubMed Id: 31080062. doi:10.1016/j.cell.2019.03.050. |
||
mitochondrial calcium uniporter (MCU) holocomplex, low Ca2+: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.20 Å
cryo-EM structure high Ca2+, 3.60 Å: 6WDO |
Fan et al. (2020).
Fan M, Zhang J, Tsai CW, Orlando BJ, Rodriguez M, Xu Y, Liao M, Tsai MF, & Feng L (2020). Structure and mechanism of the mitochondrial Ca2+ uniporter holocomplex.
Nature 582 7810:129-133. PubMed Id: 32494073. doi:10.1038/s41586-020-2309-6. |
||
Mitochondrial calcium uniporter (MCU) holocomplex (uniplex) in nanodiscs, high calcium state: Homo sapiens E Eukaryota (expressed in HEK293 cells), 4.17 Å
cryo-EM structure low-calcium blocking state, 4.60 Å: 6XJX |
Wang et al. (2020).
Wang Y, Han Y, She J, Nguyen NX, Mootha VK, Bai XC, & Jiang Y (2020). Structural insights into the Ca2+-dependent gating of the human mitochondrial calcium uniporter.
Elife 9 . PubMed Id: 32762847. doi:10.7554/eLife.60513. |
||
Mitochondrial calcium uniporter (MCU) in complex with MICU1/MICU2 subunits: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.60 Å
cryo-EM structure |
Zhuo et al. (2021).
Zhuo W, Zhou H, Guo R, Yi J, Zhang L, Yu L, Sui Y, Zeng W, Wang P, & Yang M (2021). Structure of intact human MCU supercomplex with the auxiliary MICU subunits.
Protein Cell 12 3:220-229. PubMed Id: 32862359. doi:10.1007/s13238-020-00776-w. |
||
RyR2 ryanodine receptor, PKA phosphorylated in the closed state: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.11 Å
cryo-EM structure in the open state, 3.69 Å: 7U9R in the closed state in the presence of Calmodulin, 2.68 Å: 7U9T RyR2-R2474S in the closed state, 2.58 Å: 7U9X RyR2-R2474S in the open state, 3.29 Å: 7U9Z RyR2-R2474S in the closed state in the presence of ARM210, 2.99 Å: 7UA1 RyR2-R2474S in the closed state in the presence of Calmodulin, 2.97 Å: 7UA3 RyR2-R2474S in the open state in the presence of Calmodulin, 2.93 Å: 7UA4 dephosphorylated in the closed state, 2.83 Å: 7UA5 dephosphorylated in the open state, 3.59 Å: 7UA9 |
Miotto et al. (2022).
Miotto MC, Weninger G, Dridi H, Yuan Q, Liu Y, Wronska A, Melville Z, Sittenfeld L, Reiken S, & Marks AR (2022). Structural analyses of human ryanodine receptor type 2 channels reveal the mechanisms for sudden cardiac death and treatment.
Sci Adv 8 29:eabo1272. PubMed Id: 35857850. doi:10.1126/sciadv.abo1272. |
||
![]() ![]()
Channels: Transient Receptor Potential (TRP)
Non-selective cation channels responding to a wide range of chemical and physical stimuli |
|||
TRP1 thermo-sensitive transient receptor potential channel in nanodiscs: Chlamydomonas reinhardtii E Eukaryota (expressed in HEK293 cells), 3.45 Å
in glyco-diosgenin (GDN) detergent, 3.53 Å: 6PW4 |
McGoldrick et al. (2019).
McGoldrick LL, Singh AK, Demirkhanyan L, Lin TY, Casner RG, Zakharian E, & Sobolevsky AI (2019). Structure of the thermo-sensitive TRP channel TRP1 from the alga Chlamydomonas reinhardtii.
Nat Commun 10 1:4180. PubMed Id: 31519888. doi:10.1038/s41467-019-12121-9. |
||
TRPA1 transient receptor potential channel (wasabi receptor): Homo sapiens E Eukaryota (expressed in HEK293S GnTI-), 4.24 Å
Structure determined using single-particle cryo-EM. |
Paulsen et al. (2015).
Paulsen CE, Armache JP, Gao Y, Cheng Y, & Julius D (2015). Structure of the TRPA1 ion channel suggests regulatory mechanisms.
Nature 520 7548:511-517. PubMed Id: 25855297. doi:10.1038/nature14367. |
||
Suo et al. (2020).
Suo Y, Wang Z, Zubcevic L, Hsu AL, He Q, Borgnia MJ, Ji RR, & Lee SY (2020). Structural Insights into Electrophile Irritant Sensing by the Human TRPA1 Channel.
Neuron 105 5:882-894.e5. PubMed Id: 31866091. doi:10.1016/j.neuron.2019.11.023. |
|||
TRPA1 transient receptor potential channel, modified by Bodipy-iodoacetamide with bound calcium in LMNG: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.60 Å
cryo-EM structure ligand-free with bound calcium in LMNG detergent, 3.10 Å: 6V9W TRPA1 modified by iodoacetamide in PMAL-C8, 3.30 Å: 6V9X bound with A-967079 in PMAL-C8, 3.60Å: 6V9Y |
Zhao et al. (2020).
Zhao J, Lin King JV, Paulsen CE, Cheng Y, & Julius D (2020). Irritant-evoked activation and calcium modulation of the TRPA1 receptor.
Nature 585 7823:141-145. PubMed Id: 32641835. doi:10.1038/s41586-020-2480-9. |
||
TRPA1 transient receptor potential channel in complex with antagonist compound 21: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.05 Å
cryo-EM structure |
Terrett et al. (2021).
Terrett JA, Chen H, Shore DG, Villemure E, Larouche-Gauthier R, Déry M, Beaumier F, Constantineau-Forget L, Grand-Maître C, Lépissier L, Ciblat S, Sturino C, Chen Y, Hu B, Lu A, Wang Y, Cridland AP, Ward SI, Hackos DH, Reese RM, Shields SD, Chen J, Balestrini A, Riol-Blanco L, Lee WP, Liu J, Suto E, Wu X, Zhang J, Ly JQ, La H, Johnson K, Baumgardner M, Chou KJ, Rohou A, Rougé L, Safina BS, Magnuson S, & Volgraf M (2021). Tetrahydrofuran-Based Transient Receptor Potential Ankyrin 1 (TRPA1) Antagonists: Ligand-Based Discovery, Activity in a Rodent Asthma Model, and Mechanism-of-Action via Cryogenic Electron Microscopy.
J Med Chem 64 7:3843-3869. PubMed Id: 33749283. doi:10.1021/acs.jmedchem.0c02023. |
||
TRPC3 ion channel, lipid-occupied closed state: Homo sapiens E Eukaryota (expressed in HEK 293), 3.3 Å
cryo-EM structure |
Fan et al. (2018).
Fan C, Choi W, Sun W, Du J, & Lu W (2018). Structure of the human lipid-gated cation channel TRPC3.
Elife 7 :e36852. PubMed Id: 29726814. doi:10.7554/eLife.36852. |
||
Guo et al. (2022).
Guo W, Tang Q, Wei M, Kang Y, Wu JX, & Chen L (2022). Structural mechanism of human TRPC3 and TRPC6 channel regulation by their intracellular calcium-binding sites.
Neuron 110 6:1023-1035.e5. PubMed Id: 35051376. doi:10.1016/j.neuron.2021.12.023. |
|||
TRPC4 ion channel, apo state: Danio rerio E Eukaryota (expressed in HEK 293 cells), 3.6 Å
cryo-EM structure |
Vinayagam et al. (2018).
Vinayagam D, Mager T, Apelbaum A, Bothe A, Merino F, Hofnagel O, Gatsogiannis C, & Raunser S (2018). Electron cryo-microscopy structure of the canonical TRPC4 ion channel.
Elife 7 . PubMed Id: 29717981. doi:10.7554/eLife.36615. |
||
TRPC4 ion channel in complex with inhibitor GFB-8438: Danio rerio E Eukaryota (expressed in HEK293 cells), 3.60 Å
cryo-EM structure in complex with inhibitor GFB-9289, 3.15 Å: 7B16 in complex with inhibitor GFB-8749, 3.80 Å: 7B05 in complex with Calmodulin, 3.60 Å: 7B1G in LMNG detergent, 2.85 Å: 7B0J |
Vinayagam et al. (2020).
Vinayagam D, Quentin D, Yu-Strzelczyk J, Sitsel O, Merino F, Stabrin M, Hofnagel O, Yu M, Ledeboer MW, Nagel G, Malojcic G, & Raunser S (2020). Structural basis of TRPC4 regulation by calmodulin and pharmacological agents.
Elife 9 :e60603. PubMed Id: 33236980. doi:10.7554/eLife.60603. |
||
TRPC4 ion channel, apo state: Mus musculus E Eukaryota (expressed in HEK293 cells), 3.28 Å
cryo-EM structure |
Duan et al. (2018).
Duan J, Li J, Zeng B, Chen GL, Peng X, Zhang Y, Wang J, Clapham DE, Li Z, & Zhang J (2018). Structure of the mouse TRPC4 ion channel.
Nat Commun 9 :3102. PubMed Id: 30082700. doi:10.1038/s41467-018-05247-9. |
||
Song et al. (2021).
Song K, Wei M, Guo W, Quan L, Kang Y, Wu JX, & Chen L (2021). Structural basis for human TRPC5 channel inhibition by two distinct inhibitors.
Elife 10 :e63429. PubMed Id: 33683200. doi:10.7554/eLife.63429. |
|||
TRPC5 ion channel in complex with riluzole: Homo sapiens E Eukaryota, 2.40 Å
cryo-EM structure |
Yang et al. (2022).
Yang Y, Wei M, & Chen L (2022). Structural identification of riluzole-binding site on human TRPC5.
Cell Discov 8 1:67. PubMed Id: 35821012. doi:10.1038/s41421-022-00410-5. |
||
Won et al. (2023).
Won J, Kim J, Jeong H, Kim J, Feng S, Jeong B, Kwak M, Ko J, Im W, So I, & Lee HH (2023). Molecular architecture of the Gαi-bound TRPC5 ion channel.
Nat Commun 14 1:2550. PubMed Id: 37137991. doi:10.1038/s41467-023-38281-3. |
|||
TRPC6 ion channel in complex with antagonist AM-1473: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.08 Å
cryo-EM structure in complex with agonist AM-0883, 2.84 Å: 6UZ8 |
Bai et al. (2020).
Bai Y, Yu X, Chen H, Horne D, White R, Wu X, Lee P, Gu Y, Ghimire-Rijal S, Lin DC, & Huang X (2020). Structural basis for pharmacological modulation of the TRPC6 channel.
Elife 9 :e53311. PubMed Id: 32149605. doi:10.7554/eLife.53311. |
||
TRPC6 ion channel in a nanodisc, high calcium state: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.90 Å
cryo-EM structure SAR7334-bound, 2.90 Å: 7DXG |
Guo et al. (2022).
Guo W, Tang Q, Wei M, Kang Y, Wu JX, & Chen L (2022). Structural mechanism of human TRPC3 and TRPC6 channel regulation by their intracellular calcium-binding sites.
Neuron 110 6:1023-1035.e5. PubMed Id: 35051376. doi:10.1016/j.neuron.2021.12.023. |
||
TRPM2 Ca2+-activated transient receptor potential channel, Ca2+-bound closed state: Nematostella vectensis E Eukaryota (expressed in S. frugiperda), 3.07 Å
cryo-EM structure |
Zhang et al. (2018).
Zhang Z, Tóth B, Szollosi A, Chen J, & Csanády L (2018). Structure of a TRPM2 channel in complex with Ca2+ explains unique gating regulation.
Elife 7 :e36409. PubMed Id: 29745897. doi:10.7554/eLife.36409. |
||
TRPM2 ion channel, apo state: Danio rerio E Eukaryota (expressed in HEK293 cells), 3.8 Å
cryo-EM structure with bound ADP-ribose and Ca2+, 3.3 Å: 6DRJ |
Huang et al. (2018).
Huang Y, Winkler PA, Sun W, Lü W, & Du J (2018). Architecture of the TRPM2 channel and its activation mechanism by ADP-ribose and calcium.
Nature 562 7725:145-149. PubMed Id: 30250252. doi:10.1038/s41586-018-0558-4. |
||
Yin et al. (2019).
Yin Y, Wu M, Hsu AL, Borschel WF, Borgnia MJ, Lander GC, & Lee SY (2019). Visualizing structural transitions of ligand-dependent gating of the TRPM2 channel.
Nat Commun 10 1. PubMed Id: 31431622. doi:10.1038/s41467-019-11733-5. |
|||
Wang et al. (2018).
Wang L, Fu TM, Zhou Y, Xia S, Greka A, & Wu H (2018). Structures and gating mechanism of human TRPM2.
Science 362 6421. PubMed Id: 30467180. doi:10.1126/science.aav4809. |
|||
Huang et al. (2019).
Huang Y, Roth B, Lü W, & Du J (2019). Ligand recognition and gating mechanism through three ligand-binding sites of human TRPM2 channel.
Elife 8 . PubMed Id: 31513012. doi:10.7554/eLife.50175. |
|||
TRPM2 ion channel, apo form: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.76 Å
cryo-EM structure channel TM domain, 3.68 Å 7VQ2 |
Yu et al. (2021).
Yu X, Xie Y, Zhang X, Ma C, Liu L, Zhen W, Xu L, Zhang J, Liang Y, Zhao L, Gao X, Yu P, Luo J, Jiang LH, Nie Y, Yang F, Guo J, & Yang W (2021). Structural and functional basis of the selectivity filter as a gate in human TRPM2 channel.
Cell Rep 37 7:110025. PubMed Id: 34788616. doi:10.1016/j.celrep.2021.110025. |
||
TRPM2 ion channel, apo form: Mus musculus E Eukaryota (expressed in HEK293 cells), 3.18 Å
cryo-EM structure |
Song et al. (2022).
Song X, Li J, Tian M, Zhu H, Hu X, Zhang Y, Cao Y, Ye H, McCormick PJ, Zeng B, Fu Y, Duan J, & Zhang J (2022). Cryo-EM structure of mouse TRPML2 in lipid nanodiscs.
J Biol Chem 298 2:e101487. PubMed Id: 34915027. doi:10.1016/j.jbc.2021.101487. |
||
TRPM4 Ca2+-activated transient receptor potential channel: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.8 Å
cryo-EM structure |
Winkler et al. (2017).
Winkler PA, Huang Y, Sun W, Du J, & Lü W (2017). Electron cryo-microscopy structure of a human TRPM4 channel.
Nature 552 7684:200-204. PubMed Id: 29211723. doi:10.1038/nature24674. |
||
TRPM4 Ca2+-activated transient receptor potential channel in lipid nanodisc (calcium-free state): Homo sapiens E Eukaryota (expressed in HEK 293 cells), 3.2 Å
cryo-EM structure with CaCl2, 3.1 Å: 6BQV |
Autzen et al. (2018).
Autzen HE, Myasnikov AG, Campbell MG, Asarnow D, Julius D, & Cheng Y (2018). Structure of the human TRPM4 ion channel in a lipid nanodisc.
Science 359 :228-232. PubMed Id: 29217581. doi:10.1126/science.aar4510. |
||
TRPM4 Ca2+-activated transient receptor potential channel, full length: Homo sapiens E Eukaryota (expressed in HEK 293S cells), 3.7 Å
cryo-EM structure. |
Duan et al. (2018).
Duan J, Li Z, Li J, Santa-Cruz A, Sanchez-Martinez S, Zhang J, & Clapham DE (2018). Structure of full-length human TRPM4.
Proc Natl Acad Sci USA 115 10:2377-2382. PubMed Id: 29463718. doi:10.1073/pnas.1722038115. |
||
Guo et al. (2017).
Guo J, She J, Zeng W, Chen Q, Bai XC, & Jiang Y (2017). Structures of the calcium-activated, non-selective cation channel TRPM4.
Nature 552 7684:205-209. PubMed Id: 29211714. doi:10.1038/nature24997. |
|||
Duan et al. (2018).
Duan J, Li Z, Li J, Hulse RE, Santa-Cruz A, Valinsky WC, Abiria SA, Krapivinsky G, Zhang J, & Clapham DE (2018). Structure of the mammalian TRPM7, a magnesium channel required during embryonic development.
Proc Natl Acad Sci USA 115 35:E8201-E8210. PubMed Id: 30108148. doi:10.1073/pnas.1810719115. |
|||
TRPM7 α-kinase and divalent-ion permeable channel, apo state, in MSP2N2 nanodiscs: Mus musculus E Eukaryota (expressed in HEK293 cells), 2.19 Å
cryo-EM structure with bound naltriben, open state, 2.17 Å: 8SI5 with bound naltriben, closed state, 2.44 Å: 8SI6 in GDN detergent: 2.61 Å: 8Si3 with bound VER155008, in GDN detergent, closed state, 2.59 Å: 8SI7 N1098Q mutant, in GDN detergent, open state, 2.46 Å: 8Si4 N1098Q mutant, with bound VER155008, in GDN detergent, closed state, 2.99 Å: 8SI8 N1098Q mutant, with bound NS8593, in GDN detergent, closed state, 2.91 Å: 8SIA |
Nadezhdin et al. (2023).
Nadezhdin KD, Correia L, Narangoda C, Patel DS, Neuberger A, Gudermann T, Kurnikova MG, Chubanov V, & Sobolevsky AI (2023). Structural mechanisms of TRPM7 activation and inhibition.
Nat Commun 14 1:2639. PubMed Id: 37156763. doi:10.1038/s41467-023-38362-3. |
||
TRPM7 α-kinase and divalent-ion permeable channel with anticancer agent CCT128930 in closed state: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.45 Å
cryo-EM structure |
Nadezhdin et al. (2024).
Nadezhdin KD, Correia L, Shalygin A, Aktolun M, Neuberger A, Gudermann T, Kurnikova MG, Chubanov V, & Sobolevsky AI (2024). Structural basis of selective TRPM7 inhibition by the anticancer agent CCT128930.
Cell Rep 43 4:114108. PubMed Id: 38615321. doi:10.1016/j.celrep.2024.114108. |
||
TRPM8 cold- & menthol-sensing channel: Ficedula albicollis E Eukaryota (expressed in HEK 293 cells), 4.1 Å
cryo-EM structure |
Yin et al. (2018).
Yin Y, Wu M, Zubcevic L, Borschel WF, Lander GC, & Lee SY (2018). Structure of the cold- and menthol-sensing ion channel TRPM8.
Science 359 :237-241. PubMed Id: 29217583. doi:10.1126/science.aan4325. |
||
TRPM8 cold- & menthol-sensing channel in complex with high occupancy icilin, PI(4,5)P2, and calcium: Ficedula albicollis E Eukaryota (expressed in HEK293 cells), 3.4 Å
cryo-EM structure in complex with with low occupancy icilin, PI(4,5)P2, and calcium; 4.3 Å: 6NR4 in complex with the menthol analog WS-12 and PI(4,5)P2; 4 Å: 6NR2 |
Yin et al. (2019).
Yin Y, Le SC, Hsu AL, Borgnia MJ, Yang H, & Lee SY (2019). Structural basis of cooling agent and lipid sensing by the cold-activated TRPM8 channel.
Science 363 6430. PubMed Id: 30733385. doi:10.1126/science.aav9334. |
||
Diver et al. (2019).
Diver MM, Cheng Y, & Julius D (2019). Structural insights into TRPM8 inhibition and desensitization.
Science 365 :1434-1440. PubMed Id: 31488702. doi:10.1126/science.aax6672. |
|||
TRPM8 cold- & menthol-sensing channel in complex with PI(4,5)P2: Ficedula albicollis E Eukaryota (expressed in HEK293 cells), 3.51 Å
cryo-EM structure |
Yin et al. (2022).
Yin Y, Zhang F, Feng S, Butay KJ, Borgnia MJ, Im W, & Lee SY (2022). Activation mechanism of the mouse cold-sensing TRPM8 channel by cooling agonist and PIP2.
Science 378 6616:eadd1268. PubMed Id: 36227998. doi:10.1126/science.add1268. |
||
TRPM8 cold- & menthol-sensing channel. Ligand- and PI(4,5)P2-free condition, Class I, C0 state: Mus musculus E Eukaryota (expressed in HEK293 cells), 3.59 Å
cryo-EM structure closed C1-state, in complex with putative PI(4,5)P2, 3.43 Å: 8E4O closed C1-state, in complex with PI(4,5)P2, 3.07 Å: 8E4N intermediate C2-state, in complex with the cooling agonist C3 and PI(4,5)P2, 3.44 Å: 8E4M open state, in complex with the cooling agonist C3, AITC, and PI(4,5)P2, 3.32 Å: 8E4L |
Yin et al. (2022).
Yin Y, Zhang F, Feng S, Butay KJ, Borgnia MJ, Im W, & Lee SY (2022). Activation mechanism of the mouse cold-sensing TRPM8 channel by cooling agonist and PIP2.
Science 378 6616:eadd1268. PubMed Id: 36227998. doi:10.1126/science.add1268. |
||
Yin et al. (2024).
Yin Y, Park CG, Zhang F, G Fedor J, Feng S, Suo Y, Im W, & Lee SY (2024). Mechanisms of sensory adaptation and inhibition of the cold and menthol receptor TRPM8.
Sci Adv 10 31:eadp2211. PubMed Id: 39093967. doi:10.1126/sciadv.adp2211. |
|||
TRPM8 cold- & menthol-sensing channel, closed state: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.65 Å
cryo-EM structure |
Palchevskyi et al. (2023).
Palchevskyi S, Czarnocki-Cieciura M, Vistoli G, Gervasoni S, Nowak E, Beccari AR, Nowotny M, & Talarico C (2023). Structure of human TRPM8 channel.
Commun Biol 6 1:1065. PubMed Id: 37857704. doi:10.1038/s42003-023-05425-6. |
||
Chen et al. (2017).
Chen Q, She J, Zeng W, Guo J, Xu H, Bai XC, & Jiang Y (2017). Structure of mammalian endolysosomal TRPML1 channel in nanodiscs.
Nature 550 :415-418. PubMed Id: 29019981. doi:10.1038/nature24035. |
|||
Gan et al. (2022).
Gan N, Han Y, Zeng W, Wang Y, Xue J, & Jiang Y (2022). Structural mechanism of allosteric activation of TRPML1 by PI(3,5)P2 and rapamycin.
Proc Natl Acad Sci U S A 119 7:e2120404119. PubMed Id: 35131932. doi:10.1073/pnas.2120404119. |
|||
TRPML3 ion channel: Callithrix jacchus E Eukaryota (expressed in S. frugiperda), 2.94 Å
cryo-EM structure |
Hirschi et al. (2017).
Hirschi M, Herzik MA Jr, Wie J, Suo Y, Borschel WF, Ren D, Lander GC, & Lee SY (2017). Cryo-electron microscopy structure of the lysosomal calcium-permeable channel TRPML3.
Nature 550 :411-414. PubMed Id: 29019979. doi:10.1038/nature24055. |
||
Zhou et al. (2017).
Zhou X, Li M, Su D, Jia Q, Li H, Li X, & Yang J (2017). Cryo-EM structures of the human endolysosomal TRPML3 channel in three distinct states.
Nat Struct Mol Biol 24 12:1146-1154. PubMed Id: 29106414. doi:10.1038/nsmb.3502. |
|||
TRPV1 transient receptor potential channel capsaicin receptor: Rattus norvegicus E Eukaryota (expressed in HEK293S GnTI- cells), 3.275 Å
cryo-EM structure Not only is this the first structure of a TRP channel, it is the first membrane protein whose structure was determined at atomic-resolution using single-particle cryo-EM. |
Liao et al. (2013).
Liao M, Cao E, Julius D, & Cheng Y (2013). Structure of the TRPV1 ion channel determined by electron cryo-microscopy.
Nature 504 :107-112. PubMed Id: 24305160. doi:10.1038/nature12822. |
||
TRPV1 transient receptor potential channel in complex with vanilloid agonist RTX: Rattus norvegicus E Eukaryota (expressed in HEK293S GnTI- cells), 3.8 Å
in complex with capsaicin, 4.2 Å: 3J5R |
Cao et al. (2013).
Cao E, Liao M, Cheng Y, & Julius D (2013). TRPV1 structures in distinct conformations reveal activation mechanisms.
Nature 504 :113-118. PubMed Id: 24305161. doi:10.1038/nature12823. |
||
Gao et al. (2016).
Gao Y, Cao E, Julius D, & Cheng Y (2016). TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action.
Nature 534 :347-351. PubMed Id: 27281200. doi:10.1038/nature17964. |
|||
TRPV1 transient receptor potential channel, T = 4ºC: Rattus norvegicus E Eukaryota (expressed in HEK293 cells), 2.63 Å
cryo-EM structure with capsaicin at 4ºC, 3.37 Å: 7LPA 48ºC, 3.06 Å: 7LPC with capsaicin at 25ºC, 3.54 Å: 7LPB with capsaicin at 48ºC (intermediate state, class 2), 3.55 Å: 7LPD with capsaicin at 48ºC (open state, class 1), 3.72 Å: 7LPE |
Kwon et al. (2021).
Kwon DH, Zhang F, Suo Y, Bouvette J, Borgnia MJ, & Lee SY (2021). Heat-dependent opening of TRPV1 in the presence of capsaicin.
Nat Struct Mol Biol 28 7:554-563. PubMed Id: 34239123. doi:10.1038/s41594-021-00616-3. |
||
TRPV1 transient receptor potential channel, unliganded minimal TRPV1: Rattus norvegicus E Eukaryota (expressed in HEK293 cells), 2.60 Å
cryo-EM structure DkTx-bound minimal TRPV1 at the pre-bound state, 2.71 Å 7L2S DkTx-bound minimal TRPV1 at the pre-open state, 3.30 Å 72LR DkTx-bound minimal TRPV1 in partial open state, 3.08 Å 7L2T DkTx-bound minimal TRPV1 in open state, 3.47 Å 7L2U RTX-bound minimal TRPV1 with NMDG at state a, 3.16 Å 7L2W RTX-bound minimal TRPV1 with NMDG at state b, 3.64 Å 7L2V RTX-bound minimal TRPV1 with NMDG at state c, 3.26 Å 7L2X minimal TRPV1 with 1 perturbed PI, 2.91 Å 7MZ6 minimal TRPV1 with 1 partially bound RTX, 3.18 Å 7MZ9 minimal TRPV1 with 4 partially bound RTX, 3.35 Å 7MZ7 minimal TRPV1 with 2 bound RTX in adjacent pockets, 3.46 Å 7MZA minimal TRPV1 with 2 bound RTX in opposite pockets, 3.42 Å 7MZE minimal TRPV1 with 3 bound RTX and 1 perturbed PI, 3.72 Å 7MZB minimal TRPV1 with RTX bound in C1 state, 3.03 Å 7MZC minimal TRPV1 with RTX bound in C2 state, 2.90 Å 7MZD unliganded full-length TRPV1 at neutral pH, 2.63 Å 7L2H DkTx/RTX-bound full-length TRPV1, 3.84 Å 7L2M RTX-bound full-length TRPV1 in C1 state, 3.09 Å 7L2N RTX-bound full-length TRPV1 in O1 state, 3.42 Å 7L2L RTX-bound full-length TRPV1 in C2 state, 2.76 Å 7MZ5 full-length TRPV1 at pH6a state, 3.70 Å 7L2I full-length TRPV1 at pH6b state, 3.89 Å 7L2K full-length TRPV1 at pH6c state, 3.66 Å 7L2J RTX-bound full-length TRPV1 at pH 5.5, 3.64 Å 7L2O |