News Subscribe for rss news updates
- Members of the Bridge Institute at USC join the mpstruc team: We're pleased to announce that the Ray Stevens and Vadim Cherezov labs will join us in maintaining and improving the mpstruc database. Dr. Gye Won "Gracie" Han will be the voice of the group.
- Membrane-embedded structures now available!: Mark Sansom's lab at Oxford has created the MemProtMD database of all known transmembrane proteins embedded in lipid membranes, described in Stansfeld et al. (2015) Structure 23:1350-1361. Links to the structures are now included in mpstruc. Click on the icon, and you will be taken to the appropriate entry in MemProtMD.
- MPtopo XML data representations now available: XML representations are now available for the MPtopo membrane protein topology database.
Latest new protein entered: 20 Nov 2024 at 10:07 PST.
Last database update: 20 Nov 2024 at 10:19 PST
- HCA3 hydroxycarboxylic acid receptor 3 - Gi complex with bound compuond 5c: Homo sapiens, 2.73 Å
- Photosystem I + ferredoxin supercomplex: Pisum sativum, 2.50 Å
- succinate receptor SUCNR1 (GPR91). Humanized (K18E, K269N mutant) in complex with a Nb and antagonist: Rattus norvegicus, 2.27 Å
- Atm1-type ABC exporter with MgADP bound: Novosphingobium aromaticivorans, 3.70 Å
- Glucagon receptor-Gs complex bound to a designed glucagon derivative: Homo sapiens, 3.10 Å
- YbtPQ ABC importer: Escherichia coli, 3.67 Å
Unique proteins include proteins of same type from different species. For example, photosynthetic reaction centers from R. viridis and R. sphaeroides are considered unique. Structures of mutagenized versions of proteins already in the database are excluded as unique. Proteins that differ only by substrate bound or by physiological state are also excluded. Structures 'obsoleted' by the PDB are not included.
Total number of PDB coördinate files, including those for unique proteins. This number reflects the fact that published reports of structures often include several coördinate files describing, for example, the protein in different crystal forms, or with different bound substrates.
Search
|
|
---|---|
Limit 32 characters. Special characters in the search text should be explicitly represented. You can cut-and-paste them into the search string (the easiest approach), or they can be composed: e.g., on a Mac, Å can be composed with keyboard shift-option-A. See this page for more examples. |
|
0: perfect match, 10: match everything. Recommended values from 0 to 5. A value of 0 forces a case-sensitive search. (What is fuzzy search?). |
|
|
mpstruc database queries
|
|
---|---|
There are other ways of viewing the data in the mpstruc database besides the hierarchical view presented in the table on this page. The mpstruc database queries page (follow the above link) provides a list of queries on the database, some of which provide tables with sortable columns. Some of the queries may take a few moments. Query results are also available as XML data. Currently available queries include requesting a list of unique proteins, a list of all published reports, counting unique proteins by year, and counting all published reports by year. |
XML Representations
|
|
---|---|
An XML representation provides a convenient machine or human-readable format of the portion of the data table that has been made visible, and allows you to build software tools to consume it as you see fit. You can use the URLs adjacent to the buttons below to access the same view the corresponding button provides. |
|
This button generates an XML representation of the currently visible portion of the table. |
|
https://blanco.biomol.uci.edu/mpstruc/listAll/mpstrucTblXml | |
https://blanco.biomol.uci.edu/mpstruc/listAll/mpstrucMonotopicTblXml | |
https://blanco.biomol.uci.edu/mpstruc/listAll/mpstrucBetaBrlTblXml | |
https://blanco.biomol.uci.edu/mpstruc/listAll/mpstrucAlphaHlxTblXml | |
If your browser doesn’t directly display a nicely formatted XML page, it should provide a "view page source" menu selection that will. It should also provide a "save page" option so that you can download the XML formatted data. If you’re not familiar with XML and how to use it, a good source of information is available here. NOTES:Generated XML uses the following Document Type Definition (DTD): <!DOCTYPE mpstruc [ <!ELEMENT mpstruc (caption,groups*)> <!ATTLIST mpstruc createdBy CDATA #REQUIRED> <!ATTLIST mpstruc maintainedBy CDATA #REQUIRED> <!ATTLIST mpstruc copyright CDATA #REQUIRED> <!ATTLIST mpstruc url CDATA #REQUIRED> <!ATTLIST mpstruc lastNewProteinDate CDATA #REQUIRED> <!ATTLIST mpstruc lastDatabaseEditDate CDATA #REQUIRED> <!ATTLIST mpstruc timeStamp CDATA #REQUIRED> <!ELEMENT caption (#PCDATA)> <!ELEMENT groups (group*)> <!ELEMENT group (name,proteins,subgroups)> <!ELEMENT subgroups (subgroup*)> <!ELEMENT subgroup (name,proteins)> <!ELEMENT name (#PCDATA)> <!ELEMENT proteins (protein*)> <!ELEMENT memberProteins (memberProtein*)> <!ELEMENT protein (pdbCode,name,species,taxonomicDomain,expressedInSpecies,resolution,description, bibliography,secondaryBibliographies,relatedPdbEntries,memberProteins)> <!ELEMENT memberProtein (pdbCode,masterProteinPdbCode,name,species,expressedInSpecies,resolution, description,bibliography,secondaryBibliographies,relatedPdbEntries)> <!ELEMENT pdbCode (#PCDATA)> <!ELEMENT masterProteinPdbCode (#PCDATA)> <!ELEMENT species (#PCDATA)> <!ELEMENT taxonomicDomain (#PCDATA)> <!ELEMENT expressedInSpecies (#PCDATA)> <!ELEMENT resolution (#PCDATA)> <!ELEMENT description (#PCDATA)> <!ELEMENT bibliography (pubMedId,authors,year,title,journal,volume,issue,pages,doi,notes)> <!ELEMENT pubMedId (#PCDATA)> <!ELEMENT authors (#PCDATA)> <!ELEMENT year (#PCDATA)> <!ELEMENT title (#PCDATA)> <!ELEMENT journal (#PCDATA)> <!ELEMENT volume (#PCDATA)> <!ELEMENT issue (#PCDATA)> <!ELEMENT pages (#PCDATA)> <!ELEMENT doi (#PCDATA)> <!ELEMENT notes (#PCDATA)> <!ELEMENT secondaryBibliographies (bibliography*)> <!ELEMENT relatedPdbEntries (pdbCode*)> ]> |
|
PDB Code | Links |
Reference
(links are to PubMed) |
---|---|---|---|
MONOTOPIC MEMBRANE PROTEINS
Reviewed by Allen et al. (2018) Database of Peripheral Membrane Proteins |
|||
Cyclooxygenases
|
|||
Ram Prostaglandin H2 synthase-1 (cyclooxygenase-1 or COX-1): Ovis aries E Eukaryota, 3.5 Å
|
Picot et al. (1994).
Picot D, Loll PJ, & Garavito RM (1994). The x-ray crystal structure of the membrane protein prostaglandin H2synthase-1.
Nature 367 :243-249. PubMed Id: 8121489. |
||
Ram Prostaglandin H2 synthase-1 (COX-1): Ovis aries E Eukaryota, 3.4 Å
In complex with bromoaspirin. |
Loll et al. (1995).
Loll PJ, Picot D, & Garavito RM (1995). The structural basis of aspirin activity inferred from the crystal structure of inactivated prostaglandin H2 synthase.
Nat Struct Biol 2 :637-643. PubMed Id: 7552725. |
||
Ram Prostaglandin H2 synthase-1 (COX-1): Ovis aries E Eukaryota, 3.1 Å
In complex with flurbiprofen. |
Garavito et al. (1995).
Garavito RM, Picot D, & Loll PJ (1995). The 3.1 A X-ray crystal structure of the integral membrane enzyme prostaglandin H2 synthase-1.
Adv Prostaglandin Thromboxane Leukot Res 23 :99-103. PubMed Id: 7732912. |
||
Selinsky et al. (2001).
Selinsky BS, Gupta K, Sharkey CT, Loll PJ (2001). Structural analysis of NSAID binding by prostaglandin H2 synthase: time-dependent and time-independent inhibitors elicit identical enzyme conformations.
Biochemistry 40 :5172-5180. PubMed Id: 11318639. |
|||
Ram Prostaglandin H2 synthase-1 (COX-1): Ovis aries E Eukaryota, 3.2 Å
In complex with O-actylsalicylhydroxamic acid. |
Loll et al. (2001).
Loll PJ, Sharkey CT, O'Connor SJ, Dooley CM, O'Brien E, Devocelle M, Nolan KB, Selinsky BS, & Fitzgerald DJ (2001). O-acetylsalicylhydroxamic acid, a novel acetylating inhibitor of prostaglandin H2 synthase: structural and functional characterization of enzyme-inhibitor interactions.
Mol Pharmacol 60 :1407-1413. PubMed Id: 11723249. |
||
Ram Prostaglandin H2 synthase-1 (COX-1): Ovis aries E Eukaryota, 2.00 Å
In complex with alpha-methyl-4-biphenyl acetic acid. |
Gupta et al. (2004).
Gupta K, Selinsky BS, Kaub CJ, Katz AK, & Loll PJ (2004). The 2.0 Å resolution crystal structure of prostaglandin H2 synthase-1: structural insights into an unusual peroxidase.
J Mol Biol 335 :503-518. PubMed Id: 14672659. |
||
Ram Prostaglandin H2 synthase-1 (COX-1): Ovis aries E Eukaryota, 2.00 Å
In complex with flurbiprofen + Mn(III) PPIX cofactor. |
Gupta et al. (2006).
Gupta K, Selinsky BS, & Loll PJ (2006). 2.0 angstroms structure of prostaglandin H2 synthase-1 reconstituted with a manganese porphyrin cofactor.
Acta Crystallogr D Biol Crystallogr 62 :151-156. PubMed Id: 16421446. |
||
Ram Prostaglandin H2 synthase-1 (COX-1): Ovis aries E Eukaryota (expressed in Spodoptera frugiperda), 3.05 Å
3N8V is the unoccupied structure. R120Q/Native Heterodimer mutant in complex with Flurbiprofen, 2.75 Å: 3N8W COX-1 in complex with Nimesulide, 2.75 Å: 3N8X Aspirin Acetylated COX-1 in Complex with Diclofenac, 2.60 Å: 3N8Y COX-1 in Complex with Flurbiprofen, 2.90 Å: 3N8Z |
Sidhu et al. (2010).
Sidhu RS, Lee JY, Yuan C, & Smith WL (2010). Comparison of Cyclooxygenase-1 Crystal Structures: Cross-Talk between Monomers Comprising Cyclooxygenase-1 Homodimers.
Biochemistry 49 :7069-7079. PubMed Id: 20669977. |
||
Ram Prostaglandin H2 synthase-1 (COX-1) in complex with the subtype-selective derivative 2a: Ovis aries E Eukaryota (expressed in Spodoptera frugiperda), 3.35 Å
|
Friedrich et al. (2021).
Friedrich L, Cingolani G, Ko YH, Iaselli M, Miciaccia M, Perrone MG, Neukirch K, Bobinger V, Merk D, Hofstetter RK, Werz O, Koeberle A, Scilimati A, & Schneider G (2021). Learning from Nature: From a Marine Natural Product to Synthetic Cyclooxygenase-1 Inhibitors by Automated De Novo Design.
Adv Sci (Weinh) 8 16:2100832. PubMed Id: 34176236. doi:10.1002/advs.202100832. |
||
Prostaglandin H2 synthase-1 (cyclooxygenase-1 or COX-1): Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.36 Å
|
Miciaccia et al. (2021).
Miciaccia M, Belviso BD, Iaselli M, Cingolani G, Ferorelli S, Cappellari M, Loguercio Polosa P, Perrone MG, Caliandro R, & Scilimati A (2021). Three-dimensional structure of human cyclooxygenase (hCOX)-1.
Sci Rep 11 1:4312. PubMed Id: 33619313. doi:10.1038/s41598-021-83438-z. |
||
Cyclooxygenase-2: Mus musculus E Eukaryota, 3.0 Å
|
Kurumbail et al. (1996).
Kurumbail RG, Stevens AM, Gierse JK, McDonald JJ, Stegeman RA, Pak JY, Gildehaus D, Miyashiro JM, Penning TD, Seibert, K et al (1996). Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents.
Nature 384 :644-648. PubMed Id: 8967954. |
||
Cyclooxygenase-2 with bound indomethacin-ethylenediamine-dansyl conjugate: Mus musculus E Eukaryota (expressed in S. frugiperda), 2.22 Å
with bound indomethacin-butyldiamine-dansyl conjugate, 2.22 Å: 6BL3 |
Xu et al. (2019).
Xu S, Uddin MJ, Banerjee S, Duggan K, Musee J, Kiefer JR, Ghebreselasie K, Rouzer CA, & Marnett LJ (2019). Fluorescent indomethacin-dansyl conjugates utilize the membrane-binding domain of cyclooxygenase-2 to block the opening to the active site.
J Biol Chem 294 22:8690-8698. PubMed Id: 31000626. doi:10.1074/jbc.RA119.007405. |
||
Fatty acid α-dioxygenase (α-DOX): Arabidopsis thaliana E Eukaryota (expressed in E. coli), 1.70 Å
First structure of a member of the α-DOX subfamily of cyclooxygenase-peroxidase family of heme-containing proteins. With bound imidazole, 1.51 Å: 4HHR |
Goulah et al. (2013).
Goulah CC, Zhu G, Koszelak-Rosenblum M, & Malkowski MG (2013). The Crystal Structure of α-Dioxygenase Provides Insight into Diversity in the Cyclooxygenase-Peroxidase Superfamily.
Biochemistry 52 :1364-1372. PubMed Id: 23373518. doi:10.1021/bi400013k. |
||
Lipoxygenases
Related to Cyclooxygenases Rather than being tethered by α-helices at the interface, they are tethered by N-terminal β-sheet C2-like domains |
|||
Arachidonic acid 15-lipoxygenase from soybeans: Glycine max E Eukaryota, 2.60 Å
|
Boyington et al. (1993).
Boyington JC, Gaffney BJ, & Amzel LM (1993). The three-dimensional structure of an arachidonic acid 15-lipoxygenase.
Science 260 5113:1482-1486. PubMed Id: 8502991. doi:10.1126/science.8502991. |
||
Lipoxygenase-L1 from soybeans: Glycine max E Eukaryota, 1.40 Å
|
Minor et al. (1996).
Minor W, Steczko J, Stec B, Otwinowski Z, Bolin JT, Walter R, & Axelrod B (1996). Crystal structure of soybean lipoxygenase L-1 at 1.4 A resolution.
Biochemistry 35 33:10687-10701. PubMed Id: 8718858. doi:10.1021/bi960576u. |
||
Lipoxygenase-L3 from soybeans: Glycine max E Eukaryota, 2.60 Å
|
Skrzypczak-Jankun et al. (1997).
Skrzypczak-Jankun E, Amzel LM, Kroa BA, & Funk MO Jr (1997). Structure of soybean lipoxygenase L3 and a comparison with its L1 isoenzyme.
Proteins 29 1:15-31. PubMed Id: 9294864. doi:10.1002/(SICI)1097-0134(199709)29:1. |
||
8R-Lipoxygenase from coral: Plexaura homomalla E Eukaryota (expressed in E. coli), 3.20 Å
2FNQ supersedes 1ZQ4 |
Oldham et al. (2005).
Oldham ML, Brash AR, & Newcomer ME (2005). Insights from the X-ray crystal structure of coral 8R-lipoxygenase: calcium activation via a C2-like domain and a structural basis of product chirality.
J Biol Chem 280 47:39545-39552. PubMed Id: 16162493. doi:10.1074/jbc.M506675200. |
||
8R-Lipoxygenase from coral. Δ413-417 I805A mutant: Plexaura homomalla E Eukaryota (expressed in E. coli), 1.85 Å
|
Neau et al. (2009).
Neau DB, Gilbert NC, Bartlett SG, Boeglin W, Brash AR, & Newcomer ME (2009). The 1.85 A structure of an 8R-lipoxygenase suggests a general model for lipoxygenase product specificity.
Biochemistry 48 33:7906-7915. PubMed Id: 19594169. doi:10.1021/bi900084m. |
||
15-Lipoxygenase from rabbit reticulocytes: Oryctolagus cuniculus E Eukaryota, 2.40 Å
|
Gillmor et al. (1997).
Gillmor SA, Villaseñor A, Fletterick R, Sigal E, & Browner MF (1997). The structure of mammalian 15-lipoxygenase reveals similarity to the lipases and the determinants of substrate specificity.
Nat Struct Mol Biol 4 12:1003-1009. PubMed Id: 9406550. doi:10.1038/nsb1297-1003 . |
||
5-Lipoxygenase: Homo sapiens E Eukaryota (expressed in E. coli), 2.39 Å
|
Gilbert et al. (2011).
Gilbert NC, Bartlett SG, Waight MT, Neau DB, Boeglin WE, Brash AR, & Newcomer ME (2011). The structure of human 5-lipoxygenase.
Science 331 :217-219. PubMed Id: 21233389. doi:10.1126/science.1197203. |
||
15-Lipoxygenase-2 (15-LOX-2) with substrate mimic: Homo sapiens E Eukaryota (expressed in E. coli), 2.63 Å
|
Kobe et al. (2014).
Kobe MJ, Neau DB, Mitchell CE, Bartlett SG, & Newcomer ME (2014). The structure of human 15-lipoxygenase-2 with a substrate mimic.
J Biol Chem 289 :8562-8569. PubMed Id: 24497644. doi:10.1074/jbc.M113.543777. |
||
Squalene-Hopene Cyclases
|
|||
Squalene-hopene cyclase: Alicyclobacillus acidocaldarius B Bacteria, 2.0 Å
2SQC is space group P43212. 3SQC, 2.8 Å is P3221. |
Wendt et al. (1999).
Wendt KU, Lenhart A, & Schulz GE (1999). The structure of the membrane protein squalene-hopene cyclase at 2.0 Å resolution.
J. Mol. Biol. 286 :175-187. PubMed Id: 9931258. |
||
Oxidases
|
|||
Monoamine Oxidase B: Homo sapiens (Human) mitochondrial outer membrane E Eukaryota (expressed in Pichia pastoris), 3.0 Å
NOTE: MAOB has a single transmembrane helix that anchors it to the outer membrane (residues 489-515). Nevertheless, we consider it monotopic because the bulk of the 520-residue protein, including the active site, is not located within the membrane core. |
Binda et al. (2002).
Binda C, Newton-Vinson P, Hubálek F, Edmondson DE, & Mattevi A (2002). Structure of human monoamine oxidase B, a drug target for the treatment of neurological disorders.
Nature Struct Biol 9 :22-26. PubMed Id: 11753429. |
||
Monoamine Oxidase B with bound Isatin: Homo sapiens (Human) mitochondrial outer membrane E Eukaryota (expressed in Pichia pastoris), 1.70 Å
with bound Tranylcypromine, 2.20 Å: 1OJB with bound N-(2-aminoethyl)-p-chlorobenamide, 2.40 Å: 1OJC with bound Lauryldimethyl-amine N-Oxide, 3.10 Å: 1OJD with bound 1.4-Diphenyl-2-butene, 2.30 Å: 1OJ9 |
Binda et al. (2003).
Binda C, Li M, Hubálek F, Restelli N, Edmondson DE, & Mattevi A (2003). Insights into the mode of inhibition of human mitochondrial monoamine oxidase B from high-resolution crystal structures.
Proc Natl Acad Sci USA 100 :9750-9755. PubMed Id: 12913124. |
||
Monoamine Oxidase A: Rattus norvegicus (Rat) mitochondrial outer membrane E Eukaryota (expressed in S. cerevisiae), 3.20 Å
|
Ma et al. (2004).
Ma J, Yoshimura M, Yamashita E, Nakagawa A, Ito A, & Tsukihara T (2004). Structure of rat monoamine oxidase A and its specific recognitions for substrates and inhibitors.
J Mol Biol 338 :103-114. PubMed Id: 15050826. |
||
De Colibus et al. (2005).
De Colibus L, Li M, Binda C, Lustig A, Edmondson DE, & Mattevi A (2005). Three-dimensional structure of human monoamine oxidase A (MAO A): relation to the structures of rat MAO A and human MAO B.
Proc Natl Acad Sci USA 102 :12684-12689. PubMed Id: 16129825. |
|||
Monoamine Oxidase A with bound Harmine: Homo sapiens (Human) mitochondrial outer membrane E Eukaryota (expressed in S. cerevisiae), 2.20 Å
G110A mutant with bound Harmine, 2.17 Å: 2Z5Y |
Son et al. (2008).
Son SY, Ma J, Kondou Y, Yoshimura M, Yamashita E, & Tsukihara T (2008). Structure of human monoamine oxidase A at 2.2-Å resolution: The control of opening the entry for substrates/inhibitors.
Proc Natl Acad Sci USA 105 :5739-5744. PubMed Id: 18391214. |
||
Shiba et al. (2013).
Shiba T, Kido Y, Sakamoto K, Inaoka DK, Tsuge C, Tatsumi R, Takahashi G, Balogun EO, Nara T, Aoki T, Honma T, Tanaka A, Inoue M, Matsuoka S, Saimoto H, Moore AL, Harada S, & Kita K (2013). Structure of the trypanosome cyanide-insensitive alternative oxidase.
Proc Natl Acad Sci USA 110 :4580-4585. PubMed Id: 23487766. doi:10.1073/pnas.1218386110. |
|||
Hydrolases
|
|||
Fatty acid amide hydrolase: Rattus norvegicus E Eukaryota, 2.8 Å
NOTE: Like MAO, FAAH has a single TM segment. But the active site is external to the membrane, and many other residues on the protein surface contribute to membrane binding. Absence of the TM segment affects neither membrane association or function. |
Bracey et al. (2002).
Bracey MH, Hanson MA, Masuda KR, Stevens RC, & Cravatt BF (2002). Structural adaptations in a membrane enzyme that terminates endo cannabinoid signaling.
Science 298 :1793-1796. PubMed Id: 12459591. |
||
Okada et al. (2016).
Okada C, Wakabayashi H, Kobayashi M, Shinoda A, Tanaka I, & Yao M (2016). Crystal structures of the UDP-diacylglucosamine pyrophosphohydrase LpxH from Pseudomonas aeruginosa.
Sci Rep 6 :32822. PubMed Id: 27609419. doi:10.1038/srep32822. |
|||
LpxI phosphodiester hydrolase for lipid A biosynthesis: Caulobacter crescentus B Bacteria (expressed in E. coli), 2.90 Å
D225A mutant, 2.52 Å: 4GGI |
Metzger et al. (2012).
Metzger LE 4th, Lee JK, Finer-Moore JS, Raetz CR, & Stroud RM (2012). LpxI structures reveal how a lipid A precursor is synthesized.
Nature Struc Mol Biol 19 :1132-1138. PubMed Id: 23042606. doi:10.1038/nsmb.2393. |
||
Emptage et al. (2012).
Emptage RP, Daughtry KD, Pemble CW 4th, & Raetz CR (2012). Crystal structure of LpxK, the 4'-kinase of lipid A biosynthesis and atypical P-loop kinase functioning at the membrane interface.
Proc Natl Acad Sci USA 109 :12956-12961. PubMed Id: 22826246. doi:10.1073/pnas.1206072109. |
|||
N-acylphosphatidylethanolamine-hydrolyzing phospholipase D: Homo sapiens E Eukaryota (expressed in E. coli), 2.65 Å
|
Magotti et al. (2015).
Magotti P, Bauer I, Igarashi M, Babagoli M, Marotta R, Piomelli D, & Garau G (2015). Structure of human N-acylphosphatidylethanolamine-hydrolyzing phospholipase D: regulation of Fatty Acid ethanolamide biosynthesis by bile acids.
Structure 23 3:598-604. PubMed Id: 25684574. doi:10.1016/j.str.2014.12.018. |
||
PulA pullulanase: Klebsiella oxytoca B Bacteria (expressed in E. coli), 2.88 Å
|
East et al. (2016).
East A, Mechaly AE, Huysmans GH, Bernarde C, Tello-Manigne D, Nadeau N, Pugsley AP, Buschiazzo A, Alzari PM, Bond PJ, & Francetic O (2016). Structural Basis of Pullulanase Membrane Binding and Secretion Revealed by X-Ray Crystallography, Molecular Dynamics and Biochemical Analysis.
Structure 24 :92-104. PubMed Id: 26688215. doi:10.1016/j.str.2015.10.023. |
||
C2 domain of cytosolic phospholipase A2α bound to phosphatidylcholine: Gallus gallus E Eukaryota (expressed in E. coli), 2.21 Å
|
Hirano et al. (2019).
Hirano Y, Gao YG, Stephenson DJ, Vu NT, Malinina L, Simanshu DK, Chalfant CE, Patel DJ, & Brown RE (2019). Structural basis of phosphatidylcholine recognition by the C2-domain of cytosolic phospholipase A2α.
Elife 8 :e44760. PubMed Id: 31050338. doi:10.7554/eLife.44760. |
||
PlaF phospholipase A bacterial virulence factor: Pseudomonas aeruginosa B Bacteria, 2.00 Å
|
Bleffert et al. (2022).
Bleffert F, Granzin J, Caliskan M, Schott-Verdugo SN, Siebers M, Thiele B, Rahme L, Felgner S, Dörmann P, Gohlke H, Batra-Safferling R, Jaeger KE, & Kovacic F (2022). Structural, mechanistic, and physiological insights into phospholipase A-mediated membrane phospholipid degradation in Pseudomonas aeruginosa.
Elife 11 :e72824. PubMed Id: 35536643. doi:10.7554/eLife.72824. |
||
Falzone & MacKinnon (2023).
Falzone ME, & MacKinnon R (2023). Gβγ activates PIP2 hydrolysis by recruiting and orienting PLCβ on the membrane surface.
Proc Natl Acad Sci U S A 120 20:e2301121120. PubMed Id: 37172014. doi:10.1073/pnas.2301121120. |
|||
Hydroxylases
|
|||
Joo et al. (2018).
Joo SH, Pemble CW 4th, Yang EG, Raetz CRH, & Chung HS (2018). Biochemical and Structural Insights into an Fe(II)/α-Ketoglutarate/O2-Dependent Dioxygenase, Kdo 3-Hydroxylase (KdoO).
J Mol Biol 430 21:4036-4048. PubMed Id: 30092253. doi:10.1016/j.jmb.2018.07.029. |
|||
Acyltransferases
|
|||
LpxM lipid A acyltransferase: Acinetobacter baumannii B Bacteria (expressed in E. coli), 1.99 Å
The protein is anchored at the membrane interface by a single TM helix. E127A catalytic residue mutant, 1.9 Å: 5KNK |
Dovala et al. (2016).
Dovala D, Rath CM, Hu Q, Sawyer WS, Shia S, Elling RA, Knapp MS, & Metzger LE 4th (2016). Structure-guided enzymology of the lipid A acyltransferase LpxM reveals a dual activity mechanism.
Proc Natl Acad Sci USA 113 :E6064-E6071. PubMed Id: 27681620. doi:10.1073/pnas.1610746113. |
||
PatA membrane-associated acyltransferase, unliganded: Mycolicibacterium smegmatis B Bacteria, 3.67 Å
|
Anso et al. (2021).
Anso I, Basso LGM, Wang L, Marina A, Páez-Pérez ED, Jäger C, Gavotto F, Tersa M, Perrone S, Contreras FX, Prandi J, Gilleron M, Linster CL, Corzana F, Lowary TL, Trastoy B, & Guerin ME (2021). Molecular ruler mechanism and interfacial catalysis of the integral membrane acyltransferase PatA.
Sci Adv 7 42:eabj4565. PubMed Id: 34652941. doi:10.1126/sciadv.abj4565. |
||
Thioesterases
|
|||
Abrami et al. (2021).
Abrami L, Audagnotto M, Ho S, Marcaida MJ, Mesquita FS, Anwar MU, Sandoz PA, Fonti G, Pojer F, Dal Peraro M, & van der Goot FG (2021). Palmitoylated acyl protein thioesterase APT2 deforms membranes to extract substrate acyl chains.
Nat Chem Biol 17 4:438-447. PubMed Id: 33707782. doi:10.1038/s41589-021-00753-2. |
|||
Nucleotidyltransferases
|
|||
Tam41 mitochondrial CDP-DAG synthase Δ74: Schizosaccharomyces pombe E Eukaryota (expressed in E. coli), 2.26 Å
F240A mutant, 2.88 Å: 6IG2 |
Jiao et al. (2019).
Jiao H, Yin Y, & Liu Z (2019). Structures of the Mitochondrial CDP-DAG Synthase Tam41 Suggest a Potential Lipid Substrate Pathway from Membrane to the Active Site.
Structure 27 8:1258-1269.e4. PubMed Id: 31178220. doi:10.1016/j.str.2019.04.017. |
||
Oxidoreductases (Monotopic)
|
|||
Sulfide:quinone oxidoreductase in complex with decylubiquinone: Aquifex aeolicus B Bacteria, 2.0 Å
"as-purified" protein, 2.30 Å: 3HYV in complex with aurachin C, 2.9 Å: 3HYX This monotopic membrane protein is thought to be buried about 12 Å in the bilayer interface. Listed under TRANSMEMBRANE PROTEINS: ALPHA-HELICAL : Oxidoreductases, MONOTOPIC MEMBRANE PROTEINS : Oxidoreductases (Monotopic). |
Marcia et al. (2009).
Marcia M, Ermler U, Peng G, & Michel H (2009). The structure of Aquifex aeolicus sulfide:quinone oxidoreductase, a basis to understand sulfide detoxification and respiration.
Proc Natl Acad Sci USA 106 :9625-9630. PubMed Id: 19487671. |
||
Sulfide:quinone oxidoreductase, selenomethionine-substituted: Homo sapiens E Eukaryota (expressed in e. coli), 2.59 Å
native protein, 2.99 Å: 6MP5 |
Jackson et al. (2019).
Jackson MR, Loll PJ, & Jorns MS (2019). X-Ray Structure of Human Sulfide:Quinone Oxidoreductase: Insights into the Mechanism of Mitochondrial Hydrogen Sulfide Oxidation.
Structure 27 5:794-805.e4. PubMed Id: 30905673. doi:10.1016/j.str.2019.03.002. |
||
Electron Transfer Flavoprotein-ubiquinone oxidoreductase (ETF-QO) with bound UQ: Sus scrofa E Eukaryota, 2.5 Å
UQ-free structure, 2.6 Å: 2GMJ. Because this is a mitochondrial respiratory chain protein, it is listed under TRANSMEMBRANE PROTEINS: ALPHA-HELICAL : Oxidoreductases and MONOTOPIC MEMBRANE PROTEINS : Oxidoreductases (Monotopic). |
Zhang et al. (2006).
Zhang J, Frerman FE, & Kim J-JP (2006). Structure of electron transfer flavoprotein-ubiquinone oxidoreductase and electron transfer to the mitochondrial ubiquinone pool.
Proc Natl Acad Sci U S A 103 :16212-16217. PubMed Id: 17050691. |
||
mitochondrial trifunctional protein: Homo sapiens E Eukaryota (expressed in E. coli), 3.6 Å
|
Xia et al. (2019).
Xia C, Fu Z, Battaile KP, & Kim JP (2019). Crystal structure of human mitochondrial trifunctional protein, a fatty acid β-oxidation metabolon.
Proc Natl Acad Sci USA 116 13:6069-6074. PubMed Id: 30850536. doi:10.1073/pnas.1816317116. |
||
Electron bifurcating flavoprotein Fix/EtfABCX: Thermotoga maritima B Bacteria (expressed in Pyrococcus furiosus), 2.90 Å
cryo-EM structure |
Feng et al. (2021).
Feng X, Schut GJ, Lipscomb GL, Li H, & Adams MWW (2021). Cryoelectron microscopy structure and mechanism of the membrane-associated electron-bifurcating flavoprotein Fix/EtfABCX.
Proc Natl Acad Sci U S A 118 2:e2016978118. PubMed Id: 33372143. doi:10.1073/pnas.2016978118. |
||
Dehydrogenases
|
|||
Glycerol-3-phosphate dehydrogenase (GlpD, native): Escherichia coli B Bacteria, 1.75 Å
SeMet-GlpD, 1.95 Å: 2R4J GlpD-2-PGA, 2.3 Å: 2R45 GlpD-PEP, 2.1 Å: 2R46 GlpD-DHAP, 2.1 Å: 2R4E Listed under MONOTOPIC MEMBRANE PROTEINS : Dehydrogenases, TRANSMEMBRANE PROTEINS: ALPHA-HELICAL : Oxidoreductases. |
Yeh et al. (2008).
Yeh JI, Chinte U, & Du S (2008). Structure of glycerol-3-phosphate dehydrogenase, an essential monotopic membrane enzyme involved in respiration and metabolism.
Proc. Natl. Acad. Sci. USA 105 :3280-3285. PubMed Id: 18296637. |
||
PutA proline utilization protein: Geobacter sulfurreducens B Bacteria (expressed in E. coli), 1.90 Å
in complex with L-tetrahydro-2-furoic acid, 2.10 Å: 4NMA in complex with L-lactate, 2.2 Å: 4NMB in complex with Zwittergent 3-12, 1.90 Å: 4NMC reduced with dithionite, 1.98 Å: 4NMD inactivated by N-propargylglycine, 2.09 Å: 4NME inactivated by N-propargylglycine and complexed with menadione bisulfite, 1.95 Å: 4NMF |
Singh et al. (2014).
Singh H, Arentson BW, Becker DF, & Tanner JJ (2014). Structures of the PutA peripheral membrane flavoenzyme reveal a dynamic substrate-channeling tunnel and the quinone-binding site.
Proc Natl Acad Sci USA 111 :3389-3394. PubMed Id: 24550478. doi:10.1073/pnas.1321621111. |
||
Iwata et al. (2012).
Iwata M, Lee Y, Yamashita T, Yagi T, Iwata S, Cameron AD, & Maher MJ (2012). The structure of the yeast NADH dehydrogenase (Ndi1) reveals overlapping binding sites for water- and lipid-soluble substrates.
Proc Natl Acad Sci USA 109 :15247-15252. PubMed Id: 22949654. doi:10.1073/pnas.1210059109 . |
|||
Feng et al. (2012).
Feng Y, Li W, Li J, Wang J, Ge J, Xu D, Liu Y, Wu K, Zeng Q, Wu JW, Tian C, Zhou B, & Yang M (2012). Structural insight into the type-II mitochondrial NADH dehydrogenases.
Nature 491 :478-482. PubMed Id: 23086143. doi:10.1038/nature11541. |
|||
NDH-2 NADH dehydrogenase: Caldalkalibacillus thermarum B Bacteria (expressed in E. coli), 2.50 Å
NDH-2 is a non-proton pumping dehydrogenase. |
Heikal et al. (2014).
Heikal A, Nakatani Y, Dunn E, Weimar MR, Day CL, Baker EN, Lott JS, Sazanov LA, & Cook GM (2014). Structure of the bacterial type II NADH dehydrogenase: a monotopic membrane protein with an essential role in energy generation.
Mol Microbiol 91 5:950-964. PubMed Id: 24444429. doi:10.1111/mmi.12507. |
||
(S)-Mandelate dehydrogenase (MDH): Pseudomonas putida B Bacteria (expressed in E. coli), 2.2 Å
|
Sukumar et al. (2018).
Sukumar N, Liu S, Li W, Mathews FS, Mitra B, & Kandavelu P (2018). Structure of the monotopic membrane protein (S)-mandelate dehydrogenase at 2.2Å resolution.
Biochimie 154 :45-54. PubMed Id: 30071260. doi:10.1016/j.biochi.2018.07.017. |
||
Decarboxylases (Monotopic)
|
|||
phosphatidylserine decarboxylase (PSD), apo-form: Escherichia coli B Bacteria, 2.60 Å
PE-bond form, 3.60 Å: 6L07 |
Watanabe et al. (2020).
Watanabe Y, Watanabe Y, & Watanabe S (2020). Structural Basis for Phosphatidylethanolamine Biosynthesis by Bacterial Phosphatidylserine Decarboxylase.
Structure 28 7:799-809.e5. PubMed Id: 32402247. doi:10.1016/j.str.2020.04.006. |
||
Cho et al. (2021).
Cho G, Lee E, & Kim J (2021). Structural insights into phosphatidylethanolamine formation in bacterial membrane biogenesis.
Sci Rep 11 1:5785. PubMed Id: 33707636. doi:10.1038/s41598-021-85195-5. |
|||
Glycosyltransferases
|
|||
Peptidoglycan Glycosyltransferase: Staphylococcus aureus B Bacteria, 2.8 Å
NOTE: The enzyme has a single TM segment, which is absent in the structure. The active site is external to the membrane, but the so-called Jaw Region contributes to membrane binding. 2OLV shows the enzyme complexed with moenomycin. 2OLU is the structure of the apoenzyme. |
Lovering et al. (2007).
Lovering AL, de Castro LH, Lim D, & Strynadka NCJ (2007). Structural insight into the transglycosylation step in bacterial cell-wall biosynthesis.
Science 315 :1402-1405. PubMed Id: 17347437. |
||
Peptidoglycan Glycosyltransferase penicillin-binding protein 1a (PBP1a): Aquifex aeolicus B Bacteria (expressed in E. coli), 2.1 Å
NOTE: The enzyme has a single TM segment, which is absent in the structure. The active site is external to the membrane. |
Yuan et al. (2007).
Yuan Y, Barrett D, Zhang Y, Kahne D, Sliz P, & Walker S. (2007). Crystal structure of a peptidoglycan glycosyltransferase suggests a model for processive glycan chain synthesis.
Proc Natl Acad Sci USA 104 :5348-5353. PubMed Id: 17360321. |
||
Peptidoglycan Glycosyltransferase penicillin-binding protein 1b (PBP1b): Escherichia coli B Bacteria, 2.16 Å
3VMA supersedes the original PDB entry 3FWM. NOTE: The single TM segment is present in this structure. The active site is external to the membrane. SeMet Protein, 3.09 Å: 3FWL |
Sung et al. (2009).
Sung MT, Lai YT, Huang CY, Chou LY, Shih HW, Cheng WC, Wong CH, & Ma C (2009). Crystal structure of the membrane-bound bifunctional transglycosylase PBP1b from Escherichia coli.
Proc Natl Acad Sci USA 106 :8824-8829. PubMed Id: 19458048. |
||
Peptidoglycan Glycosyltransferase penicillin-binding protein 1b (PBP1b): Escherichia coli B Bacteria, 3.28 Å
cryo-EM structure |
Caveney et al. (2021).
Caveney NA, Workman SD, Yan R, Atkinson CE, Yu Z, & Strynadka NCJ (2021). CryoEM structure of the antibacterial target PBP1b at 3.3 Å resolution.
Nat Commun 12 1:2775. PubMed Id: 33986273. doi:10.1038/s41467-021-23063-6. |
||
Monofunctional glycosyltransferase WaaA, substrate free: Aquifex aeolicus B Bacteria (expressed in E. coli), 2.00 Å
WaaA catalyzes the transfer of Kdo to the lipid A precursor of lipopolysaccharide. Structure with substrate, 2.42 Å: 2XCU |
Schmidt et al. (2012).
Schmidt H, Hansen G, Singh S, Hanuszkiewicz A, Lindner B, Fukase K, Woodard RW, Holst O, Hilgenfeld R, Mamat U, & Mesters JR (2012). Structural and mechanistic analysis of the membrane-embedded glycosyltransferase WaaA required for lipopolysaccharide synthesis.
Proc Natl Acad Sci USA 109 :6253-6258. PubMed Id: 22474366. doi:10.1073/pnas.1119894109. |
||
Monofunctional glycosyltransferase in complex with Lipid II analog: Staphylococcus aureus B Bacteria (expressed in E. coli), 2.30 Å
NOTE: The single TM segment is present in this structure. The active site is external to the membrane. Substrate-free protein, 2.52 Å: 3VMQ In complex with moenomycin, 3.69 Å: 3VMR In complex with NBD-Lipid II, 3.20 Å: 3VMS |
Huang et al. (2012).
Huang CY, Shih HW, Lin LY, Tien YW, Cheng TJ, Cheng WC, Wong CH, & Ma C (2012). Crystal structure of Staphylococcus aureus transglycosylase in complex with a lipid II analog and elucidation of peptidoglycan synthesis mechanism.
Proc Natl Acad Sci USA 109 :6496-6501. PubMed Id: 22493270. doi:10.1073/pnas.1203900109. |
||
Ramírez et al. (2018).
Ramírez AS, Boilevin J, Mehdipour AR, Hummer G, Darbre T, Reymond JL, & Locher KP (2018). Structural basis of the molecular ruler mechanism of a bacterial glycosyltransferase.
Nat Commun 9 1:445. PubMed Id: 29386647. doi:10.1038/s41467-018-02880-2. |
|||
GPI-Anchored Cell-Wall Proteins (GPI-CWPs)
GPIs are glycosylphophatidylinositol anchors that are post-translational modifications in eukaryotes |
|||
Dfg5 GH76 protein: Chaetomium thermophilum E Eukaryota (expressed in E. coli), 1.05 Å
in complex with mannose, 1.30 Å: 6RY1 in complex with alpha-1,2-mannobiose, 1.30 Å: 6RY2 in complex with alpha-1,6-mannobiose, 1.30 Å: 6RY5 in complex with glucosamine, 1.30 Å: 6RY6 in complex with laminaribiose, 1.30 Å: 6RY7 |
Vogt et al. (2020).
Vogt MS, Schmitz GF, Varón Silva D, Mösch HU, & Essen LO (2020). Structural base for the transfer of GPI-anchored glycoproteins into fungal cell walls.
Proc Natl Acad Sci USA 117 36:22061-22067. PubMed Id: 32839341. doi:10.1073/pnas.2010661117. |
||
Phosphoglycosyl Transferases (PGT)
These proteins catalyze the first membrane-committed step of glycoconjugates |
|||
PglC phosphoglycosyl transferase, I57M/Q175M variant: Campylobacter concisus B Bacteria (expressed in E. coli), 2.74 Å
|
Ray et al. (2018).
Ray LC, Das D, Entova S, Lukose V, Lynch AJ, Imperiali B, & Allen KN (2018). Membrane association of monotopic phosphoglycosyl transferase underpins function.
Nat Chem Biol 14 :538-541. PubMed Id: 29769739. doi:10.1038/s41589-018-0054-z. |
||
Peptidases
|
|||
LepB Signal Peptidase (SPase) in complex with a β-lactam inhibitor: Escherichia coli B Bacteria, 1.9 Å
Located in the periplasmic space, the SPase has two transmembrane segments (AAs 4-28 & 58-76), which are missing in this structure. The Ser-Lys catalytic site is part of a hydrophobic surface that interacts strongly with the membrane. |
Paetzel et al. (1998).
Paetzel M, Dalbey RE, & Strynadka NC (1998). Crystal structure of a bacterial signal peptidase in complex with a β-lactam inhibitor.
Nature 396 :186-190. PubMed Id: 9823901. |
||
LepB Signal Peptidase (SPase), apoprotein: Escherichia coli B Bacteria, 2.40 Å
Δ2-75 protein lacking the two transmembrane helices |
Paetzel et al. (2002).
Paetzel M, Dalbey RE, & Strynadka NC (2002). Crystal structure of a bacterial signal peptidase apoenzyme
J Biol Chem 277 :9512-9519. PubMed Id: 11741964. |
||
LepB Signal Peptidase (SPase) in complex with a lipopeptide inhibitor: Escherichia coli B Bacteria, 2.47 Å
This structure of the Δ2-75 protein reveals the likely position of the signal peptide in the active site. |
Paetzel et al. (2004).
Paetzel M, Goodall JJ, Kania M, Dalbey RE, & Page MG (2004). Crystallographic and biophysical analysis of a bacterial signal peptidase in complex with a lipopeptide-based inhibitor.
J Biol Chem 279 :30781-30790. PubMed Id: 15136583. |
||
Ting et al. (2016).
Ting YT, Harris PW, Batot G, Brimble MA, Baker EN, & Young PG (2016). Peptide binding to a bacterial signal peptidase visualized by peptide tethering and carrier-driven crystallization.
IUCrJ 3 :10-19. PubMed Id: 26870377. doi:10.1107/S2052252515019971. |
|||
Signal Peptide Peptidase (SppA), native protein: Escherichia coli B Bacteria, 2.55 Å
SeMet protein, 2.76 Å: 3BEZ. Long thought to be a transmembrane protein, the structure reveals a peripheral homotetramer that likely is buried in the membrane interface. Each monomer has a putative N-terminal transmembrane helix for anchoring to the membrane. This anchor was removed for crystallization. Listed under TRANSMEMBRANE PROTEINS: ALPHA-HELICAL : Intramembrane Proteases, MONOTOPIC MEMBRANE PROTEINS : Peptidases. |
Kim et al. (2008).
Kim AC, Oliver DC, & Paetzel M (2008). Crystal structure of a bacterial signal Peptide peptidase.
J Mol Biol 376 :352-366. PubMed Id: 18164727. |
||
Signal Peptide Peptidase (SppA): Bacillus subtilis B Bacteria (expressed in E. coli), 2.37 Å
Each monomer of the homooctamer has a putative N-terminal transmembrane helix for anchoring to the membrane. This anchor was removed for crystallization. Listed under TRANSMEMBRANE PROTEINS: ALPHA-HELICAL : Intramembrane Proteases, MONOTOPIC MEMBRANE PROTEINS : Peptidases. |
Nam et al. (2012).
Nam SE, Kim AC, & Paetzel M (2012). Crystal Structure of Bacillus subtilis Signal Peptide Peptidase A.
J Mol Biol 419 :347-358. PubMed Id: 22472423. doi:10.1016/j.jmb.2012.03.020. |
||
Signal Peptide Peptidase (SppA) K199A mutant showing C-terminal peptide bound in eight active sites: Bacillus subtilis B Bacteria (expressed in E. coli), 2.39 Å
Each monomer of the homooctamer has a putative N-terminal transmembrane helix for anchoring to the membrane. This anchor was removed for crystallization. Listed under TRANSMEMBRANE PROTEINS: ALPHA-HELICAL : Intramembrane Proteases, MONOTOPIC MEMBRANE PROTEINS : Peptidases. |
Nam & Paetzel (2013).
Nam SE, & Paetzel M (2013). Structure of Signal Peptide Peptidase A with C-Termini Bound in the Active Sites: Insights into Specificity, Self-Processing, and Regulation.
Biochemistry 52 :8811-8822. PubMed Id: 24228759. |
||
Meprin β sheddase (metalloproteinase), pro-form: Homo sapiens E Eukaryota (expressed in Trichoplusia ni), 1.85 Å
Mature form, 3.00 Å: 4GWN |
Arolas et al. (2012).
Arolas JL, Broder C, Jefferson T, Guevara T, Sterchi EE, Bode W, Stöcker W, Becker-Pauly C, & Gomis-Rüth FX (2012). Structural basis for the sheddase function of human meprin β metalloproteinase at the plasma membrane.
Proc Natl Acad Sci USA 109 :16131-16136. PubMed Id: 22988105. doi:10.1073/pnas.1211076109. |
||
Cytochromes P450
P450s are members of the CYP51 family involved in sterol biosynthesis |
|||
Lanosterol 14α-demethylase with bound lanosterol: Saccharomyces cerevisiae E Eukaryota, 1.90 Å
with bound itraconazole, 2.19 Å: 5EQB. Supersedes 4K0F. This is the first structure of a full-length single-span 'bitopic' membrane protein. Proteins of this structural type are anchored at the membrane surface by one or two TM segments, which are generally not seen in the structures. See, for example, 1B12. |
Monk et al. (2014).
Monk BC, Tomasiak TM, Keniya MV, Huschmann FU, Tyndall JD, O'Connell JD 3rd, Cannon RD, McDonald JG, Rodriguez A, Finer-Moore JS, & Stroud RM (2014). Architecture of a single membrane spanning cytochrome P450 suggests constraints that orient the catalytic domain relative to a bilayer.
Proc Natl Acad Sci USA 111 :3865-3870. PubMed Id: 24613931. doi:10.1073/pnas.1324245111. |
||
Dihydroorotate Dehydrogenases (DHODH, class 2)
Class 1 DHODHs are soluble proteins. Class 2 are membrane associated proteins. |
|||
Dihydroorotate Dehydrogenase: Escherichia coli B Bacteria, 1.70 Å
|
Thoden et al. (2001).
Thoden JB, Phillips GN Jr, Neal TM, Raushel FM, & Holden HM (2001). Molecular structure of dihydroorotase: a paradigm for catalysis through the use of a binuclear metal center.
Biochemistry 40 :6989-6997. PubMed Id: 11401542. |
||
Dihydroorotate Dehydrogenase: Escherichia coli B Bacteria, 1.90 Å
|
Lee et al. (2005).
Lee M, Chan CW, Mitchell Guss J, Christopherson RI, & Maher MJ (2005). Dihydroorotase from Escherichia coli: loop movement and cooperativity between subunits.
J Mol Biol 348 :523-533. PubMed Id: 15826651. |
||
Dihydroorotate Dehydrogenase in complex with atovaquone: Rattus rattus E Eukaryota (expressed in E. coli), 2.30 Å
DHO in complex with brequinar, 2.40 Å: 1UUO |
Hansen et al. (2004).
Hansen M, Le Nours J, Johansson E, Antal T, Ullrich A, Löffler M, & Larsen S (2004). Inhibitor binding in a class 2 dihydroorotate dehydrogenase causes variations in the membrane-associated N-terminal domain.
Protein Sci 13 :1031-1042. PubMed Id: 15044733. |
||
Walse et al. (2008).
Walse B, Dufe VT, Svensson B, Fritzson I, Dahlberg L, Khairoullina A, Wellmar U, & Al-Karadaghi S (2008). The structures of human dihydroorotate dehydrogenase with and without inhibitor reveal conformational flexibility in the inhibitor and substrate binding sites.
Biochemistry 47 :8929-8936. PubMed Id: 18672895. |
|||
Deng et al. (2009).
Deng X, Gujjar R, El Mazouni F, Kaminsky W, Malmquist NA, Goldsmith EJ, Rathod PK, & Phillips MA (2009). Structural plasticity of malaria dihydroorotate dehydrogenase allows selective binding of diverse chemical scaffolds.
J Biol Chem 284 :26999-27009. PubMed Id: 19640844. |
|||
Polymerases
|
|||
Lovering et al. (2010).
Lovering AL, Lin LY, Sewell EW, Spreter T, Brown ED, & Strynadka NC (2010). Structure of the bacterial teichoic acid polymerase TagF provides insights into membrane association and catalysis.
Nat Struct Mol Biol 17 :582-589. PubMed Id: 20400947. |
|||
ADP-Ribosylation Factors
|
|||
ADP-ribosylation factor (ARF1), myristoylated: Saccharomyces cerevisiae E Eukaryota (expressed in E. coli), NMR Structure
|
Liu et al. (2009).
Liu Y, Kahn RA, & Prestegard JH (2009). Structure and Membrane Interaction of Myristoylated ARF1.
Structure 17 :79-87. PubMed Id: 19141284. |
||
ADP-ribosylation factor (ARF1*GTP), myristoylated: Saccharomyces cerevisiae E Eukaryota (expressed in E. coli), NMR Structure
|
Liu et al. (2010).
Liu Y, Kahn RA, & Prestegard JH (2010). Dynamic structure of membrane-anchored Arf*GTP.
Nature Struct Molec Biol 17 :876-881. PubMed Id: 20601958. |
||
Isomerases
|
|||
RPE65 visual cycle retinoid isomerase: Bos taurus E Eukaryota, 2.14 Å
This retinal pigment epithelium (RPE) protein simultaneously cleaves and isomerizes all-trans-retinyl esters to 11-cis-retinol and a fatty acid. |
Kiser et al. (2009).
Kiser PD, Golczak M, Lodowski DT, Chance MR, Palczewski K (2009). Crystal structure of native RPE65, the retinoid isomerase of the visual cycle.
Proc Natl Acad Sci USA 106 :17325-17330. PubMed Id: 19805034. |
||
Kiser et al. (2012).
Kiser PD, Farquhar ER, Shi W, Sui X, Chance MR, & Palczewski K (2012). Structure of RPE65 isomerase in a lipidic matrix reveals roles for phospholipids and iron in catalysis.
Proc Natl Acad Sci USA 109 :E2747-2756. PubMed Id: 23012475. |
|||
Phosphoinositide Kinases
|
|||
Phosphatidylinositol 4-kinase IIα: Homo sapiens E Eukaryota (expressed in E. coli), 2.77 Å
|
Baumlova et al. (2014).
Baumlova A, Chalupska D, Róźycki B, Jovic M, Wisniewski E, Klima M, Dubankova A, Kloer DP, Nencka R, Balla T, & Boura E (2014). The crystal structure of the phosphatidylinositol 4-kinase II?.
EMBO Rep 15 :1085-1092. PubMed Id: 25168678. doi:10.15252/embr.201438841. |
||
Akt1 serine/threonine protein kinase: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 2.05 Å
|
Truebestein et al. (2021).
Truebestein L, Hornegger H, Anrather D, Hartl M, Fleming KD, Stariha JTB, Pardon E, Steyaert J, Burke JE, & Leonard TA (2021). Structure of autoinhibited Akt1 reveals mechanism of PIP3-mediated activation.
Proc Natl Acad Sci U S A 118 33:e2101496118. PubMed Id: 34385319. doi:10.1073/pnas.2101496118. |
||
Membrane-Shaping Proteins (monotopic)
|
|||
IST1-CHMP1B ESCRT-III copolymer: Homo sapiens E Eukaryota (expressed in E. coli), 4.00 Å
cryo-EM structure |
McCullough et al. (2015).
McCullough J, Clippinger AK, Talledge N, Skowyra ML, Saunders MG, Naismith TV, Colf LA, Afonine P, Arthur C, Sundquist WI, Hanson PI, & Frost A (2015). Structure and membrane remodeling activity of ESCRT-III helical polymers.
Science 350 6267:1548-1551. PubMed Id: 26634441. doi:10.1126/science.aad8305. |
||
ESCRT-III filament composed of CHMP1B, membrane bound: Homo sapiens E Eukaryota (expressed in E. coli), 6.20 Å
cryo-EM structure ESCRT-III filament composed of CHMP1B+IST1 (right-handed), 3.20 Å: 6TZ4 ESCRT-III filament composed of CHMP1B+IST1 (left-handed), 3.10 Å: 6TZ5 filament composed of IST1 NTD, R16E,K27E mutant, 7.2 Å: 6TZA |
Nguyen et al. (2020).
Nguyen HC, Talledge N, McCullough J, Sharma A, Moss FR 3rd, Iwasa JH, Vershinin MD, Sundquist WI, & Frost A (2020). Membrane constriction and thinning by sequential ESCRT-III polymerization.
Nat Struct Mol Biol 27 4:392-399. PubMed Id: 32251413. doi:10.1038/s41594-020-0404-x. |
||
CHMP2A-CHMP3 ESCRT-III copolymer, 430 Å diameter: Homo sapiens E Eukaryota (expressed in E. coli), 3.30 Å
cryo-EM structure 410 Å diameter, 3.60 Å: 7ZCH |
Azad et al. (2023).
Azad K, Guilligay D, Boscheron C, Maity S, De Franceschi N, Sulbaran G, Effantin G, Wang H, Kleman JP, Bassereau P, Schoehn G, Roos WH, Desfosses A, & Weissenhorn W (2023). Structural basis of CHMP2A-CHMP3 ESCRT-III polymer assembly and membrane cleavage.
Nat Struct Mol Biol 30 :81-90. PubMed Id: 36604498. doi:10.1038/s41594-022-00867-8. |
||
ESCRT-III Snf7 core domain, conformation A: Saccharomyces cerevisiae E Eukaryota (expressed in E. coli), 2.40 Å
conformation B, 1.60 Å: 5FD9 |
Tang et al. (2015).
Tang S, Henne WM, Borbat PP, Buchkovich NJ, Freed JH, Mao Y, Fromme JC, & Emr SD (2015). Structural basis for activation, assembly and membrane binding of ESCRT-III Snf7 filaments.
Elife 4 :e12548. PubMed Id: 26670543. doi:10.7554/eLife.12548. |
||
Shrub, fly ortholog of ESCRT-III SNF7/CHMP4B: Drosophila melanogaster E Eukaryota (expressed in E. coli), 2.76 Å
|
McMillan et al. (2016).
McMillan BJ, Tibbe C, Jeon H, Drabek AA, Klein T, & Blacklow SC (2016). Electrostatic Interactions between Elongated Monomers Drive Filamentation of Drosophila Shrub, a Metazoan ESCRT-III Protein.
Cell Rep 16 5:1211-1217. PubMed Id: 27452459. doi:10.1016/j.celrep.2016.06.093. |
||
Retromer Vps26-Vps29-Vps35 complex: Chaetomium thermophilum E Eukaryota (expressed in E. coli), 11.4 Å
cryo-electron tomography with subtomogram averaging Vps29 structure by x-ray diffraction, 1.52 Å: 5W8M |
Kovtun et al. (2018).
Kovtun O, Leneva N, Bykov YS, Ariotti N, Teasdale RD, Schaffer M, Engel BD, Owen DJ, Briggs JAG, & Collins BM (2018). Structure of the membrane-assembled retromer coat determined by cryo-electron tomography.
Nature 561 7724:561-564. PubMed Id: 30224749. doi:10.1038/s41586-018-0526-z. |
||
Seipin lipid droplet-formation protein: Drosophila melanogaster E Eukaryota (expressed in E. coli), 4 Å
cryo-EM structure |
Sui et al. (2018).
Sui X, Arlt H, Brock KP, Lai ZW, DiMaio F, Marks DS, Liao M, Farese RV Jr, & Walther TC (2018). Cryo-electron microscopy structure of the lipid droplet-formation protein seipin.
J Cell Biol 217 12:4080-4091. PubMed Id: 30327422. doi:10.1083/jcb.201809067. |
||
Seipin lipid droplet-formation protein: Saccharomyces cerevisiae E Eukaryota, 3.45 Å
cryo-EM structure |
Arlt et al. (2022).
Arlt H, Sui X, Folger B, Adams C, Chen X, Remme R, Hamprecht FA, DiMaio F, Liao M, Goodman JM, Farese RV Jr, & Walther TC (2022). Seipin forms a flexible cage at lipid droplet formation sites.
Nat Struct Mol Biol 29 3:194-202. PubMed Id: 35210614. doi:10.1038/s41594-021-00718-y. |
||
Mgm1 mitochondrial remodeling GTPase: Chaetomium thermophilum E Eukaryota (expressed in E. coli), 3.6 Å
by cryo-tomography: s-Mgm1 decorating the outer surface of tubulated lipid membranes, 14.7 Å: 6RZT s-Mgm1 decorating the outer surface of tubulated lipid membranes in the GTPγS bound state, 14.7 Å: 6RZU s-Mgm1 decorating the inner surface of tubulated lipid membranes, 20.6 Å: 6RZV s-Mgm1 decorating the inner surface of tubulated lipid membranes in the GTPγS bound state, 18.8 Å: 6RZW |
Faelber et al. (2019).
Faelber K, Dietrich L, Noel JK, Wollweber F, Pfitzner AK, Mühleip A, Sánchez R, Kudryashev M, Chiaruttini N, Lilie H, Schlegel J, Rosenbaum E, Hessenberger M, Matthaeus C, Kunz S, von der Malsburg A, Noé F, Roux A, van der Laan M, Kühlbrandt W, & Daumke O (2019). Structure and assembly of the mitochondrial membrane remodelling GTPase Mgm1.
Nature 571 7765:429-433. PubMed Id: 31292547. doi:10.1038/s41586-019-1372-3. |
||
Sorting nexin (SNX)-BAR Mvp1 tetramer: Saccharomyces cerevisiae E Eukaryota (expressed in E. coli), 4.20 Å
cryo-EM structure |
Sun et al. (2020).
Sun D, Varlakhanova NV, Tornabene BA, Ramachandran R, Zhang P, & Ford MGJ (2020). The cryo-EM structure of the SNX-BAR Mvp1 tetramer.
Nat Commun 11 1. PubMed Id: 32198400. doi:10.1038/s41467-020-15110-5. |
||
sorting nexin (SNX) protein SNX1, helical array: Mus musculus E Eukaryota (expressed in E. coli), 9.00 Å
cryo-EM structure 10.0 Å: 7D6E |
Zhang et al. (2021).
Zhang Y, Pang X, Li J, Xu J, Hsu VW, & Sun F (2021). Structural insights into membrane remodeling by SNX1.
Proc Natl Acad Sci U S A 118 10. PubMed Id: 33658379. doi:10.1073/pnas.2022614118. |
||
Lopez-Robles et al. (2023).
Lopez-Robles C, Scaramuzza S, Astorga-Simon EN, Ishida M, Williamson CD, Baños-Mateos S, Gil-Carton D, Romero-Durana M, Vidaurrazaga A, Fernandez-Recio J, Rojas AL, Bonifacino JS, Castaño-Díez D, & Hierro A (2023). Architecture of the ESCPE-1 membrane coat.
Nat Struct Mol Biol 30 7:958-969. PubMed Id: 37322239. doi:10.1038/s41594-023-01014-7. |
|||
myelin P2 protein, N2D variant: Homo sapiens E Eukaryota (expressed in E. coli), 1.65 Å
P2 protein is a small β-barrel protein involved in myelin sheath formation K3N mutant, 2.70 Å: 6XU9 K21Q mutant, 2.30 Å: 6XUA L27D mutantt, 2.31 Å: 6XUW R30Q mutantt, 3.00 Å: 6STS K31Q mutant, 1.80 Å: 6XVQ L35S mutant, 2.00 Å: 6XVR P38G mutant, unliganded, 1.80 Å: 6XVS K45S mutant, 2.20 Å: 4A1H K65Q mutant, 1.20 Å: 4A1Y R88Q mutant, 1.80 Å: 6XVY K112Q mutant, 1.80 Å: 4A8Z K120S mutant, 2.90 Å: 6XW9 |
Ruskamo et al. (2020).
Ruskamo S, Krokengen OC, Kowal J, Nieminen T, Lehtimäki M, Raasakka A, Dandey VP, Vattulainen I, Stahlberg H, & Kursula P (2020). Cryo-EM, X-ray diffraction, and atomistic simulations reveal determinants for the formation of a supramolecular myelin-like proteolipid lattice.
J Biol Chem 295 26:8692-8705. PubMed Id: 32265298. doi:10.1074/jbc.RA120.013087. |
||
Endophilin B1 N-BAR helical scaffold protein: Homo sapiens E Eukaryota (expressed in E. coli), 9.0 Å
cryo-EM helical scaffold, 10 Å: 6UPN |
Bhatt et al. (2021).
Bhatt VS, Ashley R, & Sundborger-Lunna A (2021). Amphipathic Motifs Regulate N-BAR Protein Endophilin B1 Auto-inhibition and Drive Membrane Remodeling.
Structure 29 1:61-69.e3. PubMed Id: 33086035. doi:10.1016/j.str.2020.09.012. |
||
Hutchings et al. (2021).
Hutchings J, Stancheva VG, Brown NR, Cheung ACM, Miller EA, & Zanetti G (2021). Structure of the complete, membrane-assembled COPII coat reveals a complex interaction network.
Nat Commun 12 1:2034. PubMed Id: 33795673. doi:10.1038/s41467-021-22110-6. |
|||
metazoan membrane-assembled retromer:SNX3, VPS35/VPS29 arch: Homo sapiens E Eukaryota (expressed in E. coli), 8.90 Å
cryo-EM structure VPS26 dimer region, 9.50 Å 7BLO Grd19 complex (Chaetomium thermophilum, 9.50 Å 7BLP Grd19 complex, Vps26 dimer region, 9.20 Å 7BLQ Vps5 (SNX-BAR) complex (Chaetomium thermophilum), 9.30 Å 7BLR |
Leneva et al. (2021).
Leneva N, Kovtun O, Morado DR, Briggs JAG, & Owen DJ (2021). Architecture and mechanism of metazoan retromer:SNX3 tubular coat assembly.
Sci Adv 7 13:eabf8598. PubMed Id: 33762348. doi:10.1126/sciadv.abf8598. |
||
Atlastin-1 GTPase (residues 1-439) bound to GDP-Mg2+: Homo sapiens E Eukaryota (expressed in E. coli), 2.20 Å
atlastin-3 (residues 1-334) bound to GDP-Mg2+, 2.10 Å 6XJO |
Kelly et al. (2021).
Kelly CM, Byrnes LJ, Neela N, Sondermann H, & O'Donnell JP (2021). The hypervariable region of atlastin-1 is a site for intrinsic and extrinsic regulation.
J Cell Biol 220 11:e202104128. PubMed Id: 34546351. doi:10.1083/jcb.202104128. |
||
caveolin-1 complex: Homo sapiens E Eukaryota (expressed in E. coli), 3.40 Å
cryo-EM structure |
Porta et al. (2022).
Porta JC, Han B, Gulsevin A, Chung JM, Peskova Y, Connolly S, Mchaourab HS, Meiler J, Karakas E, Kenworthy AK, & Ohi MD (2022). Molecular architecture of the human caveolin-1 complex.
Sci Adv 8 19:eabn7232. PubMed Id: 35544577. doi:10.1126/sciadv.abn7232. |
||
Eps15-homology domain containing proteins (EHDs), EHD4 complex: Mus musculus E Eukaryota (expressed in E. coli), 7.60 Å
cryo-EM structure by cryo-EM tomography |
Melo et al. (2022).
Melo AA, Sprink T, Noel JK, Vázquez-Sarandeses E, van Hoorn C, Mohd S, Loerke J, Spahn CMT, & Daumke O (2022). Cryo-electron tomography reveals structural insights into the membrane remodeling mode of dynamin-like EHD filaments.
Nat Commun 13 1:7641. PubMed Id: 36496453. doi:10.1038/s41467-022-35164-x. |
||
Membrane Trafficking Proteins
|
|||
BBSome (complex of 7 Bardet–Biedl syndrome, BBS, proteins), apo form: Bos taurus E Eukaryota, 3.44 Å
cryo-EM structure BBSome-ARL6 complex, 4.00 Å: 6VOA |
Yang et al. (2020).
Yang S, Bahl K, Chou HT, Woodsmith J, Stelzl U, Walz T, & Nachury MV (2020). Near-atomic structures of the BBSome reveal the basis for BBSome activation and binding to GPCR cargoes.
Elife 9 :e55954. PubMed Id: 32510327. doi:10.7554/eLife.55954. |
||
Cell Adhesion Molecules
|
|||
Opioid Binding Protein/Cell Adhesion Molecule Like (OPCML): Homo sapiens E Eukaryota (expressed in Trichoplusia ni), 2.65 Å
|
Birtley et al. (2019).
Birtley JR, Alomary M, Zanini E, Antony J, Maben Z, Weaver GC, Von Arx C, Mura M, Marinho AT, Lu H, Morecroft EVN, Karali E, Chayen NE, Tate EW, Jurewicz M, Stern LJ, Recchi C, & Gabra H (2019). Inactivating mutations and X-ray crystal structure of the tumor suppressor OPCML reveal cancer-associated functions.
Nat Commun 10 1. PubMed Id: 31316070. doi:10.1038/s41467-019-10966-8. |
||
Aparicio et al. (2020).
Aparicio D, Scheffer MP, Marcos-Silva M, Vizarraga D, Sprankel L, Ratera M, Weber MS, Seybert A, Torres-Puig S, Gonzalez-Gonzalez L, Reitz J, Querol E, Piñol J, Pich OQ, Fita I, & Frangakis AS (2020). Structure and mechanism of the Nap adhesion complex from the human pathogen Mycoplasma genitalium.
Nat Commun 11 1:2877. PubMed Id: 32513917. doi:10.1038/s41467-020-16511-2. |
|||
Guanosine Triphosphatases
|
|||
Lysosomal Folliculin Complex (FLCN-FNIP2-RagA-RagC-Ragulator): Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.6 Å
cryo-EM structure |
Lawrence et al. (2019).
Lawrence RE, Fromm SA, Fu Y, Yokom AL, Kim DJ, Thelen AM, Young LN, Lim CY, Samelson AJ, Hurley JH, & Zoncu R (2019). Structural mechanism of a Rag GTPase activation checkpoint by the lysosomal folliculin complex.
Science 366 6468:971-977. PubMed Id: 31672913. doi:10.1126/science.aax0364. |
||
FLCN-FNIP2-Rag-Ragulator complex: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.31 Å
cryo-EM structure |
Shen et al. (2019).
Shen K, Rogala KB, Chou HT, Huang RK, Yu Z, & Sabatini DM (2019). Cryo-EM Structure of the Human FLCN-FNIP2-Rag-Ragulator Complex.
Cell 179 6:1319-1329.e8. PubMed Id: 31704029. doi:10.1016/j.cell.2019.10.036. |
||
Phospholipid Phosphatases
|
|||
MTMR8 catalytic phosphatase domain: Homo sapiens E Eukaryota (expressed in E. coli), 2.8 Å
|
Yoo et al. (2015).
Yoo KY, Son JY, Lee JU, Shin W, Im DW, Kim SJ, Ryu SE, & Heo YS (2015). Structure of the catalytic phosphatase domain of MTMR8: implications for dimerization, membrane association and reversible oxidation.
Acta Crystallogr. D Biol. Crystallogr. 71 :1528-1539. PubMed Id: 26143924. doi:10.1107/S139900471500927X. |
||
lipin/Pah phosphatidic acid phosphatase: Tetrahymena thermophila B Bacteria (expressed in E. coli), 3 Å
Lipin Phosphatidic Acid Phosphatase with Magnesium, 3 Å: 6TZZ |
Khayyo et al. (2020).
Khayyo VI, Hoffmann RM, Wang H, Bell JA, Burke JE, Reue K, & Airola MVV (2020). Crystal structure of a lipin/Pah phosphatidic acid phosphatase.
Nat Commun 11 1:1309. PubMed Id: 32161260. doi:10.1038/s41467-020-15124-z. |
||
Sorting Nexins
|
|||
Xu et al. (2020).
Xu T, Gan Q, Wu B, Yin M, Xu J, Shu X, & Liu J (2020). Molecular Basis for PI(3,5)P2 Recognition by SNX11, a Protein Involved in Lysosomal Degradation and Endosome Homeostasis Regulation.
J Mol Biol 432 16:4750-4761. PubMed Id: 32561432. doi:10.1016/j.jmb.2020.06.010. |
|||
Pro-apoptotic BCL-2 Family
|
|||
BAK core domain BH3-groove in complex with E. coli lipid: Homo sapiens E Eukaryota (expressed in E. coli), 2.49 Å
in complex with phosphatidylserine, 2.49 Å: 6UXN in complex with DDM, 1.80 Å: 6UXO in complex with phosphatidylglycerol, 2.49 Å: 6UXP in complex with POPC and C8E4, 1.70 Å: 6UXQ in complex with LysoPC, 1.80 Å: 6UXR |
Cowan et al. (2020).
Cowan AD, Smith NA, Sandow JJ, Kapp EA, Rustam YH, Murphy JM, Brouwer JM, Bernardini JP, Roy MJ, Wardak AZ, Tan IK, Webb AI, Gulbis JM, Smith BJ, Reid GE, Dewson G, Colman PM, & Czabotar PE (2020). BAK core dimers bind lipids and can be bridged by them.
Nat Struct Mol Biol 27 11:1024-1031. PubMed Id: 32929280. doi:10.1038/s41594-020-0494-5. |
||
Bax core dimer in bicelles: Homo sapiens E Eukaryota (expressed in E coli), NMR structure
|
Lv et al. (2021).
Lv F, Qi F, Zhang Z, Wen M, Kale J, Piai A, Du L, Wang S, Zhou L, Yang Y, Wu B, Liu Z, Del Rosario J, Pogmore J, Chou JJ, Andrews DW, Lin J, & OuYang B (2021). An amphipathic Bax core dimer forms part of the apoptotic pore wall in the mitochondrial␣membrane.
EMBO J 40 14:e106438. PubMed Id: 34101209. doi:10.15252/embj.2020106438. |
||
Bak transmembrane helix in DPC micelles: Homo sapiens E Eukaryota (expressed in E. coli), NMR structure
in lipid nanodiscs, 7OFO |
Sperl et al. (2021).
Sperl LE, Rührnößl F, Schiller A, Haslbeck M, & Hagn F (2021). High-resolution analysis of the conformational transition of pro-apoptotic Bak at the lipid membrane.
EMBO J 40 20:e107159. PubMed Id: 34523144. doi:10.15252/embj.2020107159. |
||
Variant Surface Glycoproteins (VSG)
|
|||
N-terminal Domain of VSG2 (MITat 1.2): Trypanosoma brucei B Bacteria, 2.90 Å
|
Freymann et al. (1990).
Freymann D, Down J, Carrington M, Roditi I, Turner M, & Wiley D (1990). 2.9 Å resolution structure of the N-terminal domain of a variant surface glycoprotein from Trypanosoma brucei.
J Mol Biol 216 1:141-160. PubMed Id: 2231728. |
||
N-terminal of VSG ILTat 1.24: Trypanosoma brucei B Bacteria, 2.70 Å
|
Blum et al. (1993).
Blum ML, Down JA, Gurnett AM, Carrington M, Turner MJ, & Wiley DC (1993). A structural motif in the variant surface glycoproteins of Trypanosoma brucei.
Nature 362 6421:603-609. PubMed Id: 8464512. |
||
N-terminal domain of VSG M1.1: Trypanosoma brucei B Bacteria, 1.65 Å
C-terminal domain of VSG M1.1 (NMR structure) 5M4T |
Bartossek et al. (2017).
Bartossek T, Jones NG, Schäfer C, Cvitković M, Glogger M, Mott HR, Kuper J, Brennich M, Carrington M, Smith AS, Fenz S, Kisker C, & Engstler M (2017). Structural basis for the shielding function of the dynamic trypanosome variant surface glycoprotein coat.
Nat Microbiol 2 11:1523-1532. PubMed Id: 28894098. doi:10.1038/s41564-017-0013-6. |
||
N-terminal Domain of VSG3: Trypanosoma brucei B Bacteria, 1.41 Å
|
Pinger et al. (2018).
Pinger J, Nešić D, Ali L, Aresta-Branco F, Lilic M, Chowdhury S, Kim HS, Verdi J, Raper J, Ferguson MAJ, Papavasiliou FN, & Stebbins CE (2018). African trypanosomes evade immune clearance by O-glycosylation of the VSG surface coat.
Nat Microbiol 3 8:932-938. PubMed Id: 29988048. doi:10.1038/s41564-018-0187-6. |
||
Variant Surface Glycoproteins VSGsur & VSG13: Trypanosoma brucei E Eukaryota, 1.21 Å
VSGsur bound to suramin, 1.86 Å 6Z7B VSGsur mutant H122A, 1.64 Å 6Z7C H122A soaked in 0.77 mM Suramin, 1.75 Å 6Z7D H122A soaked in 7.7 mM suramin, 1.66 Å 6Z7E VSG13 soaked in 0.5 M used to phase VSG13, 1.56 Å 6Z8G Variant Surface Glycoprotein VSG13, 1.38 Å 6Z8H VSGsur, I3C ("Magic Triangle") derivative, 1.92 Å 6Z79 |
Zeelen et al. (2021).
Zeelen J, van Straaten M, Verdi J, Hempelmann A, Hashemi H, Perez K, Jeffrey PD, Hälg S, Wiedemar N, Mäser P, Papavasiliou FN, & Stebbins CE (2021). Structure of trypanosome coat protein VSGsur and function in suramin resistance.
Nat Microbiol 6 3:392-400. PubMed Id: 33462435. doi:10.1038/s41564-020-00844-1. |
||
TRANSMEMBRANE PROTEINS: BETA-BARREL
|
|||
Adventitious Membrane Proteins: Beta-sheet Pore-forming Toxins/Attack Complexes
|
|||
α-hemolysin: Staphylococcus aureus B Bacteria, 1.9 Å
|
Song et al. (1996).
Song L, Hobaugh MR, Shustak C, Cheley S, Bayley H, & Gouaux JE (1996). Structure of staphylococcal a -hemolysin, a heptameric transmembrane pore.
Science 274 :1859-1866. PubMed Id: 8943190. |
||
Banerjee et al. (2010).
Banerjee A, Mikhailova E, Cheley S, Gu LQ, Montoya M, Nagaoka Y, Gouaux E, & Bayley H (2010). Molecular bases of cyclodextrin adapter interactions with engineered protein nanopores.
Proc Natl Acad Sci USA 107 :8165-8170. PubMed Id: 20400691. doi:10.1073/pnas.0914229107 . |
|||
α-hemolysin: Staphylococcus aureus B Bacteria (expressed in E. coli), 2.30 Å
Crystals were prepared using 2-methyl-2,4-pentanediol without detergent. |
Tanaka et al. (2011).
Tanaka Y, Hirano N, Kaneko J, Kamio Y, Yao M, & Tanaka I (2011). 2-Methyl-2,4-pentanediol induces spontaneous assembly of staphylococcal α-hemolysin into heptameric pore structure.
Protein Sci 20 :448-456. PubMed Id: 21280135. doi:10.1002/pro.579. |
||
Liu et al. (2020).
Liu J, Kozhaya L, Torres VJ, Unutmaz D, & Lu M (2020). Structure-based discovery of a small-molecule inhibitor of methicillin-resistant Staphylococcus aureus virulence.
J Biol Chem 295 18:5944-5959. PubMed Id: 32179646. doi:10.1074/jbc.RA120.012697. |
|||
α-hemolysin: Vibrio campbelli B Bacteria (expressed in E. coli), 2.00 Å
X-ray structure assembled heptamer, cryo-EM structure, 2.06 Å: 8JC7 |
Chiu et al. (2023).
Chiu YC, Yeh MC, Wang CH, Chen YA, Chang H, Lin HY, Ho MC, & Lin SM (2023). Structural basis for calcium-stimulating pore formation of Vibrio α-hemolysin.
Nat Commun 14 1:5946. PubMed Id: 37741869. doi:10.1038/s41467-023-41579-x. |
||
γ-hemolysin composed of LukF and Hlg2: Staphylococcus aureus B Bacteria (expressed in E. coli), 2.50 Å
|
Yamashita et al. (2011).
Yamashita K, Kawai Y, Tanaka Y, Hirano N, Kaneko J, Tomita N, Ohta M, Kamio Y, Yao M, & Tanaka I (2011). Crystal structure of the octameric pore of staphylococcal γ-hemolysin reveals the β-barrel pore formation mechanism by two components.
Proc Natl Acad Sci USA 108 :17314-17319. PubMed Id: 21969538. doi:10.1073/pnas.1110402108. |
||
γ-hemolysin prepore: Staphylococcus aureus B Bacteria (expressed in E. coli), 2.99 Å
|
Yamashita et al. (2014).
Yamashita D, Sugawara T, Takeshita M, Kaneko J, Kamio Y, Tanaka I, Tanaka Y, & Yao M (2014). Molecular basis of transmembrane beta-barrel formation of staphylococcal pore-forming toxins.
Nat Commun 5 :4897. PubMed Id: 25263813. doi:10.1038/ncomms5897. |
||
Olson et al. (1999).
Olson R, Nariya H, Yokota K, Kamio Y, & Gouaux E (1999). Crystal structure of Staphylococcal LukF delineates conformational changes accompanying formation of a transmembrane channel.
Nature Struc. Biol 6 :134-140. PubMed Id: 10048924. |
|||
LUK prepore formed from LukF & LukS: Staphylococcus aureus B Bacteria (expressed in E. coli), 2.40 Å
|
Yamashita et al. (2014).
Yamashita D, Sugawara T, Takeshita M, Kaneko J, Kamio Y, Tanaka I, Tanaka Y, & Yao M (2014). Molecular basis of transmembrane beta-barrel formation of staphylococcal pore-forming toxins.
Nat Commun 5 :4897. PubMed Id: 25263813. doi:10.1038/ncomms5897. |
||
LukGH octamer: Staphylococcus aureus B Bacteria (expressed in E. coli), 2.80 Å
|
Badarau et al. (2015).
Badarau A, Rouha H, Malafa S, Logan DT, Håkansson M, Stulik L, Dolezilkova I, Teubenbacher A, Gross K, Maierhofer B, Weber S, Jägerhofer M, Hoffman D, & Nagy E (2015). Structure-function analysis of heterodimer formation, oligomerization, and receptor binding of the Staphylococcus aureus bi-component toxin LukGH.
J Biol Chem 290 1:142-156. PubMed Id: 25371205. doi:10.1074/jbc.M114.598110. |
||
Leukocidin (LukFG) in complex with mouse CD11b I-domain (CD11b-I): Staphylococcus aureus B Bacteria (expressed in E. coli), 2.29 Å
in complex with human CD11b I-domain (CD11b-I), 2.75 Å: 6RHW |
Trstenjak et al. (2020).
Trstenjak N, Milić D, Graewert MA, Rouha H, Svergun D, Djinović-Carugo K, Nagy E, & Badarau A (2020). Molecular mechanism of leukocidin GH-integrin CD11b/CD18 recognition and species specificity.
Proc Natl Acad Sci USA 117 1:317-327. PubMed Id: 31852826. doi:10.1073/pnas.1913690116. |
||
Liu et al. (2020).
Liu J, Kozhaya L, Torres VJ, Unutmaz D, & Lu M (2020). Structure-based discovery of a small-molecule inhibitor of methicillin-resistant Staphylococcus aureus virulence.
J Biol Chem 295 18:5944-5959. PubMed Id: 32179646. doi:10.1074/jbc.RA120.012697. |
|||
Lambey et al. (2022).
Lambey P, Otun O, Cong X, Hoh F, Brunel L, Verdié P, Grison CM, Peysson F, Jeannot S, Durroux T, Bechara C, Granier S, & Leyrat C (2022). Structural insights into recognition of chemokine receptors by Staphylococcus aureus leukotoxins.
Elife 11 :e72555. PubMed Id: 35311641. doi:10.7554/eLife.72555. |
|||
Panton-Valentine leukocidin (PVL) with bound C14PC: Staphylococcus aureus B Bacteria (expressed in E. coli), 2.04 Å
|
Liu et al. (2020).
Liu J, Kozhaya L, Torres VJ, Unutmaz D, & Lu M (2020). Structure-based discovery of a small-molecule inhibitor of methicillin-resistant Staphylococcus aureus virulence.
J Biol Chem 295 18:5944-5959. PubMed Id: 32179646. doi:10.1074/jbc.RA120.012697. |
||
NetB Necrotic B-like enteritis toxin: Clostridium perfringens B Bacteria (expressed in E. coli), 3.90 Å
|
Savva et al. (2013).
Savva CG, Fernandes da Costa SP, Bokori-Brown M, Naylor CE, Cole AR, Moss DS, Titball RW, & Basak AK (2013). Molecular architecture and functional analysis of NetB, a pore-forming toxin from Clostridium perfringens.
J Biol Chem 288 5:3512-3522. PubMed Id: 23239883. doi:10.1074/jbc.M112.430223. |
||
Perfringolysin O (PFO) protomer: Clostridium perfringens B Bacteria (expressed in E. coli), 2.20 Å
The protein is a thiol-activated cytolysin that uses membrane cholesterol as a receptor. 40 or more protomers assemble into a large pore anchored in the bilayer by the β-sheets of domain 4. Space group is C2221. P21212 space group, 3.0 Å: 1M3J. P31 space group, 2.90 Å: 1M3I. |
Rossjohn et al. (1997).
Rossjohn J, Feil SC, McKinstry WJ, Tweten RK, & Parker MW (1997). Structure of a cholesterol-binding, thiol-activated cytolysin and a model of its membrane form.
Cell 89 :685-692. PubMed Id: 9182756. |
||
Anthrax Protective Antigen (PA) and Lethal Factor (LF) Prechannel Complex: Bacillus anthraciss B Bacteria (expressed in E. coli), 3.10 Å
The structure is the PA8LF4 prechannel. |
Feld et al. (2010).
Feld GK, Thoren KL, Kintzer AF, Sterling HJ, Tang II, Greenberg SG, Williams ER, & Krantz BA (2010). Structural basis for the unfolding of anthrax lethal factor by protective antigen oligomers.
Nat Struct Mol Biol 17 :1383-1390. PubMed Id: 21037566. |
||
Anthrax protective antigen pore: Bacillus anthracis B Bacteria (expressed in E. coli), 2.9 Å
cryo-EM structure |
Jiang et al. (2015).
Jiang J, Pentelute BL, Collier RJ, & Zhou ZH (2015). Atomic structure of anthrax protective antigen pore elucidates toxin translocation.
Nature 521 :545-549. PubMed Id: 25778700. doi:10.1038/nature14247. |
||
Anthrax octamer prechannel bound to full-length edema factor (EF): Bacillus anthracis B Bacteria (expressed in E. coli), 3.30 Å
cryo-EM structure bound to full-length lethal factor (LF), 3.80 Å: 6WJJ |
Zhou et al. (2020).
Zhou K, Liu S, Hardenbrook NJ, Cui Y, Krantz BA, & Zhou ZH (2020). Atomic Structures of Anthrax Prechannel Bound with Full-Length Lethal and Edema Factors.
Structure 28 8:879-887.e3. PubMed Id: 32521227. doi:10.1016/j.str.2020.05.009. |
||
Anthrax protective antigen pore translating N-terminal of LF: Bacillus anthracis B Bacteria (expressed in E. coli), 3.30 Å
cryo-EM structure |
Machen et al. (2021).
Machen AJ, Fisher MT, & Freudenthal BD (2021). Anthrax toxin translocation complex reveals insight into the lethal factor unfolding and refolding mechanism.
Sci Rep 11 1:13038. PubMed Id: 34158520. doi:10.1038/s41598-021-91596-3. |
||
Lymphocyte perforin monomer: Mus musculus E Eukaryota (expressed in S. frugiperda), 2.75 Å
The multimeric pore structure has been visualized by cryo-EM. |
Law et al. (2010).
Law RH, Lukoyanova N, Voskoboinik I, Caradoc-Davies TT, Baran K, Dunstone MA, D'Angelo ME, Orlova EV, Coulibaly F, Verschoor S, Browne KA, Ciccone A, Kuiper MJ, Bird PI, Trapani JA, Saibil HR, & Whisstock JC (2010). The structural basis for membrane binding and pore formation by lymphocyte perforin.
Nature 468 :447-451. PubMed Id: 21037563. |
||
Lymphocyte perforin pore: Mus musculus E Eukaryota (expressed in Spodoptera frugiperda), 4.00 Å
cryo-EM structure |
Ivanova et al. (2022).
Ivanova ME, Lukoyanova N, Malhotra S, Topf M, Trapani JA, Voskoboinik I, & Saibil HR (2022). The pore conformation of lymphocyte perforin.
Sci Adv 8 6:eabk3147. PubMed Id: 35148176. doi:10.1126/sciadv.abk3147. |
||
Macrophage-expressed gene 1 (MPEG1/Perforin-2), wild-type soluble pre-pore: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.49 Å
cryo-EM structure L425K, alpha conformation pre-pore, 2.37 Å: 6U2J L425K, alpha conformation pre-pore, monomer, 2.93 Å: 6U2K L425K soluble pre-pore complex, 2.83 Å: 6U2L L425K pre-pore complex bound to liposome, 3.63 Å: 6U2W |
Pang et al. (2019).
Pang SS, Bayly-Jones C, Radjainia M, Spicer BA, Law RHP, Hodel AW, Parsons ES, Ekkel SM, Conroy PJ, Ramm G, Venugopal H, Bird PI, Hoogenboom BW, Voskoboinik I, Gambin Y, Sierecki E, Dunstone MA, & Whisstock JC (2019). The cryo-EM structure of the acid activatable pore-forming immune effector Macrophage-expressed gene 1.
Nat Commun 10 1. PubMed Id: 31537793. doi:10.1038/s41467-019-12279-2. |
||
Macrophage-expressed gene 1 (MPEG1/Perforin-2), pore in ring form: Mus musculus E Eukaryota (expressed in HEK293 cells), 3.00 Å
cryo-EM structure pore in twisted form, 4.00 Å: 8A1S |
Yu et al. (2022).
Yu X, Ni T, Munson G, Zhang P, & Gilbert RJC (2022). Cryo-EM structures of perforin-2 in isolation and assembled on a membrane suggest a mechanism for pore formation.
EMBO J 41 23:e111857. PubMed Id: 36245269. doi:10.15252/embj.2022111857. |
||
Cytolysin pore-forming toxin: Vibrio cholerae B Bacteria (expressed in E. coli), 2.88 Å
Reveals the full structure of the assembled heptameric pore. The pore has a novel ring of tryptophan residues lining the narrowest constriction. |
De & Olson (2011).
De S & Olson R. (2011). Crystal structure of the Vibrio cholerae cytolysin heptamer reveals common features among disparate pore-forming toxins
Proc Natl Acad Sci USA 108 :7385-7390. PubMed Id: 21502531. doi:10.1073/pnas.1017442108. |
||
Cytolysin pore-forming toxin protomer: Vibrio cholerae B Bacteria (expressed in E. coli), 2.30 Å
|
Olson & Gouaux (2005).
Olson R & Gouaux E (2005). Crystal structure of the Vibrio cholerae cytolysin (VCC) pro-toxin and its assembly into a heptameric transmembrane pore
J Mol Biol 350 :997-1016. PubMed Id: 15978620 . doi:10.1016/j.jmb.2005.05.045. |
||
Streptolysin O pore-forming toxin: Streptococcus pyogenes B Bacteria (expressed in E. coli), 2.10 Å
|
Feil et al. (2014).
Feil SC, Ascher DB, Kuiper MJ, Tweten RK, & Parker MW (2014). Structural Studies of Streptococcus pyogenes Streptolysin O Provide Insights into the Early Steps of Membrane Penetration.
J Mol Biol 426 :785-792. PubMed Id: 24316049. doi:10.1016/j.jmb.2013.11.020. |
||
Degiacomi et al. (2013).
Degiacomi MT, Iacovache I, Pernot L, Chami M, Kudryashev M, Stahlberg H, van der Goot FG, & Dal Peraro M (2013). Molecular assembly of the aerolysin pore reveals a swirling membrane-insertion mechanism.
Nat Chem Biol 9 10:623-629. PubMed Id: 23912165. doi:10.1038/nchembio.1312. |
|||
Monalysin pore-forming toxin, cleaved form: Pseudomonas entomophila B Bacteria (expressed in E. coli), 1.70 Å
mutant deleted of the membrane-spanning domain, 2.65 Å: 4MKQ EM structure deposited in EMBD as EMD-2698. |
Leone et al. (2015).
Leone P, Bebeacua C, Opota O, Kellenberger C, Klaholz B, Orlov I, Cambillau C, Lemaitre B, & Roussel A (2015). X-ray and Cryo-electron Microscopy Structures of Monalysin Pore-forming Toxin Reveal Multimerization of the Pro-form.
J Biol Chem 290 :13191-13201. PubMed Id: 25847242. doi:10.1074/jbc.M115.646109. |
||
poly-C9 component of the complement membrane attack Complex: Homo sapiens E Eukaryota, 8 Å
model from cryo-EM |
Dudkina et al. (2016).
Dudkina NV, Spicer BA, Reboul CF, Conroy PJ, Lukoyanova N, Elmlund H, Law RH, Ekkel SM, Kondos SC, Goode RJ, Ramm G, Whisstock JC, Saibil HR, & Dunstone MA (2016). Structure of the poly-C9 component of the complement membrane attack complex.
Nat Commun 7 . PubMed Id: 26841934. doi:10.1038/ncomms10588. See also: Serna et al. (2016). Serna M, Giles JL, Morgan BP, & Bubeck D (2016). Structural basis of complement membrane attack complex formation.
Nat Commun 7 :10587. PubMed Id: 26841837. doi:10.1038/ncomms10587. |
||
poly-C9 component of the complement membrane attack Complex: Homo sapiens E Eukaryota (expressed in Expi293 cells), 3.9 Å
cryo-EM structure |
Spicer et al. (2018).
Spicer BA, Law RHP, Caradoc-Davies TT, Ekkel SM, Bayly-Jones C, Pang SS, Conroy PJ, Ramm G, Radjainia M, Venugopal H, Whisstock JC, & Dunstone MA (2018). The first transmembrane region of complement component-9 acts as a brake on its self-assembly.
Nat Commun 9 1:3266. PubMed Id: 30111885. doi:10.1038/s41467-018-05717-0. |
||
Membrane attack complex (MAC) in open conformation: Homo sapiens E Eukaryota, 5.6 Å
cryo-EM structure closed conformation, 5.6 Å: 6H04 |
Menny et al. (2018).
Menny A, Serna M, Boyd CM, Gardner S, Joseph AP, Morgan BP, Topf M, Brooks NJ, & Bubeck D (2018). CryoEM reveals how the complement membrane attack complex ruptures lipid bilayers.
Nat Commun 9 1. PubMed Id: 30552328. doi:10.1038/s41467-018-07653-5. |
||
3C9-sMAC Complement membrane attack complex packaged for clearance: Homo sapiens E Eukaryota, 3.54 Å
cryo-EM structure 2C9-sMAC, 3.27 Å 7NYD |
Menny et al. (2021).
Menny A, Lukassen MV, Couves EC, Franc V, Heck AJR, & Bubeck D (2021). Structural basis of soluble membrane attack complex packaging for clearance.
Nat Commun 12 1:6086. PubMed Id: 34667172. doi:10.1038/s41467-021-26366-w. |
||
monomeric C9 component of the complement membrane attack Complex: Mus musculus E Eukaryota (expressed in Expi293 cells), 2.2 Å
|
Spicer et al. (2018).
Spicer BA, Law RHP, Caradoc-Davies TT, Ekkel SM, Bayly-Jones C, Pang SS, Conroy PJ, Ramm G, Radjainia M, Venugopal H, Whisstock JC, & Dunstone MA (2018). The first transmembrane region of complement component-9 acts as a brake on its self-assembly.
Nat Commun 9 1:3266. PubMed Id: 30111885. doi:10.1038/s41467-018-05717-0. |
||
Lysenin Pore complex: Eisenia fetida B Bacteria (expressed in E. coli), 3.1 Å
cryo-EM structure |
Bokori-Brown et al. (2016).
Bokori-Brown M, Martin TG, Naylor CE, Basak AK, Titball RW, & Savva CG (2016). Cryo-EM structure of lysenin pore elucidates membrane insertion by an aerolysin family protein.
Nat Commun 7 :11293. PubMed Id: 27048994. doi:10.1038/ncomms11293. |
||
ILYml Cholesterol-dependent cytolysin, CD59-responsive: Streptococcus intermedius B Bacteria (expressed in E. coli), 2.89 Å
ILYml = monomer-locked via a disulfide. Bound to CD59D22A, 2.7 Å: 5IMT |
Lawrence et al. (2016).
Lawrence SL, Gorman MA, Feil SC, Mulhern TD, Kuiper MJ, Ratner AJ, Tweten RK, Morton CJ, & Parker MW (2016). Structural Basis for Receptor Recognition by the Human CD59-Responsive Cholesterol-Dependent Cytolysins.
Structure 24 :1488-1498. PubMed Id: 27499440. doi:10.1016/j.str.2016.06.017. |
||
VLYml Cholesterol-dependent cytolysin, CD-59 responsive, bound to CD59D22A: Gardnerella vaginalis B Bacteria (expressed in E. coli), 2.4 Å
VLYml = monomer locked via a disulfide |
Lawrence et al. (2016).
Lawrence SL, Gorman MA, Feil SC, Mulhern TD, Kuiper MJ, Ratner AJ, Tweten RK, Morton CJ, & Parker MW (2016). Structural Basis for Receptor Recognition by the Human CD59-Responsive Cholesterol-Dependent Cytolysins.
Structure 24 :1488-1498. PubMed Id: 27499440. doi:10.1016/j.str.2016.06.017. |
||
van Pee et al. (2017).
van Pee K, Neuhaus A, D'Imprima E, Mills DJ, Kühlbrandt W, & Yildiz Ö (2017). CryoEM structures of membrane pore and prepore complex reveal cytolytic mechanism of Pneumolysin.
Elife 6 :e23644. PubMed Id: 28323617. doi:10.7554/eLife.23644. |
|||
Epsilon toxin (Etx): Clostridium perfringens B Bacteria (expressed in E. coli), 3.2 Å
cryo-EM structure |
Savva et al. (2019).
Savva CG, Clark AR, Naylor CE, Popoff MR, Moss DS, Basak AK, Titball RW, & Bokori-Brown M (2019). The pore structure of Clostridium perfringens epsilon toxin.
Nat Commun 10 1. PubMed Id: 31201325. doi:10.1038/s41467-019-10645-8. |
||
Yamada et al. (2020).
Yamada T, Yoshida T, Kawamoto A, Mitsuoka K, Iwasaki K, & Tsuge H (2020). Cryo-EM structures reveal translocational unfolding in the clostridial binary iota toxin complex.
Nat Struct Mol Biol 27 3:288-296. PubMed Id: 32123390. doi:10.1038/s41594-020-0388-6. |
|||
Xu et al. (2020).
Xu X, Godoy-Ruiz R, Adipietro KA, Peralta C, Ben-Hail D, Varney KM, Cook ME, Roth BM, Wilder PT, Cleveland T, Grishaev A, Neu HM, Michel SLJ, Yu W, Beckett D, Rustandi RR, Lancaster C, Loughney JW, Kristopeit A, Christanti S, Olson JW, MacKerell AD, Georges AD, Pozharski E, & Weber DJ (2020). Structure of the cell-binding component of the Clostridium difficile binary toxin reveals a di-heptamer macromolecular assembly.
Proc Natl Acad Sci USA 117 2:1049-1058. PubMed Id: 31896582. doi:10.1073/pnas.1919490117. |
|||
Kawamoto et al. (2022).
Kawamoto A, Yamada T, Yoshida T, Sato Y, Kato T, & Tsuge H (2022). Cryo-EM structures of the translocational binary toxin complex CDTa-bound CDTb-pore from Clostridioides difficile.
Nat Commun 13 1:6119. PubMed Id: 36253419. doi:10.1038/s41467-022-33888-4. |
|||
De novo Designed β-barrel Membrane Proteins
β-barrel Proteins Designed from First Principles |
|||
de novo designed β-barrel TMB2.3: de novo designed U Unclassified (expressed in E. coli), NMR structure
de novo designed TMB2.17, crystal structure, 2.07 Å: 6X9Z |
Vorobieva et al. (2021).
Vorobieva AA, White P, Liang B, Horne JE, Bera AK, Chow CM, Gerben S, Marx S, Kang A, Stiving AQ, Harvey SR, Marx DC, Khan GN, Fleming KG, Wysocki VH, Brockwell DJ, Tamm LK, Radford SE, & Baker D (2021). De novo design of transmembrane β barrels.
Science 371 6531. PubMed Id: 33602829. doi:10.1126/science.abc8182. |
||
Beta-Barrel Membrane Proteins: Porins and Relatives
|
|||
Porin: Rhodobacter capsulatus B Bacteria, 1.8 Å
|
Weiss & Schulz (1992).
Weiss MS & Schulz GE (1992). Structure of porin refined at 1.8 Å resolution.
J. Mol. Biol. 227 :493-509. PubMed Id: 1328651. |
||
Porin: Rhodopeudomonas blastica B Bacteria, 1.96 Å
|
Kreusch & Schulz (1994).
Kreusch A & Schulz GE (1994). Refined structure of the porin from Rhodopseudomonas blastica. Comparison with the porin from Rhodobacter capsulatus.
J Mol Biol 243 :891-905. PubMed Id: 7525973. doi:10.1006/jmbi.1994.1690. See also: Kreusch et al. (1994). Kreusch A, Neubüser A, Schiltz E, Weckesser J, & Schulz GE (1994). Structure of the membrane channel porin from Rhodopseudomonas blastica at 2.0 Å resolution.
Protein Sci 3 :58-63. PubMed Id: 8142898. doi:10.1002/pro.5560030108. |
||
Porin, E1M/A116K Mutant: Rhodopseudomonas blastica B Bacteria (expressed in E. coli), 2.19 Å
E1M/E99W/A116W mutant, 1.93 Å: 2PRN E1M/A104W mutant, 1.90 Å: 3PRN E1M/Y96W/S119W mutant, 2.00 Å: 5PRN E1M/K50A/R52A mutant, 2.04 Å: 6PRN E1M/D97A/E99A mutant, 2.25 Å: 7PRN E1M/K50A/R52A/D97A/E99A mutant, 2.30 Å: 8PRN |
Schmid et al. (1998).
Schmid B, Maveyraud L, Krömer M, & Schulz GE (1998). Porin mutants with new channel properties.
Protein Sci 7 :1603-1611. PubMed Id: 9684893. doi:10.1002/pro.5560070714. |
||
Porin: Rhodopseudomonas blastica B Bacteria (expressed in E. coli), 3.00 Å
Positively charged peptide GGGGPKLAKMEKARGGGG inserted in periplasmic turn. |
Bannwarth & Schulz (2002).
Bannwarth M & Schulz GE (2002). Asymmetric conductivity of engineered porins.
Protein Eng 15 :799-804. PubMed Id: 12468713. doi:10.1093/protein/15.10.799. |
||
OmpK36 osmoporin: Klebsiella pneumoniae B Bacteria, 3.2 Å
|
Dutzler et al. (1999).
Dutzler R, Rummel G, Alberti S, Hernandez-Alles S, Phale P, Rosenbusch J, Benedi V, & Schirmer T (1999). Crystal structure and functional characterization of OmpK36, the osmoporin of Klebsiella pneumoniae.
Structure Fold. Des 7 :425-434. PubMed Id: 10196126. |
||
Wong et al. (2019).
Wong JLC, Romano M, Kerry LE, Kwong HS, Low WW, Brett SJ, Clements A, Beis K, & Frankel G (2019). OmpK36-mediated Carbapenem resistance attenuates ST258 Klebsiella pneumoniae in vivo.
Nat Commun 10 1. PubMed Id: 31477712. doi:10.1038/s41467-019-11756-y. |
|||
OmpK36 osmoporin, native-SAD structure determined at wavelength 4.13 Å: Klebsiella pneumoniae B Bacteria (expressed in E. coli), 2.70 Å
X-ray Structure |
El Omari et al. (2023).
El Omari K, Duman R, Mykhaylyk V, Orr CM, Latimer-Smith M, Winter G, Grama V, Qu F, Bountra K, Kwong HS, Romano M, Reis RI, Vogeley L, Vecchia L, Owen CD, Wittmann S, Renner M, Senda M, Matsugaki N, Kawano Y, Bowden TA, Moraes I, Grimes JM, Mancini EJ, Walsh MA, Guzzo CR, Owens RJ, Jones EY, Brown DG, Stuart DI, Beis K, & Wagner A (2023). Experimental phasing opportunities for macromolecular crystallography at very long wavelengths.
Commun Chem 6 1:219. PubMed Id: 37828292. doi:10.1038/s42004-023-01014-0. |
||
Omp32 anion-selective porin: Comamonas acidovorans B Bacteria, 2.1 Å
|
Zeth et al. (2000).
Zeth K, Diederichs K, Welte W, & Engelhardt H (2000). Crystal structure of Omp32, the anion-selective porin from Comamonas acidovorans, in complex with a periplasmic peptide at 2.1 A resolution.
Structure 8 :981-992. PubMed Id: 10986465. |
||
Zachariae et al. (2006).
Zachariae U, Kluhspies T, De S, Engelhardt H, & Zeth K (2006). High resolution crystal structures and molecular dynamics studies reveal substrate binding in the porin omp32.
J Biol Chem 281 :7413-7420. PubMed Id: 16434398. |
|||
OmpF Porin: Escherichia coli B Bacteria, 2.4 Å
Note: Also see BtuB with bound colicin E3 R-domain, below. |
Cowan et al. (1992).
Cowan SW, Schirmer T, Rummel G, Steiert M, Ghosh R, Pauptit RA, Jansonius JN, & Rosenbusch JP (1992). Crystal structures explain functional properties of two Escherichia coli porins.
Nature 358 :727-733. PubMed Id: 1380671. |
||
OmpF Porin from colicin-resistant E. coli: Escherichia coli B Bacteria, 3.00 Å
|
Jeanteur et al. (1994).
Jeanteur D, Schirmer T, Fourel D, Simonet V, Rummel G, Widmer C, Rosenbusch JP, Pattus F, & Pagès JM (1994). Structural and functional alterations of a colicin-resistant mutant of OmpF porin from Escherichia coli.
Proc Natl Acad Sci USA 91 :10675-10679. PubMed Id: 7524100. |
||
OmpF Porin: Escherichia coli B Bacteria, 3.20 Å
Tetragonal crystal form. |
Cowan et al. (1995).
Cowan SW, Garavito RM, Jansonius JN, Jenkins JA, Karlsson R, König N, Pai EF, Pauptit RA, Rizkallah PJ, Rosenbusch JP, Rummel G, & Schirmer T (1995). The structure of OmpF porin in a tetragonal crystal form.
Structure 3 :1041-1050. PubMed Id: 8589999. doi:10.1016/S0969-2126(01)00240-4. |
||
Lou et al. (1996).
Lou KL, Saint N, Prilipov A, Rummel G, Benson SA, Rosenbusch JP, & Schirmer T (1996). Structural and functional characterization of OmpF porin mutants selected for larger pore size. I. Crystallographic analysis.
J Biol Chem 271 :20669-20675. PubMed Id: 8702816. doi:10.1074/jbc.271.34.20669 . |
|||
OmpF Porin, D74A mutant: Escherichia coli B Bacteria (expressed in Escherichia coli B), 3.00 Å
|
Phale et al. (1998).
Phale PS, Philippsen A, Kiefhaber T, Koebnik R, Phale VP, Schirmer T, & Rosenbusch JP (1998). Stability of trimeric OmpF porin: the contributions of the latching loop L2.
Biochemistry 37 :15663-15670. PubMed Id: 9843370. doi:10.1021/bi981215c. |
||
Phale et al. (2001).
Phale PS, Philippsen A, Widmer C, Phale VP, Rosenbusch JP, & Schirmer T (2001). Role of charged residues at the OmpF porin channel constriction probed by mutagenesis and simulation.
Biochemistry 40 :6319-6325. PubMed Id: 11371193. doi:10.1021/bi010046k. |
|||
OmpF Porin: Escherichia coli B Bacteria, 1.6 Å
With inserted 83 residue N-terminal peptide of colicin E3, 3.0 Å: 2ZLD |
Yamashita et al. (2008).
Yamashita E, Zhalnina MV, Zakharov SD, Sharma O, & Cramer WA (2008). Crystal structures of the OmpF porin: function in a colicin translocon.
EMBO J 27 :2171-2180. PubMed Id: 18636093. |
||
OmpF porin with a synthetic dibenzo-18-crown-6: Escherichia coli B Bacteria, 3.40 Å
|
Reitz et al. (2009).
Reitz S, Cebi M, Reiss P, Studnik G, Linne U, Koert U, & Essen LO (2009). On the function and structure of synthetically modified porins.
Angew Chem Int Ed Engl 48 :4853-4857. PubMed Id: 19322865. doi:10.1002/anie.200900457. |
||
OmpF Porin in complex with colicin peptide OBS1: Escherichia coli B Bacteria, 3.01 Å
Shows colicin bound within porin lumen spanning the membrane bilayer |
Housden et al. (2010).
Housden NG, Wojdyla JA, Korczynska J, Grishkovskaya I, Kirkpatrick N, Brzozowski AM, & Kleanthous C. (2010). Directed epitope delivery across the Escherichia coli outer membrane through the porin OmpF.
Proc Natl Acad Sci USA 107 :21412-21417. PubMed Id: 21098297. |
||
OmpF Porin: Escherichia coli B Bacteria, 2.61 Å
Cation-selective pathway revealed by anomalous x-ray diffraction. Structure at 3.00 Å: 3HWB |
Dhakshnamoorthy et al. (2010).
Dhakshnamoorthy B, Raychaudhury S, Blachowicz L, & Roux B (2010). Cation-selective pathway of OmpF porin revealed by anomalous X-ray diffraction.
J Mol Biol 396 :293-300. PubMed Id: 19932117. doi:10.1016/j.jmb.2009.11.042. |
||
OmpF Porin in presence of foscholine-12: Escherichia coli B Bacteria, 3.79 Å
Structure at 4.39 Å: 3K1B |
Kefala et al. (2010).
Kefala G, Ahn C, Krupa M, Esquivies L, Maslennikov I, Kwiatkowski W, & Choe S (2010). Structures of the OmpF porin crystallized in the presence of foscholine-12.
Protein Sci 19 :1117-1125. PubMed Id: 20196071. doi:10.1002/pro.369. |
||
OmpF porin in lipidic cubic phase: Escherichia coli B Bacteria, 2.80 Å
|
Efremov & Sazanov (2012).
Efremov RG, & Sazanov LA (2012). Structure of Escherichia coli OmpF porin from lipidic mesophase.
J Struct Biol 178 3:311-318. PubMed Id: 22484237. doi:10.1016/j.jsb.2012.03.005. |
||
OmpF Porin: Escherichia coli B Bacteria, 3.5 Å
I2 space group |
Chaptal et al. (2016).
Chaptal V, Kilburg A, Flot D, Wiseman B, Aghajari N, Jault JM, & Falson P (2016). Two different centered monoclinic crystals of the E. coli outer-membrane protein OmpF originate from the same building block.
Biochim Biophy Acta 1858 :326-332. PubMed Id: 26620074. doi:10.1016/j.bbamem.2015.11.021. |
||
OmpF Porin: Escherichia coli B Bacteria, 2.54 Å
cryo-EM structure |
Su et al. (2021).
Su CC, Lyu M, Morgan CE, Bolla JR, Robinson CV, & Yu EW (2021). A 'Build and Retrieve' methodology to simultaneously solve cryo-EM structures of membrane proteins.
Nat Methods 18 1:69-75. PubMed Id: 33408407. doi:10.1038/s41592-020-01021-2. |
||
OmpF and BtuB Porin in complex with colicin E9 (colE9): Escherichia coli E Eukaryota, 4.70 Å
cryo-EM structure ColicinE9 partial translocation complex, 3.70 Å 7NST |
Francis et al. (2021).
Francis MR, Webby MN, Housden NG, Kaminska R, Elliston E, Chinthammit B, Lukoyanova N, & Kleanthous C (2021). Porin threading drives receptor disengagement and establishes active colicin transport through Escherichia coli OmpF.
EMBO J 40 21:e108610. PubMed Id: 34515361. doi:10.15252/embj.2021108610. |
||
Omp35 (OmpF): Enterobacter aerogenes B Bacteria (expressed in E. coli), 2.85 Å
|
Acosta-Gutiérrez et al. (2018).
Acosta-Gutiérrez S, Ferrara L, Pathania M, Masi M, Wang J, Bodrenko I, Zahn M, Winterhalter M, Stavenger RA, Pagès JM, Naismith JH, van den Berg B, Page MGP, & Ceccarelli M (2018). Getting Drugs into Gram-Negative Bacteria: Rational Rules for Permeation through General Porins.
ACS Infect Dis 4 10:1487-1498. PubMed Id: 29962203. doi:10.1021/acsinfecdis.8b00108. |
||
OmpF Porin: Salmonella typhi B Bacteria (expressed in E. coli), 2.79 Å
|
Balasubramaniam et al. (2012).
Balasubramaniam D, Arockiasamy A, Kumar PD, Sharma A, & Krishnaswamy S (2012). Asymmetric pore occupancy in crystal structure of OmpF porin from Salmonella typhi.
J Struc Biol 178 :233-244. PubMed Id: 22525817. doi:10.1016/j.jsb.2012.04.005. |
||
OmpE35 (OmpF): Enterobacter cloacae B Bacteria (expressed in E. coli), 2.3 Å
|
Acosta-Gutiérrez et al. (2018).
Acosta-Gutiérrez S, Ferrara L, Pathania M, Masi M, Wang J, Bodrenko I, Zahn M, Winterhalter M, Stavenger RA, Pagès JM, Naismith JH, van den Berg B, Page MGP, & Ceccarelli M (2018). Getting Drugs into Gram-Negative Bacteria: Rational Rules for Permeation through General Porins.
ACS Infect Dis 4 10:1487-1498. PubMed Id: 29962203. doi:10.1021/acsinfecdis.8b00108. |
||
OmpK35 (OmpF): Klebsiella pneumoniae B Bacteria (expressed in E. coli), 1.5 Å
|
Acosta-Gutiérrez et al. (2018).
Acosta-Gutiérrez S, Ferrara L, Pathania M, Masi M, Wang J, Bodrenko I, Zahn M, Winterhalter M, Stavenger RA, Pagès JM, Naismith JH, van den Berg B, Page MGP, & Ceccarelli M (2018). Getting Drugs into Gram-Negative Bacteria: Rational Rules for Permeation through General Porins.
ACS Infect Dis 4 10:1487-1498. PubMed Id: 29962203. doi:10.1021/acsinfecdis.8b00108. |
||
OmpC Osmoporin: Escherichia coli B Bacteria, 2.0 Å
|
Baslé et al. (2006).
Baslé A, Rummel G, Storici P, Rosenbusch J, & Schirmer T (2006). Crystal Structure of Osmoporin OmpC from E. coli at 2.0 Å.
J Mol Biol 362 :933-942. PubMed Id: 16949612. |
||
Lou et al. (2011).
Lou H, Chen M, Black SS, Bushell SR, Ceccarelli M, Mach T, Beis K, Low AS, Bamford VA, Booth IR, Bayley H, & Naismith JH (2011). Altered antibiotic transport in OmpC mutants isolated from a series of clinical strains of multi-drug resistant E. coli.
PLoS One 6 :e25825. PubMed Id: 22053181. doi:10.1371/journal.pone.0025825. |
|||
OmpC Osmoporin: Escherichia coli B Bacteria, 2.56 Å
cryo-EM structure |
Su et al. (2021).
Su CC, Lyu M, Morgan CE, Bolla JR, Robinson CV, & Yu EW (2021). A 'Build and Retrieve' methodology to simultaneously solve cryo-EM structures of membrane proteins.
Nat Methods 18 1:69-75. PubMed Id: 33408407. doi:10.1038/s41592-020-01021-2. |
||
OmpK36 (OmpC): Klebsiella pneumoniae B Bacteria (expressed in E. coli), 1.65 Å
|
Acosta-Gutiérrez et al. (2018).
Acosta-Gutiérrez S, Ferrara L, Pathania M, Masi M, Wang J, Bodrenko I, Zahn M, Winterhalter M, Stavenger RA, Pagès JM, Naismith JH, van den Berg B, Page MGP, & Ceccarelli M (2018). Getting Drugs into Gram-Negative Bacteria: Rational Rules for Permeation through General Porins.
ACS Infect Dis 4 10:1487-1498. PubMed Id: 29962203. doi:10.1021/acsinfecdis.8b00108. |
||
Omp36 (OmpC): Klebsiella aerogenes B Bacteria (expressed in E. coli), 2.47 Å
|
Acosta-Gutiérrez et al. (2018).
Acosta-Gutiérrez S, Ferrara L, Pathania M, Masi M, Wang J, Bodrenko I, Zahn M, Winterhalter M, Stavenger RA, Pagès JM, Naismith JH, van den Berg B, Page MGP, & Ceccarelli M (2018). Getting Drugs into Gram-Negative Bacteria: Rational Rules for Permeation through General Porins.
ACS Infect Dis 4 10:1487-1498. PubMed Id: 29962203. doi:10.1021/acsinfecdis.8b00108. |
||
OmpC homolog (OmpE36) with bound lipopolysaccharide (LPS): Enterobacter cloacae B Bacteria (expressed in E. coli), 1.45 Å
|
Arunmanee et al. (2016).
Arunmanee W, Pathania M, Solovyova AS, Le Brun AP, Ridley H, Baslé A, van den Berg B, & Lakey JH (2016). Gram-negative trimeric porins have specific LPS binding sites that are essential for porin biogenesis.
Proc Natl Acad Sci USA 113 34:E5034-E5043. PubMed Id: 27493217. doi:10.1073/pnas.1602382113. |
||
OmpG *monomeric* porin: Escherichia coli B Bacteria, 2.3 Å
|
Subbarao and van den Berg (2006).
Subbarao GV & van den Berg B (2006). Crystal structure of the monomeric porin OmpG.
J Mol Biol 360 :750-759. PubMed Id: 16797588. |
||
OmpG *monomeric* porin in open state: Escherichia coli B Bacteria, 2.3 Å
OmpG in closed state, 2.73 Å: 2IWW |
Yildiz et al. (2006).
Yildiz O, Vinothkumar KR, Goswami P, & Kuhlbrandt W (2006). Structure of the monomeric outer-membrane porin OmpG in the open and closed conformation.
EMBO J. 25 :3702-3713. PubMed Id: 16888630. |
||
OmpG *monomeric* porin: Escherichia coli B Bacteria, 2.18 Å
His231A/His261A mutant stable in open state |
Korkmaz-Ozkan et al. (2010).
Korkmaz-Özkan F, Köster S, Kühlbrandt W, Mäntele W, & Yildiz O (2010). Correlation between the OmpG secondary structure and its pH-dependent alterations monitored by FTIR.
J Mol Biol 401 :56-67. PubMed Id: 20561532. doi:10.1016/j.jmb.2010.06.015. |
||
OmpG *monomeric* porin: Escherichia coli B Bacteria, NMR Structure (DPC micelles)
|
Liang & Tamm (2007).
Liang B & Tamm LK (2007). Structure of outer membrane protein G by solution NMR Spectroscopy.
Proc Natl Acad Sci USA 104 :16140-16145. PubMed Id: 17911261. |
||
OmpG *monomeric* porin: Escherichia coli B Bacteria, solid-state NMR structure
protein embedded in E. coli lipid extracts |
Retel et al. (2017).
Retel JS, Nieuwkoop AJ, Hiller M, Higman VA, Barbet-Massin E, Stanek J, Andreas LB, Franks WT, van Rossum BJ, Vinothkumar KR, Handel L, de Palma GG, Bardiaux B, Pintacuda G, Emsley L, Kühlbrandt W, & Oschkinat H (2017). Structure of outer membrane protein G in lipid bilayers.
Nat Commun 8 1:2073. PubMed Id: 29233991. doi:10.1038/s41467-017-02228-2. |
||
OmpG ΔL6-ΔD215 mutant, "quiet" porin: Escherichia coli B Bacteria, NMR Structure
|
Sanganna Gari et al. (2019).
Sanganna Gari RR, Seelheim P, Liang B, & Tamm LK (2019). Quiet Outer Membrane Protein G (OmpG) Nanopore for Biosensing.
ACS Sens 4 5:1230-1235. PubMed Id: 30990011. doi:10.1021/acssensors.8b01645. |
||
Pathania et al. (2018).
Pathania M, Acosta-Gutierrez S, Bhamidimarri SP, Baslé A, Winterhalter M, Ceccarelli M, & van den Berg B (2018). Unusual Constriction Zones in the Major Porins OmpU and OmpT from Vibrio cholerae.
Structure 26 5:708-721.e4. PubMed Id: 29657131. doi:10.1016/j.str.2018.03.010. |
|||
OmpU: Vibrio cholerae B Bacteria (expressed in E. coli), 2.22 Å
|
Li et al. (2018).
Li H, Zhang W, & Dong C (2018). Crystal structure of the outer membrane protein OmpU from Vibrio cholerae at 2.2 Å resolution.
Acta Crystallogr D Struct Biol 74 :21-29. PubMed Id: 29372896. doi:10.1107/S2059798317017697. |
||
Pathania et al. (2018).
Pathania M, Acosta-Gutierrez S, Bhamidimarri SP, Baslé A, Winterhalter M, Ceccarelli M, & van den Berg B (2018). Unusual Constriction Zones in the Major Porins OmpU and OmpT from Vibrio cholerae.
Structure 26 5:708-721.e4. PubMed Id: 29657131. doi:10.1016/j.str.2018.03.010. |
|||
PhoE: Escherichia coli B Bacteria, 3.0 Å
|
Cowan et al. (1992).
Cowan SW, Schirmer T, Rummel G, Steiert M, Ghosh R, Pauptit RA, Jansonius JN, & Rosenbusch JP (1992). Crystal structures explain functional properties of two Escherichia coli porins.
Nature 358 :727-733. PubMed Id: 1380671. |
||
LamB Maltoporin: Salmonella typhimurium B Bacteria, 2.4 Å
|
Meyer et al. (1997).
Meyer JEW, Hofnung M, & Schulz GE (1997). Structure of maltoporin from Salmonella typhimurium ligated with a nitrophenyl-maltotrioside.
J. Mol. Biol 266 :761-775. PubMed Id: 9102468. |
||
LamB Maltoporin: Escherichia coli B Bacteria, 3.1 Å
|
Schirmer et al. (1995).
Schirmer T, Keller TA, Wang YF, & Rosenbusch JP (1995). Structural basis for sugar translocation through maltoporin channels at 3.1 Å resolution.
Science 267 :512-4. PubMed Id: 7824948. |
||
Dutzler et al. (1996).
Dutzler R, Wang YF, Rizkallah P, Rosenbusch JP, Schirmer T (1996). Crystal structures of various maltooligosaccharides bound to maltoporin reveal a specific sugar translocation pathway.
Structure 4 :127-134. PubMed Id: 8805519. |
|||
LamB Maltoporin in complex with sucrose: Escherichia coli B Bacteria, 2.4 Å
In complex with trehalose, 3.0 Å: 1MPQ |
Wang et al. (1997).
Wang YF, Dutzler R, Rizkallah PJ, Rosenbusch JP, & Schirmer T (1997). Channel specificity: structural basis for sugar discrimination and differential flux rates in maltoporin.
J Mol Biol 272 :56-63. PubMed Id: 9299337. |
||
ScrY sucrose-specific porin: Salmonella typhimurium B Bacteria, 2.4 Å
Complexed Form, 1A0T. Uncomplexed form, 1A0S. |
Forst et al. (1998).
Forst D, Welte W, Wacker T, & Diederichs K (1998). Structure of the sucrose-specific porin ScrY from Salmonella typhimurium and its complex with sucrose.
Nature Structural Biol 5 :37-46. PubMed Id: 9437428. |
||
MspA mycobacterial porin: Mycobacterium smegmatis B Bacteria, 2.5 Å
Homooctamer |
Faller et al. (2004).
Faller M, Niederweis M, & Schulz GE (2004). The structure of a mycobacterial outer-membrane channel.
Science 303 :1189-1192. PubMed Id: 14976314. |
||
OprB carbohydrate-specific transporter at high pH: Pseudomonas putida B Bacteria (expressed in E. coli), 2.70 Å
low-pH structure, 3.10 Å: 4GF4 |
van den Berg (2012).
van den Berg B (2012). Structural basis for outer membrane sugar uptake in pseudomonads.
J Biol Chem 287 :41044-41052. PubMed Id: 23066028. doi:10.1074/jbc.M112.408518. |
||
OprO diphosphate-specific transporter: Pseudomonas aeruginosa B Bacteria, 1.52 Å
F62Y/D114Y mutant, 1.54 Å: 4RJX |
Modi et al. (2015).
Modi N, Ganguly S, Bárcena-Uribarri I, Benz R, van den Berg B, & Kleinekathöfer U (2015). Structure, Dynamics, and Substrate Specificity of the OprO Porin from Pseudomonas aeruginosa.
Biophys J 109 :1429-1438. PubMed Id: 26445443. doi:10.1016/j.bpj.2015.07.035. |
||
OprP phosphate-specific transporter: Pseudomonas aeruginosa B Bacteria, 1.9 Å
Contains a novel nine-residue arginine ladder |
Moraes et al. (2007).
Moraes TF, Bains M, Hancock REW & Strynadka NCJ (2007). An arginine ladder in OprP mediates phosphate-specific transfer across the outer membrane.
Nature Struc Mol Biol 14 :85-87. PubMed Id: 17187075. |
||
PorB outer membrane protein, native structure: Neisseria meningitidis B Bacteria (expressed in E. coli), 2.30 Å
The second most common OMP of Neisseria, PorB is required for pathogenesis. Former 3A2R, 3A2T, and 3A2U superseded by 3VZT, 3VZW, and 3VZU, respectively. In complex with sucrose, 2.20 Å: 3A2S In complex with galactose, 3.20 Å: 3VZW In complex with AMP-PNP, 2.90 Å: 3ZVU |
Tanabe et al. (2010).
Tanabe M, Nimigean CM, & Iverson TM (2010). Structural basis for solute transport, nucleotide regulation, and immunological recognition of Neisseria meningitidis PorB.
Proc Natl Acad Sci USA 107 :6811-6816. PubMed Id: 20351243. |
||
PorB outer membrane protein: Neisseria meningitidis B Bacteria (expressed in E. coli), 3.32 Å
Loop 7 mutant, 2.40 Å: 3WI5 |
Kattner et al. (2014).
Kattner C, Toussi DN, Zaucha J, Wetzler LM, Rüppel N, Zachariae U, Massari P, & Tanabe M (2014). Crystallographic analysis of Neisseria meningitidis PorB extracellular loops potentially implicated in TLR2 recognition.
J Struct Biol 185 3:440-447. PubMed Id: 24361688. doi:10.1016/j.jsb.2013.12.006. |
||
PorB outer membrane protein, G103K mutant: Neisseria meningitidis B Bacteria (expressed in E. coli), 2.76 Å
|
Bartsch et al. (2021).
Bartsch A, Ives CM, Kattner C, Pein F, Diehn M, Tanabe M, Munk A, Zachariae U, Steinem C, & Llabrás S (2021). An antibiotic-resistance conferring mutation in a neisserial porin: Structure, ion flux, and ampicillin binding.
Biochim Biophys Acta Biomembr 1863 6:183601. PubMed Id: 33675718. doi:10.1016/j.bbamem.2021.183601. |
||
PorB outer membrane protein: Neisseria gonorrhoeae B Bacteria, 3.20 Å
|
Zeth et al. (2013).
Zeth K, Kozjak-Pavlovic V, Faulstich M, Fraunholz M, Hurwitz R, Kepp O, & Rudel T (2013). Structure and function of the PorB porin from disseminating Neisseria gonorrhoeae.
Biochem J 449 3:631-642. PubMed Id: 23095086. doi:10.1042/BJ20121025. |
||
KdgM *monomeric* porin in complex with disordered oligogalacturonate, wild-type: Dickeya dadantii B Bacteria (expressed in E. coli), 2.10 Å
K161S mutant in complex with disordered oligogalacturonate, 2.10 Å: 4PR7 |
Hutter et al. (2014).
Hutter CA, Lehner R, Wirth Ch, Condemine G, Peneff C, & Schirmer T (2014). Structure of the oligogalacturonate-specific KdgM porin.
Acta Crystallogr. D Biol. Crystallogr. 70 :1770-1778. PubMed Id: 24914987. doi:10.1107/S1399004714007147. |
||
van den Berg et al. (2015).
van den Berg B, Prathyusha Bhamidimarri S, Dahyabhai Prajapati J, Kleinekathöfer U, & Winterhalter M (2015). Outer-membrane translocation of bulky small molecules by passive diffusion.
Proc Natl Acad Sci USA 112 :E2991-E2999. PubMed Id: 26015567. doi:10.1073/pnas.1424835112. |
|||
COG4313 outer membrane channel: Pseudomonas putida B Bacteria (expressed in E. coli), 2.30 Å
|
van den Berg et al. (2015).
van den Berg B, Bhamidimarri SP, & Winterhalter M (2015). Crystal structure of a COG4313 outer membrane channel.
Sci Rep 5 :11927. PubMed Id: 26149193. doi:10.1038/srep11927. |
||
OprG outer membrane amino acid transporter: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), NMR structure
P92A mutant, NMR structure: 2N6P |
Kucharska et al. (2015).
Kucharska I, Seelheim P, Edrington T, Liang B, & Tamm LK (2015). OprG Harnesses the Dynamics of its Extracellular Loops to Transport Small Amino Acids across the Outer Membrane of Pseudomonas aeruginosa.
Structure 23 :2234-2245. PubMed Id: 26655471. doi:10.1016/j.str.2015.10.009. |
||
MOMP major outer membrane protein: Campylobacter jejuni (expressed in E. coli), 2.1 Å
expressed in C. jejuni, 2.88 Å: 5LDT |
Ferrara et al. (2016).
Ferrara LG, Wallat GD, Moynié L, Dhanasekar NN, Aliouane S, Acosta-Gutiérrez S, Pagès JM, Bolla JM, Winterhalter M, Ceccarelli M, & Naismith JH (2016). MOMP from Campylobacter jejuni Is a Trimer of 18-Stranded β-Barrel Monomers with a Ca2+ Ion Bound at the Constriction Zone.
J Mol Biol 428 :4528-4543. PubMed Id: 27693650. doi:10.1016/j.jmb.2016.09.021. |
||
Omp-Pst1 type-A porin: Providencia stuartii B Bacteria (expressed in E. coli), 3.2 Å
Structures reveal that these porins can self-associate to form dimers of trimers Omp-Pst1 type-B, 2.7 Å: 5NXR Omp-Pst1 type-B in complex with maltose, 3 Å: 5NXU Omp-Pst2 reveals dimer of trimers, 2.2 Å: 4D65 283-LGNY-286, steric zipper that supports dimerization of Pst2, 0.997 Å: 5N9H 206-GVVTSE-211 steric zipper that supports dimerization of Pst1, 1.91 Å: 5N9I Pst1 L5 deletion, 3.12 Å: 5NXN |
El-Khatib et al. (2018).
El-Khatib M, Nasrallah C, Lopes J, Tran QT, Tetreau G, Basbous H, Fenel D, Gallet B, Lethier M, Bolla JM, Pagès JM, Vivaudou M, Weik M, Winterhalter M, & Colletier JP (2018). Porin self-association enables cell-to-cell contact inProvidencia stuartiifloating communities.
Proc Natl Acad Sci USA 115 10:E2220-E2228. PubMed Id: 29476011. doi:10.1073/pnas.1714582115. |
||
Aunkham et al. (2018).
Aunkham A, Zahn M, Kesireddy A, Pothula KR, Schulte A, Baslá A, Kleinekathöfer U, Suginta W, & van den Berg B (2018). Structural basis for chitin acquisition by marine Vibrio species.
Nat Commun 9 1. PubMed Id: 29335469. doi:10.1038/s41467-017-02523-y. |
|||
Rouse et al. (2017).
Rouse SL, Hawthorne WJ, Berry JL, Chorev DS, Ionescu SA, Lambert S, Stylianou F, Ewert W, Mackie U, Morgan RML, Otzen D, Herbst FA, Nielsen PH, Dueholm M, Bayley H, Robinson CV, Hare S, & Matthews S (2017). A new class of hybrid secretion system is employed in Pseudomonas amyloid biogenesis.
Nat Commun 8 1. PubMed Id: 28811582. doi:10.1038/s41467-017-00361-6. |
|||
DcaP outer membrane channel: Acinetobacter baumannii B Bacteria (expressed in E. coli), 2.2 Å
|
Bhamidimarri et al. (2019).
Bhamidimarri SP, Zahn M, Prajapati JD, Schleberger C, Söderholm S, Hoover J, West J, Kleinekathöfer U, Bumann D, Winterhalter M, & van den Berg B (2019). A Multidisciplinary Approach toward Identification of Antibiotic Scaffolds for Acinetobacter baumannii.
Structure 27 2:268-280.e6. PubMed Id: 30554842. doi:10.1016/j.str.2018.10.021. |
||
MtrAB electron transporter complex: Shewanella baltica B Bacteria (expressed in Shewanella oneidensis), 2.70 Å
MtrC, 2.29 Å: 6QYC |
Edwards et al. (2020).
Edwards MJ, White GF, Butt JN, Richardson DJ, & Clarke TA (2020). The Crystal Structure of a Biological Insulated Transmembrane Molecular Wire.
Cell 181 3:665-673.e10. PubMed Id: 32289252. doi:10.1016/j.cell.2020.03.032. |
||
Outer Membrane Carboxylate Channels (Occ)
These outer membrane proteins require substrates to have a carboxyl group for efficient transport. OccD channels are selective for basic amino acids. OccK channels prefer cyclic substrates. See Eren et al. (2012). |
|||
OccD1 (OprD) basic amino acid uptake channel: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 2.9 Å
|
Biswas et al. (2007).
Biswas S, Mohammad MM, Patel DR, Movileanu L, & van den Berg B (2007). Structural insight into OprD substrate specificity.
Nature Struct Mol Biol 14 :1108-1109. PubMed Id: 17952093. |
||
OccD1 (OprD) basic amino acid uptake channel: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 2.15 Å
|
Eren et al. (2012).
Eren E, Vijayaraghavan J, Liu J, Cheneke BR, Touw DS, Lepore BW, Indic M, Movileanu L, & van den Berg B (2012). Substrate Specificity within a Family of Outer Membrane Carboxylate Channels.
PLoS Biol 10 :e1001242. PubMed Id: 22272184. doi:10.1371/journal.pbio.1001242. |
||
OccD2 (OpdC) basic amino acid uptake channel: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 2.80 Å
|
Eren et al. (2012).
Eren E, Vijayaraghavan J, Liu J, Cheneke BR, Touw DS, Lepore BW, Indic M, Movileanu L, & van den Berg B (2012). Substrate Specificity within a Family of Outer Membrane Carboxylate Channels.
PLoS Biol 10 :e1001242. PubMed Id: 22272184. doi:10.1371/journal.pbio.1001242. |
||
OccD3 (OpdP) basic amino acid uptake channel: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 2.70 Å
|
Eren et al. (2012).
Eren E, Vijayaraghavan J, Liu J, Cheneke BR, Touw DS, Lepore BW, Indic M, Movileanu L, & van den Berg B (2012). Substrate Specificity within a Family of Outer Membrane Carboxylate Channels.
PLoS Biol 10 :e1001242. PubMed Id: 22272184. doi:10.1371/journal.pbio.1001242. |
||
OccK1 (OpdK) benzoate channel: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 2.8 Å
Binds vanillate. Forms labile trimer. |
Biswas et al. (2008).
Biswas S, Mohammad MM, Movileanu L, & van den Berg B (2008). Crystal structure of the outer membrane protein OpdK from Pseudomonas aeruginosa.
Structure 16 :1027-1035. PubMed Id: 18611376. |
||
OccK1 (OpdK) benzoate channel: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 1.65 Å
|
Eren et al. (2012).
Eren E, Vijayaraghavan J, Liu J, Cheneke BR, Touw DS, Lepore BW, Indic M, Movileanu L, & van den Berg B (2012). Substrate Specificity within a Family of Outer Membrane Carboxylate Channels.
PLoS Biol 10 :e1001242. PubMed Id: 22272184. doi:10.1371/journal.pbio.1001242. |
||
OccK2 (OpdF) glucuronate channel: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 2.30 Å
|
Eren et al. (2012).
Eren E, Vijayaraghavan J, Liu J, Cheneke BR, Touw DS, Lepore BW, Indic M, Movileanu L, & van den Berg B (2012). Substrate Specificity within a Family of Outer Membrane Carboxylate Channels.
PLoS Biol 10 :e1001242. PubMed Id: 22272184. doi:10.1371/journal.pbio.1001242. |
||
OccK3 (OpdO) aromatic hydrocarbon channel: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 1.45 Å
|
Eren et al. (2012).
Eren E, Vijayaraghavan J, Liu J, Cheneke BR, Touw DS, Lepore BW, Indic M, Movileanu L, & van den Berg B (2012). Substrate Specificity within a Family of Outer Membrane Carboxylate Channels.
PLoS Biol 10 :e1001242. PubMed Id: 22272184. doi:10.1371/journal.pbio.1001242. |
||
OccK4 (OpdL) aromatic hydrocarbon channel: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 2.10 Å
|
Eren et al. (2012).
Eren E, Vijayaraghavan J, Liu J, Cheneke BR, Touw DS, Lepore BW, Indic M, Movileanu L, & van den Berg B (2012). Substrate Specificity within a Family of Outer Membrane Carboxylate Channels.
PLoS Biol 10 :e1001242. PubMed Id: 22272184. doi:10.1371/journal.pbio.1001242. |
||
OccK5 (OpdH) aromatic hydrocarbon channel: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 2.60 Å
|
Eren et al. (2012).
Eren E, Vijayaraghavan J, Liu J, Cheneke BR, Touw DS, Lepore BW, Indic M, Movileanu L, & van den Berg B (2012). Substrate Specificity within a Family of Outer Membrane Carboxylate Channels.
PLoS Biol 10 :e1001242. PubMed Id: 22272184. doi:10.1371/journal.pbio.1001242. |
||
OccK6 (OpdQ) aromatic hydrocarbon channel: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 2.35 Å
|
Eren et al. (2012).
Eren E, Vijayaraghavan J, Liu J, Cheneke BR, Touw DS, Lepore BW, Indic M, Movileanu L, & van den Berg B (2012). Substrate Specificity within a Family of Outer Membrane Carboxylate Channels.
PLoS Biol 10 :e1001242. PubMed Id: 22272184. doi:10.1371/journal.pbio.1001242. |
||
BenF-like Porin (putative) benzoate channel: Pseudomonas fluorescens B Bacteria, 2.60 Å
Probably belongs to OccK subfamily |
Sampathkumar et al. (2010).
Sampathkumar P, Lu F, Zhao X, Li Z, Gilmore J, Bain K, Rutter ME, Gheyi T, Schwinn KD, Bonanno JB, Pieper U, Fajardo JE, Fiser A, Almo SC, Swaminathan S, Chance MR, Baker D, Atwell S, Thompson DA, Emtage JS, Wasserman SR, Sali A, Sauder JM, &Burley SK (2010). Structure of a putative BenF-like porin from Pseudomonas fluorescens Pf-5 at 2.6 Å resolution.
Proteins 78 :3056-3062. PubMed Id: 20737437. |
||
OccAB1 outer membrane channel: Acinetobacter baumannii B Bacteria (expressed in E. coli), 2.05 Å
|
Zahn et al. (2016).
Zahn M, Bhamidimarri SP, Baslé A, Winterhalter M, & van den Berg B (2016). Structural Insights into Outer Membrane Permeability of Acinetobacter baumannii.
Structure 24 :221-231. PubMed Id: 26805524. doi:10.1016/j.str.2015.12.009. |
||
OccAB2 outer membrane channel: Acinetobacter baumannii B Bacteria (expressed in E. coli), 2.9 Å
|
Zahn et al. (2016).
Zahn M, Bhamidimarri SP, Baslé A, Winterhalter M, & van den Berg B (2016). Structural Insights into Outer Membrane Permeability of Acinetobacter baumannii.
Structure 24 :221-231. PubMed Id: 26805524. doi:10.1016/j.str.2015.12.009. |
||
OccAB3 outer membrane channel: Acinetobacter baumannii B Bacteria (expressed in E. coli), 1.75 Å
|
Zahn et al. (2016).
Zahn M, Bhamidimarri SP, Baslé A, Winterhalter M, & van den Berg B (2016). Structural Insights into Outer Membrane Permeability of Acinetobacter baumannii.
Structure 24 :221-231. PubMed Id: 26805524. doi:10.1016/j.str.2015.12.009. |
||
OccAB4 outer membrane channel: Acinetobacter baumannii B Bacteria (expressed in E. coli), 2.2 Å
|
Zahn et al. (2016).
Zahn M, Bhamidimarri SP, Baslé A, Winterhalter M, & van den Berg B (2016). Structural Insights into Outer Membrane Permeability of Acinetobacter baumannii.
Structure 24 :221-231. PubMed Id: 26805524. doi:10.1016/j.str.2015.12.009. |
||
Beta-Barrel Membrane Proteins: Monomeric/Dimeric
|
|||
TolC outer membrane protein: Escherichia coli B Bacteria, 2.1 Å
NOTE: Functional protein is a homotrimer. Each monomer contributes 4 strands to a single barrel. |
Koronakis et al. (2000).
Koronakis V, Sharff A, Koronakis E, Luisi B, & Hughes C (2000). Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export.
Nature 405 :914-919. PubMed Id: 10879525. |
||
TolC outer membrane protein, ligand blocked: Escherichia coli B Bacteria, 2.75 Å
|
Higgins et al. (2004).
Higgins MK, Eswaran J, Edwards P, Schertler GF, Hughes C, & Koronakis V (2004). Structure of the ligand-blocked periplasmic entrance of the bacterial multidrug efflux protein TolC.
J Mol Biol 342 :697-702. PubMed Id: 15342230. |
||
TolC outer membrane protein (Y362F, R367E), partially open state: Escherichia coli B Bacteria, 3.2 Å
2VDE is P212121 form. C2 form, 3.30 Å: 2VDD |
Bavro et al. (2008).
Bavro VN, Pietras Z, Furnham N, Pérez-Cano L, Fernández-Recio J, Pei XY, Misra R, & Luisi B (2008). Assembly and channel opening in a bacterial drug efflux machine.
Mol Cell 30 :114-121. PubMed Id: 18406332. |
||
TolC outer membrane protein in a nanodisc with colicin E1 fragment: Escherichia coli B Bacteria, 3.09 Å
cryo-EM structure TolC alone, 2.84 Å 6WXI |
Budiardjo et al. (2022).
Budiardjo SJ, Stevens JJ, Calkins AL, Ikujuni AP, Wimalasena VK, Firlar E, Case DA, Biteen JS, Kaelber JT, & Slusky JSG (2022). Colicin E1 opens its hinge to plug TolC.
Elife 11 :e73297. PubMed Id: 35199644. doi:10.7554/eLife.73297. |
||
Housden et al. (2021).
Housden NG, Webby MN, Lowe ED, El-Baba TJ, Kaminska R, Redfield C, Robinson CV, & Kleanthous C (2021). Toxin import through the antibiotic efflux channel TolC.
Nat Commun 12 1:4625. PubMed Id: 34330923. doi:10.1038/s41467-021-24930-y. |
|||
CmeC bacterial multi-drug efflux transporter outer membrane channel: Campylobacter jejuni B Bacteria, 2.37 Å
|
Su et al. (2014).
Su CC, Radhakrishnan A, Kumar N, Long F, Bolla JR, Lei HT, Delmar JA, Do SV, Chou TH, Rajashankar KR, Zhang Q, & Yu EW (2014). Crystal structure of the Campylobacter jejuni CmeC outer membrane channel.
Protein Sci 23 7:954-961. PubMed Id: 24753291. doi:10.1002/pro.2478. |
||
VceC outer membrane protein: Vibrio cholerae B Bacteria, 1.8 Å
NOTE: Functional protein is a homotrimer. Each monomer contributes 4 strands to a single barrel. |
Federici et al. (2005).
Federici L, Du D, Walas F, Matsumura H, Fernandez-Recio J, McKeegan KS, Borges-Walmsley MI, Luisi BF, & Walmsley AR (2005). The Crystal Structure of the Outer Membrane Protein VceC from the Bacterial Pathogen Vibrio cholerae at 1.8 A Resolution.
J Biol Chem 280 :15307-15314. PubMed Id: 15684414. |
||
OprM drug discharge outer membrane protein: Pseudomonas aeruginosa B Bacteria, 2.56 Å
Functional protein is a homotrimer. Each monomer contributes 4 strands to a single barrel. H32 space group. OprM is the discharge channel for the tripartite efflux complex MexAB-OprM. The structures of MexB (the inner membrane efflux pump) and MexA (periplasmic fusion protein) are known. See 2V50 and 1T5E, respectively. See 6IOK for structure of entire complex. |
Akama et al. (2004).
Akama H, Kanemaki M, Yoshimura M, Tsukihara T, Kashiwagi T, Yoneyama H, Narita S, Nakagawa A, & Nakae T (2004). Crystal structure of the drug discharge outer membrane protein, OprM, of Pseudomonas aeruginosa: dual modes of membrane anchoring and occluded cavity end.
J Biol Chem 279 :52816-52819. PubMed Id: 15507433. |
||
OprM drug discharge outer membrane protein: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 2.40 Å
Structure of OprM in a non-symmetrical space group, P212121 |
Phan et al. (2010).
Phan G, Benabdelhak H, Lascombe MB, Benas P, Rety S, Picard M, Ducruix A, Etchebest C, & Broutin I (2010). Structural and dynamical insights into the opening mechanism of P. aeruginosa OprM channel.
Structure 18 :507-517. PubMed Id: 20399187. |
||
OprN drug discharge outer membrane protein, I4 space group: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 1.69 Å
P321 space group, 2.70 Å: 5AZP |
Yonehara et al. (2016).
Yonehara R, Yamashita E, & Nakagawa A (2016). Crystal structures of OprN and OprJ, outer membrane factors of multidrug tripartite efflux pumps of Pseudomonas aeruginosa.
Proteins 84 6:759-769. PubMed Id: 26914226. doi:10.1002/prot.25022. |
||
OprJ drug discharge outer membrane protein: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 3.10 Å
|
Yonehara et al. (2016).
Yonehara R, Yamashita E, & Nakagawa A (2016). Crystal structures of OprN and OprJ, outer membrane factors of multidrug tripartite efflux pumps of Pseudomonas aeruginosa.
Proteins 84 6:759-769. PubMed Id: 26914226. doi:10.1002/prot.25022. |
||
ST50 discharge outer membrane protein: Salmonella enterica B Bacteria (expressed in E. coli), 2.98 Å
Functional protein is a homotrimer. Each monomer contributes 4 strands to a single barrel. |
Guan et al. (2015).
Guan HH, Yoshimura M, Chuankhayan P, Lin CC, Chen NC, Yang MC, Ismail A, Fun HK, & Chen CJ (2015). Crystal structure of an antigenic outer-membrane protein from Salmonella Typhi suggests a potential antigenic loop and an efflux mechanism.
Sci Rep 5 :16441. PubMed Id: 26563565. doi:10.1038/srep16441. |
||
CusC heavy metal discharge outer membrane protein: Escherichia coli B Bacteria, 2.30 Å
NOTE: Functional protein is a homotrimer. Each monomer contributes 4 strands to a single barrel. H32 space group. |
Kulathila et al. (2011).
Kulathila R, Kulathila R, Indic M, & van den Berg B (2011). Crystal structure of Escherichia coli CusC, the outer membrane component of a heavy metal efflux pump.
PLoS One 6 :e15610. PubMed Id: 21249122. doi:10.1371/journal.pone.0015610. |
||
Lei et al. (2014).
Lei HT, Bolla JR, Bishop NR, Su CC, & Yu EW (2014). Crystal Structures of CusC Review Conformational Changes Accompanying Folding and Transmembrane Channel Formation.
J Mol Biol 426 :403-411. PubMed Id: 24099674. doi:10.1016/j.jmb.2013.09.042. |
|||
Chimento et al. (2003).
Chimento DP, Mohanty AK, Kadner RJ, & Wiener MC (2003). Substrate-induced transmembrane signaling in the cobalamin transporter BtuB.
Nat Struct Biol. 10 :394-401. PubMed Id: 12652322. |
|||
BtuB with bound colicin E3 R-domain: Escherichia coli B Bacteria, 2.75 Å
NOTE: The 135-residue coiled-coil R-domain is believed to deliver the colicin to OmpF (above). |
Kurisu et al. (2003).
Kurisu G, Zakharov SD, Zhalnina MV, Bano S, Eroukova VY, Rokitskaya TI, Antonenko YN, Wiener MC, & Cramer WA (2003). The structure of BtuB with bound colicin E3 R-domain implies a translocon.
Nat. Struct. Biol. 10 :948-954. PubMed Id: 14528295. |
||
apo BtuB by in meso crystallization: Escherichia coli B Bacteria, 1.95 Å
NOTE: Crystals were prepared from cubic phase lipids. This is the first β-barrel protein prepared by this method. |
Cherezov et al. (2006).
Cherezov V, Yamashita E, Liu W, Zhalnina M, Cramer WA & Caffrey M (2006). In meso structure of the cobalamin transporter, BtuB, at 1.95 Å resolution.
J Mol Biol 364 :716-734. PubMed Id: 17028020. |
||
BtuB in complex with TonB: Escherichia coli B Bacteria, 2.1 Å
|
Shultis et al. (2006).
Shultis DD, Purdy MD, Banchs CN, & Wiener MC (2006). Outer membrane active transport: structure of the BtuB:TonB complex.
Science 312 :1396-1399. PubMed Id: 16741124. |
||
BtuB with bound colicin E2 R-domain: Escherichia coli B Bacteria, 3.50 Å
|
Sharma et al. (2007).
Sharma O, Yamashita E, Zhalnina MV, Zakharov SD, Datsenko KA, Wanner BL, & Cramer WA (2007). Structure of the complex of the colicin E2 R-domain and its BtuB receptor. The outer membrane colicin translocon.
J Biol Chem 282 :23163-23170. PubMed Id: 17548346. |
||
apo BtuB V10R1 spin-labeled: Escherichia coli B Bacteria, 2.44 Å
Spin-labeled BtuB V10R1 with bound calcium and cyanocobalamin, 2.44 Å: 3M8D |
Freed et al. (2010).
Freed DM, Horanyi PS, Wiener MC, & Cafiso DS (2010). Conformational exchange in a membrane transport protein is altered in protein crystals.
Biophys J 99 :1604-1610. PubMed Id: 20816073. doi:10.1016/j.bpj.2010.06.026. |
||
Colicin I receptor Cir in complex with Colicin Ia binding domain: Escherichia coli B Bacteria, 2.5 Å
Cir Colicin I receptor alone, 2.65 Å: 2HDF |
Buchanan et al. (2007).
Buchanan S, Lukacik P, Grizot S, Ghirlando R, Ali MMU, Barnard TJ, Jakes S, Kienker PK, & Esser L. (2007). Structure of colicin I receptor bound to the R-domain of colicin Ia: Implications for protein import.
EMBO J 26 :2594-2604. PubMed Id: 17464289. |
||
OmpA: Escherichia coli B Bacteria, 2.50 Å
|
Pautsch & Schulz (1998).
Pautsch A & Schulz GE (1998). Structure of the outer membrane protein A transmembrane domain.
Nature Struct Biol 5 :1013-1017. PubMed Id: 9808047. |
||
OmpA: Escherichia coli B Bacteria, 1.60 Å
|
Pautsch & Schulz (2000).
Pautsch A & Schulz GE (2000). High-resolution structure of the OmpA membrane domain.
J Mol Biol 298 :273-282. PubMed Id: 10764596. |
||
OmpA: Escherichia coli B Bacteria, NMR Structure
in DPC micelles |
Arora et al. (2001).
Arora A, Abildgaard F, Bushweller JH, & Tamm LK (2001). Structure of outer membrane protein A transmembrane domain by NMR spectroscopy.
Nature Structural Biol. 8 :334-338. PubMed Id: 11276254. |
||
OmpA: Escherichia coli B Bacteria, NMR structure
DPC micelles. High-resolution structure determined using residual dipolar couplings. |
Cierpicki et al. (2006).
Cierpicki T, Liang B, Tamm LK, & Bushweller JH (2006). Increasing the accuracy of solution NMR structures of membrane proteins by application of residual dipolar couplings. High-resolution structure of outer membrane protein A.
J Am Chem Soc 128 :6947-6951. PubMed Id: 16719475. |
||
OmpA with four shortened loops: Escherichia coli B Bacteria, NMR Structure
DHPC micelles. Called β-barrel platform (BBP). |
Johansson et al. (2007).
Johansson MU, Alioth S, Hu K, Walser R, Koebnik R, & Pervushin K (2007). A minimal transmembrane β-barrel platform protein studied by nuclear magnetic resonance.
Biochemistry 46 :1128-1140. PubMed Id: 17260943. |
||
OmpA: Klebsiella pneumoniae B Bacteria (expressed in E. coli), NMR Structure
DHPC micelles |
Renault et al. (2009).
Renault M, Saurel O, Czaplicki J, Demange P, Gervais V, Löhr F, Réat V, Piotto M, & Milon A (2009). Solution state NMR structure and dynamics of KpOmpA, a 210 residue transmembrane domain possessing a high potential for immunological applications
J Mol Biol 385 :117-130. PubMed Id: 18952100. doi:10.1016/j.jmb.2008.10.021. |
||
OmpT outer membrane protease: Escherichia coli B Bacteria, 2.6 Å
|
Vandeputte-Rutten et al. (2001).
Vandeputte-Rutten L, Kramer RA, Kroon J, Dekker N, Egmond, MR, & Gros P (2001). Crystal structure of the outer membrane protease OmpT from Eschericia coli suggests a novel catalytic site.
EMBO J 20 :5033-5039. PubMed Id: 11566868. |
||
Eren et al. (2010).
Eren E, Murphy M, Goguen J, & van den Berg B. (2010). An active site water network in the plasminogen activator Pla from Yersinia pestis.
Structure 18 :809-818. PubMed Id: 20637417. |
|||
OmpW outer membrane protein: Escherichia coli B Bacteria, 2.7 Å
2F1V is orthorhomibic form. Trigonal form, 3.0 Å: 2F1T |
Hong et al. (2006).
Hong H, Patel DR, Tamm LK, & van den Berg B (2006). The Outer Membrane Protein OmpW Forms an Eight-stranded beta-Barrel with a Hydrophobic Channel.
J Biol Chem 281 :7568-7577. PubMed Id: 16414958. |
||
OmpW outer membrane protein: Escherichia coli B Bacteria, NMR structure
30-Fos detergent |
Horst et al. (2014).
Horst R, Stanczak P, & Wüthrich K (2014). NMR polypeptide backbone conformation of the E. coli outer membrane protein W.
Structure 22 :1204-1209. PubMed Id: 25017731. doi:10.1016/j.str.2014.05.016. |
||
AlkL passive importer of hydrophobic molecules in DMPC lipid bilayer: Pseudomonas oleovorans B Bacteria (expressed in E. coli), NMR structure
Solution NMR structure, 6QAM |
Schubeis et al. (2020).
Schubeis T, Le Marchand T, Daday C, Kopec W, Tekwani Movellan K, Stanek J, Schwarzer TS, Castiglione K, de Groot BL, Pintacuda G, & Andreas LB (2020). A β-barrel for oil transport through lipid membranes: Dynamic NMR structures of AlkL.
Proc Natl Acad Sci USA 117 35:21014-21021. PubMed Id: 32817429. doi:10.1073/pnas.2002598117. |
||
Zahn et al. (2015).
Zahn M, D'Agostino T, Eren E, Baslé A, Ceccarelli M, & van den Berg B (2015). Small-Molecule Transport by CarO, an Abundant Eight-Stranded β-Barrel Outer Membrane Protein from Acinetobacter baumannii.
J Mol Biol 427 :2329-2339. PubMed Id: 25846137. doi:10.1016/j.jmb.2015.03.016. |
|||
OprF outer membrane protein, N-terminal β-barrel domain: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 1.6 Å
|
Zahn et al. (2015).
Zahn M, D'Agostino T, Eren E, Baslé A, Ceccarelli M, & van den Berg B (2015). Small-Molecule Transport by CarO, an Abundant Eight-Stranded β-Barrel Outer Membrane Protein from Acinetobacter baumannii.
J Mol Biol 427 :2329-2339. PubMed Id: 25846137. doi:10.1016/j.jmb.2015.03.016. |
||
OprG outer membrane protein: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 2.4 Å
Potential channel for hydrophobic molecule transport |
Touw et al. (2010).
Touw DS, Patel DR, & van den Berg B (2010). The crystal structure of OprG from Pseudomonas aeruginosa, a potential channel for transport of hydrophobic molecules across the outer membrane.
PLoS One 5 :e15016. PubMed Id: 21124774. doi:10.1371/journal.pone.0015016. |
||
OprH, outer membrane protein H: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), NMR Structure
Structure determined in DHPC micelles. Eight strands. Chemical-shift measurements identify likely lipopolysaccharide interaction sites. |
Edrington et al. (2011).
Edrington TC, Kintz E, Goldberg JB, & Tamm LK (2011). Structural Basis for the Interaction of Lipopolysaccharide with Outer Membrane Protein H (OprH) from Pseudomonas aeruginosa
J Biol Chem 286 :39211-39223. PubMed Id: 21865172. doi:10.1074/jbc.M111.280933. |
||
Vogt & Schulz (1999).
Vogt J & Schulz GE (1999). The structure of the outer membrane protein OmpX from Escherichia coli reveals possible mechanisms of virulence.
Structure Fold.Des. 7 :1301-1309. PubMed Id: 10545325. |
|||
OmpX: Escherichia coli B Bacteria, NMR (DHPC micelles)
|
Fernández et al. (2001).
Fernández C, Adeishvili K, & Wüthrich K (2001). Transverse relaxation-optimized NMR spectroscopy with the outer membrane protein OmpX in dihexanoyl phosphatidylcholine micelles.
Proc Natl Acad Sci USA 98 :2358-2363. PubMed Id: 11226244. |
||
OmpX: Escherichia coli B Bacteria, NMR (DPC micelles, with H-bond constraints)
For structure without H-bond constraints, see 1Q9G |
Fernández et al. (2004).
Fernández C, Hilty C, Wider G, Guntert P, & Wüthrich K (2004). NMR structure of the integral membrane protein OmpX.
J Mol Biol. 336 :1211-1221. PubMed Id: 15037080. |
||
OmpX in optimized nanodiscs: Escherichia coli B Bacteria, NMR Structure
In DPC micelles, NMR Structure: 2M07 |
Hagn et al. (2013).
Hagn F, Etzkorn M, Raschle T, & Wagner G (2013). Optimized phospholipid bilayer nanodiscs facilitate high-resolution structure determination of membrane proteins.
J Am Chem Soc 135 :1919-1925. PubMed Id: 23294159. doi:10.1021/ja310901f. |
||
Ail adhesion protein: Yersinia pestis B Bacteria (expressed in E. coli), 1.80 Å
In complex with sucrose octasulfate (SOS), 1.85 Å: 3QRC |
Yamashita et al. (2011).
Yamashita S, Lukacik P, Barnard TJ, Noinaj N, Felek S, Tsang TM, Krukonis ES, Hinnebusch BJ, & Buchanan SK (2011). Structural Insights into Ail-Mediated Adhesion in Yersinia pestis.
Structure 19 :1672-1682. PubMed Id: 22078566. doi:10.1016/j.str.2011.08.010. |
||
Ail adhesion protein, decylphosphocholine micelles: Yersinia pestis B Bacteria (expressed in E. coli), NMR structure
in decylphosphocholine micelles calculated with implicit membrane solvation, NMR structure: 2N2L |
Marassi et al. (2015).
Marassi FM, Ding Y, Schwieters CD, Tian Y, & Yao Y (2015). Backbone structure of Yersinia pestis Ail determined in micelles by NMR-restrained simulated annealing with implicit membrane solvation.
J Biomol NMR 63 :59-65. PubMed Id: 26143069. doi:10.1007/s10858-015-9963-2. |
||
Ail adhesion protein: Yersinia pestis B Bacteria (expressed in E. coli), NMR structure
Structure of protein in phospholipid nano-disc. Examines the effect of KDO2-lipid A. |
Dutta et al. (2017).
Dutta SK, Yao Y, & Marassi FM (2017). Structural Insights into the Yersinia pestis Outer Membrane Protein Ail in Lipid Bilayers.
J Phys Chem B 121 :7561-7570. PubMed Id: 28726410. doi:10.1021/acs.jpcb.7b03941. |
||
TtoA Outer Membrane Protein (OMP): Thermus thermophilus HB27 B Bacteria, 2.8 Å
First structure of an OMP from a thermophile |
Brosig et al. (2009).
Brosig A, Nesper J, Boos W, Welte W, & Diederichs K (2009). Crystal structure of a major outer membrane protein from Thermus thermophilus HB27.
J Mol Biol 385 :1445-1455. PubMed Id: 19101566. |
||
OmpLA (PldA) outer membrane phospholipase A monomer: Escherichia coli B Bacteria, 2.17 Å
Dimer, 2.10 Å: 1QD6 |
Snijder et al. (1999).
Snijder HJ, Ubarretxena-Belandia I, Blaauw M, Kalk KH, Verheij HM, Egmond MR, Dekker N, & Dijkstra BW (1999). Structural evidence for dimerization-regulated activation of an integral membrane phospholipase.
Nature 401 :717-721. PubMed Id: 10537112. |
||
OmpLA (PldA) outer membrane phospholipase A monomer with Ca++: Escherichia coli B Bacteria, 2.60 Å
Dimer, 2.80 Å: 1FW3 |
Snijder et al. (2001).
Snijder HJ, Kingma RL, Kalk KH, Dekker N, Egmond MR, & Dijkstra BW (2001). Structural investigations of calcium binding and its role in activity and activation of outer membrane phospholipase A from Escherichia coli.
J Mol Biol 309 :477-489. PubMed Id: 11371166. |
||
Snijder et al. (2001).
Snijder HJ, Van Eerde JH, Kingma RL, Kalk KH, Dekker N, Egmond MR, & Dijkstra BW (2001). Structural investigations of the active-site mutant Asn156Ala of outer membrane phospholipase A: function of the Asn-His interaction in the catalytic triad.
Protein Sci 10 :1962-1969. PubMed Id: 11567087. |
|||
OpcA adhesin protein: Neisseria meningitidis B Bacteria, 2.0 Å
|
Prince et al. (2002).
Prince SM, Achtman M, & Derrick JP (2002). Crystal structure of the OpcA integral membrane adhesin from Neisseria meningitidis.
Proc. Natl. Acad. Sci. USA 99 :3417-3421. PubMed Id: 11891340. |
||
OpcA adhesin protein: Neisseria meningitidis B Bacteria (expressed in E. coli), 1.95 Å
In meso crystallization |
Cherezov et al. (2008).
Cherezov V, Liu W, Derrick JP, Luan B, Aksimentiev A, Katritch V, & Caffrey M (2008). In meso crystal structure and docking simulations suggest an alternative proteoglycan binding site in the OpcA outer membrane adhesin.
Proteins 71 :24-34. PubMed Id: 18076035. doi:10.1002/prot.21841. |
||
NspA surface protein: Neisseria meningitidis B Bacteria, 2.55 Å
|
Vandeputte-Rutten et al. (2003).
Vandeputte-Rutten L, Bos MP, Tommassen J, & Gros P (2003). Crystal structure of Neisserial surface protein A (NspA), a conserved outer membrane protein with vaccine potential.
J. Biol. Chem. 278 :24825-24830. PubMed Id: 12716881. |
||
NanC Porin, model for KdgM porin family: Escherichia coli B Bacteria, 1.80 Å
H3 space group. See also 2WJQ, p6322 space group, 2.0 Å resolution. |
Wirth et al. (2009).
Wirth C, Condemine G, Boiteux C, Bernèche S, Schirmer T, & Peneff CM (2009). NanC Crystal Structure, a Model for Outer-Membrane Channels of the Acidic Sugar-Specific KdgM Porin Family.
J Mol Biol 394 :718-731. PubMed Id: 19796645. |
||
PagL LPS 3-O-deacylase: Pseudomonas aeruginosa B Bacteria, 2.00 Å
|
Rutten et al. (2006).
Rutten L, Geurtsen J, Lambert W, Smolenaers JJ, Bonvin AM, de Haan A, van der Ley P, Egmond MR, Gros P, & Tommassen J (2006). Crystal structure and catalytic mechanism of the LPS 3-O-deacylase PagL from Pseudomonas aeruginosa.
Proc Natl Acad Sci USA 103 :7071-7076. PubMed Id: 16632613. doi:10.1073/pnas.0509392103. |
||
LpxR lipid A deacylase: Salmonella typhimurium B Bacteria (expressed in E. coli), 1.90 Å
|
Rutten et al. (2009).
Rutten L, Mannie JP, Stead CM, Raetz CR, Reynolds CM, Bonvin AM, Tommassen JP, Egmond MR, Trent MS, & Gros P (2009). Active-site architecture and catalytic mechanism of the lipid A deacylase LpxR of Salmonella typhimurium.
Proc Natl Acad Sci USA 106 :1960-1964. PubMed Id: 19174515. doi:10.1073/pnas.0813064106 . |
||
PagP outer membrane palimitoyl transferease: Escherichia coli B Bacteria, NMR
1MM4 is Structure in DPC micelles. Structure in OG micelles: 1MM5 |
Hwang et al. (2002).
Hwang PM, Choy WY, Lo EI, Chen L, Forman-Kay JD, Raetz CR, Privé GG, Bishop RE, Kay LE (2002). Solution structure and dynamics of the outer membrane enzyme PagP by NMR.
Proc Natl Acad Sci USA 99 :13560-13565. PubMed Id: 12357033. |
||
PagP outer membrane palimitoyl transferease: Escherichia coli B Bacteria, 1.90 Å
|
Ahn et al. (2004).
Ahn VE, Lo EI, Engel CK, Chen L, Hwang PM, Kay LE, Bishop RE, & Prive GG (2004). A hydrocarbon ruler measures palmitate in the enzymatic acylation of endotoxin.
EMBO J. 23 :2931-2941. PubMed Id: 15272304. |
||
PagP outer membrane palimitoyl transferease crystallized from SDS/Co-solvent: Escherichia coli B Bacteria, 1.40 Å
Reveals phospholipid access route (crenel between strands F and G) |
Cuesta-Seijo et al. (2010).
Cuesta-Seijo JA, Neale C, Khan MA, Moktar J, Tran CD, Bishop RE, Pomès R, & Privé GG (2010). PagP crystallized from SDS/cosolvent reveals the route for phospholipid access to the hydrocarbon ruler.
Structure 18 :1210-1219. PubMed Id: 20826347. |
||
FadL long-chain fatty acid transporter: Escherichia coli B Bacteria, 2.6 Å
1T16 is from Monoclinic crystals. From hexagonal crystals, 2.8 Å: 1T1L |
van den Berg et al. (2004).
van den Berg B, Black PN, Clemons WM Jr, & Rapoport TA (2004). Crystal structure of the long-chain fatty acid transporter FadL.
Science 304 :1506-1509. PubMed Id: 15178802. |
||
FadL long-chain fatty acid transporter A77E/S100R mutant: Escherichia coli B Bacteria, 2.5 Å
Mutants show that channel wall opening for passage of fatty acids into inner layer of outer membrane is likely. ΔS3 kink, 2.60 Å: 2R88 P34A mutant, 3.3 Å: 2R4L N33A mutant, 3.2 Å: 2R4N ΔNPA mutant, 3.6 Å: 2R4O G212E mutant, 2.9 Å: 2R4P |
Hearn et al. (2009).
Hearn EM, Patel DR, Lepore BW, Indic M, van den Berg B (2009). Transmembrane passage of hydrophobic compounds through a protein channel wall.
Nature 458 :367-370. PubMed Id: 19182779. |
||
FadL long-chain fatty acid transporter D348R mutant: Escherichia coli B Bacteria, 2.60 Å
This and associated structures in conjunction with in vivo transport assays and Trp fluorescence demonstrate ligand gating of the β-barrel protein. delta N3 mutant, 3.40 Å: 2R89 D348A mutant, 2.70 Å: 3PF1 F3E mutant, 1.70 Å: 3PGU F3G mutant, 1.90 Å: 3PGS |
Lepore et al. (2011).
Lepore BW, Indic M, Pham H, Hearn EM, Patel DR, & van den Berg B (2011). Ligand-gated diffusion across the bacterial outer membrane
Proc Natl Acad Sci USA 108 :10121-10126. PubMed Id: 21593406. doi:10.1073/pnas.1018532108. |
||
FadL homologue long-chain fatty acid transporter: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 2.2 Å
Shows break in channel wall for passage of fatty acids into inner layer of outer membrane in a species other than E. coli. Residues 22-463. |
Hearn et al. (2009).
Hearn EM, Patel DR, Lepore BW, Indic M, van den Berg B (2009). Transmembrane passage of hydrophobic compounds through a protein channel wall.
Nature 458 :367-370. PubMed Id: 19182779. |
||
YebT lipid transporter, domains 1-4: Escherichia coli B Bacteria, 3.1 Å
cryo-EM structure domains 5-7, 3 Å: 6KZ4 |
Liu et al. (2020).
Liu C, Ma J, Wang J, Wang H, & Zhang L (2020). Cryo-EM Structure of a Bacterial Lipid Transporter YebT.
J Mol Biol 432 4:1008-1019. PubMed Id: 31870848. doi:10.1016/j.jmb.2019.12.008. |
||
FauA alcaligin outer membrane transporter: Bordetella pertussis B Bacteria (expressed in E. coli), 2.3 Å
|
Brillet et al. (2009).
Brillet K, Meksem A, Lauber E, Reimmann & C, Cobessi D (2009). Use of an in-house approach to study the three-dimensional structures of various outer membrane proteins: structure of the alcaligin outer membrane transporter FauA from Bordetella pertussis.
Acta Crystallogr D Biol Crystallogr 65 :326-331. PubMed Id: 19307713. |
||
TodX hydrocarbon transporter: Pseudomonas putida B Bacteria, 2.6 Å
3BS0 is P1 space group, 2 molecules in asymmetric unit. I222 space group, 3.2 Å: 3BRZ |
Hearn et al. (2008).
Hearn EM, Patel DR, & van den Berg BO (2008). Outer-membrane transport of aromatic hydrocarbons as a first step in biodegradation.
Proc Natl Acad Sci USA 105 :8601-8606. PubMed Id: 18559855. |
||
TbuX hydrocarbon transporter: Ralstonia pickettii B Bacteria, 3.2 Å
|
Hearn et al. (2008).
Hearn EM, Patel DR, & van den Berg BO (2008). Outer-membrane transport of aromatic hydrocarbons as a first step in biodegradation.
Proc Natl Acad Sci USA 105 :8601-8606. PubMed Id: 18559855. |
||
Ye and van den Berg (2004).
Ye J & van den Berg B (2004). Crystal structure of the bacterial nucleoside transporter Tsx.
EMBO J. 23 :3187-3195. PubMed Id: 15272310. |
|||
FhuA, Ferrichrome-iron receptor without ligand: Escherichia coli B Bacteria, 2.7 Å
With ligand: 1BY5 |
Locher et al. (1998).
Locher KP, Rees B, Koebnik R, Mitschler A, Moulinier L, Rosenbusch JP, & Moras D (1998). Transmembrane signaling across the ligand-gated FhuA receptor: crystal structures of free and ferrichrome-bound states reveal allosteric changes.
Cell 11 :771-8. PubMed Id: 9865695. |
||
FhuA: Escherichia coli B Bacteria, 2.50 Å
Includes the structure of a bound lipopolysaccharide (LPS) molecule In complex with ferrichrome-iron, 2.70 Å: 1FCP |
Ferguson et al. (1998).
Ferguson AD, Hofmann E, Coulton JW, Diederichs K, & Welte W (1998). Siderophore-mediated iron transport: crystal structure of FhuA with bound lipopolysaccharide.
Protein Sci 9 :956-963. PubMed Id: 9856937. |
||
FhuA-AW140-LPS: Escherichia coli B Bacteria, 2.5 Å
Structure of lipopolysaccharide (LPS) in complex with FhuA. FhuA-DL41-LPS-ferricrocin, 2.7 Å: 1QFF |
Ferguson et al. (2000).
Ferguson AD, Welte W, Hofmann E, Lindner B, Holst O, Coulton JW, & Diederichs K (2000). A conserved structural motif for lipopolysaccharide recognition by procaryotic and eucaryotic proteins.
Structure 8 :585-592. PubMed Id: 10873859. |
||
FhuA in complex with albomycin: Escherichia coli B Bacteria, 3.10 Å
In complex with phenylferricrocin, 2.95 Å: 1QJQ |
Ferguson et al. (2000).
Ferguson AD, Braun V, Fiedler HP, Coulton JW, Diederichs K, & Welte W (2000). Crystal structure of the antibiotic albomycin in complex with the outer membrane transporter FhuA.
Science 282 :2215-2220. PubMed Id: 10850805. |
||
FhuA in complex with lipopolysaccharide and rifamycin CGP4832: Escherichia coli B Bacteria, 2.90 Å
|
Ferguson et al. (2001).
Ferguson AD, Ködding J, Walker G, Bös C, Coulton JW, Diederichs K, Braun V, & Welte W (2001). Active transport of an antibiotic rifamycin derivative by the outer-membrane protein FhuA.
Structure 9 :707-716. PubMed Id: 11587645. |
||
FhuA in complex withTonB: Escherichia coli B Bacteria, 3.3 Å
|
Pawelek et al. (2006).
Pawelek PD, Croteau N, Ng-Thow-Hing C, Khursigara CM, Moiseeva N, Allaire M, & Coulton JW (2006). Structure of TonB in complex with FhuA, E. coli outer membrane receptor.
Science 312 :1399-1402. PubMed Id: 16741125. |
||
FhuA in complex with lasso peptide microcin J25 (MccJ25): Escherichia coli B Bacteria, 2.30 Å
|
Mathavan et al. (2014).
Mathavan I, Zirah S, Mehmood S, Choudhury HG, Goulard C, Li Y, Robinson CV, Rebuffat S, & Beis K (2014). Structural basis for hijacking siderophore receptors by antimicrobial lasso peptides.
Nat Chem Biol 10 5:340-342. PubMed Id: 24705590. doi:10.1038/nchembio.1499. |
||
FhuA in complex with superinfection exclusion (SE) lipoprotein Llp: Escherichia coli B Bacteria, 3.37 Å
In complex with T5 phage receptor-binding protein (RBP) pb5, cryo-EM structure, 3.1 Å: 8A8C |
van den Berg et al. (2022).
van den Berg B, Silale A, Baslé A, Brandner AF, Mader SL, & Khalid S (2022). Structural basis for host recognition and superinfection exclusion by bacteriophage T5.
Proc Natl Acad Sci U S A 119 42:e2211672119. PubMed Id: 36215462. doi:10.1073/pnas.2211672119. |
||
FyuA siderophore transporter: Yersinia pestis B Bacteria (expressed in E. coli), 3.20 Å
pesticin bacteriocin toxin, 2.09 Å: 4EPF phage lysin containing the binding domain of pesticin and the killing domain of T4-lysozyme, 2.60 Å: 4EXM pesticin-T4 lysozyme hybrid stabilized by engineered disulfide bonds, 1.74 Å: 4EPI |
Lukacik et al. (2012).
Lukacik P, Barnard TJ, Keller PW, Chaturvedi KS, Seddiki N, Fairman JW, Noinaj N, Kirby TL, Henderson JP, Steven AC, Hinnebusch BJ, & Buchanan SK (2012). Structural engineering of a phage lysin that targets gram-negative pathogens.
Proc Natl Acad Sci USA 109 25:9857-9862. PubMed Id: 22679291. doi:10.1073/pnas.1203472109. |
||
FepA, Ferric enterobactin receptor: Escherichia coli B Bacteria, 2.4 Å
|
Buchanan et al. (1999).
Buchanan S, Smith BS, Venkatramani L, Xia D, Esser L, Palnitkar M, Chakraborty R, van der Helm D, & Deisenhofer J. (1999). Crystal Structure of the outer membrane active transporter FepA from Escherichia coli.
Nature Structural Biol 6 :56-63. PubMed Id: 9886293. |
||
Grinter & Lithgow (2019).
Grinter R, & Lithgow T (2019). The structure of the bacterial iron-catecholate transporter Fiu suggests that it imports substrates via a two-step mechanism.
J Biol Chem 294 51:19523-19534. PubMed Id: 31712312. doi:10.1074/jbc.RA119.011018. |
|||
Ferguson et al. (2002).
Ferguson AD, Chakraborty R, Smith BS, Esser L, van der Helm D, & Deisenhofer, J (2002). Structural basis of gating by the outer Membrane transporter FecA.
Science 295 :1715-1719. PubMed Id: 11872840. |
|||
Yue et al. (2003).
Yue WW, Grizot S, & Buchanan SK (2003). Structural evidence for iron-free citrate and ferric citrate binding to the TonB-dependent outer membrane transporter FecA.
J Mol Biol 332 :353-368. PubMed Id: 12948487. |
|||
FecA, siderophore transporter periplasmic signalling domain: Escherichia coli B Bacteria, NMR Structure
Shows the signalling domain not seen x-ray structures |
Garcia-Herrero & Vogel (2005).
Garcia-Herrero A & Vogel HJ (2005). Nuclear magnetic resonance solution structure of the periplasmic signalling domain of the TonB-dependent outer membrane transporter FecA from Escherichia coli.
Mol Microbiol 58 :1226-1237. PubMed Id: 16313612. |
||
PiuA siderophore receptor: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 1.90 Å
|
Moyniéet al. (2017).
Moynié L, Luscher A, Rolo D, Pletzer D, Tortajada A, Weingart H, Braun Y, Page MG, Naismith JH, & Köhler T (2017). Structure and Function of the PiuA and PirA Siderophore-Drug Receptors from Pseudomonas aeruginosa and Acinetobacter baumannii.
Antimicrob Agents Chemother 61 4. PubMed Id: 28137795. doi:10.1128/AAC.02531-16. |
||
PiuD siderophore receptor: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 2.30 Å
|
Luscher et al. (2018).
Luscher A, Moynié L, Auguste PS, Bumann D, Mazza L, Pletzer D, Naismith JH, & Köhler T (2018). TonB-Dependent Receptor Repertoire of Pseudomonas aeruginosa for Uptake of Siderophore-Drug Conjugates.
Antimicrob Agents Chemother 62 6. PubMed Id: 29555629. doi:10.1128/AAC.00097-18. |
||
PiuA siderophore receptor: Acinetobacter baumannii B Bacteria (expressed in E. coli), 1.94 Å
|
Moyniéet al. (2017).
Moynié L, Luscher A, Rolo D, Pletzer D, Tortajada A, Weingart H, Braun Y, Page MG, Naismith JH, & Köhler T (2017). Structure and Function of the PiuA and PirA Siderophore-Drug Receptors from Pseudomonas aeruginosa and Acinetobacter baumannii.
Antimicrob Agents Chemother 61 4. PubMed Id: 28137795. doi:10.1128/AAC.02531-16. |
||
PirA siderophore receptor: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 2.97 Å
|
Moyniéet al. (2017).
Moynié L, Luscher A, Rolo D, Pletzer D, Tortajada A, Weingart H, Braun Y, Page MG, Naismith JH, & Köhler T (2017). Structure and Function of the PiuA and PirA Siderophore-Drug Receptors from Pseudomonas aeruginosa and Acinetobacter baumannii.
Antimicrob Agents Chemother 61 4. PubMed Id: 28137795. doi:10.1128/AAC.02531-16. |
||
PirA siderophore receptor: Acinetobacter baumannii B Bacteria (expressed in E. coli), 2.83 Å
|
Moyniéet al. (2017).
Moynié L, Luscher A, Rolo D, Pletzer D, Tortajada A, Weingart H, Braun Y, Page MG, Naismith JH, & Köhler T (2017). Structure and Function of the PiuA and PirA Siderophore-Drug Receptors from Pseudomonas aeruginosa and Acinetobacter baumannii.
Antimicrob Agents Chemother 61 4. PubMed Id: 28137795. doi:10.1128/AAC.02531-16. |
||
Krieg et al. (2009).
Krieg S, Huché F, Diederichs K, Izadi-Pruneyre N, Lecroisey A, Wandersman C, Delepelaire P, & Welte W. (2009). Heme uptake across the outer membrane as revealed by crystal structures of the receptor-hemophore complex.
Proc Natl Acad Sci USA 106 :1045-1050. PubMed Id: 19144921. |
|||
ShuA heme-uptake receptor in complex with HasA hemophore and heme: Shigella dysenteriae B Bacteria (expressed in E. coli), 2.6 Å
|
Cobessi et al. (2010).
Cobessi D, Meksem A, & Brillet K (2010). Structure of the heme/hemoglobin outer membrane receptor ShuA from Shigella dysenteriae: heme binding by an induced fit mechanism.
Proteins 78 :286-294. PubMed Id: 19731368. doi:10.1002/prot.22539. |
||
FptA pyochelin siderophore transporter: Pseudomonas aeruginosa B Bacteria, 2.0 Å
|
Cobessi et al. (2005).
Cobessi D, Celia H, Pattus F (2005). Crystal structure at high resolution of ferric-pyochelin and its membrane receptor FptA from Pseudomonas aeruginosa.
J Mol Biol 352 :893-904. PubMed Id: 16139844. |
||
FptA pyochelin siderophore transporter: Pseudomonas fluorescens B Bacteria, 3.26 Å
|
Brillet et al. (2011).
Brillet K, Reimmann C, Mislin GL, Noël S, Rognan D, Schalk IJ, & Cobessi D (2011). Pyochelin enantiomers and their outer-membrane siderophore transporters in fluorescent pseudomonads: structural bases for unique enantiospecific recognition.
J Am Chem Soc 133 41:16503-16509. PubMed Id: 21902256. doi:10.1021/ja205504z. |
||
FpvA, Pyoverdine receptor: Pseudomonas aeruginosa B Bacteria, 3.6 Å
|
Cobessi et al. (2005).
Cobessi D, Celia H, Folschweiller N, Schaik IJ, Abdallah MA, & Pattus F (2005). The crystal structure of the pyoverdine outer membrane receptor FpvA from Pseudomonas aeruginosa at 3.6 Å resolution.
J Mol Biol 347 :121-134. PubMed Id: 15733922. |
||
FpvA, Pyoverdine receptor (apo form): Pseudomonas aeruginosa B Bacteria, 2.77 Å
|
Brillet et al. (2007).
Brillet K, Journet L, Célia H, Paulus L, Stahl A, Pattus F, & Cobessi D (2007). A β strand lock exchange for signal transduction in TonB-dependent transducers on the basis of a common structural motif.
Structure 15 :1383-1391. PubMed Id: 17997964. |
||
FpvA, Full-length structure bound to iron-pyoverdine: Pseudomonas aeruginosa B Bacteria, 2.73 Å
|
Wirth et al. (2007).
Wirth C, Meyer-Klaucke W, Pattus F, & Cobessi D (2007). From the periplasmic signaling domain to the extracellular face of an outer membrane signal transducer of Pseudomonas aeruginosa: crystal structure of the ferric pyoverdine outer membrane receptor.
J Mol Biol 368 :398-406. PubMed Id: 17349657. |
||
AlgE alginate export protein: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 2.30 Å
18-stranded β-barrel with a highly electropositive pore constriction that acts as a selectivity filter for negatively charged alginate. |
Whitney et al. (2011).
Whitney JC, Hay ID, Li C, Eckford PD, Robinson H, Amaya MF, Wood LF, Ohman DE, Bear CE, Rehm BH, & Lynne Howell P (2011). Structural basis for alginate secretion across the bacterial outer membrane.
Proc Natl Acad Sci USA 108 :13083-13088. PubMed Id: 21778407. doi:10.1073/pnas.1104984108. |
||
Tan et al. (2014).
Tan J, Rouse SL, Li D, Pye VE, Vogeley L, Brinth AR, El Arnaout T, Whitney JC, Howell PL, Sansom MS, & Caffrey M (2014). A conformational landscape for alginate secretion across the outer membrane of Pseudomonas aeruginosa.
Acta Crystallogr D Biol Crystallogr 70 :2054-2068. PubMed Id: 25084326. doi:10.1107/S1399004714001850. |
|||
AlgE alginate export protein at 100 K: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 2.90 Å
data collected at 293 K, 2.80 Å: 4XNK Structures determined by serial x-ray crystallography |
Huang et al. (2015).
Huang CY, Olieric V, Ma P, Panepucci E, Diederichs K, Wang M, & Caffrey M (2015). In meso in situ serial X-ray crystallography of soluble and membrane proteins.
Acta Crystallogr D Biol Crystallogr 71 :1238-1256. PubMed Id: 26057665. doi:10.1107/S1399004715005210. |
||
AlgE alginate export protein, native-SAD structure determined at wavelength 2.755 Å: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 1.77 Å
X-ray Structure |
El Omari et al. (2023).
El Omari K, Duman R, Mykhaylyk V, Orr CM, Latimer-Smith M, Winter G, Grama V, Qu F, Bountra K, Kwong HS, Romano M, Reis RI, Vogeley L, Vecchia L, Owen CD, Wittmann S, Renner M, Senda M, Matsugaki N, Kawano Y, Bowden TA, Moraes I, Grimes JM, Mancini EJ, Walsh MA, Guzzo CR, Owens RJ, Jones EY, Brown DG, Stuart DI, Beis K, & Wagner A (2023). Experimental phasing opportunities for macromolecular crystallography at very long wavelengths.
Commun Chem 6 1:219. PubMed Id: 37828292. doi:10.1038/s42004-023-01014-0. |
||
AlgE alginate export protein in 7.10 monoacylglycerol (MAG): Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 1.45 Å
X-ray structure |
Krawinski et al. (2024).
Krawinski P, Smithers L, van Dalsen L, Boland C, Ostrovitsa N, Pérez J, & Caffrey M (2024). 7.10 MAG. A Novel Host Monoacylglyceride for In Meso (Lipid Cubic Phase) Crystallization of Membrane Proteins.
Cryst Growth Des 24 7:2985-3001. PubMed Id: 38585376. doi:10.1021/acs.cgd.4c00087. |
||
AlgK–AlgX alginate export protein complex: Pseudomonas putida B Bacteria (expressed in E. coli), 2.46 Å
|
Gheorghita et al. (2022).
Gheorghita AA, Li YE, Kitova EN, Bui DT, Pfoh R, Low KE, Whitfield GB, Walvoort MTC, Zhang Q, Codée JDC, Klassen JS, & Howell PL (2022). Structure of the AlgKX modification and secretion complex required for alginate production and biofilm attachment in Pseudomonas aeruginosa.
Nat Commun 13 1:7631. PubMed Id: 36494359. doi:10.1038/s41467-022-35131-6. |
||
P pilus usher translocation domain, PapC130-640: Escherichia coli B Bacteria, 3.2 Å
|
Remaut et al. (2008).
Remaut H, Tang C, Henderson NS, Pinkner JS, Wang T, Hultgren SJ, Thanassi DG, Waksman G, & Li H (2008). Fiber formation across the bacterial outer membrane by the chaperone/usher pathway.
Cell 133 :640-652. PubMed Id: 18485872. |
||
P pilus usher translocation domain, PapC146-637: Escherichia coli B Bacteria, 3.15 Å
|
Huang et al. (2009).
Huang Y, Smith BS, Chen LX, Baxter RH, & Deisenhofer J (2009). Insights into pilus assembly and secretion from the structure and functional characterization of usher PapC.
Proc Natl Acad Sci USA 106 18:7403-7407. PubMed Id: 19380723. doi:10.1073/pnas.0902789106. |
||
P pilus FimD usher bound to FimC:FimH substrate: Escherichia coli B Bacteria, 2.80 Å
FimD translocation domain, 3.01 Å: 3OHN |
Phan et al. (2011).
Phan G, Remaut H, Wang T, Allen WJ, Pirker KF, Lebedev A, Henderson NS, Geibel S, Volkan E, Yan J, Kunze MB, Pinkner JS, Ford B, Kay CW, Li H, Hultgren SJ, Thanassi DG, & Waksman G (2011). Crystal structure of the FimD usher bound to its cognate FimC-FimH substrate.
Nature 474 :49-53. PubMed Id: 21637253. doi:10.1038/nature10109. |
||
P pilus FimD usher in complex with FimC:FimF:FimG:FimH: Escherichia coli B Bacteria, 3.80 Å
This is the complete structure of the tip complex assembly in which the FimC:FimF:FimG:FimH complex passes through FimD. |
Geibel et al. (2013).
Geibel S, Procko E, Hultgren SJ, Baker D, & Waksman G (2013). Structural and energetic basis of folded-protein transport by the FimD usher.
Nature 496 :243-246. PubMed Id: 23579681. doi:10.1038/nature12007. |
||
P pilus assembly intermediate (FimD-FimC-FimF-FimG-FimH), conformer 1: Escherichia coli B Bacteria, 4 Å
cryo-EM structure conformer 2, 5.1 Å: 6E15 |
Du et al. (2018).
Du M, Yuan Z, Yu H, Henderson N, Sarowar S, Zhao G, Werneburg GT, Thanassi DG, & Li H (2018). Handover mechanism of the growing pilus by the bacterial outer-membrane usher FimD.
Nature 562 7727:444-447. PubMed Id: 30283140. doi:10.1038/s41586-018-0587-z. |
||
Du et al. (2021).
Du M, Yuan Z, Werneburg GT, Henderson NS, Chauhan H, Kovach A, Zhao G, Johl J, Li H, & Thanassi DG (2021). Processive dynamics of the usher assembly platform during uropathogenic Escherichia coli P pilus biogenesis.
Nat Commun 12 1:5207. PubMed Id: 34471127. doi:10.1038/s41467-021-25522-6. |
|||
Transferrin binding protein A (TbpA) in complex with human transferrin: Neisseria meningitidis serogroup b B Bacteria (expressed in E. coli), 2.60 Å
TbpA in complex with human transferrin C-lobe, 3.10 Å: 3V89 Diferric human transferrin, 2.10 Å: 3V83 Apo-human transferrin C-lobe with bound sulfate ions, 1.70 Å: 3SKP Transferrin binding protein B (TbpB), 2.40 Å: 3V8U |
Noinaj et al. (2012).
Noinaj N, Easley NC, Oke M, Mizuno N, Gumbart J, Boura E, Steere AN, Zak O, Aisen P, Tajkhorshid E, Evans RW, Gorringe AR, Mason AB, Steven AC, & Buchanan SK (2012). Structural basis for iron piracy by pathogenic Neisseria.
Nature 483 :53-58. PubMed Id: 22327295. doi:10.1038/nature10823. |
||
Wzi outer-membrane lectin: Escherichia coli B Bacteria, 2.64 Å
Assists in the formation of the bacterial capsule via direct interaction with capsular polysaccharides. |
Bushell et al. (2013).
Bushell SR, Mainprize IL, Wear MA, Lou H, Whitfield C, & Naismith JH (2013). Wzi Is an Outer Membrane Lectin that Underpins Group 1 Capsule Assembly in Escherichia coli.
Structure 21 :844-853. PubMed Id: 23623732. doi:10.1016/j.str.2013.03.010. |
||
Opa60 for receptor-mediated engulfment, EXPLOR refined: Neisseria gonorrhoeae B Bacteria, NMR strucuture
MD/EXPLOR refined structure, NMR structure: 2MAF |
Fox et al. (2014).
Fox DA, Larsson P, Lo RH, Kroncke BM, Kasson PM, & Columbus L (2014). Structure of the neisserial outer membrane protein opa60: loop flexibility essential to receptor recognition and bacterial engulfment.
J Am Chem Soc 136 :9938-9946. PubMed Id: 24813921. doi:10.1021/ja503093y. |
||
Opa60 for receptor-mediated engulfment, proton-detected magic-angle spinning nuclear magnetic resonance (MAS NMR) used: Neisseria gonorrhoeae B Bacteria (expressed in E. coli), NMR structure
|
Forster et al. (2024).
Forster MC, Tekwani Movellan K, Najbauer EE, Becker S, & Andreas LB (2024). Magic-angle spinning NMR structure of Opa60 in lipid bilayers.
J Struct Biol X 9 :100098. PubMed Id: 39010882. doi:10.1016/j.yjsbx.2024.100098. |
||
CsgG bacterial amyloid secretion channel: Escherichia coli B Bacteria, 3.59 Å
Pre-pore conformation, 2.80 Å: 4UV2 |
Goyal et al. (2014).
Goyal P, Krasteva PV, Van Gerven N, Gubellini F, Van den Broeck I, Troupiotis-Tsaïlaki A, Jonckheere W, Péhau-Arnaudet G, Pinkner JS, Chapman MR, Hultgren SJ, Howorka S, Fronzes R, & Remaut H (2014). Structural and mechanistic insights into the bacterial amyloid secretion channel CsgG.
Nature 516 7530:250-253. PubMed Id: 25219853. doi:10.1038/nature13768. |
||
CsgG bacterial amyloid secretion channel: Escherichia coli B Bacteria, 3.10 Å
|
Cao et al. (2014).
Cao B, Zhao Y, Kou Y, Ni D, Zhang XC, & Huang Y (2014). Structure of the nonameric bacterial amyloid secretion channel.
Proc Natl Acad Sci USA 111 50:E5439-E5444. PubMed Id: 25453093. doi:10.1073/pnas.1411942111. |
||
Zhang et al. (2020).
Zhang M, Shi H, Zhang X, Zhang X, & Huang Y (2020). Cryo-EM structure of the nonameric CsgG-CsgF complex and its implications for controlling curli biogenesis in Enterobacteriaceae.
PLoS Biol 18 6. PubMed Id: 32559189. doi:10.1371/journal.pbio.3000748. |
|||
CsgG-CsgF complex involved in curli biogenesis: Escherichia coli B Bacteria, 3.38 Å
cryo-EM structure complex with substrate CsgAN6 peptide, 3.34 Å: 6L7C |
Yan et al. (2020).
Yan Z, Yin M, Chen J, & Li X (2020). Assembly and substrate recognition of curli biogenesis system.
Nat Commun 11 1:241. PubMed Id: 31932609. doi:10.1038/s41467-019-14145-7. |
||
CsgG-CsgF complex involved in curli biogenesis: Escherichia coli B Bacteria, 3.40 Å
cryo-EM structure |
Van der Verren et al. (2020).
Van der Verren SE, Van Gerven N, Jonckheere W, Hambley R, Singh P, Kilgour J, Jordan M, Wallace EJ, Jayasinghe L, & Remaut H (2020). A dual-constriction biological nanopore resolves homonucleotide sequences with high fidelity.
Nat Biotechnol 38 12:1415-1420. PubMed Id: 32632300. doi:10.1038/s41587-020-0570-8. |
||
FusA plant-ferredoxin receptor: Pectobacterium atrosepticum B Bacteria (expressed in E. coli), 3.2 Å
|
Grinter et al. (2016).
Grinter R, Josts I, Mosbahi K, Roszak AW, Cogdell RJ, Bonvin AM, Milner JJ, Kelly SM, Byron O, Smith BO, & Walker D (2016). Structure of the bacterial plant-ferredoxin receptor FusA.
Nat Commun 7 :13308. PubMed Id: 27796364. doi:10.1038/ncomms13308. |
||
Omp33 outer membrane protein: Acinetobacter baumannii B Bacteria (expressed in E. coli), 2.2 Å
|
Abellón-Ruiz et al. (2018).
Abellón-Ruiz J, Zahn M, Baslé A, & van den Berg B (2018). Crystal structure of the Acinetobacter baumannii outer membrane protein Omp33.
Acta Crystallogr D Struct Biol 74 :852-860. PubMed Id: 30198896. doi:10.1107/S205979831800904X. |
||
Saleem et al. (2013).
Saleem M, Prince SM, Rigby SE, Imran M, Patel H, Chan H, Sanders H, Maiden MC, Feavers IM, & Derrick JP (2013). Use of a molecular decoy to segregate transport from antigenicity in the FrpB iron transporter from Neisseria meningitidis.
PLoS ONE 8 2. PubMed Id: 23457610. doi:10.1371/journal.pone.0056746. |
|||
FhuE TonB-dependent transporter: Escherichia coli B Bacteria, 2 Å
|
Grinter & Lithgow (2019).
Grinter R, & Lithgow T (2019). Determination of the molecular basis for coprogen import by Gram-negative bacteria.
IUCrJ 6 :401-411. PubMed Id: 31098021. doi:10.1107/S2052252519002926. |
||
YncD TonB-dependent transporter: Escherichia coli B Bacteria, 2.96 Å
|
Grinter & Lithgow (2020).
Grinter R, & Lithgow T (2020). The crystal structure of the TonB-dependent transporter YncD reveals a positively charged substrate-binding site.
Acta Crystallogr D Struct Biol 76 :484-495. PubMed Id: 32355044. doi:10.1107/S2059798320004398. |
||
PfeA ferric enterobactin receptor, apo form: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 2.12 Å
in complex with enterobactin, 2.7 Å: 6Q5E in complex with azotochelin, 2.78 Å: 5NR2 in complex with protochelin, 2.8 Å: 5NC4 R480A, Q482A mutant, 2.67 Å: 5MZS G324V mutant, 2.9 Å: 5OUT R480A mutant in complex with enterobactin, 3.11 Å: 6R1F Q482A mutant in complex with enterobactin, 2.96 Å: 6I2J |
Moynié et al. (2019).
Moynié L, Milenkovic S, Mislin GLA, Gasser V, Malloci G, Baco E, McCaughan RP, Page MGP, Schalk IJ, Ceccarelli M, & Naismith JH (2019). The complex of ferric-enterobactin with its transporter from Pseudomonas aeruginosa suggests a two-site model.
Nat Commun 10 1. PubMed Id: 31413254. doi:10.1038/s41467-019-11508-y. |
||
PfeA ferric enterobactin receptor in complex with TCV: Pseudomonas aeruginosa E Eukaryota (expressed in E. coli), 2.57 Å
in complex with BCV, 2.71 Å: 6Z33 in complex with TCV-L6, 2.66 Å: 7OBW in complex with TCV_L5, 2.72 Å: 6YY5 in complex with BCV-L6, 3.03 Å: 6Z2N in complex with BCV-L5, 3.04 Å: 6Y47 |
Moynié et al. (2022).
Moynié L, Hoegy F, Milenkovic S, Munier M, Paulen A, Gasser V, Faucon AL, Zill N, Naismith JH, Ceccarelli M, Schalk IJ, & Mislin GLA (2022). Hijacking of the Enterobactin Pathway by a Synthetic Catechol Vector Designed for Oxazolidinone Antibiotic Delivery in Pseudomonas aeruginosa.
ACS Infect Dis 8 9:1894-1904. PubMed Id: 35881068. doi:10.1021/acsinfecdis.2c00202. |
||
BcsC cellulose synthase outer membrane channel: Escherichia coli B Bacteria, 1.85 Å
See inner membrane components structures: 4HG6 |
Acheson et al. (2019).
Acheson JF, Derewenda ZS, & Zimmer J (2019). Architecture of the Cellulose Synthase Outer Membrane Channel and Its Association with the Periplasmic TPR Domain.
Structure 27 12:1855-1861.e3. PubMed Id: 31604608. doi:10.1016/j.str.2019.09.008. |
||
ZnuD zinc transporter: Neisseria meningitidis B Bacteria (expressed in E. coli), 3.20 Å
|
Calmettes et al. (2015).
Calmettes C, Ing C, Buckwalter CM, El Bakkouri M, Chieh-Lin Lai C, Pogoutse A, Gray-Owen SD, Pomès R, & Moraes TF (2015). The molecular mechanism of Zinc acquisition by the neisserial outer-membrane transporter ZnuD.
Nat Commun 6 :7996. PubMed Id: 26282243. doi:10.1038/ncomms8996. |
||
MtrE Outer Membrane Channel: Neisseria gonorrhoeae B Bacteria (expressed in E. coli), 3.29 Å
Multidrug efflux transporter. See 4MT1 |
Lei et al. (2014).
Lei HT, Chou TH, Su CC, Bolla JR, Kumar N, Radhakrishnan A, Long F, Delmar JA, Do SV, Rajashankar KR, Shafer WM, & Yu EW (2014). Crystal structure of the open state of the Neisseria gonorrhoeae MtrE outer membrane channel.
PLoS ONE 9 6. PubMed Id: 24901251. doi:10.1371/journal.pone.0097475. |
||
LetB lipophilic Envelope-spanning Tunnel B, model 1: Escherichia coli B Bacteria, 3.46 Å
cryo-EM structure model 2, 3.49 Å: 6V0D model 3, 3.06 Å: 6V0E model 4, 2.96 Å: 6V0F model 5, 3.03 Å: 6V0G model 6, 3.60 Å: 6V0H model 7, 3.43 Å: 6V0I model 8, 3.78 Å: 6V0J domains MCE2-MCE3 by x-ray, 2.15 Å: 6VCI |
Isom et al. (2020).
Isom GL, Coudray N, MacRae MR, McManus CT, Ekiert DC, & Bhabha G (2020). LetB Structure Reveals a Tunnel for Lipid Transport across the Bacterial Envelope.
Cell 181 3:653-664.e19. PubMed Id: 32359438. doi:10.1016/j.cell.2020.03.030. |
||
PcoB copper transporter: Escherichia coli B Bacteria, 2.00 Å
|
Li et al. (2022).
Li P, Nayeri N, Górecki K, Becares ER, Wang K, Mahato DR, Andersson M, Abeyrathna SS, Lindkvist-Petersson K, Meloni G, Missel JW, & Gourdon P (2022). PcoB is a defense outer membrane protein that facilitates cellular uptake of copper.
Protein Sci 31 7:e4364. PubMed Id: 35762724. doi:10.1002/pro.4364. |
||
outer membrane porin OmpW: Klebsiella pneumoniae B Bacteria (expressed in E. coli), 3.20 Å
X-ray structure |
Seddon et al. (2024).
Seddon C, Frankel G, & Beis K (2024). Structure of the outer membrane porin OmpW from the pervasive pathogen Klebsiella pneumoniae.
Acta Crystallogr F Struct Biol Commun 80 :22-27. PubMed Id: 38206593. doi:10.1107/S2053230X23010579. |
||
Outer Membrane Autotransporters
|
|||
NalP autotransporter translocator domain: Neisseria meningitidis B Bacteria (expressed in E. coli), 2.60 Å
p6122 space group. See also 1UYO, C2221 space group, 3.2 Å resolution. |
Oomen et al. (2004).
Oomen CJ, Van Ulsen P, Van Gelder P, Feijen M, Tommassen J, & Gros P (2004). Structure of the translocator domain of a bacterial autotransporter.
EMBO J 23 :1257-1266. PubMed Id: 15014442. |
||
Hia1022-1098 trimeric autotransporter: Haemophilus influenzae B Bacteria (expressed in E. coli), 2.0 Å
Hia992-1098, 2.3 Å: 2GR7 |
Meng et al. (2006).
Meng G, Surana NK, St Geme JW 3rd, Waksman G (2006). Structure of the outer membrane translocator domain of the Haemophilus influenzae Hia trimeric autotransporter.
EMBO J 25 :2297-2304. PubMed Id: 16688217. |
||
EspP autotransporter, post-cleavage state: Escherichia coli B Bacteria, 2.7 Å
|
Barnard et al. (2007).
Barnard TJ, Dautin N, Lukacik P, Bernstein HD, & Buchanan SK (2007). Autotransporter structure reveals intra-barrel cleavage followed by conformational changes.
Nature Struc Mol Biol 14 :1214-1220. PubMed Id: 17994105. |
||
Barnard et al. (2012).
Barnard TJ, Gumbart J, Peterson JH, Noinaj N, Easley NC, Dautin N, Kuszak AJ, Tajkhorshid E, Bernstein HD, & Buchanan SK (2012). Molecular Basis for the Activation of a Catalytic Asparagine Residue in a Self-Cleaving Bacterial Autotransporter.
J Mol Biol 415 :128-142. PubMed Id: 22094314. doi:10.1016/j.jmb.2011.10.049. |
|||
EspP autotransporter passenger domain: Escherichia coli B Bacteria, 2.50 Å
Like a number of other auto-cleaved passengers, a parallel β-helix is a characteristic feature. |
Khan et al. (2011).
Khan S, Mian HS, Sandercock LE, Chirgadze NY, & Pai EF (2011). Crystal Structure of the Passenger Domain of the Escherichia coli Autotransporter EspP.
J Mol Biol 413 :985-1000. PubMed Id: 21964244. doi:10.1016/j.jmb.2011.09.028. |
||
AIDA-I autotransport unit (AIDA = adhesin involved in diffuse adherence): Escherichia coli B Bacteria, 3.00 Å
|
Gawarzewski et al. (2014).
Gawarzewski I, DiMaio F, Winterer E, Tschapek B, Smits SHJ, Jose J, & Schmitt L (2014). Crystal structure of the transport unit of the autotransporter adhesin involved in diffuse adherence from Escherichia coli.
J Struct Biol 187 1:20-29. PubMed Id: 24841284. doi:10.1016/j.jsb.2014.05.003. |
||
Hbp (hemoglobin protease) self-cleaving autotransporter with truncated passenger: Escherichia coli B Bacteria, 2.00 Å
The structure shows the pre-cleavage state. |
Tajima et al. (2010).
Tajima N, Kawai F, Park SY, & Tame JR (2010). A novel intein-like autoproteolytic mechanism in autotransporter proteins.
J Mol Biol 402 :645-656. PubMed Id: 20615416. doi:10.1016/j.jmb.2010.06.068. |
||
Hbp (hemoglobin protease) full-length passenger domain: Escherichia coli B Bacteria, 2.20 Å
The passenger domain has a prominent β-helix domain. |
Otto et al. (2005).
Otto BR, Sijbrandi R, Luirink J, Oudega B, Heddle JG, Mizutani K, Park SY, & Tame JR (2005). Crystal structure of hemoglobin protease, a heme binding autotransporter protein from pathogenic Escherichia coli.
J Biol Chem 280 :17339-17345. PubMed Id: 15728184. doi:10.1074/jbc.M412885200. |
||
EstA Autotransporter, full length: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 2.50 Å
This is the first full-length structure of an autotransporter. The passenger is not cleaved physiologically, but rather presents an esterase domain to the external world. |
van den Berg (2010).
van den Berg B (2010). Crystal Structure of a Full-Length Autotransporter.
J Mol Biol 396 :627-633. PubMed Id: 20060837. |
||
IcsA autotransporter (autochaperone region only): Shigella flexneri B Bacteria (expressed in E. coli), 2.00 Å
|
Kühnel & Diezmann (2011).
Kühnel K & Diezmann D (2011). Crystal structure of the autochaperone region from the Shigella flexneri autotransporter IcsA.
J Bacteriol 193 :2042-2045 . PubMed Id: 21335457. doi:10.1128/JB.00790-10. |
||
Intimin outer membrane β-domain: Escherichia coli B Bacteria, 1.86 Å
The C-terminal passenger domain, not present in this structure, is involved in adhesion to host cells. |
Fairman et al. (2012).
Fairman JW, Dautin N, Wojtowicz D, Liu W, Noinaj N, Barnard TJ, Udho E, Przytycka TM, Cherezov V, & Buchanan SK (2012). Crystal structures of the outer membrane domain of intimin and invasin from enterohemorrhagic E. coli and enteropathogenic Y. pseudotuberculosis.
Structure 20 :1233-1243. PubMed Id: 22658748. doi:10.1016/j.str.2012.04.011. |
||
Intimin C-terminal passenger domain in complex with receptor: Escherichia coli B Bacteria, 2.90 Å
|
Luo et al. (2000).
Luo Y, Frey EA, Pfuetzner RA, Creagh AL, Knoechel DG, Haynes CA, Finlay BB, & Strynadka NC (2000). Crystal structure of enteropathogenic Escherichia coli intimin-receptor complex.
Nature 405 :1073-1077. PubMed Id: 10890451. doi:10.1038/35016618. See also: Batchelor et al. (2000). Batchelor M, Prasannan S, Daniell S, Reece S, Connerton I, Bloomberg G, Dougan G, Frankel G, & Matthews S (2000). Structural basis for recognition of the translocated intimin receptor (Tir) by intimin from enteropathogenic Escherichia coli.
EMBO J 19 :2452-2464. PubMed Id: 10835344. |
||
Invasin outer membrane β-domain: Yersinia pseudotuberculosis B Bacteria (expressed in E. coli), 2.26 Å
The C-terminal passenger domain, not present in this structure, is involved in adhesion to host cells. |
Fairman et al. (2012).
Fairman JW, Dautin N, Wojtowicz D, Liu W, Noinaj N, Barnard TJ, Udho E, Przytycka TM, Cherezov V, & Buchanan SK (2012). Crystal structures of the outer membrane domain of intimin and invasin from enterohemorrhagic E. coli and enteropathogenic Y. pseudotuberculosis.
Structure 20 :1233-1243. PubMed Id: 22658748. doi:10.1016/j.str.2012.04.011. |
||
Invasin C-terminal passenger domain: Yersinia pseudotuberculosis B Bacteria (expressed in E. coli), 2.30 Å
|
Hamburger et al. (1999).
Hamburger ZA, Brown MS, Isberg RR, & Bjorkman PJ (1999). Crystal structure of invasin: a bacterial integrin-binding protein.
Science 286 :291-295. PubMed Id: 10514372. |
||
YadA trimeric adhesin autotransporter: Yersinia enterocolitica subsp. enterocolitica 8081 B Bacteria (expressed in E. coli), NMR Structure
Structure determined from microcrystals using solid-state NMR |
Shahid et al. (2012).
Shahid SA, Bardiaux B, Franks WT, Krabben L, Habeck M, van Rossum BJ, & Linke D (2012). Membrane-protein structure determination by solid-state NMR spectroscopy of microcrystals.
Nature Methods 9 :1212-1217. PubMed Id: 23142870. |
||
TamA Autotransporter, full length: Escherichia coli B Bacteria, 2.25 Å
TamA POTRA domains 1-3, 1.84 Å: 4BZA |
Gruss et al. (2013).
Gruss F, Zähringer F, Jakob RP, Burmann BM, Hiller S, & Maier T (2013). The structural basis of autotransporter translocation by TamA.
Nat Struct Mol Biol 20 :1318-1320. PubMed Id: 24056943. doi:10.1038/nsmb.2689. |
||
TibC dodecameric glycosyltransferase (type V secretion system): Escherichia coli ETEC H10407 B Bacteria (expressed in E. coli), 2.88 Å
in complex with ADP-D-beta-D-heptose, 3.88 Å: 4RB4 Cryo-EM structures of the TibC12-TibA6 are available in the EM Databank with accession numbers EMD-2755, -2756, -2757, and -2758. |
Yao et al. (2014).
Yao Q, Lu Q, Wan X, Song F, Xu Y, Hu M, Zamyatina A, Liu X, Huang N, Zhu P, & Shao F (2014). A structural mechanism for bacterial autotransporter glycosylation by a dodecameric heptosyltransferase family.
Elife 3 . PubMed Id: 25310236. doi:10.7554/eLife.03714. |
||
BrkA autotransport β-domain: Bordetella pertussis B Bacteria (expressed in E. coli), 3.00 Å
|
Zhai et al. (2011).
Zhai Y, Zhang K, Huo Y, Zhu Y, Zhou Q, Lu J, Black I, Pang X, Roszak AW, Zhang X, Isaacs NW, & Sun F (2011). Autotransporter passenger domain secretion requires a hydrophobic cavity at the extracellular entrance of the β-domain pore.
Biochem J 435 3:577-587. PubMed Id: 21306302. doi:10.1042/BJ20101548. |
||
CdiB autotransporter: Acinetobacter baumannii B Bacteria (expressed in E. coli), 2.40 Å
A type Vb secretion system that export CdiA toxins. |
Guerin et al. (2020).
Guerin J, Botos I, Zhang Z, Lundquist K, Gumbart JC, & Buchanan SK (2020). Structural insight into toxin secretion by contact-dependent growth inhibition transporters.
Elife 9 :e58100. PubMed Id: 33089781. doi:10.7554/eLife.58100. |
||
CdiB autotransporter: Escherichia coli B Bacteria, 2.60 Å
A type Vb secretion system that export CdiA toxins. |
Guerin et al. (2020).
Guerin J, Botos I, Zhang Z, Lundquist K, Gumbart JC, & Buchanan SK (2020). Structural insight into toxin secretion by contact-dependent growth inhibition transporters.
Elife 9 :e58100. PubMed Id: 33089781. doi:10.7554/eLife.58100. |
||
BpaC, C-terminal head domain of the trimeric autotransporter adhesin fused to a GCN4 anchor: Burkholderia pseudomallei B Bacteria (expressed in E. coli), 1.40 Å
|
Kiessling et al. (2022).
Kiessling AR, Harris SA, Weimer KM, Wells G, & Goldman A (2022). The C-terminal head domain of Burkholderia pseudomallei BpaC has a striking hydrophilic core with an extensive solvent network.
Mol Microbiol 118 :77-91. PubMed Id: 35703459. doi:10.1111/mmi.14953. |
||
Omp85-TpsB Outer Membrane Transporter Superfamily
|
|||
FhaC Filamentous Hemagglutinin Transporter: Bordetella pertussis B Bacteria (expressed in E. coli), 3.15 Å
The first outer membrane protein from the Omp85–two-partner secretion B (TpsB) superfamily. Supersedes 2QDZ. |
Clantin et al. (2007).
Clantin B, Delattre AS, Rucktooa P, Saint N, Meli AC, Locht C, Jacob-Dubuisson F, & Villeret V (2007). Structure of the membrane protein FhaC: a member of the Omp85-TpsB transporter superfamily.
Science 317 :957-961. PubMed Id: 17702945. |
||
FhaC Filamentous Hemagglutinin Transporter, R450A mutant: Bordetella pertussis B Bacteria (expressed in E. coli), 3.50 Å
|
Delattre et al. (2010).
Delattre AS, Clantin B, Saint N, Locht C, Villeret V, & Jacob-Dubuisson F (2010). Functional importance of a conserved sequence motif in FhaC, a prototypic member of the TpsB/Omp85 superfamily.
FEBS J 277 :4755-4765. PubMed Id: 20955520. doi:10.1111/j.1742-4658.2010.07881.x. |
||
TeOmp85-N POTRA domains: Thermosynechococcus elongatus B Bacteria (expressed in E. coli), 1.97 Å
Structure is of complete N-terminus containing three POTRA domains. The polypeptide transport-associated (POTRA) domains link to a transmembrane β-barrel, which is absent in this structure. |
Arnold et al. (2010).
Arnold T, Zeth K, & Linke D (2010). Omp85 from the thermophilic cyanobacterium thermosynechococcus elongatus differs from proteobacterial Omp85 in structure and domain composition.
J Biol Chem 285 :18003-18015. PubMed Id: 20351097. |
||
anaOmp85-N POTRA domains (hexagonal crystals): Anabaena sp. PCC7120 B Bacteria (expressed in E. coli), 2.20 Å
Structure is of complete N-terminus containing three POTRA domains. The polypeptide transport-associated (POTRA) domains link to a transmembrane β-barrel, which is absent in this structure. Tetragonal crystals, 2.59 Å: 3MC8 |
Koenig et al. (2010).
Koenig P, Mirus O, Haarmann R, Sommer M, Sinning I, Schleiff E, & Tews I (2010). Conserved properties of POTRA domains derived from cyanobacterial OMP85.
J Biol Chem 285 :18016-18024. PubMed Id: 20348103. |
||
BamA without POTRA domains.: Escherichia coli B Bacteria, 2.60 Å
|
Ni et al. (2014).
Ni D, Wang Y, Yang X, Zhou H, Hou X, Cao B, Lu Z, Zhao X, Yang K, & Huang Y (2014). Structural and functional analysis of the β-barrel domain of BamA from Escherichia coli.
FASEB J 28 6:2677-2685. PubMed Id: 24619089. doi:10.1096/fj.13-248450. |
||
BamA in complex with darobactin B: Escherichia coli B Bacteria, 2.50 Å
|
Böhringer et al. (2021).
Böhringer N, Green R, Liu Y, Mettal U, Marner M, Modaresi SM, Jakob RP, Wuisan ZG, Maier T, Iinishi A, Hiller S, Lewis K, & Schäberle TF (2021). Mutasynthetic Production and Antimicrobial Characterization of Darobactin Analogs.
Microbiol Spectr 9 3:e0153521. PubMed Id: 34937193. doi:10.1128/spectrum.01535-21. |
||
BamA in complex with dynobactin A: Escherichia coli B Bacteria, 2.50 Å
X-ray Structure |
Miller et al. (2022).
Miller RD, Iinishi A, Modaresi SM, Yoo BK, Curtis TD, Lariviere PJ, Liang L, Son S, Nicolau S, Bargabos R, Morrissette M, Gates MF, Pitt N, Jakob RP, Rath P, Maier T, Malyutin AG, Kaiser JT, Niles S, Karavas B, Ghiglieri M, Bowman SEJ, Rees DC, Hiller S, & Lewis K (2022). Computational identification of a systemic antibiotic for gram-negative bacteria.
Nat Microbiol 7 10:1661-1672. PubMed Id: 36163500. doi:10.1038/s41564-022-01227-4. |
||
BamA with POTRA domains 1 - 5: Neisseria gonorrhoeae B Bacteria (expressed in E. coli), 3.20 Å
This is the full-length BamA structure. |
Noinaj et al. (2013).
Noinaj N, Kuszak AJ, Gumbart JC, Lukacik P, Chang H, Easley NC, Lithgow T, & Buchanan SK (2013). Structural insight into the biogenesis of β-barrel membrane proteins.
Nature 501 :385-390. PubMed Id: 23995689. doi:10.1038/nature12521. |
||
BamA with POTRA domains 4 & 5: Haemophilus ducreyi B Bacteria (expressed in E. coli), 2.91 Å
|
Noinaj et al. (2013).
Noinaj N, Kuszak AJ, Gumbart JC, Lukacik P, Chang H, Easley NC, Lithgow T, & Buchanan SK (2013). Structural insight into the biogenesis of β-barrel membrane proteins.
Nature 501 :385-390. PubMed Id: 23995689. doi:10.1038/nature12521. |
||
BamA21-351 POTRA domains (periplasmic fragment, P212121): Escherichia coli B Bacteria, 2.2 Å
BamA was formerly named YaeT. The polypeptide transport-associated (POTRA) domains link to a transmembrane β-barrel, which is absent in this structure. P21212 space group, 2.2 Å: 2QDF |
Kim et al. (2007).
Kim S, Malinverni JC, Sliz P, Silhavy TJ, Harrison SC, & Kahne D (2007). Structure and function of an essential component of the outer membrane protein assembly machine.
Science 317 :961-964. PubMed Id: 17702946. |
||
BamA21-410 POTRA domains (periplasmic fragment): Escherichia coli B Bacteria, 3.3 Å
BamA was formerly named YaeT. The polypeptide transport-associated (POTRA) domains link to a transmembrane β-barrel, which is absent in this structure. Structure shows the first four POTRA domains in an extended conformation. |
Gatzeva-Topalova et al. (2008).
Gatzeva-Topalova PZ, Walton TA, & Sousa MC (2008). Crystal Structure of YaeT: Conformational flexibility and substrate recognition.
Structure 16 :1873-1881. PubMed Id: 19081063. |
||
BamA21-174 POTRA domains 1 and 2: Escherichia coli B Bacteria, NMR Structure
BamA was formerly named YaeT. |
Knowles et al. (2008).
Knowles TJ, Jeeves M, Bobat S, Dancea F, McClelland D, Palmer T, Overduin M, & Henderson IR (2008). Fold and function of polypeptide transport-associated domains responsible for delivering unfolded proteins to membranes.
Mol Microbiol 68 :1216-1227. PubMed Id: 18430136. |
||
BamA264-424 POTRA domains 4 and 5: Escherichia coli B Bacteria, 2.69 Å
BamA was formerly named YaeT. From this structure and earlier ones (above), Gatzeva-Topalova et al. have constructed a 'spliced' model for the complete POTRA1-5 structure. |
Gatzeva-Topalova et al. (2010).
Gatzeva-Topalova PZ, Warner LR, Pardi A, & Sousa MC (2010). Structure and Flexibility of the Complete Periplasmic Domain of BamA: The Protein Insertion Machine of the Outer Membrane.
Structure 18 :1492-1501. PubMed Id: 21070948. |
||
BamA266-420 POTRA domains 4 and 5: Escherichia coli B Bacteria, 1.5 Å
BamA formerly named YaeT. |
Zhang et al. (2011).
Zhang H, Gao ZQ, Hou HF, Xu JH, Li LF, Su XD, & Dong YH (2011). High-resolution structure of a new crystal form of BamA POTRA4-5 from Escherichia coli.
Acta Crystallogr Sect F Struct Biol Cryst Commun F67 :734-738. PubMed Id: 21795783. doi:10.1107/S1744309111014254. |
||
BamA with POTRA domain 5: Escherichia coli B Bacteria, 3.00 Å
|
Albrecht et al. (2014).
Albrecht R, Schütz M, Oberhettinger P, Faulstich M, Bermejo I, Rudel T, Diederichs K, & Zeth K (2014). Structure of BamA, an essential factor in outer membrane protein biogenesis.
Acta Crystallogr D Biol Crystallogr 70 :1779-1789. PubMed Id: 24914988. doi:10.1107/S1399004714007482. |
||
BamA421-810 (without POTRA domains) with a 9 AA (MENVALDFS) C-terminal extension: Escherichia coli B Bacteria, 2.2 Å
This structure was part of an effort to obtain NMR data. The work resulted in 70% complete sequence-specific NMR spectra. |
Hartmann et al. (2018).
Hartmann JB, Zahn M, Burmann IM, Bibow S, & Hiller S (2018). Sequence-Specific Solution NMR Assignments of the β-Barrel Insertase BamA to Monitor Its Conformational Ensemble at the Atomic Level.
J Am Chem Soc 140 36:11252-11260. PubMed Id: 30125090. doi:10.1021/jacs.8b03220. |
||
Kaur et al. (2019).
Kaur H, Hartmann JB, Jakob RP, Zahn M, Zimmermann I, Maier T, Seeger MA, & Hiller S (2019). Identification of conformation-selective nanobodies against the membrane protein insertase BamA by an integrated structural biology approach.
J Biomol NMR 73 :375-384. PubMed Id: 31073665. doi:10.1007/s10858-019-00250-8. |
|||
BamB component of the Bam β-barrel assembly machine: Escherichia coli B Bacteria, 1.80 Å
|
Heuck et al. (2011).
Heuck A, Schleiffer A, & Clausen T (2011). Augmenting β-Augmentation: Structural Basis of How BamB Binds BamA and May Support Folding of Outer Membrane Proteins.
J Mol Biol 406 :659-666. PubMed Id: 21236263. |
||
BamB component of the Bam β-barrel assembly machine: Escherichia coli B Bacteria, 2.60 Å
|
Kim & Paetzel (2011).
Kim KH & Paetzel M (2011). Crystal Structure of Escherichia coli BamB, a Lipoprotein Component of the β-Barrel Assembly Machinery Complex.
J Mol Biol 406 :667-678. PubMed Id: 21168416. |
||
Noinaj et al. (2011).
Noinaj N, Fairman JW, & Buchanan SK (2011). Crystal structures The Crystal Structure of BamB Suggests Interactions with BamA and Its Role within the BAM Complex.
J Mol Biol 407 :248-260. PubMed Id: 21277859. |
|||
BamB component of the Bam β-barrel assembly machine: Escherichia coli B Bacteria, 2.60 Å
|
Albrecht & Zeth (2011).
Albrecht R & Zeth K (2011). Structural basis of outer membrane protein biogenesis in bacteria.
J Biol Chem 286 :27792-27803. PubMed Id: 21586578. doi:10.1074/jbc.M111.238931. |
||
BamB component of the Bam β-barrel assembly machine: Escherichia coli B Bacteria, 2.00 Å
|
Dong et al. (2012).
Dong C, Yang X, Hou HF, Shen YQ, & Dong YH (2012). Structure of Escherichia coli BamB and its interaction with POTRA domains of BamA.
Acta Crystallogr D Biol Crystallogr D68 :1134-1139. PubMed Id: 22948914. doi:10.1107/S0907444912023141. |
||
BamB in complex with POTRA 3-4 domains of BamA: Escherichia coli B Bacteria, 2.15 Å
|
Chen et al. (2016).
Chen Z, Zhan LH, Hou HF, Gao ZQ, Xu JH, Dong C, & Dong YH (2016). Structural basis for the interaction of BamB with the POTRA3-4 domains of BamA.
Acta Crystallogr D Struct Biol 72 :236-244. PubMed Id: 26894671. doi:10.1107/S2059798315024729. |
||
BamC component of the Bam β-barrel assembly machine: Escherichia coli B Bacteria, 1.55 Å
C-terminal domain, residues 101-212 |
Albrecht & Zeth (2011).
Albrecht R & Zeth K (2011). Structural basis of outer membrane protein biogenesis in bacteria.
J Biol Chem 286 :27792-27803. PubMed Id: 21586578. doi:10.1074/jbc.M111.238931. |
||
BamC component of the Bam β-barrel assembly machine: Escherichia coli B Bacteria, 1.25 Å
N-terminal domain, residues 25-143 |
Albrecht & Zeth (2011).
Albrecht R & Zeth K (2011). Structural basis of outer membrane protein biogenesis in bacteria.
J Biol Chem 286 :27792-27803. PubMed Id: 21586578. doi:10.1074/jbc.M111.238931. |
||
BamC component of the Bam β-barrel assembly machine (N-term, 101-212): Escherichia coli B Bacteria, NMR Structure
Structure obtained Using Rosetta with a limited NMR data set. C-term domain, 229-344: 2LAE |
Warner et al. (2011).
Warner LR, Varga K, Lange OF, Baker SL, Baker D, Sousa MC, & Pardi A (2011). Structure of the BamC two-domain protein obtained by Rosetta with a limited NMR data set.
J Mol Biol 411 :83-95. PubMed Id: 21624375. doi:10.1016/j.jmb.2011.05.022. |
||
BamC component of the Bam β-barrel assembly machine (C-term, 224-343): Escherichia coli B Bacteria, 1.50 Å
|
Kim et al. (2011).
Kim KH, Aulakh S, Tan W, & Paetzel M (2011). Crystallographic analysis of the C-terminal domain of the Escherichia coli lipoprotein BamC.
Acta Crystallogr Sect F Struct Biol Cryst Commun 67 :1350-1358. PubMed Id: 22102230. doi:10.1107/S174430911103363X. |
||
BamD component of the Bam β-barrel assembly machine: Rhodothermus marinus B Bacteria (expressed in E. coli), 2.15 Å
BamD associates with the membrane using a lipidated amino-terminal cysteine. BamE and BamC are thought to bind to the C-terminus of BamD. |
Sandoval et al. (2011).
Sandoval CM, Baker SL, Jansen K, Metzner SI, & Sousa MC (2011). Crystal Structure of BamD: An Essential Component of the β-Barrel Assembly Machinery of Gram-Negative Bacteria
J Mol Biol 409 :348-357. PubMed Id: 21463635. doi:10.1016/j.jmb.2011.03.035. |
||
BamD component of the Bam β-barrel assembly machine: Escherichia coli B Bacteria, 1.80 Å
|
Albrecht & Zeth (2011).
Albrecht R & Zeth K (2011). Structural basis of outer membrane protein biogenesis in bacteria.
J Biol Chem 286 :27792-27803. PubMed Id: 21586578. doi:10.1074/jbc.M111.238931. |
||
BamD component of the Bam β-barrel assembly machine: Escherichia coli B Bacteria, 2.60 Å
|
Dong et al. (2012).
Dong C, Hou HF, Yang X, Shen YQ, & Dong YH (2012). Structure of Escherichia coli BamD and its functional implications in outer membrane protein assembly.
Acta Crystallogr D68 :95-101. PubMed Id: 22281737. doi:10.1107/S0907444911051031. |
||
BamD component of the Bam β-barrel assembly machine: Neisseria gonorrhoeae B Bacteria (expressed in E. coli), 2.50 Å
|
Sikora et al. (2018).
Sikora AE, Wierzbicki IH, Zielke RA, Ryner RF, Korotkov KV, Buchanan SK, & Noinaj N (2018). Structural and functional insights into the role of BamD and BamE within the ?-barrel assembly machinery in Neisseria gonorrhoeae.
J Biol Chem 293 :1106-1119. PubMed Id: 29229778. doi:10.1074/jbc.RA117.000437. |
||
BamE component of the Bam β-barrel assembly machine: Escherichia coli B Bacteria, NMR structure
|
Knowles et al. (2011).
Knowles TJ, Browning DF, Jeeves M, Maderbocus R, Rajesh S, Sridhar P, Manoli E, Emery D, Sommer U, Spencer A, Leyton DL, Squire D, Chaudhuri RR, Viant MR, Cunningham AF, Henderson IR, Overduin M (2011). Structure and function of BamE within the outer membrane and the β-barrel assembly machine.
EMBO Rep 12 :123-128. PubMed Id: 21212804. |
||
BamE component of the Bam β-barrel assembly machine: Escherichia coli B Bacteria, 1.80 Å
|
Albrecht & Zeth (2011).
Albrecht R & Zeth K (2011). Structural basis of outer membrane protein biogenesis in bacteria.
J Biol Chem 286 :27792-27803. PubMed Id: 21586578. doi:10.1074/jbc.M111.238931. |
||
BamE component of the Bam β-barrel assembly machine: Neisseria gonorrhoeae B Bacteria (expressed in E. coli), 2.45 Å
|
Sikora et al. (2018).
Sikora AE, Wierzbicki IH, Zielke RA, Ryner RF, Korotkov KV, Buchanan SK, & Noinaj N (2018). Structural and functional insights into the role of BamD and BamE within the ?-barrel assembly machinery in Neisseria gonorrhoeae.
J Biol Chem 293 :1106-1119. PubMed Id: 29229778. doi:10.1074/jbc.RA117.000437. |
||
BamCD complex of the Bam β-barrel assembly machine: Escherichia coli B Bacteria, 2.90 Å
The BamC component is the N-terminal domain, residues 26-217. The BamD component includes residues 32-240. |
Kim et al. (2011).
Kim KH, Aulakh S, & Paetzel M (2011). Crystal Structure of β-Barrel Assembly Machinery BamCD Protein Complex
J Biol Chem 286 :39116-39121. PubMed Id: 21937441. doi:10.1074/jbc.M111.298166. |
||
BamACDE complex of the Bam β-barrel assembly machine: Escherichia coli B Bacteria, 3.4 Å
|
Bakelar et al. (2016).
Bakelar J, Buchanan SK, & Noinaj N (2016). The structure of the β-barrel assembly machinery complex.
Science 351 :180-186. PubMed Id: 26744406. doi:10.1126/science.aad3460. |
||
BepA (YfgC) BAM assembly-enhancing protease: Escherichia coli B Bacteria, 2.60 Å
|
Shahrizal et al. (2018).
Shahrizal M, Daimon Y, Tanaka Y, Hayashi Y, Nakayama S, Iwaki S, Narita SI, Kamikubo H, Akiyama Y, & Tsukazaki T (2018). Structural Basis for the Function of the β-Barrel Assembly-Enhancing Protease BepA.
J Mol Biol . PubMed Id: 30521812. doi:10.1016/j.jmb.2018.11.024. |
||
BamA-POTRA4-5-BamD fusion complex of the Bam β-barrel assembly machine: Rhodothermus marinus B Bacteria (expressed in E. coli), 2.0 Å
|
Bergal et al. (2016).
Bergal HT, Hopkins AH, Metzner SI, & Sousa MC (2016). The Structure of a BamA-BamD Fusion Illuminates the Architecture of the β-Barrel Assembly Machine Core.
Structure 24 :243-251. PubMed Id: 26749448. doi:10.1016/j.str.2015.10.030. |
||
BamABCDE complex of the Bam β-barrel assembly machine: Escherichia coli B Bacteria, 2.90 Å
BAM ACDE complex, 3.90 Å: 5D0Q |
Gu et al. (2016).
Gu Y, Li H, Dong H, Zeng Y, Zhang Z, Paterson NG, Stansfeld PJ, Wang Z, Zhang Y, Wang W, & Dong C (2016). Structural basis of outer membrane protein insertion by the BAM complex.
Nature 531 :64-69. PubMed Id: 26901871. doi:10.1038/nature17199. |
||
BamABCDE complex of the Bam β-barrel assembly machine: Escherichia coli B Bacteria, 3.56 Å
|
Han et al. (2016).
Han L, Zheng J, Wang Y, Yang X, Liu Y, Sun C, Cao B, Zhou H, Ni D, Lou J, Zhao Y, & Huang Y (2016). Structure of the BAM complex and its implications for biogenesis of outer-membrane proteins.
Nat Struct Mol Biol 23 :192-196. PubMed Id: 26900875. doi:10.1038/nsmb.3181. |
||
BamABCDE complex of the Bam β-barrel assembly machine: Escherichia coli B Bacteria, 4.9 Å
cryo-EM structure showing lateral opening of complex |
Iadanza et al. (2016).
Iadanza MG, Higgins AJ, Schiffrin B, Calabrese AN, Brockwell DJ, Ashcroft AE, Radford SE, & Ranson NA (2016). Lateral opening in the intact β-barrel assembly machinery captured by cryo-EM.
Nat Commun 7 :12865. PubMed Id: 27686148. doi:10.1038/ncomms12865. |
||
BamABCDE complex of the Bam β-barrel assembly machine engaged in folding BamA: Escherichia coli B Bacteria, 4.10 Å
cryo-EM structure |
Tomasek et al. (2020).
Tomasek D, Rawson S, Lee J, Wzorek JS, Harrison SC, Li Z, & Kahne D (2020). Structure of a nascent membrane protein as it folds on the BAM complex.
Nature 583 7816:473-478. PubMed Id: 32528179. doi:10.1038/s41586-020-2370-1. |
||
BamA in complex with RcsF: Escherichia coli B Bacteria, 3.79 Å
|
Rodríguez-Alonso et al. (2020).
Rodríguez-Alonso R, Létoquart J, Nguyen VS, Louis G, Calabrese AN, Iorga BI, Radford SE, Cho SH, Remaut H, & Collet JF (2020). Structural insight into the formation of lipoprotein-β-barrel complexes.
Nat Chem Biol 16 9:1019-1025. PubMed Id: 32572278. doi:10.1038/s41589-020-0575-0. |
||
BamABCDE complex in MSP1D1 nanodisc: Escherichia coli B Bacteria, 6.65 Å
cryo-EM structure ensemble 0-2, 9.50 Å: 6SN2 ensemble 0-3, 8.40 Å: 6SN3 ensemble 0-4, 9.50 Å: 6SN4 ensemble 0-5, 9.80 Å: 6SN5 ensemble 0-6, 8.90 Å: 6SN7 ensemble 0-7, 8.40 Å: 6SN8 ensemble 0-8, 9.80 Å: 6SN9 ensemble 1-4, 8.50 Å: 6SOB ensemble 1-5, 9.00 Å: 6SOC ensemble 1-6, 8.30 Å: 6SOG ensemble 1-6, 9.50 Å: 6SOH ensemble 1-8, 10.40 Å: 6SOJ |
Iadanza et al. (2020).
Iadanza MG, Schiffrin B, White P, Watson MA, Horne JE, Higgins AJ, Calabrese AN, Brockwell DJ, Tuma R, Kalli AC, Radford SE, & Ranson NA (2020). Distortion of the bilayer and dynamics of the BAM complex in lipid nanodiscs.
Commun Biol 3 1:776. PubMed Id: 33318620. doi:10.1038/s42003-020-01419-w. |
||
BamABCDE complex of the Bam β-barrel assembly machine, Lid-locked (LL), BamA E435C S665C: Escherichia coli B Bacteria, 4.10 Å
cryo-EM structure BamA E435C S665C, lateral open conformation, 4.80 Å: 7NBX BamABCDE bound to a bactericidal Fab fragment, lateral open state, 5.20 Å: 7ND0 BamA E435C S665C, BamBDCE bound by a bactericidal Fab fragment, lateral open state, 7.10 Å: 7NCS |
White et al. (2021).
White P, Haysom SF, Iadanza MG, Higgins AJ, Machin JM, Whitehouse JM, Horne JE, Schiffrin B, Carpenter-Platt C, Calabrese AN, Storek KM, Rutherford ST, Brockwell DJ, Ranson NA, & Radford SE (2021). The role of membrane destabilisation and protein dynamics in BAM catalysed OMP folding.
Nat Commun 12 1:4174. PubMed Id: 34234105. doi:10.1038/s41467-021-24432-x. |
||
Xiao et al. (2021).
Xiao L, Han L, Li B, Zhang M, Zhou H, Luo Q, Zhang X, & Huang Y (2021). Structures of the β-barrel assembly machine recognizing outer membrane protein substrates.
FASEB J 35 1:e21207. PubMed Id: 33368572. doi:10.1096/fj.202001443RR. |
|||
Kaur et al. (2021).
Kaur H, Jakob RP, Marzinek JK, Green R, Imai Y, Bolla JR, Agustoni E, Robinson CV, Bond PJ, Lewis K, Maier T, & Hiller S (2021). The antibiotic darobactin mimics a β-strand to inhibit outer membrane insertase.
Nature 593 7857:125-129. PubMed Id: 33854236. doi:10.1038/s41586-021-03455-w. |
|||
BamABCDE complex in MSP1D1 nanodisc: Escherichia coli B Bacteria, 8.00 Å
cryo-EM structure in MSP2N2 nanodisc, 7.50 Å 7RI8 in MSP1E3D1 nanodisc, 6.90 Å 7RI9 in MSP1E3D1 nanodisc, 4.00 Å 7RI5 MSP1E3D1 nanodisc using E. coli outer membranes, 5.90 Å 7RI6 in complex with EspP, 7RJ5 BAM/EspP(beta9-12) hybrid-barrel intermediate, 3.40 Å 7RI4 |
Wu et al. (2021).
Wu R, Bakelar JW, Lundquist K, Zhang Z, Kuo KM, Ryoo D, Pang YT, Sun C, White T, Klose T, Jiang W, Gumbart JC, & Noinaj N (2021). Plasticity within the barrel domain of BamA mediates a hybrid-barrel mechanism by BAM.
Nat Commun 12 1:7131. PubMed Id: 34880256. doi:10.1038/s41467-021-27449-4. |
||
BamABCDE complex with bound EspP: Escherichia coli B Bacteria, 3.60 Å
cryo-EM structure class 1, 4.50 Å 7TSZ class 2, 4.30 Å 7TT0 class 3, 4.20 Å 7TT2 class 4, 4.30 Å 7TT1 class 5, 4.30 Å 7TT3 class 6, 4.20 Å 7TT4 open-sheet EspP state, 4.30 Å 7TT5 intermediate-open EspP state, 4.30 Å 7TT6 barrelized EspP/continuous open BamA state, 4.80 Å 7TT7 |
Doyle et al. (2022).
Doyle MT, Jimah JR, Dowdy T, Ohlemacher SI, Larion M, Hinshaw JE, & Bernstein HD (2022). Cryo-EM structures reveal multiple stages of bacterial outer membrane protein folding.
Cell 185 7:1143-1156.e13. PubMed Id: 35294859. doi:10.1016/j.cell.2022.02.016. |
||
BamABCDE complex with bound darobactin 22: Escherichia coli B Bacteria, 3.00 Å
cryo-EM structure with bound darobactin 9, 3.40 Å: 8ADi |
Seyfert et al. (2023).
Seyfert CE, Porten C, Yuan B, Deckarm S, Panter F, Bader CD, Coetzee J, Deschner F, Tehrani KHME, Higgins PG, Seifert H, Marlovits TC, Herrmann J, & Müller R (2023). Darobactins Exhibiting Superior Antibiotic Activity by Cryo-EM Structure Guided Biosynthetic Engineering.
Angew Chem Int Ed Engl 62 2:e202214094. PubMed Id: 36308277. doi:10.1002/anie.202214094. |
||
BamABCDE complex, wild-type: Escherichia coli B Bacteria, 3.50 Å
cryo-EM structure with bound darobactin B, 3.30 Å: 8BVQ |
Haysom et al. (2023).
Haysom SF, Machin J, Whitehouse JM, Horne JE, Fenn K, Ma Y, El Mkami H, Böhringer N, Schäberle TF, Ranson NA, Radford SE, & Pliotas C (2023). Darobactin B Stabilises a Lateral-Closed Conformation of the BAM Complex in E. coli Cells.
Angew Chem Int Ed Engl :e202218783. PubMed Id: 37162386. doi:10.1002/anie.202218783. |
||
Shen et al. (2023).
Shen C, Chang S, Luo Q, Chan KC, Zhang Z, Luo B, Xie T, Lu G, Zhu X, Wei X, Dong C, Zhou R, Zhang X, Tang X, & Dong H (2023). Structural basis of BAM-mediated outer membrane β-barrel protein assembly.
Nature 617 7959:185-193. PubMed Id: 37100902. doi:10.1038/s41586-023-05988-8. |
|||
BamABCDE complex with bound dynobactin A: Escherichia coli B Bacteria, 3.60 Å
cryo-EM structure |
Miller et al. (2022).
Miller RD, Iinishi A, Modaresi SM, Yoo BK, Curtis TD, Lariviere PJ, Liang L, Son S, Nicolau S, Bargabos R, Morrissette M, Gates MF, Pitt N, Jakob RP, Rath P, Maier T, Malyutin AG, Kaiser JT, Niles S, Karavas B, Ghiglieri M, Bowman SEJ, Rees DC, Hiller S, & Lewis K (2022). Computational identification of a systemic antibiotic for gram-negative bacteria.
Nat Microbiol 7 10:1661-1672. PubMed Id: 36163500. doi:10.1038/s41564-022-01227-4. |
||
Mitochondrial Outer Membrane Beta Barrel Proteins
|
|||
VDAC-1 voltage dependent anion channel: Homo sapiens E Eukaryota (expressed in E. coli), NMR structure
Structure determined in LDAO micelles. |
Hiller et al. (2008).
Hiller S, Garces RG, Malia TJ, Orekhov VY, Colombini M, & Wagner G (2008). Solution structure of the integral human membrane protein VDAC-1 in detergent micelles.
Science 321 :1206-1210. PubMed Id: 18755977. |
||
VDAC-1 voltage dependent anion channel: Homo sapiens E Eukaryota (expressed in E. coli), 4 Å
Structure determined by combining x-ray and NMR data. |
Bayrhuber et al. (2008).
Bayrhuber M, Meins T, Habeck M, Becker S, Giller K, Villinger S, Vonrhein C, Griesinger C, Zweckstetter M, & Zeth K (2008). Structure of the human voltage-dependent anion channel.
Proc Natl Acad Sci USA 105 :15370-15375. PubMed Id: 18832158. |
||
VDAC-1 voltage dependent anion channel in complex with β-NADH: Homo sapiens E Eukaryota (expressed in E. coli), NMR structure
structure determined in LDAO micelles VDAC-1 alone, refined structure. 6TIQ |
Böhm et al. (2020).
Böhm R, Amodeo GF, Murlidaran S, Chavali S, Wagner G, Winterhalter M, Brannigan G, & Hiller S (2020). The Structural Basis for Low Conductance in the Membrane Protein VDAC upon β-NADH Binding and Voltage Gating.
Structure 28 2:206-214.e4. PubMed Id: 31862297. doi:10.1016/j.str.2019.11.015. |
||
VDAC-1 voltage dependent anion channel, E73V/C127A/C232S mutant in DMPC: Homo sapiens E Eukaryota (expressed in E. coli), NMR structure
|
Najbauer et al. (2022).
Najbauer EE, Tekwani Movellan K, Giller K, Benz R, Becker S, Griesinger C, & Andreas LB (2022). Structure and Gating Behavior of the Human Integral Membrane Protein VDAC1 in a Lipid Bilayer.
J Am Chem Soc 144 7:2953-2967. PubMed Id: 35164499. doi:10.1021/jacs.1c09848. |
||
VDAC-1 voltage dependent anion channel: Mus musculus E Eukaryota (expressed in E. coli), 2.3 Å
Reveals the voltage-sensing N-terminal α-helix. |
Ujwal et al. (2008).
Ujwal R, Cascio D, Colletier JP, Faham S, Zhang J, Toro L, Ping P, & Abramson J (2008). The crystal structure of mouse VDAC1 at 2.3 Å resolution reveals mechanistic insights into metabolite gating.
Proc Natl Acad Sci USA 105 :17742-17747. PubMed Id: 18988731. |
||
VDAC-1 voltage dependent anion channel with bound ATP: Mus musculus E Eukaryota (expressed in E. coli), 2.28 Å
|
Choudhary et al. (2014).
Choudhary OP, Paz A, Adelman JL, Colletier JP, Abramson J, & Grabe M (2014). Structure-guided simulations illuminate the mechanism of ATP transport through VDAC1.
Nat Struct Mol Biol 21 7:626-632. PubMed Id: 24908397. doi:10.1038/nsmb.2841. |
||
VDAC-1 voltage dependent anion channel by micro electron diffraction (microED): Mus musculus E Eukaryota (expressed in E. coli), 3.12 Å
|
Martynowycz et al. (2020).
Martynowycz MW, Khan F, Hattne J, Abramson J, & Gonen T (2020). MicroED structure of lipid-embedded mammalian mitochondrial voltage-dependent anion channel.
Proc Natl Acad Sci U S A 117 51:32380-32385. PubMed Id: 33293416. doi:10.1073/pnas.2020010117. |
||
VDAC-2 voltage dependent anion channel: Danio rerio E Eukaryota (expressed in E. coli), 2.80 Å
Double electron-electron resonance measurements indicate a population of oligomers. |
Schredelseker et al. (2014).
Schredelseker J, Paz A, López CJ, Altenbach C, Leung CS, Drexler MK, Chen JN, Hubbell WL, & Abramson J (2014). High-Resolution Structure and Double Electron-Electron Resonance of the Zebrafish Voltage Dependent Anion Channel 2 Reveal an Oligomeric Population.
J Biol Chem 289 :12566-12577. PubMed Id: 24627492. doi:10.1074/jbc.M113.497438. |
||
Translocase of outer mitochondrial membrane (TOM) complex, model: Neurospora crassa E Eukaryota, 6.8 Å
single-particle cryo-EM structure |
Bausewein et al. (2017).
Bausewein T, Mills DJ, Langer JD, Nitschke B, Nussberger S, & Kühlbrandt W (2017). Cryo-EM Structure of the TOM Core Complex from Neurospora crassa.
Cell 170 :693-700.e7. PubMed Id: 28802041. doi:10.1016/j.cell.2017.07.012. |
||
Translocase of outer mitochondrial membrane (TOM) core complex: Neurospora crassa E Eukaryota, 3.30 Å
cryo-EM structure |
Ornelas et al. (2023).
Ornelas P, Bausewein T, Martin J, Morgner N, Nussberger S, & Kühlbrandt W (2023). Two conformations of the Tom20 preprotein receptor in the TOM holo complex.
Proc Natl Acad Sci U S A 120 34:e2301447120. PubMed Id: 37579144. doi:10.1073/pnas.2301447120. |
||
translocase of the outer mitochondrial membrane (TOM) complex: Saccharomyces cerevisiae E Eukaryota, 3.81 Å
cryo-EM structure The TOM complex is comprised of the Tom40, Tom20, Tom22, and Tom70 receptors and the Tom5, Tom6, and Tom70 regulators. |
Araiso et al. (2019).
Araiso Y, Tsutsumi A, Qiu J, Imai K, Shiota T, Song J, Lindau C, Wenz LS, Sakaue H, Yunoki K, Kawano S, Suzuki J, Wischnewski M, Schütze C, Ariyama H, Ando T, Becker T, Lithgow T, Wiedemann N, Pfanner N, Kikkawa M, & Endo T (2019). Structure of the mitochondrial import gate reveals distinct preprotein paths.
Nature 575 7782:395-401. PubMed Id: 31600774. doi:10.1038/s41586-019-1680-7. |
||
translocase of the outer mitochondrial membrane (TOM) complex, dimer: Saccharomyces cerevisiae E Eukaryota, 3.06 Å
cryo-EM structure tetramer, 4.1 Å: 6UCV |
Tucker & Park (2019).
Tucker K, & Park E (2019). Cryo-EM structure of the mitochondrial protein-import channel TOM complex at near-atomic resolution.
Nat Struct Mol Biol 26 12:1158-1166. PubMed Id: 31740857. doi:10.1038/s41594-019-0339-2. |
||
Translocase of outer mitochondrial membrane (TOM) complex, SAM-Tom40 complex: Saccharomyces cerevisiae E Eukaryota (expressed in HEK293 cells), 3.01 Å
cryo-EM structure SAM-Tom40/Tom5/Tom6 complex, 3.05 Å 7E4I |
Wang et al. (2021).
Wang Q, Guan Z, Qi L, Zhuang J, Wang C, Hong S, Yan L, Wu Y, Cao X, Cao J, Yan J, Zou T, Liu Z, Zhang D, Yan C, & Yin P (2021). Structural insight into the SAM-mediated assembly of the mitochondrial TOM core complex.
Science 373 6561:1377-1381. PubMed Id: 34446444. doi:10.1126/science.abh0704. |
||
translocase of the outer mitochondrial membrane (TOM) core complex: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.40 Å
cryo-EM structure |
Wang et al. (2020).
Wang W, Chen X, Zhang L, Yi J, Ma Q, Yin J, Zhuo W, Gu J, & Yang M (2020). Atomic structure of human TOM core complex.
Cell Discov 6 :67. PubMed Id: 33083003. doi:10.1038/s41421-020-00198-2. |
||
translocase of the outer mitochondrial membrane (TOM) core complex, dimeric complex: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.00 Å
cryo-EM structure |
Guan et al. (2021).
Guan Z, Yan L, Wang Q, Qi L, Hong S, Gong Z, Yan C, & Yin P (2021). Structural insights into assembly of human mitochondrial translocase TOM complex.
Cell Discov 7 1:22. PubMed Id: 33846286. doi:10.1038/s41421-021-00252-7. |
||
translocase of the outer mitochondrial membrane (TOM) including TOM22 and TOM20 cytosolic domains: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.53 Å
cryo-EM structure complex with cross-linking, 3.74 Å: 7VDD |
Su et al. (2022).
Su J, Liu D, Yang F, Zuo MQ, Li C, Dong MQ, Sun S, & Sui SF (2022). Structural basis of Tom20 and Tom22 cytosolic domains as the human TOM complex receptors.
Proc Natl Acad Sci U S A 119 26:e2200158119. PubMed Id: 35733257. doi:10.1073/pnas.2200158119. |
||
Sorting & assembly Machinery (SAM) complex (Sam35, Sam37, Sam50) in nanodiscs (monomer): Thermothelomyces thermophilus (Myceliophthora thermophila) E Eukaryota (expressed in S. cerevisiae), 3.4 Å
cryoEM structure dimer 1, 3.2 Å: 6WUL monomer from dimer 1, 3.0 Å: 6WUT in detergent, dimer 2, 3.6 Å: 6WUM in detergent, dimer 3, 3.9 Å: 6WUN in detergent, monomer, 3.7 Å: 6WUJ |
Diederichs et al. (2020).
Diederichs KA, Ni X, Rollauer SE, Botos I, Tan X, King MS, Kunji ERS, Jiang J, & Buchanan SK (2020). Structural insight into mitochondrial β-barrel outer membrane protein biogenesis.
Nat Commun 11 1:3290. PubMed Id: 32620929. doi:10.1038/s41467-020-17144-1. |
||
Lipopolysaccharide (LPS) Transport Proteins
|
|||
LptD-LptE lipopolysaccharide transport complex: Salmonella enterica B Bacteria (expressed in E. coli), 2.80 Å
Structure provides the basis for LPS translocation across the outer membrane. LptD comprises residues 226-786. LptE comprises residues 19 - 169. |
Dong et al. (2014).
Dong H, Xiang Q, Gu Y, Wang Z, Paterson NG, Stansfeld PJ, He C, Zhang Y, Wang W, & Dong C (2014). Structural basis for outer membrane lipopolysaccharide insertion.
Nature 511 :52-56. PubMed Id: 24990744. doi:10.1038/nature13464. |
||
LptD-LptE lipopolysaccharide transport complex: Shigella flexneri B Bacteria (expressed in E. coli), 2.39 Å
|
Qiao et al. (2014).
Qiao S, Luo Q, Zhao Y, Zhang XC, & Huang Y (2014). Structural basis for lipopolysaccharide insertion in the bacterial outer membrane.
Nature 511 :108-111. PubMed Id: 24990751. doi:10.1038/nature13484. |
||
LptE lipopolysaccharide transport protein: Escherichia coli B Bacteria, 2.34 Å
|
Malojčić et al. (2014).
Malojčić G, Andres D, Grabowicz M, George AH, Ruiz N, Silhavy TJ, & Kahne D (2014). LptE binds to and alters the physical state of LPS to catalyze its assembly at the cell surface.
Proc. Natl. Acad. Sci. U.S.A. 111 26:9467-9472. PubMed Id: 24938785. doi:10.1073/pnas.1402746111. |
||
PgaA exopolysaccharide transporter: Escherichia coli B Bacteria, 2.82 Å
|
Wang et al. (2016).
Wang Y, Andole Pannuri A, Ni D, Zhou H, Cao X, Lu X, Romeo T, & Huang Y (2016). Structural Basis for Translocation of a Biofilm-supporting Exopolysaccharide across the Bacterial Outer Membrane.
J Biol Chem 291 19:10046-10057. PubMed Id: 26957546. doi:10.1074/jbc.M115.711762. |
||
LptD-LptE lipopolysaccharide transport complex: Yersinia pestis B Bacteria (expressed in E. coli), 2.75 Å
|
Botos et al. (2016).
Botos I, Majdalani N, Mayclin SJ, McCarthy JG, Lundquist K, Wojtowicz D, Barnard TJ, Gumbart JC, & Buchanan SK (2016). Structural and Functional Characterization of the LPS Transporter LptDE from Gram-Negative Pathogens.
Structure 24 :965-976. PubMed Id: 27161977. doi:10.1016/j.str.2016.03.026. |
||
LptD-LptE lipopolysaccharide transport complex: Klebsiella pneumoniae B Bacteria (expressed in E. coli), 2.94 Å
full-length protein, 4.37 Å: 5IV9 |
Botos et al. (2016).
Botos I, Majdalani N, Mayclin SJ, McCarthy JG, Lundquist K, Wojtowicz D, Barnard TJ, Gumbart JC, & Buchanan SK (2016). Structural and Functional Characterization of the LPS Transporter LptDE from Gram-Negative Pathogens.
Structure 24 :965-976. PubMed Id: 27161977. doi:10.1016/j.str.2016.03.026. |
||
LptD-LptE lipopolysaccharide transport complex: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 2.99 Å
|
Botos et al. (2016).
Botos I, Majdalani N, Mayclin SJ, McCarthy JG, Lundquist K, Wojtowicz D, Barnard TJ, Gumbart JC, & Buchanan SK (2016). Structural and Functional Characterization of the LPS Transporter LptDE from Gram-Negative Pathogens.
Structure 24 :965-976. PubMed Id: 27161977. doi:10.1016/j.str.2016.03.026. |
||
LptD-LptE lipopolysaccharide transport complex, in complex with ProMacrobodies: Neisseria gonorrhoeae B Bacteria (expressed in E. coli), 3.40 Å
cryo-EM structure x-ray: structure of ProMacrobody 21 with bound maltose, 2.00 Å 7OMT |
Botte et al. (2022).
Botte M, Ni D, Schenck S, Zimmermann I, Chami M, Bocquet N, Egloff P, Bucher D, Trabuco M, Cheng RKY, Brunner JD, Seeger MA, Stahlberg H, & Hennig M (2022). Cryo-EM structures of a LptDE transporter in complex with Pro-macrobodies offer insight into lipopolysaccharide translocation.
Nat Commun 13 1:1826. PubMed Id: 35383177. doi:10.1038/s41467-022-29459-2. |
||
Polysaccharide Utilization Proteins
Genes of this family are part of the starch utilization system (SUS) |
|||
Glenwright et al. (2017).
Glenwright AJ, Pothula KR, Bhamidimarri SP, Chorev DS, Baslé A, Firbank SJ, Zheng H, Robinson CV, Winterhalter M, Kleinekathöfer U, Bolam DN, & van den Berg B (2017). Structural basis for nutrient acquisition by dominant members of the human gut microbiota.
Nature 541 7637:407-411. PubMed Id: 28077872. doi:10.1038/nature20828. |
|||
SusCD Fructo-oligosaccharide transporter BT 1762-63: Bacteroides thetaiotaomicron B Bacteria, 2.69 Å
Fructo-oligosaccharide transporter BT 1762-63, 2.62 Å: 6Z8I Fructo-oligosaccharide transporter BT 1762-63, 3.10 Å: 6Z9A Open-open state of the Bt1762-Bt1763 levan transport system, 6ZLT Cryo_EM: Open-closed state of the Bt1762-Bt1763 levan transport system, 4.70 Å: 6ZM1 Cryo_EM: Closed-closed state of the Bt1762-Bt1763 levan transport system, 4.20 Å: 6ZLU |
Gray et al. (2021).
Gray DA, White JBR, Oluwole AO, Rath P, Glenwright AJ, Mazur A, Zahn M, Baslé A, Morland C, Evans SL, Cartmell A, Robinson CV, Hiller S, Ranson NA, Bolam DN, & van den Berg B (2021). Insights into SusCD-mediated glycan import by a prominent gut symbiont.
Nat Commun 12 1:44. PubMed Id: 33398001. doi:10.1038/s41467-020-20285-y. |
||
Madej et al. (2020).
Madej M, White JBR, Nowakowska Z, Rawson S, Scavenius C, Enghild JJ, Bereta GP, Pothula K, Kleinekathoefer U, BasléA, Ranson NA, Potempa J, & van den Berg B (2020). Structural and functional insights into oligopeptide acquisition by the RagAB transporter from Porphyromonas gingivalis.
Nat Microbiol 5 :1016-1025. PubMed Id: 32393857. doi:10.1038/s41564-020-0716-y. |
|||
Type II Secretion Systems
|
|||
GspD secretin: Escherichia coli B Bacteria, 3.04 Å
cryo-EM structure |
Yan et al. (2017).
Yan Z, Yin M, Xu D, Zhu Y, & Li X (2017). Structural insights into the secretin translocation channel in the type II secretion system.
Nat Struct Mol Biol 24 :177-183. PubMed Id: 28067918. doi:10.1038/nsmb.3350. |
||
GspD secretin: Vibrio cholerae B Bacteria (expressed in E. coli), 3.26 Å
cryo-EM structure partially open state without the cap gate, 4.22 Å: 5WQ9 |
Yan et al. (2017).
Yan Z, Yin M, Xu D, Zhu Y, & Li X (2017). Structural insights into the secretin translocation channel in the type II secretion system.
Nat Struct Mol Biol 24 :177-183. PubMed Id: 28067918. doi:10.1038/nsmb.3350. |
||
bacterial type II secretion system, core architecture: Klebsiella pneumoniae B Bacteria (expressed in E.coli), 4.3 Å
cryo-EM structure The inner membrane assembly platform consists of PulC, PulE, PulL, PulM, & PulN (2:1:1:1:1) |
Chernyatina & Low (2019).
Chernyatina AA, & Low HH (2019). Core architecture of a bacterial type II secretion system.
Nat Commun 10 1. PubMed Id: 31780649. doi:10.1038/s41467-019-13301-3. |
||
secretin pore pIV: Enterobacteria phage f1 V Viruses (expressed in E. coli), 2.70 Å
cryo-EM structure |
Conners et al. (2021).
Conners R, McLaren M, Łapińska U, Sanders K, Stone MRL, Blaskovich MAT, Pagliara S, Daum B, Rakonjac J, & Gold VAM (2021). CryoEM structure of the outer membrane secretin channel pIV from the f1 filamentous bacteriophage.
Nat Commun 12 1:6316. PubMed Id: 34728631. doi:10.1038/s41467-021-26610-3. |
||
Type III Secretion Systems
|
|||
Worrall et al. (2016).
Worrall LJ, Hong C, Vuckovic M, Deng W, Bergeron JR, Majewski DD, Huang RK, Spreter T, Finlay BB, Yu Z, & Strynadka NC (2016). Near-atomic-resolution cryo-EM analysis of the Salmonella T3S injectisome basal body.
Nature 540 :597-601. PubMed Id: 27974800. doi:10.1038/nature20576. |
|||
MS-ring of the flagellar rotor protein FliF, 33mer: Salmonella enterica B Bacteria (expressed in E. coli), 3.10 Å
cryo-EM structure RBM3/collar region, 2.60 Å: 6SD1 RBM2 inner region (21-fold symmetry applied), 3.10 Å: 6SD2 34mer structure, 3.30 Å: 6SD3 RBM3/collar region (34-fold symmetry applied), 2.80 Å: 6SD4 RBM2 inner ring (22-fold symmetry applied), 3.10 Å: 6SD5 RBM3/collar region (32-fold symmetry applied), 3.30 Å: 6TRE |
Johnson et al. (2020).
Johnson S, Fong YH, Deme JC, Furlong EJ, Kuhlen L, & Lea SM (2020). Symmetry mismatch in the MS-ring of the bacterial flagellar rotor explains the structural coordination of secretion and rotation.
Nat Microbiol 5 7:966-975. PubMed Id: 32284565. doi:10.1038/s41564-020-0703-3. |
||
Majewski et al. (2021).
Majewski DD, Okon M, Heinkel F, Robb CS, Vuckovic M, McIntosh LP, & Strynadka NCJ (2021). Characterization of the Pilotin-Secretin Complex from the Salmonella enterica Type III Secretion System Using Hybrid Structural Methods.
Structure 29 2:125-138.e5. PubMed Id: 32877645. doi:10.1016/j.str.2020.08.006. |
|||
Miletic et al. (2021).
Miletic S, Fahrenkamp D, Goessweiner-Mohr N, Wald J, Pantel M, Vesper O, Kotov V, & Marlovits TC (2021). Substrate-engaged type III secretion system structures reveal gating mechanism for unfolded protein translocation.
Nat Commun 12 1:1546. PubMed Id: 33750771. doi:10.1038/s41467-021-21143-1. |
|||
Xu et al. (2021).
Xu J, Wang J, Liu A, Zhang Y, & Gao X (2021). Structural and Functional Analysis of SsaV Cytoplasmic Domain and Variable Linker States in the Context of the InvA-SsaV Chimeric Protein.
Microbiol Spectr 9 3:e01251-21. PubMed Id: 34851139. doi:10.1128/Spectrum.01251-21. |
|||
T3S FliP-FliQ-FliR core complex: Salmonella typhimurium B Bacteria (expressed in E. coli), 4.2 Å
cryo-EM structure |
Kuhlen et al. (2018).
Kuhlen L, Abrusci P, Johnson S, Gault J, Deme J, Caesar J, Dietsche T, Mebrhatu MT, Ganief T, Macek B, Wagner S, Robinson CV, & Lea SM (2018). Structure of the core of the type III secretion system export apparatus.
Nat Struct Mol Biol 25 7:583-590. PubMed Id: 29967543. doi:10.1038/s41594-018-0086-9. |
||
T3S injectisome needle complex: Periplasmic domains of PrgH and PrgK: Salmonella typhimurium B Bacteria, 3.6 Å
cryo-EM structure injectisome secretin InvG in the open gate state, 4.1 Å: 6DV3 injectisome secretin InvG (residues 176-end) in the open gate state, 3.9 Å: 6DV6 injectisome needle filament, 3.3 Å: 6DWB |
Hu et al. (2018).
Hu J, Worrall LJ, Hong C, Vuckovic M, Atkinson CE, Caveney N, Yu Z, & Strynadka NCJ (2018). Cryo-EM analysis of the T3S injectisome reveals the structure of the needle and open secretin.
Nat Commun 9 1. PubMed Id: 30242280. doi:10.1038/s41467-018-06298-8. |
||
T3S injectisome needle complex: Salmonella typhimurium B Bacteria, 5.15 Å
cryo-EM structure InvG secretin domain beta-barrel, 3.42 Å: 6PEE Focused refinement of InvGN0N1:SpaPQR:PrgHK, 3.5 Å: 6PEM Focused refinement of InvGN0N1:SpaPQR:PrgIJ, 3.8 Å: 6PEP injectisome NC-base, 3.8 Å: 6Q14 Focused refinement of InvGN0N1:PrgHK:SpaPQR:PrgIJ, 4.1 Å: 6Q16 |
Hu et al. (2019).
Hu J, Worrall LJ, Vuckovic M, Hong C, Deng W, Atkinson CE, Brett Finlay B, Yu Z, & Strynadka NCJ (2019). T3S injectisome needle complex structures in four distinct states reveal the basis of membrane coupling and assembly.
Nat Microbiol 4 11:2010-2019. PubMed Id: 31427728. doi:10.1038/s41564-019-0545-z. |
||
Lunelli et al. (2020).
Lunelli M, Kamprad A, Bürger J, Mielke T, Spahn CMT, & Kolbe M (2020). Cryo-EM structure of the Shigella type III needle complex.
PLoS Pathog 16 2. PubMed Id: 32092125. doi:10.1371/journal.ppat.1008263. |
|||
Flacht et al. (2023).
Flacht L, Lunelli M, Kaszuba K, Chen ZA, O' Reilly FJ, Rappsilber J, Kosinski J, & Kolbe M (2023). Integrative structural analysis of the type III secretion system needle complex from Shigella flexneri.
Protein Sci :e4595. PubMed Id: 36790757. doi:10.1002/pro.4595. |
|||
T3S FliP-FliQ complex: Vibrio mimicus B Bacteria (expressed in E. coli), 4.10 Å
cryo-EM structure TS3 FliPQR-FlhB complex, 3.20 Å: 6S3L |
Kuhlen et al. (2020).
Kuhlen L, Johnson S, Zeitler A, Bäurle S, Deme JC, Caesar JJE, Debo R, Fisher J, Wagner S, & Lea SM (2020). The substrate specificity switch FlhB assembles onto the export gate to regulate type three secretion.
Nat Commun 11 1:1296. PubMed Id: 32157081. doi:10.1038/s41467-020-15071-9. |
||
T3S FliPQR complex: Pseudomonas savastanoi B Bacteria (expressed in E. coli), 3.50 Å
cryo-EM structure |
Kuhlen et al. (2020).
Kuhlen L, Johnson S, Zeitler A, Bäurle S, Deme JC, Caesar JJE, Debo R, Fisher J, Wagner S, & Lea SM (2020). The substrate specificity switch FlhB assembles onto the export gate to regulate type three secretion.
Nat Commun 11 1:1296. PubMed Id: 32157081. doi:10.1038/s41467-020-15071-9. |
||
type III secretion system EspA filament: Escherichia coli B Bacteria, 3.40 Å
cryo-EM structure |
Zheng et al. (2021).
Zheng W, Peña A, Ilangovan A, Clark JN, Frankel G, Egelman EH, & Costa TRD (2021). Cryoelectron-microscopy structure of the enteropathogenic Escherichia coli type III secretion system EspA filament.
Proc Natl Acad Sci U S A 118 2:e2022826118. PubMed Id: 33397726. doi:10.1073/pnas.2022826118. |
||
type III secretion system EspA filament: Escherichia coli B Bacteria, 3.56 Å
cryo-EM structure |
Lyons et al. (2021).
Lyons BJE, Atkinson CE, Deng W, Serapio-Palacios A, Finlay BB, & Strynadka NCJ (2021). Cryo-EM structure of the EspA filament from enteropathogenic Escherichia coli: Revealing the mechanism of effector translocation in the T3SS.
Structure 29 5:479-487.e4. PubMed Id: 33453150. doi:10.1016/j.str.2020.12.009. |
||
Gilzer et al. (2022).
Gilzer D, Schreiner M, & Niemann HH (2022). Direct interaction of a chaperone-bound type III secretion substrate with the export gate.
Nat Commun 13 1:2858. PubMed Id: 35654781. doi:10.1038/s41467-022-30487-1. |
|||
Type IV Secretion Systems
|
|||
Type IV outer membrane secretion complex: Escherichia coli B Bacteria, 2.60 Å
Comprised of 14 copies each of TraF, TraO, and TraN; 590 kDa. |
Chandran et al. (2009).
Chandran V, Fronzes R, Duquerroy S, Cronin N, Navaza J, & Waksman G (2009). Structure of the outer membrane complex of a type IV secretion system.
Nature 462 :1011-1015. PubMed Id: 19946264. |
||
Chung et al. (2019).
Chung JM, Sheedlo MJ, Campbell AM, Sawhney N, Frick-Cheng AE, Lacy DB, Cover TL, & Ohi MD (2019). Structure of the Helicobacter pylori Cag type IV secretion system.
Elife 8 :e47644. PubMed Id: 31210639. doi:10.7554/eLife.47644. |
|||
Cagβ1 ATPase: Helicobacter pylori B Bacteria (expressed in E. coli), 2.80 Å
Cagβ-AAD1/CagZ, 2.10 Å: 6JHO |
Wu et al. (2023).
Wu X, Zhao Y, Zhang H, Yang W, Yang J, Sun L, Jiang M, Wang Q, Wang Q, Ye X, Zhang X, & Wu Y (2023). Mechanism of regulation of the Helicobacter pylori Cagβ ATPase by CagZ.
Nat Commun 14 1:479. PubMed Id: 36717564. doi:10.1038/s41467-023-36218-4. |
||
PilQ Type IV competence pilus secretin: Vibrio cholerae B Bacteria, 2.70 Å
cryo-EM structure |
Weaver et al. (2020).
Weaver SJ, Ortega DR, Sazinsky MH, Dalia TN, Dalia AB, & Jensen GJ (2020). CryoEM structure of the type IVa pilus secretin required for natural competence in Vibrio cholerae.
Nat Commun 11 1:5080. PubMed Id: 33033258. doi:10.1038/s41467-020-18866-y. |
||
Durie et al. (2020).
Durie CL, Sheedlo MJ, Chung JM, Byrne BG, Su M, Knight T, Swanson M, Lacy DB, & Ohi MD (2020). Structural analysis of the Legionella pneumophila Dot/Icm type IV secretion system core complex.
Elife 9 :e59530. PubMed Id: 32876045. doi:10.7554/eLife.59530. |
|||
McCallum et al. (2021).
McCallum M, Tammam S, Rubinstein JL, Burrows LL, & Howell PL (2021). CryoEM map of Pseudomonas aeruginosa PilQ enables structural characterization of TsaP.
Structure 29 5:457-466.e4. PubMed Id: 33338410. doi:10.1016/j.str.2020.11.019. |
|||
outer-membrane core complex (inner ring) from a conjugative type IV secretion system: Salmonella enterica B Bacteria (expressed in E. coli), 3.34 Å
cryo-EM structure outer ring complex, 3.40 Å 7OKO |
Amin et al. (2021).
Amin H, Ilangovan A, & Costa TRD (2021). Architecture of the outer-membrane core complex from a conjugative type IV secretion system.
Nat Commun 12 1:6834. PubMed Id: 34824240. doi:10.1038/s41467-021-27178-8. |
||
outer-membrane core complex (inner ring) encoded by multi-drug resistance F plasmids, models for C13 reconstruction: Salmonella enterica B Bacteria, 3.31 Å
cryo-EM structure Models for C17 reconstruction, 2.95 Å 7SPC Models for C13 reconstruction encoded by a plasmid overproducing TraV, TraK and TraB of pED208, 2.97 Å 7SPI Models for C17 reconstruction encoded by a plasmid overproducing TraV, TraK and TraB of pED208, 3.56 Å 7SPJ models for C16 reconstruction encoded by a plasmid overproducing TraV, TraK and TraB of pED208, 3.90 Å 7SPK |
Liu et al. (2022).
Liu X, Khara P, Baker ML, Christie PJ, & Hu B (2022). Structure of a type IV secretion system core complex encoded by multi-drug resistance F plasmids.
Nat Commun 13 1:379. PubMed Id: 35046412. doi:10.1038/s41467-022-28058-5. |
||
Type VI Secretion Systems
|
|||
Type VI secretion system, TssK-TssF-TssG baseplate subcomplex: Escherichia coli B Bacteria, 3.7 Å
cryo-EM structure |
Park et al. (2018).
Park YJ, Lacourse KD, Cambillau C, DiMaio F, Mougous JD, & Veesler D (2018). Structure of the type VI secretion system TssK-TssF-TssG baseplate subcomplex revealed by cryo-electron microscopy.
Nat Commun 9 1. PubMed Id: 30568167. doi:10.1038/s41467-018-07796-5. |
||
Flaugnatti et al. (2020).
Flaugnatti N, Rapisarda C, Rey M, Beauvois SG, Nguyen VA, Canaan S, Durand E, Chamot-Rooke J, Cascales E, Fronzes R, & Journet L (2020). Structural basis for loading and inhibition of a bacterial T6SS phospholipase effector by the VgrG spike.
EMBO J 39 11. PubMed Id: 32350888. doi:10.15252/embj.2019104129. |
|||
PbuCsx28 protein, homo-octamer: Prevotella buccae B Bacteria (expressed in E. coli), 3.65 Å
cryo-EM structure |
VanderWal et al. (2023).
VanderWal AR, Park JU, Polevoda B, Nicosia JK, Molina Vargas AM, Kellogg EH, & O'Connell MR (2023). Csx28 is a membrane pore that enhances CRISPR-Cas13b-dependent antiphage defense.
Science 380 6643:410-415. PubMed Id: 37104586. doi:10.1126/science.abm1184. |
||
Type IX Secretion Systems
|
|||
SprA-based type IX (type 9) secretion system translocon: Flavobacterium johnsoniae B Bacteria, 3.5 Å
cryo-EM structure translocon plug-complex, 3.7 Å: 6H3J |
Lauber et al. (2018).
Lauber F, Deme JC, Lea SM, & Berks BC (2018). Type 9 secretion system structures reveal a new protein transport mechanism.
Nature 564 7734:77-82. PubMed Id: 30405243. doi:10.1038/s41586-018-0693-y. |
||
Forespore Sporulation Channels
These are ring-shaped conduits that connect the mother cell and forespore during sporulation. |
|||
SpoIIIAG sporolation channel: Bacillus subtilis B Bacteria (expressed in E. coli), 3.5 Å
cryo-EM structure |
Zeytuni et al. (2017).
Zeytuni N, Hong C, Flanagan KA, Worrall LJ, Theiltges KA, Vuckovic M, Huang RK, Massoni SC, Camp AH, Yu Z, & Strynadka NC (2017). Near-atomic resolution cryoelectron microscopy structure of the 30-fold homooligomeric SpoIIIAG channel essential to spore formation in Bacillus subtilis.
Proc Natl Acad Sci USA 114 34:E7073-E7081. PubMed Id: 28784753. doi:10.1073/pnas.1704310114. |
||
Gasdermin (GSDM) Family
Gasdermins are multi-subunit β-barrel forming proteins The gasdermins are expressed in the skin, mucosa, and immune antigen-presenting cells. |
|||
Gasdermin GSDMA3-NT pore: Mus musculus E Eukaryota (expressed in E. coli), 3.8 Å
cryo-EM structure. C27-symmetry. monomer crystal structure, 1.90 Å: 5B5R |
Ruan et al. (2018).
Ruan J, Xia S, Liu X, Lieberman J, & Wu H (2018). Cryo-EM structure of the gasdermin A3 membrane pore.
Nature 557 7703:62-67. PubMed Id: 29695864. doi:10.1038/s41586-018-0058-6. |
||
Gasdermin D pore: Homo sapiens E Eukaryota (expressed in E. coli), 3.90 Å
cryo-EM structure |
Xia et al. (2021).
Xia S, Zhang Z, Magupalli VG, Pablo JL, Dong Y, Vora SM, Wang L, Fu TM, Jacobson MP, Greka A, Lieberman J, Ruan J, & Wu H (2021). Gasdermin D pore structure reveals preferential release of mature interleukin-1.
Nature 593 7860:607-611. PubMed Id: 33883744. doi:10.1038/s41586-021-03478-3. |
||
Wang et al. (2023).
Wang C, Shivcharan S, Tian T, Wright S, Ma D, Chang J, Li K, Song K, Xu C, Rathinam VA, & Ruan J (2023). Structural basis for GSDMB pore formation and its targeting by IpaH7.8.
Nature 616 7957:590-597. PubMed Id: 36991122. doi:10.1038/s41586-023-05832-z. |
|||
Zhong et al. (2023).
Zhong X, Zeng H, Zhou Z, Su Y, Cheng H, Hou Y, She Y, Feng N, Wang J, Shao F, & Ding J (2023). Structural mechanisms for regulation of GSDMB pore-forming activity.
Nature 616 7957:598-605. PubMed Id: 36991125. doi:10.1038/s41586-023-05872-5. |
|||
TRANSMEMBRANE PROTEINS: ALPHA-HELICAL
|
|||
Adventitious Membrane Proteins: Alpha-helical Pore-forming Toxins.
|
|||
Cytolysin A (ClyA, aka HlyE): Escherichia coli B Bacteria, 3.29 Å
|
Mueller et al. (2009).
Mueller M, Grauschopf U, Maier T, Glockshuber R, & Ban N (2009). The structure of a cytolytic alpha-helical toxin pore reveals its assembly mechanism.
Nature 459 :726-730. PubMed Id: 19421192. |
||
Wilson et al. (2019).
Wilson JS, Churchill-Angus AM, Davies SP, Sedelnikova SE, Tzokov SB, Rafferty JB, Bullough PA, Bisson C, & Baker PJ (2019). Identification and structural analysis of the tripartite α-pore forming toxin of Aeromonas hydrophila.
Nat Commun 10 1. PubMed Id: 31263098. doi:10.1038/s41467-019-10777-x. |
|||
Churchill-Angus et al. (2021).
Churchill-Angus AM, Schofield THB, Marlow TR, Sedelnikova SE, Wilson JS, Rafferty JB, & Baker PJ (2021). Characterisation of a tripartite ?-pore forming toxin from Serratia marcescens.
Sci Rep 11 1:6447. PubMed Id: 33742033. doi:10.1038/s41598-021-85726-0. |
|||
Cry6Aa toxin: Bacillus thuringiensis B Bacteria (expressed in Pseudomonas fluorescens), 2.7 Å
trypsin-cleaved, 2.0 Å: 5KUC supersedes 5J65. |
Dementiev et al. (2016).
Dementiev A, Board J, Sitaram A, Hey T, Kelker MS, Xu X, Hu Y, Vidal-Quist C, Chikwana V, Griffin S, McCaskill D, Wang NX, Hung SC, Chan MK, Lee MM, Hughes J, Wegener A, Aroian RV, Narva KE, & Berry C (2016). The pesticidal Cry6Aa toxin from Bacillus thuringiensis is structurally similar to HlyE-family alpha pore-forming toxins.
BMC Biol 14 :71. PubMed Id: 27576487. doi:10.1186/s12915-016-0295-9. |
||
FraC eukaryotic pore-forming toxin from sea anemone: Actinia fragacea E Eukaryota, 1.80 Å
|
Mechaly et al. (2011).
Mechaly AE, Bellomio A, Gil-Cartón D, Morante K, Valle M, González-Mañas JM, & Guérin DM (2011). Structural insights into the oligomerization and architecture of eukaryotic membrane pore-forming toxins.
Structure 19 :181-191. PubMed Id: 21300287. |
||
FraC toxin pore with bound lipids: Actinia fragacea E Eukaryota (expressed in E. coli), 3.14 Å
Water soluble monomer (I), 1.70 Å: 3VWI Water soluble monomer (II), 2.10 Å: 3W9P Dimer with phosphorylcholine (I), 1.60 Å: 4TSL Dimer with phosphorylcholine (II), 1.57 Å: 4TSN Lipid (DHPC) bound (I), 2.30 Å: 4TSO Lipid (DHPC) bound (II), 2.15 Å: 4TSP Lipid (DHPC) bound (III), 1.60 Å: 4TSQ |
Tanaka et al. (2015).
Tanaka K, Caaveiro JM, Morante K, González-Mañas JM, & Tsumoto K (2015). Structural basis for self-assembly of a cytolytic pore lined by protein and lipid.
Nat Commun 6 :6337. PubMed Id: 25716479. doi:10.1038/ncomms7337. |
||
Dermicidin hexameric anti-microbial peptide channel: Homo sapiens E Eukaryota (expressed in Synthetic construct), 2.49 Å
|
Song et al. (2013).
Song C, Weichbrodt C, Salnikov ES, Dynowski M, Forsberg BO, Bechinger B, Steinem C, de Groot BL, Zachariae U, & Zeth K (2013). Crystal structure and functional mechanism of a human antimicrobial membrane channel.
Proc Natl Acad Sci USA 110 :4586-4591. PubMed Id: 23426625. doi:10.1073/pnas.1214739110. |
||
Tc Toxin, TcA prepore (TcdA1) subunit: Photorhabdus luminescens B Bacteria (expressed in E. coli), 3.50 Å
TcB-TcC (TcdB2-TccC3) subunits, 2.17 Å: 4O9X See also EM structures deposited in Electron Microscopy Data Bank under accession numbers EMD-2551 and EMD-2552. |
Meusch et al. (2014).
Meusch D, Gatsogiannis C, Efremov RG, Lang AE, Hofnagel O, Vetter IR, Aktories K, & Raunser S (2014). Mechanism of Tc toxin action revealed in molecular detail.
Nature 508 :61-65. PubMed Id: 24572368. doi:10.1038/nature13015. |
||
Tc Toxin, TcA pore (TcdA1) embedded in lipid nanodiscs using flexible fitting: Photorhabdus luminescens B Bacteria (expressed in E. coli), 3.46 Å
cryo-EM structure. without flexible fitting, 3.46 Å: 5LKI |
Gatsogiannis et al. (2016).
Gatsogiannis C, Merino F, Prumbaum D, Roderer D, Leidreiter F, Meusch D, & Raunser S (2016). Membrane insertion of a Tc toxin in near-atomic detail.
Nat Struct Mol Biol 23 :884-890. PubMed Id: 27571177. doi:10.1038/nsmb.3281. |
||
Tc holo toxin: Photorhabdus luminescens B Bacteria (expressed in E. coli), 3.4 Å
cryo-EM structure TccC3-D651A mutant, 3.4 Å: 6SUE |
Roderer et al. (2019).
Roderer D, Hofnagel O, Benz R, & Raunser S (2019). Structure of a Tc holotoxin pore provides insights into the translocation mechanism.
Proc Natl Acad Sci USA 116 46:23083-23090. PubMed Id: 31666324. doi:10.1073/pnas.1909821116. |
||
Listeriolysin O pore-forming toxin: Listeria monocytogenes B Bacteria, 2.15 Å
A model of the assembled pore contains 36 monomers. In that configuration, the membrane-spanning region of the toxin is a mix of α-helices and β-sheets |
Köster et al. (2014).
Köster S, van Pee K, Hudel M, Leustik M, Rhinow D, Kühlbrandt W, Chakraborty T, & Yildiz O (2014). Crystal structure of listeriolysin O reveals molecular details of oligomerization and pore formation.
Nat Commun 5 :3690. PubMed Id: 24751541. doi:10.1038/ncomms4690. |
||
Schubert et al. (2018).
Schubert E, Vetter IR, Prumbaum D, Penczek PA, & Raunser S (2018). Membrane insertion of α-xenorhabdolysin in near-atomic detail.
Elife 7 :e38017. PubMed Id: 30010541. doi:10.7554/eLife.38017. |
|||
VacA vacuolating cytotoxin A oligomeric assembly OA-1: Helicobacter pylori B Bacteria, 3.2 Å
cryo-EM structure. The main structural elements are β-helices, but the pore is formed by transmembrane α-helices assembly OA-2a, 3.9 Å: 6NYG assembly OA-2b, 3.2 Å: 6NYJ assembly OA-2c, 3.7 Å: 6NYL assembly OA-2d, 3.6 Å: 6NYM assembly OA-2e, 3.5 Å: 6NYN |
Zhang et al. (2019).
Zhang K, Zhang H, Li S, Pintilie GD, Mou TC, Gao Y, Zhang Q, van den Bedem H, Schmid MF, Au SWN, & Chiu W (2019). Cryo-EM structures of Helicobacter pylori vacuolating cytotoxin A oligomeric assemblies at near-atomic resolution.
Proc Natl Acad Sci USA 116 14:6800-6805. PubMed Id: 30894496. doi:10.1073/pnas.1821959116. |
||
VacA toxin oligomer: Helicobacter pylori B Bacteria, 3.8 Å
cryo-EM structure |
Su et al. (2019).
Su M, Erwin AL, Campbell AM, Pyburn TM, Salay LE, Hanks JL, Lacy DB, Akey DL, Cover TL, & Ohi MD (2019). Cryo-EM Analysis Reveals Structural Basis of Helicobacter pylori VacA Toxin Oligomerization.
J Mol Biol 431 10:1956-1965. PubMed Id: 30954575. doi:10.1016/j.jmb.2019.03.029. |
||
RhopH erythrocyte invasion protein complex, soluble form: Plasmodium falciparum E Eukaryota, 2.92 Å
cryo-EM structure |
Schureck et al. (2021).
Schureck MA, Darling JE, Merk A, Shao J, Daggupati G, Srinivasan P, Olinares PDB, Rout MP, Chait BT, Wollenberg K, Subramaniam S, & Desai SA (2021). Malaria parasites use a soluble RhopH complex for erythrocyte invasion and an integral form for nutrient uptake.
Elife 10 :e65282. PubMed Id: 33393463. doi:10.7554/eLife.65282. |
||
Byrne et al. (2021).
Byrne MJ, Iadanza MG, Perez MA, Maskell DP, George RM, Hesketh EL, Beales PA, Zack MD, Berry C, & Thompson RF (2021). Cryo-EM structures of an insecticidal Bt toxin reveal its mechanism of action on the membrane.
Nat Commun 12 1:2791. PubMed Id: 33990582. doi:10.1038/s41467-021-23146-4. |
|||
De novo Designed Membrane Proteins
Functional Proteins Designed from First Principles |
|||
Joh et al. (2014).
Joh NH, Wang T, Bhate MP, Acharya R, Wu Y, Grabe M, Hong M, Grigoryan G, & DeGrado WF (2014). De novo design of a transmembrane Zn2+-transporting four-helix bundle.
Science 346 6216:1520-1524. PubMed Id: 25525248. doi:10.1126/science.1261172. |
|||
Transmembrane protein TMHC2_E: De novo designed protein U Unclassified (expressed in E. coli), 2.95 Å
Transmembrane protein TMHC4_R, 3.89 Å: 6B85 |
Lu et al. (2018).
Lu P, Min D, DiMaio F, Wei KY, Vahey MD, Boyken SE, Chen Z, Fallas JA, Ueda G, Sheffler W, Mulligan VK, Xu W, Bowie JU, & Baker D (2018). Accurate computational design of multipass transmembrane proteins.
Science 359 6379:1042-1046. PubMed Id: 29496880. doi:10.1126/science.aaq1739. |
||
PL5 synthetic transmembrane domain variant of human phospholamban: De novo designed U Unclassified (expressed in E. coli), 3.17 Å
For wild-type phospholamban homopentamer, see 1ZLL PL5 was expressed in E. coli as a C-terminal fusion to T4-Lysozyme . protein stabilized by van der Waals interaction, 1.9 Å: 6MCT mini-eVgL membrane protein, C2221 form-1, 2.5 Å: 6MPW mini-eVgL membrane protein, C2221 form-2, 2.5 Å: 6MQ2 |
Mravic et al. (2019).
Mravic M, Thomaston JL, Tucker M, Solomon PE, Liu L, & DeGrado WF (2019). Packing of apolar side chains enables accurate design of highly stable membrane proteins.
Science 363 6434:1418-1423. PubMed Id: 30923216. doi:10.1126/science.aav7541. |
||
Xu et al. (2020).
Xu C, Lu P, Gamal El-Din TM, Pei XY, Johnson MC, Uyeda A, Bick MJ, Xu Q, Jiang D, Bai H, Reggiano G, Hsia Y, Brunette TJ, Dou J, Ma D, Lynch EM, Boyken SE, Huang PS, Stewart L, DiMaio F, Kollman JM, Luisi BF, Matsuura T, Catterall WA, & Baker D (2020). Computational design of transmembrane pores.
Nature 585 7823:129-134. PubMed Id: 32848250. doi:10.1038/s41586-020-2646-5. |
|||
Novel Membrane Proteins
Membrane proteins that are not readily classified |
|||
Cathelicidin LL-37 antimicrobial peptide, C-terminal extension tetramer: Homo sapiens E Eukaryota (expressed in chemical synthesis), 1.83 Å
|
Sancho-Vaello et al. (2020).
Sancho-Vaello E, Gil-Carton D, François P, Bonetti EJ, Kreir M, Pothula KR, Kleinekathöfer U, & Zeth K (2020). The structure of the antimicrobial human cathelicidin LL-37 shows oligomerization and channel formation in the presence of membrane mimics.
Sci Rep 10 1:17356. PubMed Id: 33060695. doi:10.1038/s41598-020-74401-5. |
||
YeeE thiosulfate transporter: Spirochaeta thermophila B Bacteria (expressed in E. coli), 2.52 Å
inactive mutant C91A, 2.60 Å: 6LEP |
Tanaka et al. (2020).
Tanaka Y, Yoshikaie K, Takeuchi A, Ichikawa M, Mori T, Uchino S, Sugano Y, Hakoshima T, Takagi H, Nonaka G, & Tsukazaki T (2020). Crystal structure of a YeeE/YedE family protein engaged in thiosulfate uptake.
Sci Adv 6 35:eaba7637. PubMed Id: 32923628. doi:10.1126/sciadv.aba7637. |
||
Sukalskaia et al. (2021).
Sukalskaia A, Straub MS, Deneka D, Sawicka M, & Dutzler R (2021). Cryo-EM structures of the TTYH family reveal a novel architecture for lipid interactions.
Nat Commun 12 1:4893. PubMed Id: 34385445. doi:10.1038/s41467-021-25106-4. |
|||
Li et al. (2021).
Li B, Hoel CM, & Brohawn SG (2021). Structures of tweety homolog proteins TTYH2 and TTYH3 reveal a Ca2+-dependent switch from intra- to intermembrane dimerization.
Nat Commun 12 1:6913. PubMed Id: 34824283. doi:10.1038/s41467-021-27283-8. |
|||
TACAN (TMEM120A) protein, apo form: Mus musculus E Eukaryota (expressed in HEK293 cells), 3.50 Å
cryo-EM structure H196A H197A mutant form, 2.80 Å 7N0L |
Niu et al. (2021).
Niu Y, Tao X, Vaisey G, Olinares PDB, Alwaseem H, Chait BT, & MacKinnon R (2021). Analysis of the mechanosensor channel functionality of TACAN.
Elife 10 :e71188. PubMed Id: 34374644. doi:10.7554/eLife.71188. |
||
TACAN (TMEM120A) protein: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.24 Å
cryo-EM structure |
Xue et al. (2021).
Xue J, Han Y, Baniasadi H, Zeng W, Pei J, Grishin NV, Wang J, Tu BP, & Jiang Y (2021). TMEM120A is a coenzyme A-binding membrane protein with structural similarities to ELOVL fatty acid elongase.
Elife 10 :e71220. PubMed Id: 34374645. doi:10.7554/eLife.71220. |
||
TACAN (TMEM120A) protein in CoASH-bound state: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.69 Å
cryo-EM structure CoASH-free state, 4.00 Å 7F3U |
Rong et al. (2021).
Rong Y, Jiang J, Gao Y, Guo J, Song D, Liu W, Zhang M, Zhao Y, Xiao B, & Liu Z (2021). TMEM120A contains a specific coenzyme A-binding site and might not mediate poking- or stretch-induced channel activities in cells.
Elife 10 :e71474. PubMed Id: 34409941. doi:10.7554/eLife.71474. |
||
TACAN (TMEM120A) protein in a closed state: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.66 Å
cryo-EM structure |
Chen et al. (2022).
Chen X, Wang Y, Li Y, Lu X, Chen J, Li M, Wen T, Liu N, Chang S, Zhang X, Yang X, & Shen Y (2022). Cryo-EM structure of the human TACAN in a closed state.
Cell Rep 38 9:110445. PubMed Id: 35235791. doi:10.1016/j.celrep.2022.110445. |
||
marker of self 5-TM receptor CD47: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.40 Å
cryo-EM structure |
Fenalti et al. (2021).
Fenalti G, Villanueva N, Griffith M, Pagarigan B, Lakkaraju SK, Huang RY, Ladygina N, Sharma A, Mikolon D, Abbasian M, Johnson J, Hadjivassiliou H, Zhu D, Chamberlain PP, Cho H, & Hariharan K (2021). Structure of the human marker of self 5-transmembrane receptor CD47.
Nat Commun 12 1:5218. PubMed Id: 34471125. doi:10.1038/s41467-021-25475-w. |
||
Meckel-Gruber protein Meckelin: Homo spiens E Eukaryota (expressed in HEK293 cells), 3.34 Å
cryo-EM structure |
Liu et al. (2021).
Liu D, Qian D, Shen H, & Gong D (2021). Structure of the human Meckel-Gruber protein Meckelin.
Sci Adv 7 45:eabj9748. PubMed Id: 34731008. doi:10.1126/sciadv.abj9748. |
||
endoplasmic reticulum protein Jagunal (JAGN1): Homo sapiens E Eukaryota (expressed in Komagataella pastoris), 2.25 Å
The protein was stabilized for crystallization using a split superfolder green fluorescent protein (from Aequorea victoria) attached to N- and C-termini of JAGN1. |
Liu et al. (2020).
Liu S, Li S, Yang Y, & Li W (2020). Termini restraining of small membrane proteins enables structure determination at near-atomic resolution.
Sci Adv 6 51:eabe3717. PubMed Id: 33355146. doi:10.1126/sciadv.abe3717. |
||
YejM/LapB complex involved in lipopolysaccharide synthesis: Escherichia coli B Bacteria, 3.90 Å
cryo-EM structure |
Shu & Mi (2022).
Shu S & Mi W (2022). Regulatory mechanisms of lipopolysaccharide synthesis in Escherichia coli.
Nat Commun 13 1:4576. PubMed Id: 35931690. doi:10.1038/s41467-022-32277-1. |
||
Voltage-sensor protein TMEM266, coiled-coiled region: Mus musculus E Eukaryota (expressed in E. coli), 2.30 Å
|
Kawai et al. (2022).
Kawai T, Narita H, Konno K, Akter S, Andriani RT, Iwasaki H, Nishikawa S, Yokoi N, Fukata Y, Fukata M, Wiriyasermkul P, Kongpracha P, Nagamori S, Takao K, Miyakawa T, Abe M, Sakimura K, Watanabe M, Nakagawa A, & Okamura Y (2022). Insight into the function of a unique voltage-sensor protein (TMEM266) and its short form in mouse cerebellum.
Biochem J 479 11:1127-1145. PubMed Id: 35574701. doi:10.1042/BCJ20220033. |
||
Mammalian Cell Entry (MCE) Proteins
These protein are involved in lipid trafficking between inner and outer bacterial membranes. The name originates from the erroneous early belief that they mediate mammalian cell entry in M. tuberculosis |
|||
Ekiert et al. (2017).
Ekiert DC, Bhabha G, Isom GL, Greenan G, Ovchinnikov S, Henderson IR, Cox JS, & Vale RD (2017). Architectures of Lipid Transport Systems for the Bacterial Outer Membrane.
Cell 169 2:273-285.e17. PubMed Id: 28388411. doi:10.1016/j.cell.2017.03.019. |
|||
MlaFB component of MlaFEDB ABC transporter complex (dimer): Escherichia coli B Bacteria, 2.90 Å
monomeric state, 2.60 Å: 6XGZ |
Kolich et al. (2020).
Kolich LR, Chang YT, Coudray N, Giacometti SI, MacRae MR, Isom GL, Teran EM, Bhabha G, & Ekiert DC (2020). Structure of MlaFB uncovers novel mechanisms of ABC transporter regulation.
Elife 9 . PubMed Id: 32602838. doi:10.7554/eLife.60030. |
||
MlaFEDB in nanodiscs with phospholipid substrates: Escherichia coi B Bacteria, 3.05 Å
cryo-EM structure |
Coudray et al. (2020).
Coudray N, Isom GL, MacRae MR, Saiduddin MN, Bhabha G, & Ekiert DC (2020). Structure of bacterial phospholipid transporter MlaFEDB with substrate bound.
Elife 9 :e62518. PubMed Id: 33236984. doi:10.7554/eLife.62518. |
||
Tang et al. (2021).
Tang X, Chang S, Qiao W, Luo Q, Chen Y, Jia Z, Coleman J, Zhang K, Wang T, Zhang Z, Zhang C, Zhu X, Wei X, Dong C, Zhang X, & Dong H (2021). Structural insights into outer membrane asymmetry maintenance in Gram-negative bacteria by MlaFEDB.
Nat Struct Mol Biol 28 1:81-91. PubMed Id: 33199922. doi:10.1038/s41594-020-00532-y. |
|||
Chi et al. (2020).
Chi X, Fan Q, Zhang Y, Liang K, Wan L, Zhou Q, & Li Y (2020). Structural mechanism of phospholipids translocation by MlaFEDB complex.
Cell Res 30 12:1127-1135. PubMed Id: 32884137. doi:10.1038/s41422-020-00404-6. |
|||
Zhang et al. (2020).
Zhang Y, Fan Q, Chi X, Zhou Q, & Li Y (2020). Cryo-EM structures of Acinetobacter baumannii glycerophospholipid transporter.
Cell Discov 6 1:86. PubMed Id: 33298869. doi:10.1038/s41421-020-00230-5. |
|||
Zhou et al. (2021).
Zhou C, Shi H, Zhang M, Zhou L, Xiao L, Feng S, Im W, Zhou M, Zhang X, & Huang Y (2021). Structural Insight into Phospholipid Transport by the MlaFEBD Complex from P. aeruginosa.
J Mol Biol 433 13:166986. PubMed Id: 33845086. doi:10.1016/j.jmb.2021.166986. |
|||
Chen et al. (2023).
Chen J, Fruhauf A, Fan C, Ponce J, Ueberheide B, Bhabha G, & Ekiert DC (2023). Structure of an endogenous mycobacterial MCE lipid transporter.
Nature 620 7973:445-452. PubMed Id: 37495693. doi:10.1038/s41586-023-06366-0. |
|||
Outer Membrane Proteins
|
|||
Wza translocon for capsular polysaccharides: Escherichia coli B Bacteria, 2.25 Å
The first outer membrane protein that penetrates the membrane as an alpha-helix bundle. The intact protein is comprised of eight monomers. |
Dong et al. (2006).
Dong C, Beis K, Nesper J, Brunkan-LaMontagne AL, Clarke BR JM, Whitfield C, & Naismith JH (2006). Wza the translocon for E. coli. capsular polysaccharides defines a new class of membrane protein.
Nature 444 :226-229. PubMed Id: 17086202. |
||
Ziegler et al. (2008).
Ziegler K, Benz R, & Schulz GE (2008). A putative alpha-helical porin from Corynebacterium glutamicum.
J Mol Biol 379 :482-491. PubMed Id: 18462756. |
|||
Abellón-Ruiz et al. (2017).
Abellón-Ruiz J, Kaptan SS, Baslé A, Claudi B, Bumann D, Kleinekathöfer U, & van den Berg B (2017). Structural basis for maintenance of bacterial outer membrane lipid asymmetry.
Nat Microbiol 2 12:1616-1623. PubMed Id: 29038444. doi:10.1038/s41564-017-0046-x. |
|||
KpsMT-KspE translocon complex for capsular polysaccharides, apo form, state 1: Caldimonas thermodepolymerans B Bacteria (expressed in E. coli), 3.10 Å
cryo-EM structure KpsMT(E151Q mutant)-KpsE complex, with bound ATP, 3.10 Å: 8TSH with bound ADP and AlF4-, 4.40 Å: 8TSI KpsMT-KspE-KspE complex, apo form, state 2, 3.40 Å: 8TSL KpsMT-KspE-KspE complex, in glycolipid, state 1, 3.40 Å: 8TUN KpsMT-KspE-KspE complex, in glycolipid, state 2, 3.40 Å: 8TT3 |
Kuklewicz & Zimmer (2024).
Kuklewicz J, & Zimmer J (2024). Molecular insights into capsular polysaccharide secretion.
Nature 628 8009:901-909. PubMed Id: 38570679. doi:10.1038/s41586-024-07248-9. |
||
Bacterial Cell Divison Proteins
These proteins comprise the so-called 'divisome' |
|||
CrgA cell division structural & regulatory protein: Mycobacterium tuberculosis B Bacteria (expressed in E. coli), NMR Structure
Structure of protein determined using both oriented sample and magic-angle spinning NMR data from liquid-crystalline lipid bilayer preparation. |
Das et al. (2015).
Das N, Dai J, Hung I, Rajagopalan MR, Zhou HX, & Cross TA (2015). Structure of CrgA, a cell division structural and regulatory protein from Mycobacterium tuberculosis, in lipid bilayers.
Proc Natl Acad Sci USA 112 2:E119-E126. PubMed Id: 25548160. doi:10.1073/pnas.1415908112. |
||
Nguyen et al. (2023).
Nguyen HTV, Chen X, Parada C, Luo AC, Shih O, Jeng US, Huang CY, Shih YL, & Ma C (2023). Structure of the heterotrimeric membrane protein complex FtsB-FtsL-FtsQ of the bacterial divisome.
Nat Commun 14 1:1903. PubMed Id: 37019934. doi:10.1038/s41467-023-37543-4. |
|||
Chemotaxis Protein Complexes
|
|||
Core Chemotaxis Signaling Unit, carrying QQQQ receptor mutation: Escherichia coli B Bacteria, 8.38 Å
cryo-EM structure 2D array with subtomogram averaging |
Cassidy et al. (2020).
Cassidy CK, Himes BA, Sun D, Ma J, Zhao G, Parkinson JS, Stansfeld PJ, Luthey-Schulten Z, & Zhang P (2020). Structure and dynamics of the E. coli chemotaxis core signaling complex by cryo-electron tomography and molecular simulations.
Commun Biol 3 1. PubMed Id: 31925330. doi:10.1038/s42003-019-0748-0. |
||
Autoinducer Export Superfamily
Proteins in this family are involved in cell-to-cell comminications, such as quorum sensing (QS) |
|||
TqsA autoinducer-2 exporter: Escherichia coli B Bacteria, 3.30 Å
cryo-EM structure |
Khera et al. (2022).
Khera R, Mehdipour AR, Bolla JR, Kahnt J, Welsch S, Ermler U, Muenke C, Robinson CV, Hummer G, Xie H, & Michel H (2022). Cryo-EM structures of pentameric autoinducer-2 exporter from Escherichia coli reveal its transport mechanism.
EMBO J 41 18:e109990. PubMed Id: 35698912. doi:10.15252/embj.2021109990. |
||
YdiK autoinducer-2 exporter: Escherichia coli B Bacteria, 2.80 Å
cryo-EM structure |
Khera et al. (2022).
Khera R, Mehdipour AR, Bolla JR, Kahnt J, Welsch S, Ermler U, Muenke C, Robinson CV, Hummer G, Xie H, & Michel H (2022). Cryo-EM structures of pentameric autoinducer-2 exporter from Escherichia coli reveal its transport mechanism.
EMBO J 41 18:e109990. PubMed Id: 35698912. doi:10.15252/embj.2021109990. |
||
Tetraspanins
Mediate essential functions in the immune, reproductive, genitourinary, and auditory systems |
|||
CD53 full-length tetraspanin: Homo sapiens E Eukaryota (expressed in Komagataella pastoris), 2.90 Å
|
Yang et al. (2020).
Yang Y, Liu XR, Greenberg ZJ, Zhou F, He P, Fan L, Liu S, Shen G, Egawa T, Gross ML, Schuettpelz LG, & Li W (2020). Open conformation of tetraspanins shapes interaction partner networks on cell membranes.
EMBO J 39 18:e105246. PubMed Id: 32974937. doi:10.15252/embj.2020105246. |
||
CD81 full-length tetraspanin: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.95 Å
|
Zimmerman et al. (2016).
Zimmerman B, Kelly B, McMillan BJ, Seegar TC, Dror RO, Kruse AC, & Blacklow SC (2016). Crystal Structure of a Full-Length Human Tetraspanin Reveals a Cholesterol-Binding Pocket.
Cell 167 4:1041-1051. PubMed Id: 27881302. doi:10.1016/j.cell.2016.09.056. |
||
CD81 full-length tetraspanin in complex with CD19 bound to coltuximab Fab fragment: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.80 Å
cryo-EM structure |
Susa et al. (2021).
Susa KJ, Rawson S, Kruse AC, & Blacklow SC (2021). Cryo-EM structure of the B cell co-receptor CD19 bound to the tetraspanin CD81.
Science 371 6526:300-305. PubMed Id: 33446559. doi:10.1126/science.abd9836. |
||
CD9 full-length tetraspanin: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.70 Å
|
Umeda et al. (2020).
Umeda R, Satouh Y, Takemoto M, Nakada-Nakura Y, Liu K, Yokoyama T, Shirouzu M, Iwata S, Nomura N, Sato K, Ikawa M, Nishizawa T, & Nureki O (2020). Structural insights into tetraspanin CD9 function.
Nat Commun 11 1. PubMed Id: 32231207. doi:10.1038/s41467-020-15459-7. |
||
Membrane-Spanning 4-Domain (MS4) Family
|
|||
Integral membrane protein cluster of differentiation 20 (CD20) in complex with rituximab Fab: Homo sapiens E Eukaryota (expressed in Trichoplusia ni), 3.30 Å
cryo-EM structure |
Rougé et al. (2020).
Rougé L, Chiang N, Steffek M, Kugel C, Croll TI, Tam C, Estevez A, Arthur CP, Koth CM, Ciferri C, Kraft E, Payandeh J, Nakamura G, Koerber JT, & Rohou A (2020). Structure of CD20 in complex with the therapeutic monoclonal antibody rituximab.
Science 367 6483:1224-1230. PubMed Id: 32079680. doi:10.1126/science.aaz9356. |
||
Autonomously Folding "Membrane Proteins" (Sec-independent)
|
|||
Mistic membrane-integrating protein: Bacillus subtilis B Bacteria, NMR structure
Note: This is not a membrane protein. It is included here because of general interest. |
Roosild et al. (2005).
Roosild TP, Greenwald J, Vega M, Castronovo S, Riek R, & Choe S (2005). NMR structure of Mistic, a membrane-integrating protein for membrane protein expression.
Science 307 :1317-1321. PubMed Id: 15731457. |
||
Virus Coat Proteins
|
|||
M13 Major Coat Protein in Dodecylphosphocholine micelles: Enterobacteria phage m13 V Viruses (expressed in E. coli), NMR Structure
In SDS micelles: 2CPS |
Papavoine et al. (1998).
Papavoine CH, Christiaans BE, Folmer RH, Konings RN, & Hilbers CW (1998). Solution structure of the M13 major coat protein in detergent micelles: a basis for a model of phage assembly involving specific residues.
J Mol Biol 282 :401-419. PubMed Id: 9735296. doi:10.1006/jmbi.1998.1860. |
||
Pf1 Major Coat Protein: Pseudomonas phage Pf1 V Viruses, NMR Structure
The structure was determined by solid-state NMR using magnetically aligned bacteriophage particles. |
Thiriot et al. (2004).
Thiriot DS, Nevzorov AA, Zagyanskiy L, Wu CH, & Opella SJ (2004). Structure of the coat protein in Pf1 bacteriophage determined by solid-state NMR spectroscopy.
J Mol Biol 341 :869-879. PubMed Id: 15288792. doi:10.1016/j.jmb.2004.06.038. |
||
Pf1 Major Coat Protein in lipid bilayers: Pseudomonas phage Pf1 V Viruses, NMR Structure
|
Park et al. (2010).
Park SH, Marassi FM, Black D, & Opella SJ (2010). Structure and dynamics of the membrane-bound form of Pf1 coat protein: implications of structural rearrangement for virus assembly.
Biophys J 99 :1465-1474. PubMed Id: 20816058. doi:10.1016/j.bpj.2010.06.009. |
||
fd bacteriophage pVIII coat protein in lipid bilayers: Enterobacteria phage fd V Viruses, NMR Structure
|
Marassi & Opella (2003).
Marassi FM & Opella SJ (2003). Simultaneous assignment and structure determination of a membrane protein from NMR orientational restraints.
Protein Sci 12 :403-411. PubMed Id: 12592011. doi:10.1110/ps.0211503. |
||
fd bacteriophage pVIII coat protein in SDS micelles: Enterobacteria phage fd V Viruses, NMR Structure
|
Almeida & Opella (1997).
Almeida FC & Opella SJ (1997). fd coat protein structure in membrane environments: structural dynamics of the loop between the hydrophobic trans-membrane helix and the amphipathic in-plane helix.
J Mol Biol 270 :481-495. PubMed Id: 9237913. doi:10.1006/jmbi.1997.1114. |
||
HIV-1 Envelope spike (Env) protein: Human immunodeficiency virus 1 V Viruses (expressed in E. coli), NMR structure
Reconstituted in bicelles. Well-ordered trimer. |
Dev et al. (2016).
Dev J, Park D, Fu Q, Chen J, Ha HJ, Ghantous F, Herrmann T, Chang W, Liu Z, Frey G, Seaman MS, Chen B, & Chou JJ (2016). Structural basis for membrane anchoring of HIV-1 envelope spike.
Science 353 :172-175. PubMed Id: 27338706. doi:10.1126/science.aaf7066. |
||
Glycoproteins
|
|||
Glycophorin A (GpA) transmembrane-domain dimer: Homo sapiens E Eukaryota (expressed in E. coli), NMR Structure
GpA in dodecylphosphocholine micelles. |
MacKenzie et al. (1997).
MacKenzie KR, Prestegard JH, & Engelman DM (1997). A transmembrane helix dimer: structure and implications.
Science 276 :131-133. PubMed Id: 9082985. |
||
Glycophorin A (GpA) transmembrane-domain dimer: Homo sapiens E Eukaryota (expressed in E. coli), NMR structure
GpA in DMPC/DHPC bicelles. in DPC micelles, 2KPE |
Mineev et al. (2011).
Mineev KS, Bocharov EV, Volynsky PE, Goncharuk MV, Tkach EN, Ermolyuk YS, Schulga AA, Chupin VV, Maslennikov IV, Efremov RG, & Arseniev AS (2011). Dimeric structure of the transmembrane domain of glycophorin a in lipidic and detergent environments.
Acta Naturae 3 2:90-98. PubMed Id: 22649687. |
||
Glycophorin A (GpA) transmembrane-domain dimer: Homo sapiens E Eukaryota (expressed in E. coli), 2.81 Å
Type 1 Lipidic cubic phase crystals showing GpA in bilayer environment |
Trenker et al. (2015).
Trenker R, Call ME, & Call MJ (2015). Crystal Structure of the Glycophorin A Transmembrane Dimer in Lipidic Cubic Phase.
J Am Chem Soc 137 50:15676-15679. PubMed Id: 26642914. doi:10.1021/jacs.5b11354. |
||
Benton et al. (2018).
Benton DJ, Nans A, Calder LJ, Turner J, Neu U, Lin YP, Ketelaars E, Kallewaard NL, Corti D, Lanzavecchia A, Gamblin SJ, Rosenthal PB, & Skehel JJ (2018). Influenza hemagglutinin membrane anchor.
Proc Natl Acad Sci USA 115 40:10112-10117. PubMed Id: 30224494. doi:10.1073/pnas.1810927115. |
|||
Influenza Hemagglutinin, ectodomain of X-31 Haemagglutinin at pH 8: influenza virus V Viruses (expressed in Gallus gallus), 3.00 Å
cryo-EM structure. Influenza virus unidentified. at pH 5 (State I), 3.00 Å: 6Y5H at pH 5 (State II), 5.50 Å: 6Y5I form 2 at pH 5 (State III), 5.60 Å: 6Y5J extended intermediate at pH5 (State IV), 4.20 Å: 6Y5K Signal Subtracted Extended Intermediate form at pH 5 (State IV), 3.60 Å: 6Y5L |
Benton et al. (2020).
Benton DJ, Gamblin SJ, Rosenthal PB, & Skehel JJ (2020). Structural transitions in influenza haemagglutinin at membrane fusion pH.
Nature 583 7814:150-153. PubMed Id: 32461688. doi:10.1038/s41586-020-2333-6. |
||
High-Density Lipoprotein (HDL) Receptors
|
|||
C-terminal transmembrane domain of scavenger receptor BI (SR-BI): Mus musculus E Eukaryota (expressed in E. coli), NMR structure
The C-terminal domain contains a leucine zipper dimerization motif |
Chadwick et al. (2017).
Chadwick AC, Jensen DR, Hanson PJ, Lange PT, Proudfoot SC, Peterson FC, Volkman BF, & Sahoo D (2017). NMR Structure of the C-Terminal Transmembrane Domain of the HDL Receptor, SR-BI, and a Functionally Relevant Leucine Zipper Motif.
Structure 25 :446-457. PubMed Id: 28162952. doi:10.1016/j.str.2017.01.001. |
||
Tumor Necrosis Factor (TNF) Receptor Superfamily
|
|||
p75 neurotrophin receptor transmembrane domain: Rattus norvegicus E Eukaryota (expressed in E. coli), NMR structure
Structure determined in DPC micelles. The transmembrane domain includes residues 245-284 from the complete receptor. C257A mutant, 2MJO |
Nadezhdin et al. (2016).
Nadezhdin KD, García-Carpio I, Goncharuk SA, Mineev KS, Arseniev AS, & Vilar M (2016). Structural Basis of p75 Transmembrane Domain Dimerization.
J Biol Chem 291 23:12346-12357. PubMed Id: 27056327. doi:10.1074/jbc.M116.723585. |
||
Tumor necrosis factor receptor 1 (TNFR1) in lipid bicelles: Homo sapiens E Eukaryota (expressed in E. coli), NMR structure
|
Zhao et al. (2020).
Zhao L, Fu Q, Pan L, Piai A, & Chou JJ (2020). The Diversity and Similarity of Transmembrane Trimerization of TNF Receptors.
Front Cell Dev Biol 8 . PubMed Id: 33163490. doi:10.3389/fcell.2020.569684. |
||
Glucocorticoid-induced TNF receptor (GITR): Mus musculus E Eukaryota (expressed in HEK293 cells), 4.40 Å
cryo-EM structure |
He et al. (2022).
He C, Maniyar RR, Avraham Y, Zappasodi R, Rusinova R, Newman W, Heath H, Wolchok JD, Dahan R, Merghoub T, & Meyerson JR (2022). Therapeutic antibody activation of the glucocorticoid-induced TNF receptor by a clustering mechanism.
Sci Adv 8 8:eabm4552. PubMed Id: 35213218. doi:10.1126/sciadv.abm4552. |
||
B Cell Receptor Complexes
These complexes are involved B cell development and immune responses |
|||
B-Cell receptor in complex with IgG: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.03 Å
cryo-EM structure |
Ma et al. (2022).
Ma X, Zhu Y, Dong D, Chen Y, Wang S, Yang D, Ma Z, Zhang A, Zhang F, Guo C, & Huang Z (2022). Cryo-EM structures of two human B cell receptor isotypes.
Science 377 6608:880-885. PubMed Id: 35981028. doi:10.1126/science.abo3828. |
||
B-Cell receptor in complex with IgM: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.63 Å
cryo-EM structure |
Ma et al. (2022).
Ma X, Zhu Y, Dong D, Chen Y, Wang S, Yang D, Ma Z, Zhang A, Zhang F, Guo C, & Huang Z (2022). Cryo-EM structures of two human B cell receptor isotypes.
Science 377 6608:880-885. PubMed Id: 35981028. doi:10.1126/science.abo3828. |
||
B-Cell receptor in complex with IgM: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.30 Å
cryo-EM structure |
Su et al. (2022).
Su Q, Chen M, Shi Y, Zhang X, Huang G, Huang B, Liu D, Liu Z, & Shi Y (2022). Cryo-EM structure of the human IgM B cell receptor.
Science 377 6608:875-880. PubMed Id: 35981043. doi:10.1126/science.abo3923. |
||
Receptor Tyrosine Kinase (RTK) Family
Single-span TM proteins important in cellular signalling |
|||
Insulin receptor TM domain (AAs 940-980): Homo sapiens E Eukaryota (expressed in E. coli), NMR Structure
|
Li et al. (2014).
Li Q, Wong YL, & Kang C (2014). Solution structure of the transmembrane domain of the insulin receptor in detergent micelles.
Biochim Biophys Acta 1838 :1313-1321. PubMed Id: 24440425. doi:10.1016/j.bbamem.2014.01.005. |
||
insulin receptor bound with A62 DNA aptamer: Homo sapiens E Eukaryota (expressed in HEK293 cells), 4.18 Å
cryo-EM structure bound with A62 DNA aptamer and insulin, 4.27 Å: 7YQ5 aptamer and insulin - locally refined, 3.95 Å: 7QY4 bound with A43 DNA aptamer and insulin, 3.60 Å: 7YQ3 bound with two insulin molecules, 4.18 Å: 8GUY |
Kim et al. (2022).
Kim J, Yunn NO, Park M, Kim J, Park S, Kim Y, Noh J, Ryu SH, & Cho Y (2022). Functional selectivity of insulin receptor revealed by aptamer-trapped receptor structures.
Nat Commun 13 1:6500. PubMed Id: 36310231. doi:10.1038/s41467-022-34292-8. |
||
Epidermal Growth Factor Receptors (EGFRs)
ErbB (or HER) family of receptor tyrosine kinases (RTKs) |
|||
ErbB2 transmembrane segment dimer: Homo sapiens E Eukaryota (expressed in E. coli), NMR Structure
TM fragment 641-684 of ErbB2 gene. Structure determined in DMPC/DHPC bicelles. |
Bocharov et al. (2008).
Bocharov EV, Mineev KS, Volynsky PE, Ermolyuk YS, Tkach EN, Sobol AG, Chupin VV, Kirpichnikov MP, Efremov RG, & Arseniev AS (2008). Spatial structure of the dimeric transmembrane domain of the growth factor receptor ErbB2 presumably corresponding to the receptor active state.
J Biol Chem 283 :6950-6956. PubMed Id: 18178548. doi:10.1074/jbcM709202200. |
||
ErbB2 (HER2) transmembrane segment dimer with juxtamembrane region: Homo sapiens E Eukaryota (expressed in E. coli), NMR structure
in DPC micelles |
Bragin et al. (2016).
Bragin PE, Mineev KS, Bocharova OV, Volynsky PE, Bocharov EV, & Arseniev AS (2016). HER2 Transmembrane Domain Dimerization Coupled with Self-Association of Membrane-Embedded Cytoplasmic Juxtamembrane Regions.
J Mol Biol 428 :52-61. PubMed Id: 26585403. doi:10.1016/j.jmb.2015.11.007. |
||
ErbB1/ErbB2 transmembrane segment heterodimer: Homo sapiens E Eukaryota (expressed in E. coli), NMR Structure
TM fragment 634-677 of ErbB1 gene. TM fragment 641-685 of ErbB2 gene. Structure determined in DMPC/DHPC bicelles. |
Mineev et al. (2010).
Mineev KS, Bocharov EV, Pustovalova YE, Bocharova OV, Chupin VV, & Arseniev AS (2010). Spatial structure of the transmembrane domain heterodimer of ErbB1 and ErbB2 receptor tyrosine kinases.
J Mol Biol 400 :231-243. PubMed Id: 20471394. doi:10.1016/j.jmb.2010.05.016. |
||
ErbB1 transmembrane segment homodimer: Homo sapiens E Eukaryota (expressed in E. coli), NMR structure
|
Bocharov et al. (2017).
Bocharov EV, Bragin PE, Pavlov KV, Bocharova OV, Mineev KS, Polyansky AA, Volynsky PE, Efremov RG, & Arseniev AS (2017). The Conformation of the Epidermal Growth Factor Receptor Transmembrane Domain Dimer Dynamically Adapts to the Local Membrane Environment.
Biochemistry 56 12:1697-1705. PubMed Id: 28291355. doi:10.1021/acs.biochem.6b01085. |
||
ErbB3 transmembrane segment dimer: Homo sapiens E Eukaryota (expressed in E. coli), NMR Structure
TM fragment 639-667 of ErbB3 gene. Structure determined in DPC micelles. |
Mineev et al. (2011).
Mineev KS, Khabibullina NF, Lyukmanova EN, Dolgikh DA, Kirpichnikov MP, & Arseniev AS (2011). Spatial structure and dimer--monomer equilibrium of the ErbB3 transmembrane domain in DPC micelles.
Biochim Biophys Acta 1808 :2081-2088. PubMed Id: 21575594. doi:10.1016/j.bbamem.2011.04.017. |
||
ErbB4 transmembrane segment dimer: Homo sapiens E Eukaryota (expressed in E. coli), NMR Structure
TM fragment 651-678 of ErbB4 gene. Structure determined in DMPC/DHPC bicelles. |
Bocharov et al. (2012).
Bocharov EV, Mineev KS, Goncharuk MV, & Arseniev AS (2012). Structural and thermodynamic insight into the process of "weak" dimerization of the ErbB4 transmembrane domain by solution NMR.
Biochim Biophys Acta 1818 :2158-2170. PubMed Id: 22579757. doi:10.1016/j.bbamem.2012.05.001. |
||
Erythropoietin-Producing Hepatocellular Receptors
Eph family of receptor tyrosine kinases (RTKs) |
|||
EphA1 transmembrane segment dimer, pH 6.3: Homo sapiens E Eukaryota (expressed in E. coli), NMR Structure
TM fragment 536-573 of EphA1 gene. Structure determined in DMPC/DHPC bicelles. Structure at pH 4.3: 2K1K |
Bocharov et al. (2008).
Bocharov EV, Mayzel ML, Volynsky PE, Goncharuk MV, Ermolyuk YS, Schulga AA, Artemenko EO, Efremov RG, & Arseniev AS (2008). Spatial structure and pH-dependent conformational diversity of dimeric transmembrane domain of the receptor tyrosine kinase EphA1.
J Biol Chem 283 :29385-29395. PubMed Id: 18728013. doi:10.1074/jbc.M803089200. |
||
EphA2 transmembrane segment dimer: Homo sapiens E Eukaryota (expressed in E. coli), NMR Structure
TM fragment 523-563 of EphA2 gene. Structure determined in DMPC/DHPC bicelles. |
Bocharov et al. (2010).
Bocharov EV, Mayzel ML, Volynsky PE, Mineev KS, Tkach EN, Ermolyuk YS, Schulga AA, Efremov RG, & Arseniev AS (2010). Left-handed dimer of EphA2 transmembrane domain: Helix packing diversity among receptor tyrosine kinases.
Biophys J 98 :881-889. PubMed Id: 20197042. doi:10.1016/j.bpj.2009.11.008. |
||
Fibroblast Growth Factor Receptors
FGFR family of receptor tyrosine kinases (RTKs) |
|||
FGFR3 Fibroblast growth factor receptor 3 transmembrane dimer: Homo sapiens E Eukaryota (expressed in E. coli), NMR Structure
|
Bocharov et al. (2013).
Bocharov EV, Lesovoy DM, Goncharuk SA, Goncharuk MV, Hristova K, & Arseniev AS (2013). Structure of FGFR3 Transmembrane Domain Dimer: Implications for Signaling and Human Pathologies.
Structure 21 :2087-2093. PubMed Id: 24120763. doi:10.1016/j.str.2013.08.026. |
||
Vascular Endothelial Growth Factor Receptors
VEGFR family of receptor tyrosine kinases (RTKs) |
|||
Manni et al. (2014).
Manni S, Mineev KS, Usmanova D, Lyukmanova EN, Shulepko MA, Kirpichnikov MP, Winter J, Matkovic M, Deupi X, Arseniev AS, & Ballmer-Hofer K (2014). Structural and functional characterization of alternative transmembrane domain conformations in VEGF receptor 2 activation.
Structure 22 8:1077-1089. PubMed Id: 24980797. doi:10.1016/j.str.2014.05.010. |
|||
Integrin Adhesion Receptors
|
|||
Human Integrin αIIbβ3 transmembrane-cytoplasmic heterodimer: Homo sapiens E Eukaryota (expressed in E. coli), NMR Structure
|
Yang et al. (2009).
Yang J, Ma YQ, Page RC, Misra S, Plow EF, & Qin J (2009). Structure of an integrin αIIbβ3 transmembrane-cytoplasmic heterocomplex provides insight into integrin activation.
Proc Natl Acad Sci U S A 106 :17729-17734. PubMed Id: 19805198. |
||
integrin αIIb(W968V)β3 transmembrane complex: Homo sapiens E Eukaryota (expressed in E. coli), NMR structure
|
Situ et al. (2021).
Situ AJ, Kim J, An W, Kim C, & Ulmer TS (2021). Insight Into Pathological Integrin αIIbβ3 Activation From Safeguarding The Inactive State.
J Mol Biol 433 7:166832. PubMed Id: 33539882. doi:10.1016/j.jmb.2021.166832. |
||
full-length integrin αIIbβ3 in native lipid: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.40 Å
cryo-EM structure with bound Eptifibatide, 3.10 Å: 8T2U |
Adair et al. (2023).
Adair BD, Xiong JP, Yeager M, & Arnaout MA (2023). Cryo-EM structures of full-length integrin αIIbβ3 in native lipids.
Nat Commun 14 1:4168. PubMed Id: 37443315. doi:10.1038/s41467-023-39763-0. |
||
Human Integrin αvβ6, in complex with minibinder B6_BP_dslf: Homo sapiens E Eukaryota (expressed in E. coli), 3.40 Å
cryo-EM structure |
Roy et al. (2023).
Roy A, Shi L, Chang A, Dong X, Fernandez A, Kraft JC, Li J, Le VQ, Winegar RV, Cherf GM, Slocum D, Poulson PD, Casper GE, Vallecillo-Zúniga ML, Valdoz JC, Miranda MC, Bai H, Kipnis Y, Olshefsky A, Priya T, Carter L, Ravichandran R, Chow CM, Johnson MR, Cheng S, Smith M, Overed-Sayer C, Finch DK, Lowe D, Bera AK, Matute-Bello G, Birkland TP, DiMaio F, Raghu G, Cochran JR, Stewart LJ, Campbell MG, Van Ry PM, Springer T, & Baker D (2023). De novo design of highly selective miniprotein inhibitors of integrins αvβ6 and αvβ8.
Nat Commun 14 1:5660. PubMed Id: 37704610. doi:10.1038/s41467-023-41272-z. |
||
Human Integrin αvβ8, in complex with minibinder B8_BP_dsulf: Homo sapiens E Eukaryota (expressed in E. coli), 2.90 Å
cryo-EM structure |
Roy et al. (2023).
Roy A, Shi L, Chang A, Dong X, Fernandez A, Kraft JC, Li J, Le VQ, Winegar RV, Cherf GM, Slocum D, Poulson PD, Casper GE, Vallecillo-Zúniga ML, Valdoz JC, Miranda MC, Bai H, Kipnis Y, Olshefsky A, Priya T, Carter L, Ravichandran R, Chow CM, Johnson MR, Cheng S, Smith M, Overed-Sayer C, Finch DK, Lowe D, Bera AK, Matute-Bello G, Birkland TP, DiMaio F, Raghu G, Cochran JR, Stewart LJ, Campbell MG, Van Ry PM, Springer T, & Baker D (2023). De novo design of highly selective miniprotein inhibitors of integrins αvβ6 and αvβ8.
Nat Commun 14 1:5660. PubMed Id: 37704610. doi:10.1038/s41467-023-41272-z. |
||
Adiponectin Receptors
7TM receptors with inverted topology relative to GPCR receptors Adiponectin is a protein hormone that is important in glucose & fatty acid metabolism |
|||
AdipoR1 adiponectin 1 receptor in complex with an Fv fragment: Homo sapiens E Eukaryota (expressed in Trichoplusia ni), 2.90 Å
This protein and AdipoR2 enclose a large cavity where 3 His residues coördinate a Zn ion. AdipoR2 adiponectin 2 receptor in complex with Fv fragment, 2.40 Å: 3WXW |
Tanabe et al. (2015).
Tanabe H, Fujii Y, Okada-Iwabu M, Iwabu M, Nakamura Y, Hosaka T, Motoyama K, Ikeda M, Wakiyama M, Terada T, Ohsawa N, Hato M, Ogasawara S, Hino T, Murata T, Iwata S, Hirata K, Kawano Y, Yamamoto M, Kimura-Someya T, Shirouzu M, Yamauchi T, Kadowaki T, & Yokoyama S (2015). Crystal structures of the human adiponectin receptors.
Nature 520 7547:312-316. PubMed Id: 25855295. doi:10.1038/nature14301. |
||
AdipoR1 adiponectin 1 receptor in complex with an Fv fragment: Homo sapiens E Eukaryota (expressed in Trichoplusia ni), 2.73 Å
*5LXG supersedes 3WXV. AdipoR2 adiponectin 2 receptor in complex with Fv fragment, 2.4 Å: 5LWY *5LWY supersedes 3WXW AdipoR2 in complex with a C18 free fatty acid, 2.4 Å: 5LX9 AdipoR2 in complex with a C18 free fatty acid, 3.0 Å: 5LXA |
Vasiliauskaité-Brooks et al. (2017).
Vasiliauskaité-Brooks I, Sounier R, Rochaix P, Bellot G, Fortier M, Hoh F, De Colibus L, Bechara C, Saied EM, Arenz C, Leyrat C, & Granier S (2017). Structural insights into adiponectin receptors suggest ceramidase activity.
Nature 544 :120-123. PubMed Id: 28329765. doi:10.1038/nature21714. |
||
Tanabe et al. (2020).
Tanabe H, Fujii Y, Okada-Iwabu M, Iwabu M, Kano K, Kawana H, Hato M, Nakamura Y, Terada T, Kimura-Someya T, Shirouzu M, Kawano Y, Yamamoto M, Aoki J, Yamauchi T, Kadowaki T, & Yokoyama S (2020). Human adiponectin receptor AdipoR1 assumes closed and open structures.
Commun Biol 3 1. PubMed Id: 32796916. doi:10.1038/s42003-020-01160-4. |
|||
AdipoR2 Adiponectin receptor, cryogenic Serial Crystallography (SSX) using CrystalDirect: Homo sapiens E Eukaryota (expressed in Drosophila melanogaster), 2.40 Å
Room temperature structure using CrystalDirect, 2.90 Å 6YXD Cryogenic with Tb-XO4 ligand using CrystalDirect, 3.01 Å 6YXG Cryogenic with Gd-DO3 ligand using CrystalDirect, 3.02 Å 6YXF |
Healey et al. (2021).
Healey RD, Basu S, Humm AS, Leyrat C, Cong X, Golebiowski J, Dupeux F, Pica A, Granier S, & Márquez JA (2021). An automated platform for structural analysis of membrane proteins through serial crystallography.
Cell Rep Methods 1 6:100102. PubMed Id: 34723237. doi:10.1016/j.crmeth.2021.100102. |
||
Cytokine Receptors
|
|||
Cytokine receptor IL-17RC ECD in complex with human IL-17F: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.32 Å
These receptors are anchored to the membrane by a single TM segment, not shown in the structure IL-17RC ECD in complex with human IL-17F, Crystal form II, 3.62 Å: 6HG9 IL-17RC D2-D3-D4 domains in complex with an anti-APP tag Fab, 2.60 Å: 6HGA human IL-17F, 2.10 Å: 6HGO anti-APP-tag Fab, 1.50 Å: 6HGU |
Goepfert et al. (2020).
Goepfert A, Lehmann S, Blank J, Kolbinger F, & Rondeau JM (2020). Structural Analysis Reveals that the Cytokine IL-17F Forms a Homodimeric Complex with Receptor IL-17RC to Drive IL-17RA-Independent Signaling.
Immunity 52 3:499-512.e5. PubMed Id: 32187518. doi:10.1016/j.immuni.2020.02.004. |
||
Dimeric/trimeric IL-25-IL/17 complexes: IL-17RB-IL-25 (2:2): Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.20 Å
cryo-EM structure IL-17RB-IL-25 (6:6), 4.40 Å: 7UWK IL-25-IL-17RB-IL-17RA ternary complex, 3.70 Å: 7UWL IL-17A-IL-17RA binary complex, 2.50 Å: 7UWM IL-17A-IL-17RA-IL-17RC ternary complex, 3.01 Å: 7UWN |
Wilson et al. (2022).
Wilson SC, Caveney NA, Yen M, Pollmann C, Xiang X, Jude KM, Hafer M, Tsutsumi N, Piehler J, & Garcia KC (2022). Organizing structural principles of the IL-17 ligand-receptor axis.
Nature 609 7927:622-629. PubMed Id: 35863378. doi:10.1038/s41586-022-05116-y. |
||
Saxton et al. (2023).
Saxton RA, Caveney NA, Moya-Garzon MD, Householder KD, Rodriguez GE, Burdsall KA, Long JZ, & Garcia KC (2023). Structural insights into the mechanism of leptin receptor activation.
Nat Commun 14 1:1797. PubMed Id: 37002197. doi:10.1038/s41467-023-37169-6. |
|||
Toll-Like Receptors (TLR) and TLR Signalling Regulators
|
|||
Toll-like receptor TLR3 in complex with UNC93B1: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.40 Å
cryo-EM structure TLR7 in complex with UNC93B1, 4.20 Å 7CYN |
Ishida et al. (2021).
Ishida H, Asami J, Zhang Z, Nishizawa T, Shigematsu H, Ohto U, & Shimizu T (2021). Cryo-EM structures of Toll-like receptors in complex with UNC93B1.
Nat Struct Mol Biol 28 2:173-180. PubMed Id: 33432245. doi:10.1038/s41594-020-00542-w. |
||
Toll-like receptor TLR3 in complex with UNC93B1: Mus musculus E Eukaryota (expressed in HEK293 cells), 3.30 Å
cryo-EM structure |
Ishida et al. (2021).
Ishida H, Asami J, Zhang Z, Nishizawa T, Shigematsu H, Ohto U, & Shimizu T (2021). Cryo-EM structures of Toll-like receptors in complex with UNC93B1.
Nat Struct Mol Biol 28 2:173-180. PubMed Id: 33432245. doi:10.1038/s41594-020-00542-w. |
||
Novel Receptors
|
|||
Sigma-1 (σ1) receptor, with bound PD144418: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.51 Å
with bound 4-IBP, 3.2 Å: 5HK2 |
Schmidt et al. (2016).
Schmidt HR, Zheng S, Gurpinar E, Koehl A, Manglik A, & Kruse AC (2016). Crystal structure of the human σ1 receptor.
Nature 532 :527-530. PubMed Id: 27042935. doi:10.1038/nature17391. |
||
Sigma-1 (σ1) receptor, closed conformation: Xenopus laevis E Eukaryota (expressed in Komagataella pastoris), 3.20 Å
complexed with PRE084, 3.33 Å 7W2C complexed with S1RA, 3.47 Å 7W2D open-like conformation, 3.56 Å 7W2E open-like conformation complexed with PRE084 by co-crystallization, 3.10 Å 7W2F open-like conformation complexed with PRE084 by soaking, 2.85 Å 7W2G double cysteine variant complexed with S1RA, 3.80 Å 7W2H |
Meng et al. (2022).
Meng F, Xiao Y, Ji Y, Sun Z, & Zhou X (2022). An open-like conformation of the sigma-1 receptor reveals its ligand entry pathway.
Nat Commun 13 1:1267. PubMed Id: 35273182. doi:10.1038/s41467-022-28946-w. |
||
Sigma-1 (σ1) receptor complexed with progesterone by co-crstayllization, I432 space group: Xenopus laevis E Eukaryota (expressed in Komagataella pastoris), 2.15 Å
X-ray structure by soaking, 2.68 Å: 8W4C in the absence of known ligands, 2.17 Å: 8W4D complexed with DHEAS by soaking, 2.50 Å: 8WWB complexed with DHEAS by soaking, C2 space group. 3.09 Å: 8WUE side-open, C2 space group, 2.81 Å: 8W4E side-open all protomers, C2 space group, 3.12 Å: 8YBB |
Fu et al. (2024).
Fu C, Xiao Y, Zhou X, & Sun Z (2024). Insight into binding of endogenous neurosteroid ligands to the sigma-1 receptor.
Nat Commun 15 1:5619. PubMed Id: 38965213. doi:10.1038/s41467-024-49894-7. |
||
Alon et al. (2021).
Alon A, Lyu J, Braz JM, Tummino TA, Craik V, O'Meara MJ, Webb CM, Radchenko DS, Moroz YS, Huang XP, Liu Y, Roth BL, Irwin JJ, Basbaum AI, Shoichet BK, & Kruse AC (2021). Structures of the σ2 receptor enable docking for bioactive ligand discovery.
Nature 600 7890:759-764. PubMed Id: 34880501. doi:10.1038/s41586-021-04175-x. |
|||
STRA6 retinol-uptake receptor in complex with calmodulin (CaM): Danio rerio E Eukaryota (expressed in sf9 cells), 3.9 Å
cryo-EM structure |
Chen et al. (2016).
Chen Y, Clarke OB, Kim J, Stowe S, Kim YK, Assur Z, Cavalier M, Godoy-Ruiz R, von Alpen DC, Manzini C, Blaner WS, Frank J, Quadro L, Weber DJ, Shapiro L, Hendrickson WA, & Mancia F (2016). Structure of the STRA6 receptor for retinol uptake.
Science 353 . PubMed Id: 27563101. doi:10.1126/science.aad8266. |
||
Bacterial, Algal, Viral, and Unusual Rhodopsins
|
|||
Bacteriorhodopsin (BR): Halobacterium salinarum A Archaea, 3.5 Å
Electron Diffraction. The first atomic-resolution structure of bacteriorhodopsin |
Grigorieff et al. (1996).
Grigorieff N, Ceska TA, Downing KH, Baldwin JM, & Henderson R (1996). Electron-crystallographic refinement of the structure of bacteriorhodopsin.
J Mol Biol 259 :393-421. PubMed Id: 8676377. |
||
Bacteriorhodopsin (BR): Halobacterium salinarum A Archaea, 3.0 Å
Electron Diffraction |
Kimura et al. (1997).
Kimura Y, Vassylyev DG, Miyazawa A, Kidera A, Matsushima M, Mitsuok a K, Murata K, Hirai T, & Fujiyoshi Y (1997). Surface of bacteriorhodopsin revealed by high-resolution electron crystallography.
Nature 389 :206-211. PubMed Id: 8676377. |
||
Bacteriorhodopsin (BR): Halobacterium salinarum A Archaea, 2.35 Å
The first x-ray structure of bacteriorhodopsin |
Pebay-Peyroula et al. (1997).
Pebay-Peyroula E, Rummel G, Rosenbusch JP, & Landau EM (1997). X-ray structure of bacteriorhodopsin at 2.5 Å from microcrystals grown in lipidic cubic phases.
Science 277 :1676-1681. PubMed Id: 9287223. |
||
Bacteriorhodopsin (BR): Halobacterium salinarum A Archaea, 2.90 Å
|
Essen et al. (1998).
Essen L, Siegert R, Lehmann WD, & Oesterhelt D (1998). Lipid patches in membrane protein oligomers: crystal structure of the bacteriorhodopsin-lipid complex.
Proc Natl Acad Sci U S A 95 :11673-11678. PubMed Id: 9751724. |
||
Bacteriorhodopsin (BR): Halobacterium salinarum A Archaea, 2.30 Å
|
Luecke et al. (1998).
Luecke H, Richter HT, & Lanyi JK (1998). Proton transfer pathways in bacteriorhodopsin at 2.3 Angstrom resolution.
Science 280 :1934-1937. PubMed Id: 9632391. |
||
Bacteriorhodopsin (BR) dark-adapted: Halobacterium salinarum A Archaea, NMR structure
|
Patzelt et al. (2002).
Patzelt H, Simon B, terLaak A, Kessler B, Kühne R, Schmieder P, Oesterhelt D, & Oschkinat H (2002). The structures of the active center in dark-adapted bacteriorhodopsin by solution-state NMR spectroscopy.
Proc Natl Acad Sci USA 99 :9765-9770. PubMed Id: 12119389. |
||
Bacteriorhodopsin (BR), K intermediate: Halobacterium salinarum A Archaea, 2.10 Å
R-free = O.255. R-free = 0.303, 2.1 Å: 1QKO |
Edman et al. (1999).
Edman K, Nollert P, Royant A, Belrhali H, Pebay-Peyroula E, Hajdu J, Neutze R, & Landau EM (1999). High-resolution X-ray structure of an early intermediate in the bacteriorhodopsin photocycle.
Nature 401 :822-826. PubMed Id: 10548112. |
||
Bacteriorhodopsin (BR), K intermediate (illuminated): Halobacterium salinarum A Archaea, 1.43 Å
Non-illuminated, 1.47 Å: 1M0L |
Schobert et al. (2002).
Schobert B, Cupp-Vickery J, Hornak V, Smith S, & Lanyi J (2002). Crystallographic structure of the K intermediate of bacteriorhodopsin: conservation of free energy after photoisomerization of the retinal.
J. Mol. Biol. 321 :715-726. PubMed Id: 12206785. |
||
Facciotti et al. (2001).
Facciotti MT, Rouhani S, Burkard FT, Betancourt FM, Downing KH, Rose RB, McDermott G, & Glaeser RM (2001). Structure of an early intermediate in the M-state phase of the bacteriorhodopsin photocycle
Biophys J 81 :3442-3455. PubMed Id: 11721006. doi:10.1016/S0006-3495(01)75976-0. |
|||
Bacteriorhodopsin (BR): Halobacterium salinarum A Archaea, 1.90 Å
|
Belrhali et al. (1999).
Belrhali H, Nollert P, Royant A, Menzel C, Rosenbusch JP, Landau EH, & Pebay-Peyroula E (1999). Protein, lipid, and water organization in bacteriorhodopsin crystals: A molecular view of the purple membrane at 1.9 Å resolution.
Structure 7 :909-917. PubMed Id: 10467143. |
||
Bacteriorhodopsin (BR): Halobacterium salinarum A Archaea, 1.55 Å
|
Luecke et al. (1999).
Luecke H, Schobert B, Richter HT, Cartailler P, & Lanyi JK (1999). Structure of bacteriorhodopsin at 1.55 angstrom resolution.
J. Mol. Biol 291 :899-911. PubMed Id: 10452895. |
||
Bacteriorhodopsin (BR), D96N in bR state: Halobacterium salinarum A Archaea, 1.80 Å
D96N in M-state, 2.00 Å: 1C8S. |
Luecke et al. (1999).
Luecke H, Schobert B, Richter HT, Cartailler P, & Lanyi JK (1999). Structural changes in bacteriorhodopsin during ion transport at 2 angstrom resolution.
Science 286 :255-260. PubMed Id: 10514362. |
||
Bacteriorhodopsin in ground state: Halobacterium salinarum A Archaea, 1.78 Å
Ground state, after x-ray modification, 1.78 Å: 3NSB |
Borshchevskiy et al. (2011).
Borshchevskiy VI, Round ES, Popov AN, Büldt G, & Gordeliy VI (2011). X-ray-Radiation-Induced Changes in Bacteriorhodopsin Structure
J Mol Biol 409 :813-825. PubMed Id: 21530535. doi:10.1016/j.jmb.2011.04.038. |
||
Bacteriorhodopsin phototaxis signalling mutant (A215T): Halobacterium sp. nrc-1 A Archaea (expressed in Halobacterium salinarum), 3.01 Å
This mutant enables BR's photochemical reactions to transmit signals to the transducer HtrII. |
Spudich et al. (2012).
Spudich EN, Ozorowski G, Schow EV, Tobias DJ, Spudich JL, & Luecke H (2012). A transporter converted into a sensor, a phototaxis signaling mutant of bacteriorhodopsin at 3.0 Å.
J Mol Biol 415 :455-463. PubMed Id: 22123198. doi:10.1016/j.jmb.2011.11.025. |
||
Bacteriorhodopsin (BR); D96/F171C/F219L mutant: Halobacterium salinarum A Archaea, 2.65 Å
|
Wang et al. (2013).
Wang T, Sessions AO, Lunde CS, Rouhani S, Glaeser RM, Duan Y, & Facciotti MT (2013). Deprotonation of D96 in bacteriorhodopsin opens the proton uptake pathway.
Structure 21 :290-297. PubMed Id: 23394942. doi:10.1016/j.str.2012.12.018. |
||
Bacteriorhodopsin (BR) determined using serial ms crystallography (SMX): Halobacterium salinarum A Archaea, 2.40 Å
Structure by conventional crystallography, 1.90 Å:4X32 |
Nogly et al. (2015).
Nogly P, James D, Wang D, White TA, Zatsepin N, Shilova A, Nelson G, Liu H, Johansson L, Heymann M, Jaeger K, Metz M, Wickstrand C, Wu W, Båth P, Berntsen P, Oberthuer D, Panneels V, Cherezov V, Chapman H, Schertler G, Neutze R, Spence J, Moraes I, Burghammer M, Standfuss J, & Weierstall U (2015). Lipidic cubic phase serial millisecond crystallography using synchrotron radiation.
IUCrJ 2 :168-176. PubMed Id: 25866654. doi:10.1107/S2052252514026487. |
||
Bacteriorhodopsin (BR) native: Halobacterium salinarum A Archaea, 2.35 Å
Structure determind by XFEL. Crystallized from bicelles. Crystallized from Bicelles in Complex with Iodine-labeled Detergent HAD13a, 2.1 Å: 5B34 |
Nakane et al. (2016).
Nakane T, Hanashima S, Suzuki M, Saiki H, Hayashi T, Kakinouchi K, Sugiyama S, Kawatake S, Matsuoka S, Matsumori N, Nango E, Kobayashi J, Shimamura T, Kimura K, Mori C, Kunishima N, Sugahara M, Takakyu Y, Inoue S, Masuda T, Hosaka T, Tono K, Joti Y, Kameshima T, Hatsui T, Yabashi M, Inoue T, Nureki O, Iwata S, Murata M, & Mizohata E (2016). Membrane protein structure determination by SAD, SIR, or SIRAS phasing in serial femtosecond crystallography using an iododetergent.
Proc Natl Acad Sc. USA 113 :13039-13044. PubMed Id: 27799539. |
||
Bacteriorhodopsin (BR) 3D movie, ground state: Halobacterium salinarum A Archaea, 2.0 Å
See the movie: Science Magazine structures at: 16 nsec, 2.1 Å: 5B6W 40 nsec, 2.1 Å: 5H2H 110 nsec, 2.1 Å: 5H2I 290 nsec, 2.1 Å: 5H2J 760 nsec, 2.1 Å: 5B6X 2 μsec, 2.1 Å: 5H2K 5.25 μsec, 2.1 Å: 5H2L 13.8 μsec, 2.1 Å: 5H2M 36.2 μsec, 2.1 Å: 5B6Y 95.2 μsec, 2.1 Å: 5H2N 250 μsec, 2.1 Å: 5H2O 657 μsec, 2.1 Å: 5H2P 1.725 msec, 2.1 Å: 5B6Z |
Nango et al. (2016).
Nango E, Royant A, Kubo M, Nakane T, Wickstrand C, Kimura T, Tanaka T, Tono K, Song C, Tanaka R, Arima T, Yamashita A, Kobayashi J, Hosaka T, Mizohata E, Nogly P, Sugahara M, Nam D, Nomura T, Shimamura T, Im D, Fujiwara T, Yamanaka Y, Jeon B, Nishizawa T, Oda K, Fukuda M, Andersson R, Båth P, Dods R, Davidsson J, Matsuoka S, Kawatake S, Murata M, Nureki O, Owada S, Kameshima T, Hatsui T, Joti Y, Schertler G, Yabashi M, Bondar AN, Standfuss J, Neutze R, & Iwata S (2016). A three-dimensional movie of structural changes in bacteriorhodopsin.
Science 354 :1552-1557. PubMed Id: 28008064. doi:10.1126/science.aah3497. |
||
Bacteriorhodopsin (BR) retinal isomerization movie, ground state: Halobacterium salinarum A Archaea, 1.5 Å
see the movie: Science Magazine Δt 49 - 406 fs, 1.9 Å: 6G7I Δt 457-646 fs, 1.9 Å: 6G7J Δt 10 ps, 1.9 Å: 1.9 Å: 6G7K Δt 8.3 ms, 1.9 Å: 6G7L |
Nogly et al. (2018).
Nogly P, Weinert T, James D, Carbajo S, Ozerov D, Furrer A, Gashi D, Borin V, Skopintsev P, Jaeger K, Nass K, Båth P, Bosman R, Koglin J, Seaberg M, Lane T, Kekilli D, Brünle S, Tanaka T, Wu W, Milne C, White T, Barty A, Weierstall U, Panneels V, Nango E, Iwata S, Hunter M, Schapiro I, Schertler G, Neutze R, & Standfuss J (2018). Retinal isomerization in bacteriorhodopsin captured by a femtosecond x-ray laser.
Science . PubMed Id: 29903883. doi:10.1126/science.aat0094. |
||
Hasegawa et al. (2018).
Hasegawa N, Jonotsuka H, Miki K, & Takeda K (2018). X-ray structure analysis of bacteriorhodopsin at 1.3 Å resolution.
Sci Rep 8 1. PubMed Id: 30177765. doi:10.1038/s41598-018-31370-0. |
|||
Weinert et al. (2019).
Weinert T, Skopintsev P, James D, Dworkowski F, Panepucci E, Kekilli D, Furrer A, Brünle S, Mous S, Ozerov D, Nogly P, Wang M, & Standfuss J (2019). Proton uptake mechanism in bacteriorhodopsin captured by serial synchrotron crystallography.
Science 365 6448:61-65. PubMed Id: 31273117. doi:10.1126/science.aaw8634. |
|||
Bacteriorhodopsin (BR) 3D view of ultrafast dynamics, dark state cell 1: Halobacterium salinarum A Archaea, 1.7 Å
dark state cell 2, 1.8 Å: 6GA2 dark state, cell 2, refined using the same protocol as sub-ps time delays, 1.8 Å: 6RMK 33 msec state, ensemble refinement, 2.1 Å: 6GA3 1 ps state, 1.8 Å: 6GA4 3 ps state, 1.9 Å: 6GA5 10 ps state, 1.8 Å: 6GA6 0.24 ps state, 1.8 Å: 6GA7 0.33 ps state, 1.8 Å:6GA8 0.39 ps state, 1.8 Å: 6GA9 0.43 ps state, 1.8 Å: 6GAA 0.46 ps state, 1.8 Å: 6GAB 0.49 ps state, 1.8 Å: 6GAC 0.53 ps state, 1.8 Å: 6GAD 0.56 ps state, 1.8 Å: 6GAE 0.59 ps state, 1.8 Å: 6GAF 0.63 ps state, 1.8 Å: 6GAG 0.68 ps state, 1.8 Å: 6GAH 0.74 ps state, 1.8 Å: 6AGI |
Nass Kovacs et al. (2019).
Nass Kovacs G, Colletier JP, Grünbein ML, Yang Y, Stensitzki T, Batyuk A, Carbajo S, Doak RB, Ehrenberg D, Foucar L, Gasper R, Gorel A, Hilpert M, Kloos M, Koglin JE, Reinstein J, Roome CM, Schlesinger R, Seaberg M, Shoeman RL, Stricker M, Boutet S, Haacke S, Heberle J, Heyne K, Domratcheva T, Barends TRM, & Schlichting I (2019). Three-dimensional view of ultrafast dynamics in photoexcited bacteriorhodopsin.
Nat Commun 10 1:3177. PubMed Id: 31320619. doi:10.1038/s41467-019-10758-0. |
||
Bacteriorhodopsin Crystallized from Bicelles in Complex with HAD16, Determined Using 7-keV X-ray Free Electron Laser (XFEL) at SACLA: Halobacterium salinarum B Bacteria, 2.35 Å
|
Hanashima et al. (2021).
Hanashima S, Nakane T, & Mizohata E (2021). Heavy Atom Detergent/Lipid Combined X-ray Crystallography for Elucidating the Structure-Function Relationships of Membrane Proteins.
Membranes (Basel) 11 11:823. PubMed Id: 34832053. doi:10.3390/membranes11110823. |
||
Borshchevskiy et al. (2022).
Borshchevskiy V, Kovalev K, Round E, Efremov R, Astashkin R, Bourenkov G, Bratanov D, Balandin T, Chizhov I, Baeken C, Gushchin I, Kuzmin A, Alekseev A, Rogachev A, Willbold D, Engelhard M, Bamberg E, Büldt G, & Gordeliy V (2022). True-atomic-resolution insights into the structure and functional role of linear chains and low-barrier hydrogen bonds in proteins.
Nat Struct Mol Biol 29 5:440-450. PubMed Id: 35484235. doi:10.1038/s41594-022-00762-2. |
|||
Taguchi et al. (2023).
Taguchi S, Niwa S, Dao HA, Tanaka Y, Takeda R, Fukai S, Hasegawa K, & Takeda K (2023). Detailed analysis of distorted retinal and its interaction with surrounding residues in the K intermediate of bacteriorhodopsin.
Commun Biol 6 1:190. PubMed Id: 36808185. doi:10.1038/s42003-023-04554-2. |
|||
Bacteriorhodopsin (BR), trimer in asymmetric unit: Haloquadratum walsbyi A Archaea (expressed in E. coli), 1.85 Å
This BR pumps protons efficiently under acid conditions. antiparallel dimer in asymmetric unit, 2.57 Å: 4QID |
Hsu et al. (2015).
Hsu MF, Fu HY, Cai CJ, Yi HP, Yang CS, & Wang AH (2015). Structural and Functional Studies of a Newly Grouped Haloquadratum walsbyi Bacteriorhodopsin Reveal the Acid-resistant Light-driven Proton Pumping Activity.
J Biol Chem 290 :29567-29577. PubMed Id: 26483542. doi:10.1074/jbc.M115.685065. |
||
Bacteriorhodopsin (BR) crystallized from octylglucoside (OG) detergent micelles: Haloquadratum walsbyi A Archaea (expressed in E. coli), 2.18 Å
crystallized from styrene maleic acid (SMA) polymer nanodiscs, 2.0 Å: 5ITC |
Broecker et al. (2017).
Broecker J, Eger BT, & Ernst OP (2017). Crystallogenesis of Membrane Proteins Mediated by Polymer-Bounded Lipid Nanodiscs.
Structure 25 :384-392. PubMed Id: 28089451. doi:10.1016/j.str.2016.12.004. |
||
Halorhodopsin (HR): Halobacterium salinarum A Archaea, 1.8 Å
|
Kolbe et al. (2000).
Kolbe M, Besir H, Essen L-O, & Oesterhelt D (2000). Structure of the light-driven chloride pump halorhodopsin at 1.8 Å.
Science 288 :1390-1396. PubMed Id: 10827943. |
||
Melnikov et al. (2022).
Melnikov I, Orekhov P, Rulev M, Kovalev K, Astashkin R, Bratanov D, Ryzhykau Y, Balandin T, Bukhdruker S, Okhrimenko I, Borshchevskiy V, Bourenkov G, Mueller-Dieckmann C, van der Linden P, Carpentier P, Leonard G, Gordeliy V, & Popov A (2022). High-pressure crystallography shows noble gas intervention into protein-lipid interaction and suggests a model for anaesthetic action.
Commun Biol 5 1:360. PubMed Id: 35422073. doi:10.1038/s42003-022-03233-y. |
|||
Halorhodopsin (HR): Natronomonas pharaonis A Archaea, 2.0 Å
|
Kouyama et al. (2010).
Kouyama T, Kanada S, Takeguchi Y, Narusawa A, Murakami M, Ihara K. (2010). Crystal Structure of the Light-Driven Chloride Pump Halorhodopsin from Natronomonas pharaonis.
J Mol Biol 396 :564-579. PubMed Id: 19961859. |
||
Astashkin et al. (2022).
Astashkin R, Kovalev K, Bukhdruker S, Vaganova S, Kuzmin A, Alekseev A, Balandin T, Zabelskii D, Gushchin I, Royant A, Volkov D, Bourenkov G, Koonin E, Engelhard M, Bamberg E, & Gordeliy V (2022). Structural insights into light-driven anion pumping in cyanobacteria.
Nat Commun 13 1:6460. PubMed Id: 36309497. doi:10.1038/s41467-022-34019-9. |
|||
Yun et al. (2020).
Yun JH, Park JH, Jin Z, Ohki M, Wang Y, Lupala CS, Liu H, Park SY, & Lee W (2020). Structure-Based Functional Modification Study of a Cyanobacterial Chloride Pump for Transporting Multiple Anions.
J Mol Biol 432 :5273-5286. PubMed Id: 32721401. doi:10.1016/j.jmb.2020.07.016. |
|||
Sensory Rhodopsin: Anabaena (Nostoc) sp. PCC7120 B Bacteria, 2.0 Å
|
Vogeley et al. (2004).
Vogeley L, Sineshchekov OA, Trivedi VD, Sasaki J, Spudich JL, & Luecke H (2004). Anabaena sensory rhodopsin: a photochromic color sensor at 2.0 Å.
Science 306 :1390-1393. PubMed Id: 15459346. |
||
Sensory Rhodopsin: Anabaena (Nostoc) sp. PCC7120 B Bacteria (expressed in E. coli), NMR Structure
|
Wang et al. (2013).
Wang S, Munro RA, Shi L, Kawamura I, Okitsu T, Wada A, Kim SY, Jung KH, Brown LS, & Ladizhansky V (2013). Solid-state NMR spectroscopy structure determination of a lipid-embedded heptahelical membrane protein.
Nat Methods 10 :1007-1012. PubMed Id: 24013819. doi:10.1038/nmeth.2635. |
||
Sensory Rhodopsin II (SRII): Natronomonas pharaonis A Archaea, 2.40 Å
|
Luecke et al. (2001).
Luecke H, Schobert B, Lanyi JK, Spudich EN, & Spudich JL (2001). Crystal structure of sensory rhodopsin II at 2.4 Å: Insights into color tuning and transducer interaction.
Science 293 :1499-1503. PubMed Id: 11452084. |
||
Sensory Rhodopsin II (SRII): Natronomonas pharaonis A Archaea (expressed in E. coli), 2.10 Å
|
Royant et al. (2001).
Royant A, Nollert P, Edman K, Neutze R, Landau EM, & Pebay-Peyroula E. (2001). X-ray structure of sensory rhodopsin II at 2.1 Å resolution.
Proc Natl Acad Sci USA 98 :10131-10136. PubMed Id: 11504917. |
||
Sensory Rhodopsin II (SRII) with transducer: Natronomonas pharaonis A Archaea (expressed in E. coli), 1.93 Å
|
Gordeliy et al. (2002).
Gordeliy VI, Labahn J, Moukhametzianov R, Efremov R, Granzin J, Schlesinger R, Büldt G, Savopol T, Scheidig AJ, Klare JP, & Engelhard M. (2002). Molecular basis of transmembrane signalling by sensory rhodopsin II-transducer complex.
Nature 419 :484-487. PubMed Id: 12368857. |
||
Sensory Rhodopsin II (SRII): Natronomonas pharaonis A Archaea (expressed in E. coli), NMR structure
|
Gautier et al. (2010).
Gautier A, Mott HR, Bostock MJ, Kirkpatrick JP, & Nietlispach D (2010). Structure determination of the seven-helix transmembrane receptor sensory rhodopsin II by solution NMR spectroscopy.
Nat Struct Mol Biol 17 :768-774. PubMed Id: 20512150. |
||
Sensory Rhodopsin II (SRII) in active state: Natronomonas pharaonis A Archaea (expressed in E. coli), 2.50 Å
SR II in ground state, 1.90 Å: 3QAP |
Gushchin et al. (2011).
Gushchin I, Reshetnyak A, Borshchevskiy V, Ishchenko A, Round E, Grudinin S, Engelhard M, Büldt G, & Gordeliy V (2011). Active state of sensory rhodopsin II: structural determinants for signal transfer and proton pumping.
J Mol Biol 412 :591-600. PubMed Id: 21840321. doi:10.1016/j.jmb.2011.07.022. |
||
Archaerhodopsin-1 (aR-1): Halorubrum sp. aus-1 A Archaea, 3.4 Å
|
Enami et al. (2006).
Enami N, Yoshimura K, Murakami M, Okumura H, Ihara K, & Kouyama T. (2006). Crystal Structures of Archaerhodopsin-1 and -2: Common Structural Motif in Archaeal Light-driven Proton Pumps.
J Mol Biol 356 :675-685. PubMed Id: 16540121. |
||
Archaerhodopsin-2 (aR-2): Haloroubrum sp. aus-2 A Archaea, 2.5 Å
|
Enami et al. (2006).
Enami N, Yoshimura K, Murakami M, Okumura H, Ihara K, & Kouyama T. (2006). Crystal Structures of Archaerhodopsin-1 and -2: Common Structural Motif in Archaeal Light-driven Proton Pumps.
J Mol Biol 356 :675-685. PubMed Id: 16540121. |
||
Archaerhodopsin-2 (aR-2): Haloroubrum sp. aus-2 A Archaea, 2.10 Å
Crystallized with the carotenoid bacterioruberin, space group P321. Space group P63, 2.50 Å: 2Z55. |
Yoshimura & Kouyama. (2008).
Yoshimura K & Kouyama T (2008). Structural role of bacterioruberin in the trimeric structure of archaerhodopsin-2.
J Mol Biol 375 :1267-1281. PubMed Id: 18082767. |
||
Archaerhodopsin-2 (aR-2): Haloroubrum sp. aus-2 A Archaea, 1.80 Å
|
Kouyama et al. (2014).
Kouyama T, Fujii R, Kanada S, Nakanishi T, Chan SK, & Murakami M (2014). Structure of archaerhodopsin-2 at 1.8?Å resolution.
Acta Crystallogr D Biol Crystallogr 70 :2692-2701. PubMed Id: 25286853. doi:10.1107/S1399004714017313. |
||
Archaerhodopsin-3 (aR-3), Dark-adapted state at 100 K: Halorubrum sodomense A Archaea, 1.30 Å
Ground state structure at 100 K, 1.07 Å: 6S6C |
Bada Juarez et al. (2021).
Bada Juarez JF, Judge PJ, Adam S, Axford D, Vinals J, Birch J, Kwan TOC, Hoi KK, Yen HY, Vial A, Milhiet PE, Robinson CV, Schapiro I, Moraes I, & Watts A (2021). Structures of the archaerhodopsin-3 transporter reveal that disordering of internal water networks underpins receptor sensitization.
Nat Commun 12 1:629. PubMed Id: 33504778. doi:10.1038/s41467-020-20596-0. |
||
Archaerhodopsin-3 (aR-3) in the ground state from LCP crystals using a thin-film sandwich at room temperature: Halorubrum sodomense A Archaea, 1.90 Å
Dark-adapted structure, 1.85 Å 6S63 |
Axford et al. (2022).
Axford D, Judge PJ, Bada Juarez JF, Kwan TOC, Birch J, Vinals J, Watts A, & Moraes I (2022). Two states of a light-sensitive membrane protein captured at room temperature using thin-film sample mounts.
Acta Crystallogr D Struct Biol 78 :52-58. PubMed Id: 34981761. doi:10.1107/S2059798321011220. |
||
Xanthorhodopsin: Salinibacter ruber B Bacteria, 1.90 Å
Contains bound carotenoid. |
Luecke et al. (2008).
Luecke H, Schobert B, Stagno J, Imasheva ES, Wang JM, Balashov SP, & Lanyi JK (2008). Crystallographic structure of xanthorhodopsin, the light-driven proton pump with a dual chromophore.
Proc Natl Acad Sci USA 105 :16561-16565. PubMed Id: 18922772. |
||
Acetabularia Rhodopsin II (ARII): Acetabularia acetabulum E Eukaryota (expressed in cell-free expression), 3.20 Å
This the first structure of a eukaryotic light-driven proton pump |
Wada et al. (2011).
Wada T, Shimono K, Kikukawa T, Hato M, Shinya N, Kim SY, Kimura-Someya T, Shirouzu M, Tamogami J, Miyauchi S, Jung KH, Kamo N, & Yokoyama S (2011). Crystal Structure of the Eukaryotic Light-Driven Proton-Pumping Rhodopsin, Acetabularia Rhodopsin II, from Marine Alga
J Mol Biol 411 :986-998. PubMed Id: 21726566. doi:10.1016/j.jmb.2011.06.028. |
||
Channelrhodopsin (ChR) chimera between ChR1 & ChR2: Chlamydomonas reinhardtii E Eukaryota (expressed in S. frugiperda), 2.30 Å
First ChR structure. Reveals cation conduction pathway. |
Kato et al. (2012).
Kato HE, Zhang F, Yizhar O, Ramakrishnan C, Nishizawa T, Hirata K, Ito J, Aita Y, Tsukazaki T, Hayashi S, Hegemann P, Maturana AD, Ishitani R, Deisseroth K, & Nureki O (2012). Crystal structure of the channelrhodopsin light-gated cation channel.
Nature 482 :369-374. PubMed Id: 22266941. doi:10.1038/nature10870. |
||
Channelrhodopsin (ChR) chimera between ChR1 & ChR2, T198G/G202A mutant: Chlamydomonas reinhardtii E Eukaryota (expressed in S. frugiperda), 2.50 Å
Blue-shifted mutant |
Kato et al. (2015).
Kato HE, Kamiya M, Sugo S, Ito J, Taniguchi R, Orito A, Hirata K, Inutsuka A, Yamanaka A, Maturana AD, Ishitani R, Sudo Y, Hayashi S, & Nureki O (2015). Atomistic design of microbial opsin-based blue-shifted optogenetics tools.
Nat Commun 6 :7177. PubMed Id: 25975962. doi:10.1038/ncomms8177. |
||
Channelrhodopsin (ChR) chimera between ChR1 & ChR2 by serial femtosecond crystallogrphy, dark state: Chlamydomonas reinhardtii E Eukaryota (expressed in Spodoptera frugiperda), 2.30 Å
1 μsec structure, 2.50 Å: 7E6Y 50 μ structure, 2.50 Å: 7E6Z 250 μsec structure, 2.50 Å: 7E70 1 msec structure, 2.50 Å: 7E71 4 msec structure, 2.50 Å: 7E6X |
Oda et al. (2021).
Oda K, Nomura T, Nakane T, Yamashita K, Inoue K, Ito S, Vierock J, Hirata K, Maturana AD, Katayama K, Ikuta T, Ishigami I, Izume T, Umeda R, Eguma R, Oishi S, Kasuya G, Kato T, Kusakizako T, Shihoya W, Shimada H, Takatsuji T, Takemoto M, Taniguchi R, Tomita A, Nakamura R, Fukuda M, Miyauchi H, Lee Y, Nango E, Tanaka R, Tanaka T, Sugahara M, Kimura T, Shimamura T, Fujiwara T, Yamanaka Y, Owada S, Joti Y, Tono K, Ishitani R, Hayashi S, Kandori H, Hegemann P, Iwata S, Kubo M, Nishizawa T, & Nureki O (2021). Time-resolved serial femtosecond crystallography reveals early structural changes in channelrhodopsin.
Elife 10 :e62389. PubMed Id: 33752801. doi:10.7554/eLife.62389. |
||
iC++ designed anion channelrhodopsin, pH 8.5: designed U Unclassified (expressed in S. frugiperda), 2.9 Å
pH 6.5, 3.2 Å: 6CSO |
Kato et al. (2018).
Kato HE, Kim YS, Paggi JM, Evans KE, Allen WE, Richardson C, Inoue K, Ito S, Ramakrishnan C, Fenno LE, Yamashita K, Hilger D, Lee SY, Berndt A, Shen K, Kandori H, Dror RO, Kobilka BK, & Deisseroth K (2018). Structural mechanisms of selectivity and gating in anion channelrhodopsins.
Nature 561 7723:349-354. PubMed Id: 30158697. doi:10.1038/s41586-018-0504-5. |
||
Channelrhodopsin 2 (ChR2): Chlamydomonas reinhardtii E Eukaryota (expressed in Leishmania tarentolae), 2.39 Å
C128T mutant, 2.7 Å: 6EIG |
Volkov et al. (2017).
Volkov O, Kovalev K, Polovinkin V, Borshchevskiy V, Bamann C, Astashkin R, Marin E, Popov A, Balandin T, Willbold D, Büldt G, Bamberg E, Gordeliy V (2017). Structural insights into ion conduction by channelrhodopsin 2
Science 358 6366:eaan8862. PubMed Id: 29170206. doi:10.1126/science.aan8862. |
||
anion channelrhodopsin-1 (ACR1) light-gated anion channel: Guillardia theta E Eukaryota (expressed in S. frugiperda), 2.9 Å
|
Kim et al. (2018).
Kim YS, Kato HE, Yamashita K, Ito S, Inoue K, Ramakrishnan C, Fenno LE, Evans KE, Paggi JM, Dror RO, Kandori H, Kobilka BK, & Deisseroth K (2018). Crystal structure of the natural anion-conducting channelrhodopsin GtACR1.
Nature 561 7723:343-348. PubMed Id: 30158696. doi:10.1038/s41586-018-0511-6. |
||
anion channelrhodopsin-1 (ACR1) light-gated anion channel in dark (closed) state: Guillardia theta E Eukaryota (expressed in S. frugiperda), 2.9 Å
|
Li et al. (2019).
Li H, Huang CY, Govorunova EG, Schafer CT, Sineshchekov OA, Wang M, Zheng L, & Spudich JL (2019). Crystal structure of a natural light-gated anion channelrhodopsin.
Elife 8 :e41741. PubMed Id: 30614787. doi:10.7554/eLife.41741. |
||
anion channelrhodopsin-1 (ACR1) light-gated anion channel, bromide bound: Guillardia theta E Eukaryota (expressed in Komagataella pastoris), 3.20 Å
|
Li et al. (2021).
Li H, Huang CY, Govorunova EG, Sineshchekov OA, Yi A, Rothschild KJ, Wang M, Zheng L, & Spudich JL (2021). The crystal structure of bromide-bound GtACR1 reveals a pre-activated state in the transmembrane anion tunnel.
Elife 10 :e65903. PubMed Id: 33998458. doi:10.7554/eLife.65903. |
||
Channelrhodopsin Chrimson: Chlamydomonas noctigama E Eukaryota (expressed in S. frugiperda), 2.6 Å
|
Oda et al. (2018).
Oda K, Vierock J, Oishi S, Rodriguez-Rozada S, Taniguchi R, Yamashita K, Wiegert JS, Nishizawa T, Hegemann P, & Nureki O (2018). Crystal structure of the red light-activated channelrhodopsin Chrimson.
Nat Commun 9 1. PubMed Id: 30258177. doi:10.1038/s41467-018-06421-9. |
||
Proteorhodopsin (green-light absorbing): Uncultured marine gamma proteobacterium ebac31a08 B Bacteria (expressed in E. coli-based cell-free expression system), NMR Structure
|
Reckel et al. (2011).
Reckel S, Gottstein D, Stehle J, Löhr F, Verhoefen MK, Takeda M, Silvers R, Kainosho M, Glaubitz C, Wachtveitl J, Bernhard F, Schwalbe H, Güntert P, Dötsch V (2011). Solution NMR structure of proteorhodopsin.
Angew Chem Int Ed Engl 50 :11942-11946. PubMed Id: 22034093. doi:10.1002/anie.201105648. |
||
Proteorhodopsin (green-light absorbing): uncultured Gammaproteobacteria bacterium B Bacteria (expressed in E. coli), 2.93 Å
cryo-EM structure |
Hirschi et al. (2021).
Hirschi S, Kalbermatter D, Ucurum Z, Lemmin T, & Fotiadis D (2021). Cryo-EM structure and dynamics of the green-light absorbing proteorhodopsin.
Nat Commun 12 1. PubMed Id: 34226545. doi:10.1038/s41467-021-24429-6. |
||
Proteorhodopsin: Exiguobacterium sibiricum B Bacteria (expressed in E. coli), 2.30 Å
Lysine is the proton donor in this novel proteorhodopsin |
Gushchin et al. (2013).
Gushchin I, Chervakov P, Kuzmichev P, Popov AN, Round E, Borshchevskiy V, Ishchenko A, Petrovskaya L, Chupin V, Dolgikh DA, Arseniev AA, Kirpichnikov M, & Gordeliy V (2013). Structural insights into the proton pumping by unusual proteorhodopsin from nonmarine bacteria.
Proc Natl Acad Sci USA 110 :12631-12636. PubMed Id: 23872846. doi:10.1073/pnas.1221629110. |
||
Proteorhodopsin (blue-light absorbing), Med12BPR: uncultured bacterium B Bacteria (expressed in E. coli), 2.31 Å
Isolated from the Mediterranean Sea at a depth of 12 m. Oligomerizes as a hexameric ring. |
Ran et al. (2013).
Ran T, Ozorowski G, Gao Y, Sineshchekov OA, Wang W, Spudich JL, & Luecke H (2013). Cross-protomer interaction with the photoactive site in oligomeric proteorhodopsin complexes.
Acta Crystallogr D Biol Crystallogr 69 :1965-1980. PubMed Id: 24100316. |
||
Proteorhodopsin (blue-light absorbing); HOT75BPR, D97N mutant: gamma proteobacterium B Bacteria (expressed in E. coli), 2.70 Å
Isolated from the Pacific Ocean near Hawaii at a depth of 75 m. Oligomerizes as a pentameric ring. D97N/Q105L mutant, 2.60 Å: 4KNF |
Ran et al. (2013).
Ran T, Ozorowski G, Gao Y, Sineshchekov OA, Wang W, Spudich JL, & Luecke H (2013). Cross-protomer interaction with the photoactive site in oligomeric proteorhodopsin complexes.
Acta Crystallogr D Biol Crystallogr 69 :1965-1980. PubMed Id: 24100316. |
||
Cruxrhodopsin-3 (cR3), pH 5: Haloarcula vallismortis A Archaea (expressed in H. salinarum), 2.10 Å
at pH 6, 2.30 Å: 4JR8 |
Chan et al. (2014).
Chan SK, Kitajima-Ihara T, Fujii R, Gotoh T, Murakami M, Ihara K, & Kouyama T (2014). Crystal Structure of Cruxrhodopsin-3 from Haloarcula vallismortis.
PLoS ONE 9 9:e108362. PubMed Id: 25268964. doi:10.1371/journal.pone.0108362. |
||
KR2 light-driven Na+ pump, acidic conditions: Krokinobacter eikastus B Bacteria (expressed in E. coli), 2.30 Å
basic conditions, 2.30 Å: 3X3C *Species name has changed to Dokdonia eikasta. See Int J Syst Evol Microbiol (2012) doi: 10.1099/ijs.0.035253-0. But K. eikastus remains in common use in the literature.* |
Kato et al. (2015).
Kato HE, Inoue K, Abe-Yoshizumi R, Kato Y, Ono H, Konno M, Hososhima S, Ishizuka T, Hoque MR, Kunitomo H, Ito J, Yoshizawa S, Yamashita K, Takemoto M, Nishizawa T, Taniguchi R, Kogure K, Maturana AD, Iino Y, Yawo H, Ishitani R, Kandori H, & Nureki O (2015). Structural basis for Na+ transport mechanism by a light-driven Na+ pump.
Nature 521 :48-53. PubMed Id: 25849775. doi:10.1038/nature14322. |
||
KR2 light-driven Na+ pump, pentameric form at pH 6.0: Krokinobacter eikastus B Bacteria (expressed in E. coli), 2.7 Å
pentameric form at pH 5.0, 2.6 Å: 6REZ pentameric form at pH 8.0, 2.2 Å: 6REW pentameric form S254A at pH 8.0, 2.4 Å: 6RF4 pentameric form G263F ar pH 8.0, 2.4 Å: 6RF3 pentameric "wet" form, 2.8 Å: 6RF1 pentameric "dry" form, 3 Å: 6RF0 monomeric pH 6.0, 2.3 Å: 6RF5 monomeric form H30K at pH 8.0, 2.2 Å: 6RFA monomeric form at pH 8.9, Å: 6RF7 monomeric form G263F at pH 4.3, 2.0 Å: 6RFC monomeric form S254A at pH 4.3, 2.1 Å: 6RFB monomeric form at pH 8.0, 1.8 Å: 6RF6 |
Kovalev et al. (2019).
Kovalev K, Polovinkin V, Gushchin I, Alekseev A, Shevchenko V, Borshchevskiy V, Astashkin R, Balandin T, Bratanov D, Vaganova S, Popov A, Chupin V, Büldt G, Bamberg E, & Gordeliy V (2019). Structure and mechanisms of sodium-pumping KR2 rhodopsin.
Sci Adv 5 4:eaav2671. PubMed Id: 30989112. doi:10.1126/sciadv.aav2671. |
||
KR2 light-driven Na+ pump, pentameric form in O-state, pH 8: Krokinobacter eikastus B Bacteria (expressed in E. coli), 2.10 Å
D116N mutant, monomeric form, pH 4.6, 1.80 Å: 6YBY D116N mutant, pentameric form, pH 8.0, 2.35 Å: 6YBZ steady-state-SMX activated state, pentameric form at room temperature, pH 8.0, 2.70 Å: 6YC0 H30A, pentameric form, pH 8.0, 2.20 Å: 6YC1 pentameric form at room temperature, pH 8.0, 2.50 Å: 6YC2 pentameric form, pH 8.0, 2.00 Å: 6YC3 steady-state activated state, pentameric form at room temperature, pH 8.0, 2.60 Å: 6YC4 |
Kovalev et al. (2020).
Kovalev K, Astashkin R, Gushchin I, Orekhov P, Volkov D, Zinovev E, Marin E, Rulev M, Alekseev A, Royant A, Carpentier P, Vaganova S, Zabelskii D, Baeken C, Sergeev I, Balandin T, Bourenkov G, Carpena X, Boer R, Maliar N, Borshchevskiy V, Büldt G, Bamberg E, & Gordeliy V (2020). Molecular mechanism of light-driven sodium pumping.
Nat Commun 11 1:2137. PubMed Id: 32358514. doi:10.1038/s41467-020-16032-y. |
||
Gushchin et al. (2015).
Gushchin I, Shevchenko V, Polovinkin V, Kovalev K, Alekseev A, Round E, Borshchevskiy V, Balandin T, Popov A, Gensch T, Fahlke C, Bamann C, Willbold D, Büldt G, Bamberg E, & Gordeliy V (2015). Crystal structure of a light-driven sodium pump.
Nat Struct Mol Biol 22 :390-395. PubMed Id: 25849142. doi:10.1038/nsmb.3002. |
|||
KR2 light-driven Na+ pump; fsec to msec structural changes. Dark state, acidic conditions: Krokinobacter eikastus B Bacteria (expressed in E. coli), 1.60 Å
dark state, neutral conditions, 1.60 Å: 6TK6 800fs+2ps, 2.25 Å: 6TK5 1ns+16ns, 2.25 Å: 6TK4 30us+150us, 2.25 Å: 6TK3 1 msec, 2.50 Å: 6TK2 20 msec., 2.50 Å: 6TK1 |
Skopintsev et al. (2020).
Skopintsev P, Ehrenberg D, Weinert T, James D, Kar RK, Johnson PJM, Ozerov D, Furrer A, Martiel I, Dworkowski F, Nass K, Knopp G, Cirelli C, Arrell C, Gashi D, Mous S, Wranik M, Gruhl T, Kekilli D, Brünle S, Deupi X, Schertler GFX, Benoit RM, Panneels V, Nogly P, Schapiro I, Milne C, Heberle J, & Standfuss J (2020). Femtosecond-to-millisecond structural changes in a light-driven sodium pump.
Nature 583 7815:314-318. PubMed Id: 32499654. doi:10.1038/s41586-020-2307-8. |
||
Thermophilic rhodopsin: Thermus thermophilus B Bacteria (expressed in E. coli), 2.8 Å
|
Tsukamoto et al. (2016).
Tsukamoto T, Mizutani K, Hasegawa T, Takahashi M, Honda N, Hashimoto N, Shimono K, Yamashita K, Yamamoto M, Miyauchi S, Takagi S, Hayashi S, Murata T, & Sudo Y (2016). X-ray Crystallographic Structure of Thermophilic Rhodopsin.
J Biol Chem 291 23:12223-12232. PubMed Id: 27129243. doi:10.1074/jbc.M116.719815. |
||
Heliorhodopsin (HeR): Thermoplasmatales archaeon SG8-52-1 A Archaea (expressed in E. coli), 2.4 Å
|
Shihoya et al. (2019).
Shihoya W, Inoue K, Singh M, Konno M, Hososhima S, Yamashita K, Ikeda K, Higuchi A, Izume T, Okazaki S, Hashimoto M, Mizutori R, Tomida S, Yamauchi Y, Abe-Yoshizumi R, Katayama K, Tsunoda SP, Shibata M, Furutani Y, Pushkarev A, Béjà O, Uchihashi T, Kandori H, & Nureki O (2019). Crystal structure of heliorhodopsin.
Nature 574 7776:132-136. PubMed Id: 31554965. doi:10.1038/s41586-019-1604-6. |
||
Heliorhodopsin (HeR), low pH structure: Thermoplasmatales archaeon A Archaea (expressed in E. coli), 1.97 Å
|
Besaw et al. (2022).
Besaw JE, Reichenwallner J, De Guzman P, Tucs A, Kuo A, Morizumi T, Tsuda K, Sljoka A, Miller RJD, & Ernst OP (2022). Low pH structure of heliorhodopsin reveals chloride binding site and intramolecular signaling pathway.
Sci Rep 12 1:13955. PubMed Id: 35977989. doi:10.1038/s41598-022-17716-9. |
||
Heliorhodopsin (HeR) in the violet form, pH 8.8: Actinomycetia bacterium B Bacteria (expressed in E. coli), 1.5 Å
blue form at pH 4.3, 1.5 Å: 6SU4 |
Kovalev et al. (2020).
Kovalev K, Volkov D, Astashkin R, Alekseev A, Gushchin I, Haro-Moreno JM, Chizhov I, Siletsky S, Mamedov M, Rogachev A, Balandin T, Borshchevskiy V, Popov A, Bourenkov G, Bamberg E, Rodriguez-Valera F, Büldt G, & Gordeliy V (2020). High-resolution structural insights into the heliorhodopsin family.
Proc Natl Acad Sci USA 117 8:4131-4141. PubMed Id: 32034096. doi:10.1073/pnas.1915888117. |
||
Organic Lake Phycodnavirus rhodopsin II (OLPVRII): Organic Lake phycodnavirus V Viruses (expressed in E. coli), 1.9 Å
This is the first reported structure of a viral rhodopsin. |
Bratanov et al. (2019).
Bratanov D, Kovalev K, Machtens JP, Astashkin R, Chizhov I, Soloviov D, Volkov D, Polovinkin V, Zabelskii D, Mager T, Gushchin I, Rokitskaya T, Antonenko Y, Alekseev A, Shevchenko V, Yutin N, Rosselli R, Baeken C, Borshchevskiy V, Bourenkov G, Popov A, Balandin T, Büldt G, Manstein DJ, Rodriguez-Valera F, Fahlke C, Bamberg E, Koonin E, & Gordeliy V (2019). Unique structure and function of viral rhodopsins.
Nat Commun 10 1:4939. PubMed Id: 31666521. doi:10.1038/s41467-019-12718-0. |
||
Kim et al. (2016).
Kim K, Kwon SK, Jun SH, Cha JS, Kim H, Lee W, Kim JF, & Cho HS (2016). Crystal structure and functional characterization of a light-driven chloride pump having an NTQ motif.
Nat Commun 7 :12677. PubMed Id: 27554809. doi:10.1038/ncomms12677. |
|||
NTQ chloride transport rhodopsin (ClR), dark state: Nonlabens marinus B Bacteria (expressed in E. coli), 1.65 Å
Structures at different time points: 1 ps, 1.85 Å: 7CRI 2 ps, 1.85 Å: 7CRK 100 ps (0.90 mJ/mm2), 1.85 Å: 7CRS 100 ps (0.17 mJ/mm2), 1.85 Å: 7CRT 100 ps (2.63 mJ/mm2), 1.85 Å: 7CRX 100 ps (6.49 mJ/mm2), 1.85 Å: 7CRY |
Yun et al. (2021).
Yun JH, Li X, Yue J, Park JH, Jin Z, Li C, Hu H, Shi Y, Pandey S, Carbajo S, Boutet S, Hunter MS, Liang M, Sierra RG, Lane TJ, Zhou L, Weierstall U, Zatsepin NA, Ohki M, Tame JRH, Park SY, Spence JCH, Zhang W, Schmidt M, Lee W, & Liu H (2021). Early-stage dynamics of chloride ion-pumping rhodopsin revealed by a femtosecond X-ray laser.
Proc Natl Acad Sci U S A 118 13:e2020486118. PubMed Id: 33753488. doi:10.1073/pnas.2020486118. |
||
NM-R3 bacterial chloride importer, dark-state, Pulse laser (ND-1%) at 140K: Nonlabens marinus B Bacteria (expressed in E. coli), 1.9 Å
light-state, Pulse laser (ND-1%) at 140K, 2.00 Å: 6JYF dark-state, with Pulse laser (ND-1%) at 95K, 1.8 Å: 6JY6 light state, Pulse laser (ND-1%) at 95K, 1.8 Å: 6JY7 dark-state, CW laser (ND-3%) at 95K, 1.9 Å: 6JY8 light-state, CW laser (ND-3%) at 95K, 1.9 Å: 6JY9 dark-state, CW laser (ND-10%) at 95K, 1.80 Å: 6JYA light-state, CW laser (ND-10%) at 95K, 1.80 Å: 6JYB dark-state, CW laser (ND-30%) at 95K, 1.89 Å: 6JYC light-state, CW laser (ND-30%) at 95K, 2.01 Å: 6JYD |
Yun et al. (2020).
Yun JH, Ohki M, Park JH, Ishimoto N, Sato-Tomita A, Lee W, Jin Z, Tame JRH, Shibayama N, Park SY, & Lee W (2020). Pumping mechanism of NM-R3, a light-driven bacterial chloride importer in the rhodopsin family.
Sci Adv 6 6. PubMed Id: 32083178. doi:10.1126/sciadv.aay2042. |
||
Hosaka et al. (2022).
Hosaka T, Nomura T, Kubo M, Nakane T, Fangjia L, Sekine SI, Ito T, Murayama K, Ihara K, Ehara H, Kashiwagi K, Katsura K, Akasaka R, Hisano T, Tanaka T, Tanaka R, Arima T, Yamashita A, Sugahara M, Naitow H, Matsuura Y, Yoshizawa S, Tono K, Owada S, Nureki O, Kimura-Someya T, Iwata S, Nango E, & Shirouzu M (2022). Conformational alterations in unidirectional ion transport of a light-driven chloride pump revealed using X-ray free electron lasers.
Proc Natl Acad Sci U S A 119 9:e2117433119. PubMed Id: 35197289. doi:10.1073/pnas.2117433119. |
|||
NM-R3 bacterial chloride importer dark state by serial femtosecond crystallography: Nonlabens marinus B Bacteria (expressed in E. coli), 1.45 Å
dark state structure determined by serial millisecond crystallography, 1.80 Å: 7O8L Anomalous bromide substructure under dark state conditions determined at 13.7 keV, 1.75 Å: 7O8Y light state structure at 10 ps after photoexcitation, 1.90 Å: 7O8G at 10 ns after photoexcitation, 1.80 Å: 7O8H at 1 μs after photoexcitation, 1.80 Å: 7O8I at 20 μs after photoexcitation, 1.80 Å: 7O8J at 300 μs after photoexcitation, 1.90 Å: 7O8K at 2.5 ms after photoexcitation, 2.20 Å: 7O8M at 7.5 ms after photoexcitation, 2.10 Å: 7O8N at 12.5 ms after photoexcitation, 2.20 Å: 7O8O at 17.5 ms after photoexcitation, 2.40 Å: 7O8P at 22.5 ms after photoexcitation, 2.60 Å: 7O8Q at 27.5 ms after photoexcitation, 2.70 Å: 7O8R at 32.5 ms after photoexcitation, 2.50 Å: 7O8S at 45 ms after photoexcitation, 2.50 Å: 7O8U at 55 ms after photoexcitation, 2.50 Å: 7O8V Anomalous bromide substructure under continuous illumination determined at 13.7 keV, 1.80 Å: 7O8Z |
Mous et al. (2022).
Mous S, Gotthard G, Ehrenberg D, Sen S, Weinert T, Johnson PJM, James D, Nass K, Furrer A, Kekilli D, Ma P, Brünle S, Casadei CM, Martiel I, Dworkowski F, Gashi D, Skopintsev P, Wranik M, Knopp G, Panepucci E, Panneels V, Cirelli C, Ozerov D, Schertler GFX, Wang M, Milne C, Standfuss J, Schapiro I, Heberle J, & Nogly P (2022). Dynamics and mechanism of a light-driven chloride pump.
Science 375 6583:845-851. PubMed Id: 35113649. doi:10.1126/science.abj6663. |
||
Ikuta et al. (2020).
Ikuta T, Shihoya W, Sugiura M, Yoshida K, Watari M, Tokano T, Yamashita K, Katayama K, Tsunoda SP, Uchihashi T, Kandori H, & Nureki O (2020). Structural insights into the mechanism of rhodopsin phosphodiesterase.
Nat Commun 11 1:5605. PubMed Id: 33154353. doi:10.1038/s41467-020-19376-7. |
|||
cyanorhodopsin (CyR) N2098R: Calothrix sp. NIES-2098 B Bacteria (expressed in E. coli), 2.65 Å
|
Hasegawa et al. (2020).
Hasegawa M, Hosaka T, Kojima K, Nishimura Y, Nakajima Y, Kimura-Someya T, Shirouzu M, Sudo Y, & Yoshizawa S (2020). A unique clade of light-driven proton-pumping rhodopsins evolved in the cyanobacterial lineage.
Sci Rep 10 1:16752. PubMed Id: 33028840. doi:10.1038/s41598-020-73606-y. |
||
cyanorhodopsin (CyR) N4075R: Tolypothrix sp. NIES-4075 B Bacteria (expressed in E. coli), 1.90 Å
|
Hasegawa et al. (2020).
Hasegawa M, Hosaka T, Kojima K, Nishimura Y, Nakajima Y, Kimura-Someya T, Shirouzu M, Sudo Y, & Yoshizawa S (2020). A unique clade of light-driven proton-pumping rhodopsins evolved in the cyanobacterial lineage.
Sci Rep 10 1:16752. PubMed Id: 33028840. doi:10.1038/s41598-020-73606-y. |
||
Zabelskii et al. (2020).
Zabelskii D, Alekseev A, Kovalev K, Rankovic V, Balandin T, Soloviov D, Bratanov D, Savelyeva E, Podolyak E, Volkov D, Vaganova S, Astashkin R, Chizhov I, Yutin N, Rulev M, Popov A, Eria-Oliveira AS, Rokitskaya T, Mager T, Antonenko Y, Rosselli R, Armeev G, Shaitan K, Vivaudou M, Büldt G, Rogachev A, Rodriguez-Valera F, Kirpichnikov M, Moser T, Offenhäusser A, Willbold D, Koonin E, Bamberg E, & Gordeliy V (2020). Viral rhodopsins 1 are an unique family of light-gated cation channels.
Nat Commun 11 1:5707. PubMed Id: 33177509. doi:10.1038/s41467-020-19457-7. |
|||
light-driven proton pump LR (Mac): Leptosphaeria maculans E Eukaryota (expressed in Leishmania tarentolae), 2.20 Å
|
Zabelskii et al. (2021).
Zabelskii D, Dmitrieva N, Volkov O, Shevchenko V, Kovalev K, Balandin T, Soloviov D, Astashkin R, Zinovev E, Alekseev A, Round E, Polovinkin V, Chizhov I, Rogachev A, Okhrimenko I, Borshchevskiy V, Chupin V, Büldt G, Yutin N, Bamberg E, Koonin E, & Gordeliy V (2021). Structure-based insights into evolution of rhodopsins.
Commun Biol 4 1:821. PubMed Id: 34193947. doi:10.1038/s42003-021-02326-4. |
||
Bestrhodopsin (rhodopsin-rhodopsin-bestrophin) complex: Phaeocystis E Eukaryota (expressed in Spodoptera frugiperda), 3.21 Å
cryo-EM structure |
Rozenberg et al. (2022).
Rozenberg A, Kaczmarczyk I, Matzov D, Vierock J, Nagata T, Sugiura M, Katayama K, Kawasaki Y, Konno M, Nagasaka Y, Aoyama M, Das I, Pahima E, Church J, Adam S, Borin VA, Chazan A, Augustin S, Wietek J, Dine J, Peleg Y, Kawanabe A, Fujiwara Y, Yizhar O, Sheves M, Schapiro I, Furutani Y, Kandori H, Inoue K, Hegemann P, Béjà O, & Shalev-Benami M (2022). Rhodopsin-bestrophin fusion proteins from unicellular algae form gigantic pentameric ion channels.
Nat Struct Mol Biol 29 6:592-603. PubMed Id: 35710843. doi:10.1038/s41594-022-00783-x. |
||
DTG rhodopsin: Pseudomonas putida B Bacteria (expressed in E. coli), 2.84 Å
|
Suzuki et al. (2022).
Suzuki K, Del Carmen Marín M, Konno M, Bagherzadeh R, Murata T, & Inoue K (2022). Structural characterization of proton-pumping rhodopsin lacking a cytoplasmic proton donor residue by X-ray crystallography.
J Biol Chem 298 3:101722. PubMed Id: 35151692. doi:10.1016/j.jbc.2022.101722. |
||
Schizorhodopsin 4 (SzR): Asgard group archaeon A Archaea (expressed in E. coli), 2.10 Å
|
Higuchi et al. (2021).
Higuchi A, Shihoya W, Konno M, Ikuta T, Kandori H, Inoue K, & Nureki O (2021). Crystal structure of schizorhodopsin reveals mechanism of inward proton pumping.
Proc Natl Acad Sci U S A 118 14:e2016328118. PubMed Id: 33790007. doi:10.1073/pnas.2016328118. |
||
Coccomyxa subellipsoidea rhodopsin (CsR) Light-driven proton pump,: Coccomyxa subellipsoidea E Eukaryota (expressed in Spodoptera frugiperda), 2.00 Å
|
Fudim et al. (2019).
Fudim R, Szczepek M, Vierock J, Vogt A, Schmidt A, Kleinau G, Fischer P, Bartl F, Scheerer P, & Hegemann P (2019). Design of a light-gated proton channel based on the crystal structure of Coccomyxa rhodopsin.
Sci Signal 12 573:eaav4203. PubMed Id: 30890657. doi:10.1126/scisignal.aav4203. |
||
Gloeobacter rhodopsin: Gloeobacter violaceus B Bacteria (expressed in E. coli), 2.00 Å
|
Morizumi et al. (2019).
Morizumi T, Ou WL, Van Eps N, Inoue K, Kandori H, Brown LS, & Ernst OP (2019). X-ray Crystallographic Structure and Oligomerization of Gloeobacter Rhodopsin.
Sci Rep 9 1:11283. PubMed Id: 31375689. doi:10.1038/s41598-019-47445-5. |
||
Rhodopsin chloride pump: Mastigocladopsis repens B Bacteria (expressed in E.coli), 2.33 Å
Proton-pumping mutant, 2.50 Å: 6WP8 |
Besaw et al. (2020).
Besaw JE, Ou WL, Morizumi T, Eger BT, Sanchez Vasquez JD, Chu JHY, Harris A, Brown LS, Miller RJD, & Ernst OP (2020). The crystal structures of a chloride-pumping microbial rhodopsin and its proton-pumping mutant illuminate proton transfer determinants.
J Biol Chem 295 44:14793-14804. PubMed Id: 32703899. doi:10.1074/jbc.RA120.014118. |
||
Tucker et al. (2022).
Tucker K, Sridharan S, Adesnik H, & Brohawn SG (2022). Cryo-EM structures of the channelrhodopsin ChRmine in lipid nanodiscs.
Nat Commun 13 1:4842. PubMed Id: 35977941. doi:10.1038/s41467-022-32441-7. |
|||
ChRmine, pump-like channelrhodopsin: Rhodomonas lens E Eukaryota (expressed in Spodoptera frugiperda), 2.02 Å
cryo-EM structure |
Kishi et al. (2022).
Kishi KE, Kim YS, Fukuda M, Inoue M, Kusakizako T, Wang PY, Ramakrishnan C, Byrne EFX, Thadhani E, Paggi JM, Matsui TE, Yamashita K, Nagata T, Konno M, Quirin S, Lo M, Benster T, Uemura T, Liu K, Shibata M, Nomura N, Iwata S, Nureki O, Dror RO, Inoue K, Deisseroth K, & Kato HE (2022). Structural basis for channel conduction in the pump-like channelrhodopsin ChRmine.
Cell 185 4:672-689.e23. PubMed Id: 35114111. doi:10.1016/j.cell.2022.01.007. |
||
kalium channelrhodopsin 1 (KCR1) embedded in peptidisc: Hyphochytrium catenoides E Eukaryota (expressed in Komagataella pastoris), 2.88 Å
cryo-EM structure |
Morizumi et al. (2023).
Morizumi T, Kim K, Li H, Govorunova EG, Sineshchekov OA, Wang Y, Zheng L, Bertalan É, Bondar AN, Askari A, Brown LS, Spudich JL, & Ernst OP (2023). Structures of channelrhodopsin paralogs in peptidiscs explain their contrasting K+ and Na+ selectivities.
Nat Commun 14 1:4365. PubMed Id: 37474513. doi:10.1038/s41467-023-40041-2. |
||
Adenylyl Cyclases
Membrane-integral adenylyl cyclases are important enzymes in G protein-dependent signal transduction |
|||
Qi et al. (2019).
Qi C, Sorrentino S, Medalia O, & Korkhov VM (2019). The structure of a membrane adenylyl cyclase bound to an activated stimulatory G protein.
Science 364 6438:389-394. PubMed Id: 31023924. doi:10.1126/science.aav0778. |
|||
Histidine Kinase Receptors
|
|||
ArcB (1-115) Aerobic Respiration Control sensor membrane domain: Escherichia coli (cell-free expression) B Bacteria, NMR Structure
|
Maslennikov et al. (2010).
Maslennikov I, Klammt C, Hwang E, Kefala G, Okamura M, Esquivies L, Mörs K, Glaubitz C, Kwiatkowski W, Jeon YH, & Choe S (2010). Membrane domain structures of three classes of histidine kinase receptors by cell-free expression and rapid NMR analysis.
Proc Natl Acad Sci USA 107 :10902-10907. PubMed Id: 20498088. |
||
QseC (1-185) Sensor protein membrane domain: Escherichia coli (cell-free expression) B Bacteria, NMR Structure
|
Maslennikov et al. (2010).
Maslennikov I, Klammt C, Hwang E, Kefala G, Okamura M, Esquivies L, Mörs K, Glaubitz C, Kwiatkowski W, Jeon YH, & Choe S (2010). Membrane domain structures of three classes of histidine kinase receptors by cell-free expression and rapid NMR analysis.
Proc Natl Acad Sci USA 107 :10902-10907. PubMed Id: 20498088. |
||
QseE histidine kinase sensor domain: Escherichia coli B Bacteria, 1.33 Å
X-ray structure |
Matsumoto et al. (2023).
Matsumoto K, Fukuda Y, & Inoue T (2023). Crystal structures of QseE and QseG: elements of a three-component system from Escherichia coli.
Acta Crystallogr F Struct Biol Commun 79 11:285-293. PubMed Id: 37877621. doi:10.1107/S2053230X23009123. |
||
Matsumoto et al. (2023).
Matsumoto K, Fukuda Y, & Inoue T (2023). Crystal structures of QseE and QseG: elements of a three-component system from Escherichia coli.
Acta Crystallogr F Struct Biol Commun 79 11:285-293. PubMed Id: 37877621. doi:10.1107/S2053230X23009123. |
|||
KdpD (397-502) Sensor protein membrane domain: Escherichia coli (cell-free expression) B Bacteria, NMR Structure
|
Maslennikov et al. (2010).
Maslennikov I, Klammt C, Hwang E, Kefala G, Okamura M, Esquivies L, Mörs K, Glaubitz C, Kwiatkowski W, Jeon YH, & Choe S (2010). Membrane domain structures of three classes of histidine kinase receptors by cell-free expression and rapid NMR analysis.
Proc Natl Acad Sci USA 107 :10902-10907. PubMed Id: 20498088. |
||
Gushchin et al. (2017).
Gushchin I, Melnikov I, Polovinkin V, Ishchenko A, Yuzhakova A, Buslaev P, Bourenkov G, Grudinin S, Round E, Balandin T, Borshchevskiy V, Willbold D, Leonard G, Büldt G, Popov A, & Gordeliy V (2017). Mechanism of transmembrane signaling by sensor histidine kinases.
Science 356 :eaah6345. PubMed Id: 28522691. doi:10.1126/science.aah6345. |
|||
NarQ histidine kinase proteolytic fragment: Escherichia coli B Bacteria, 2.3 Å
|
no PubMed entry (2020)
Gushchin I, Melnikov I, Polovinkin V, Ishchenko A, & Gordeliy V (2020). Crystal structure of a proteolytic fragment of the sensor histidine kinase NarQ
Crystals 10 :149. doi:103390/cryst10030149. |
||
histidine kinase NarQ (R50S variant) fragment: Escherichia coli B Bacteria, 2.40 Å
|
Gushchin et al. (2020).
Gushchin I, Orekhov P, Melnikov I, Polovinkin V, Yuzhakova A, & Gordeliy V (2020). Sensor Histidine Kinase NarQ Activates via Helical Rotation, Diagonal Scissoring, and Eventually Piston-Like Shifts.
Int J Mol Sci 21 9. PubMed Id: 32354084. doi:10.3390/ijms21093110. |
||
Immune Receptors
|
|||
T cell receptor-CD3 complex: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.7 Å
cryo-EM structure |
Dong et al. (2019).
Dong , Zheng L, Lin J, Zhang B, Zhu Y, Li N, Xie S, Wang Y, Gao N, & Huang Z (2019). Structural basis of assembly of the human T cell receptor-CD3 complex.
Nature 573 7775:546-552. PubMed Id: 31461748. doi:10.1038/s41586-019-1537-0. |
||
Transmembrane ζ-ζ dimer of the TCR-CD3 complex: Homo sapiens E Eukaryota (expressed in E. coli), NMR Structure
|
Call et al. (2006).
Call ME, Schnell JR, Xu C, Lutz RA, Chou JJ, & Wucherpfennig KW (2006). The structure of the zetazeta transmembrane dimer reveals features essential for its assembly with the T cell receptor.
Cell 127 :355-368. PubMed Id: 17055436. |
||
Chen et al. (2022).
Chen Y, Zhu Y, Li X, Gao W, Zhen Z, Dong , Huang B, Ma Z, Zhang A, Song X, Ma Y, Guo C, Zhang F, & Huang Z (2022). Cholesterol inhibits TCR signaling by directly restricting TCR-CD3 core tunnel motility.
Mol Cell 82 7:1278-1287.e5. PubMed Id: 35271814. doi:10.1016/j.molcel.2022.02.017. |
|||
DAP12 dimeric signaling domain in complex with activating receptor NKG2C: Homo sapiens E Eukaryota (expressed in E. coli), NMR Structure
DAP12 dimer: 2L34 |
Call et al. (2010).
Call ME, Wucherpfennig KW, & Chou JJ (2010). The structural basis for intramembrane assembly of an activating immunoreceptor complex.
Nature Immunol 11 :1023-1029. PubMed Id: 20890284. |
||
DAP12 signaling domain trimer: Homo sapiens E Eukaryota (expressed in E. coli), 1.77 Å
lipidic cubic phase crystallization DAP12 tetramer, 2.14Å: 4WO1 |
Knoblich et al. (2015).
Knoblich K, Park S, Lutfi M, van 't Hag L, Conn CE, Seabrook SA, Newman J, Czabotar PE, Im W, Call ME, & Call MJ (2015). Transmembrane Complexes of DAP12 Crystallized in Lipid Membranes Provide Insights into Control of Oligomerization in Immunoreceptor Assembly.
Cell Rep 11 :1184-1192. PubMed Id: 25981043. doi:10.1016/j.celrep.2015.04.045. |
||
CD28 dimer transmembrane domain: Homo sapiens E Eukaryota (expressed in E. coli), NMR structure
|
Wu et al. (2022).
Wu H, Cao R, Wen M, Xue H, & OuYang B (2022). Structural characterization of a dimerization interface in the CD28 transmembrane domain.
Structure 30 6:803-812.e5. PubMed Id: 35397202. doi:10.1016/j.str.2022.03.004. |
||
SNARE Protein Family
|
|||
Syntaxin 1A/SNAP-25/Synaptobrevin-2 Complex with transmembrane regions: Rattus norvegicus E Eukaryota (expressed in E. coli), 3.4 Å
I212121 space group, 4.80 Å: 3HD9. |
Stein et al. (2009).
Stein A, Weber G, Wahl MC, & Jahn R (2009). Helical extension of the neuronal SNARE complex into the membrane.
Nature 460 :525-528. PubMed Id: 19571812. |
||
Synaptobrevin, lipid-bound : Rattus norvegicus E Eukaryota (expressed in E. coli), NMR Structure
Protein is in dodecylphosphocholine (DPC) micelles |
Ellena et al. (2009).
Ellena JF, Liang B, Wiktor M, Stein A, Cafiso DS, Jahn R, & Tamm LK (2009). Dynamic structure of lipid-bound synaptobrevin suggests a nucleation-propagation mechanism for trans-SNARE complex formation.
Proc Natl Acad Sci USA 106 :20306-20311. PubMed Id: 19918058. doi:10.1073/pnas.0908317106. |
||
Syntaxin 1A in prefusion state: Rattus norvegicus E Eukaryota (expressed in E. coli), NMR Structure
Structure in DPC micelles. |
Liang et al. (2013).
Liang B, Kiessling V, & Tamm LK (2013). Prefusion structure of syntaxin-1A suggests pathway for folding into neuronal trans-SNARE complex fusion intermediate.
Proc Natl Acad Sci USA 110 :19384-19389. PubMed Id: 24218570. doi:10.1073/pnas.1314699110. |
||
Synaptotagmin-1 C2A, C2B domains and SNARE-pin proteins: Rattus norvegicus E Eukaryota (expressed in E. coli), 10.4 Å
cryo-EM structure |
Grushin et al. (2019).
Grushin K, Wang J, Coleman J, Rothman JE, Sindelar CV, & Krishnakumar SS (2019). Structural basis for the clamping and Ca2+ activation of SNARE-mediated fusion by synaptotagmin.
Nat Commun 10 1. PubMed Id: 31160571. doi:10.1038/s41467-019-10391-x. |
||
Eisemann et al. (2020).
Eisemann TJ, Allen F, Lau K, Shimamura GR, Jeffrey PD, & Hughson FM (2020). The Sec1/Munc18 protein Vps45 holds the Qa-SNARE Tlg2 in an open conformation.
Elife 9 . PubMed Id: 32804076. doi:10.7554/eLife.60724. |
|||
STX17/SNAP29/VAMP8 SNARE complex: Homo sapiens E Eukaryota (expressed in E. coli), 3.05 Å
STX17 LIR region in complex with GABARAP, 2.00 Å: 7BV4 |
Li et al. (2020).
Li Y, Cheng X, Li M, Wang Y, Fu T, Zhou Z, Wang Y, Gong X, Xu X, Liu J, & Pan L (2020). Decoding three distinct states of the Syntaxin17 SNARE motif in mediating autophagosome-lysosome fusion.
Proc Natl Acad Sci USA 117 35:21391-21402. PubMed Id: 32817423. doi:10.1073/pnas.2006997117. |
||
synaptobrevin-Munc18-1-syntaxin-1 complex class 2: Rattus norvegicus E Eukaryota (expressed in E. coli), 3.50 Å
cryo-EM structure class 1, 3.70 Å: 7UDC |
Stepien et al. (2022).
Stepien KP, Xu J, Zhang X, Bai XC, & Rizo J (2022). SNARE assembly enlightened by cryo-EM structures of a synaptobrevin-Munc18-1-syntaxin-1 complex.
Sci Adv 8 25:eabo5272. PubMed Id: 35731863. doi:10.1126/sciadv.abo5272. |
||
Claudins
Claudins form the backbone of tight junctions |
|||
Claudin-4 in complex with Clostridium perfringens enterotoxin C-terminal domain: Homo sapiens E Eukaryota (expressed in Trichoplusia ni), 3.37 Å
|
Vecchio et al. (2021).
Vecchio AJ, Rathnayake SS, & Stroud RM (2021). Structural basis for Clostridium perfringens enterotoxin targeting of claudins at tight junctions in mammalian gut.
Proc Natl Acad Sci U S A 118 15:e2024651118. PubMed Id: 33876770. doi:10.1073/pnas.2024651118. |
||
Claudin-4 in complex with Clostridium perfringens enterotoxin C-terminal domain in complex with sFab COP-2: Homo sapiens E Eukaryota (expressed in Trichoplusia ni), 6.90 Å
cryo-EM structure in complex with sFab COP-3, 5.00 Å: 7TDN |
Orlando et al. (2022).
Orlando BJ, Dominik PK, Roy S, Ogbu CP, Erramilli SK, Kossiakoff AA, & Vecchio AJ (2022). Development, structure, and mechanism of synthetic antibodies that target claudin and Clostridium perfringens enterotoxin complexes.
J Biol Chem 298 9:102357. PubMed Id: 35952760. doi:10.1016/j.jbc.2022.102357. |
||
Claudin-9 in complex with Clostridium perfringens enterotoxin C-terminal domain, closed form: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.2 Å
open form, 3.25 Å: 6OV3 |
Vecchio & Stroud (2019).
Vecchio AJ, & Stroud RM (2019). Claudin-9 structures reveal mechanism for toxin-induced gut barrier breakdown.
Proc Natl Acad Sci USA 116 36:17817-17824. PubMed Id: 31434788. doi:10.1073/pnas.1908929116. |
||
Caludin-15: Mus musculus E Eukaryota (expressed in S. frugiperda), 2.61 Å
|
Suzuki et al. (2014).
Suzuki H, Nishizawa T, Tani K, Yamazaki Y, Tamura A, Ishitani R, Dohmae N, Tsukita S, Nureki O, & Fujiyoshi Y (2014). Crystal structure of a claudin provides insight into the architecture of tight junctions.
Science 344 :304-307. PubMed Id: 24744376. doi:10.1126/science.1248571. |
||
Claudin-19 in complex with Clostridium perfringens enterotoxin: Mus musculus E Eukaryota (expressed in S. frugiperda), 3.70 Å
|
Saitoh et al. (2015).
Saitoh Y, Suzuki H, Tani K, Nishikawa K, Irie K, Ogura Y, Tamura A, Tsukita S, & Fujiyoshi Y (2015). Tight junctions. Structural insight into tight junction disassembly by Clostridium perfringens enterotoxin.
Science 347 6223:775-778. PubMed Id: 25678664. doi:10.1126/science.1261833. |
||
TMEM16 Family Proteins
A functionally diverse family of proteins also known as Anoctamins |
|||
TMEM16 Ca2+-activated lipid scramblase, crystal form 1: Nectria haematococca E Eukaryota (expressed in S. cerevisiae), 3.30 Å
Crystal form 2, 3.40 Å: 4WIT |
Brunner et al. (2014).
Brunner JD, Lim NK, Schenck S, Duerst A, & Dutzler R (2014). X-ray structure of a calcium-activated TMEM16 lipid scramblase.
Nature 516 7530:207-212. PubMed Id: 25383531. doi:10.1038/nature13984. |
||
TMEM16 Ca2+-activated lipid scramblase in nanodiscs, Ca+2-bound open state: Nectria haematococca E Eukaryota (expressed in S. cerevisiae), 3.6 Å
cryo-EM structure Ca+2-bound intermediate state, 3.7 Å: 6QMA Ca+2-bound closed state, 3.6 & Aring;:6QMB Ca+2-free state, 3.8 Å: 6QM4 in DDM, Ca+2-bound state, 3.6 Å: 6QM5 in DDM, Ca+2-free state, 3.7 Å: 6QM6 |
Kalienkova et al. (2019).
Kalienkova V, Clerico Mosina V, Bryner L, Oostergetel GT, Dutzler R, & Paulino C (2019). Stepwise activation mechanism of the scramblase nhTMEM16 revealed by cryo-EM.
Elife 8 :e44364. PubMed Id: 30785398. doi:10.7554/eLife.44364. |
||
TMEM16 Ca2+-activated lipid scramblase in nanodiscs, Ca2+-bound, L302A mutant: Nectria haematococca E Eukaryota (expressed in S. cerevisiae), 4 Å
cryo-EM structure |
Khelashvili et al. (2019).
Khelashvili G, Falzone ME, Cheng X, Lee BC, Accardi A, & Weinstein H (2019). Dynamic modulation of the lipid translocation groove generates a conductive ion channel in Ca2+-bound nhTMEM16.
Nat Commun 10 1:4972. PubMed Id: 31672969. doi:10.1038/s41467-019-12865-4. |
||
TMEM16A calcium-activated chloride channel: Mus musculus E Eukaryota (expressed in HEK293 cells), 6.6 Å
cryo-EM structure |
Paulino et al. (2017).
Paulino C, Neldner Y, Lam AK, Kalienkova V, Brunner JD, Schenck S, & Dutzler R (2017). Structural basis for anion conduction in the calcium-activated chloride channel TMEM16A.
Elife 6 :e26232. PubMed Id: 28561733. doi:10.7554/eLife.26232. |
||
TMEM16A calcium-activated chloride channel w. bound Ca2+: Mus musculus E Eukaryota (expressed in HEK293 cells), 3.75 Å
cryo-EM structure calcium-free structure, 4.06 Å: 5OYG |
Paulino et al. (2017).
Paulino C, Kalienkova V, Lam AKM, Neldner Y, & Dutzler R (2017). Activation mechanism of the calcium-activated chloride channel TMEM16A revealed by cryo-EM.
Nature 552 :421-425. PubMed Id: 29236691. doi:10.1038/nature24652. |
||
TMEM16A calcium-activated chloride channel embedded in nanodiscs: Mus musculus E Eukaryota (expressed in HEK293 cells), 3.8 Å
solubilized in LMNG, 3.8 Å: 6BGJ |
Dang et al. (2017).
Dang S, Feng S, Tien J, Peters CJ, Bulkley D, Lolicato M, Zhao J, Zuberbühler K, Ye W, Qi L, Chen T, Craik CS, Nung Jan Y, Minor DL Jr, Cheng Y, & Yeh Jan L (2017). Cryo-EM structures of the TMEM16A calcium-activated chloride channel.
Nature 552 7685:426-429. PubMed Id: 29236684. doi:10.1038/nature25024. |
||
Lam et al. (2021).
Lam AKM, Rheinberger J, Paulino C, & Dutzler R (2021). Gating the pore of the calcium-activated chloride channel TMEM16A.
Nat Commun 12 1. PubMed Id: 33542223. doi:10.1038/s41467-020-20787-9. |
|||
TMEM16A calcium-activated chloride channel with bound 1PBC and calcium: Mus musculus E Eukaryota (expressed in HEK293 cells), 2.85 Å
cryo-EM structure |
Lam et al. (2022).
Lam AKM, Rutz S, & Dutzler R (2022). Inhibition mechanism of the chloride channel TMEM16A by the pore blocker 1PBC.
Nat Commun 13 1:2798. PubMed Id: 35589730. doi:10.1038/s41467-022-30479-1. |
||
Falzone et al. (2019).
Falzone ME, Rheinberger J, Lee BC, Peyear T, Sasset L, Raczkowski AM, Eng ET, Di Lorenzo A, Andersen OS, Nimigean CM, & Accardi A (2019). Structural basis of Ca2+-dependent activation and lipid transport by a TMEM16 scramblase.
Elife 8 :e43229. PubMed Id: 30648972. doi:10.7554/eLife.43229. |
|||
Alvadia et al. (2019).
Alvadia C, Lim NK, Clerico Mosina V, Oostergetel GT, Dutzler R, & Paulino C (2019). Cryo-EM structures and functional characterization of the murine lipid scramblase TMEM16F.
Elife 8 :e44365. PubMed Id: 30785399. doi:10.7554/eLife.44365. |
|||
Feng et al. (2019).
Feng S, Dang S, Han TW, Ye W, Jin P, Cheng T, Li J, Jan YN, Jan LY, & Cheng Y (2019). Cryo-EM Studies of TMEM16F Calcium-Activated Ion Channel Suggest Features Important for Lipid Scrambling.
Cell Rep 28 2:567-579.e4. PubMed Id: 31291589. doi:10.1016/j.celrep.2019.06.023. |
|||
TMEM16F scramblase & ion channel in digitonin, F518H mutant, Ca+2-free state: Mus musculus E Eukaryota (expressed in HEK293 cells), 3.39 Å
cryo-EM structure Ca+2-bound state, 2.96 Å: 8B8J in lipid nanodiscs, Ca+2-bound state, 2.94 Å: 8B8Q in digitonin, N562A mutant, Ca+2-bound state, open/closed form, 3.49 Å: 8B8M in digitonin, N562A mutant, Ca+2-bound state, closed/closed form, 3.01 Å: 8B8K in digitonin, F518A and Q623A mutant, Ca+2-bound state, open/closed form, 3.09 Å: 8BC0 in digitonin, F518A and Q623A mutant, Ca+2-bound state, closed/closed form, 2.93 Å: 8BC1 |
Arndt et al. (2022).
Arndt M, Alvadia C, Straub MS, Clerico Mosina V, Paulino C, & Dutzler R (2022). Structural basis for the activation of the lipid scramblase TMEM16F.
Nat Commun 13 1:6692. PubMed Id: 36335104. doi:10.1038/s41467-022-34497-x. |
||
TMEM16F scramblase & ion channel in complex with Ca2+ and PIP2, no inhibitor: Mus musculus E Eukaryota (expressed in HEK293 cells), 3.20 Å
cryo-EM structure with bound inhibitor 1PBC, 3.12 Å: 8SUN with bound inhibitor niclosamide, 3.10 Å: 8SUR class 1, no inhibitor, 3.20 Å: 8TAL class 2, no inhibitor, 3.10 Å: 8TAI |
Feng et al. (2023).
Feng S, Puchades C, Ko J, Wu H, Chen Y, Figueroa EE, Gu S, Han TW, Ho B, Cheng T, Li J, Shoichet B, Jan YN, Cheng Y, & Jan LY (2023). Identification of a drug binding pocket in TMEM16F calcium-activated ion channel and lipid scramblase.
Nat Commun 14 1:4874. PubMed Id: 37573365. doi:10.1038/s41467-023-40410-x. |
||
Bushell et al. (2019).
Bushell SR, Pike ACW, Falzone ME, Rorsman NJG, Ta CM, Corey RA, Newport TD, Christianson JC, Scofano LF, Shintre CA, Tessitore A, Chu A, Wang Q, Shrestha L, Mukhopadhyay SMM, Love JD, Burgess-Brown NA, Sitsapesan R, Stansfeld PJ, Huiskonen JT, Tammaro P, Accardi A, & Carpenter EP (2019). The structural basis of lipid scrambling and inactivation in the endoplasmic reticulum scramblase TMEM16K.
Nat Commun 10 1. PubMed Id: 31477691. doi:10.1038/s41467-019-11753-1. |
|||
XKR Family of Proteins
Kell blood group precursor proteins, often involved apoptotic lipid scrambling |
|||
XKR9 lipid scramblase, full length with synthetic nanobody: Rattus norvegicus E Eukaryota (expressed in HEK293 cells), 3.66 Å
cryo-EM structure caspase-3 cleaved, 4.3 Å: 7P16 |
Straub et al. (2021).
Straub MS, Alvadia C, Sawicka M, & Dutzler R (2021). Cryo-EM structures of the caspase-activated protein XKR9 involved in apoptotic lipid scrambling.
Elife 10 :e69800. PubMed Id: 34263724. doi:10.7554/eLife.69800. |
||
Xkr8 scramblase in complex with basigin: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.80 Å
cryo-EM structure |
Sakuragi et al. (2021).
Sakuragi T, Kanai R, Tsutsumi A, Narita H, Onishi E, Nishino K, Miyazaki T, Baba T, Kosako H, Nakagawa A, Kikkawa M, Toyoshima C, & Nagata S (2021). The tertiary structure of the human Xkr8-Basigin complex that scrambles phospholipids at plasma membranes.
Nat Struct Mol Biol 28 10:825-834. PubMed Id: 34625749. doi:10.1038/s41594-021-00665-8. |
||
Sec, Translocase, and Insertase Proteins
Membrane Proteins Involved with Protein Secretion and Insertion formerly listed as "Channels: Protein-Conducting" |
|||
SecYEβ translocon: Methanococcus jannaschii A Archaea, 3.5 Å
Coördinates of native complex: 1RHZ. Coördinates of double-mutant complex (K422R,V423T) 1RH5 (3.2 Å resolution). |
van den Berg et al. (2004).
van den Berg B, Clemons WM, Collinson I, Hartmann E, Harrison SC, & Rapoport TA (2004). X-ray structure of a protein-conducting channel.
Nature 427 :36-44. PubMed Id: 14661030. |
||
SecYEβ translocon with full-plug (TM2a) deletion: Methanococcus jannaschii A Archaea, 3.6 Å
Coördinates of mutant with half-plug deletion 2YXQ (3.5 Å resolution). |
Li et al. (2007).
Li W, Schulman S, Boyd D, Erlandson K, Beckwith J & Rapoport TA (2007). The plug domain of the SecY protein stabilizes the closed state of the translocon channel and maintains a membrane seal.
Mol Cell 26 :1409-38. PubMed Id: 17531810. |
||
SecYEβ "primed" translocon: Pyrococcus furiosus A Archaea (expressed in E. coli), 3.1 Å
|
Egea and Stroud (2010).
Egea PF & Stroud RM (2010). Lateral opening of a translocon upon entry of protein suggests the mechanism of insertion into membranes.
Proc Natl Acad Sci USA 107 :17182-17187. PubMed Id: 20855604. |
||
SecYEG translocon in complex with SecA: Thermotoga maritima B Bacteria (expressed in E. coli), 4.5 Å
|
Zimmer et al. (2008).
Zimmer J, Nam Y, & Rapoport TA (2008). Structure of a complex of the ATPase SecA and the protein-translocation channel.
Nature 455 :936-943. PubMed Id: 18923516. |
||
SecYE translocon in complex with B. subtilis SecA: Geobacillus thermodenitrificans B Bacteria (expressed in E. coli), 3.7 Å
An OmpA signal sequence is covalently inserted into SecA residue after residue 741. The insert carries a Cys residue that cross-links with a Cys residue in the so-called plug domain of SecY. |
Li et al. (2016).
Li L, Park E, Ling J, Ingram J, Ploegh H, & Rapoport TA (2016). Crystal structure of a substrate-engaged SecY protein-translocation channel.
Nature 531 :395-399. PubMed Id: 26950603. doi:10.1038/nature17163. |
||
SecA-SecYE complex in nanodiscs, substrate-engaged: Geobacillus thermodenitrificans (SecYE) and Bacillus subtilis (SecA) B Bacteria, 3.45 Å
cryo-EM structure |
Ma et al. (2019).
Ma C, Wu X, Sun D, Park E, Catipovic MA, Rapoport TA, Gao N, & Li L (2019). Structure of the substrate-engaged SecA-SecY protein translocation machine.
Nat Commun 10 1. PubMed Id: 31253804. doi:10.1038/s41467-019-10918-2. |
||
SecA/SecYE/proOMPA(4Y)-sfGFP complex with bound ADP.BeF3-: Bacillus subtillis/Geobaccilus thermodentrificans B Bacteria, 3.35 Å
cryo-EM structure with bound ADP, 3.33 Å: 7XHB |
Dong et al. (2023).
Dong L, Yang S, Chen J, Wu X, Sun D, Song C, & Li L (2023). Structural basis of SecA-mediated protein translocation.
Proc Natl Acad Sci U S A 120 2:e2208070120. PubMed Id: 36598944. doi:10.1073/pnas.2208070120. |
||
SecYEG translocon in lipid nanodiscs bound to a ribosome: Escherichia coli B Bacteria, 6 Å
cryo-EM structure |
Kater et al. (2019).
Kater L, Frieg B, Berninghausen O, Gohlke H, Beckmann R, & Kedrov A (2019). Partially inserted nascent chain unzips the lateral gate of the Sec translocon.
EMBO Rep. 20 10. PubMed Id: 31379073. doi:10.15252/embr.201948191. |
||
SecYE translocon in complex with a Fab fragment: Thermus thermophilus B Bacteria (expressed in E. coli), 3.20 Å
SecYE alone 2ZQP (6.0 Å resolution). |
Tsukazaki et al. (2008).
Tsukazaki T, Mori H, Fukai S, Ishitani R, Mori T, Dohmae N, Perederina A, Sugita Y, Vassylyev DG, Ito K, & Nureki O (2008). Conformational transition of Sec machinery inferred from bacterial SecYE structures.
Nature 455 :988-991. PubMed Id: 18923527. |
||
SecYEG translocon, I222 space group: Thermus thermophilus B Bacteria (expressed in E. coli), 2.72 Å
C2221 space group, 3.64 Å: 5CH4 |
Tanaka et al. (2015).
Tanaka Y, Sugano Y, Takemoto M, Mori T, Furukawa A, Kusakizako T, Kumazaki K, Kashima A, Ishitani R, Sugita Y, Nureki O, & Tsukazaki T (2015). Crystal Structures of SecYEG in Lipidic Cubic Phase Elucidate a Precise Resting and a Peptide-Bound State.
Cell Rep 13 :1561-1568. PubMed Id: 26586438. doi:10.1016/j.celrep.2015.10.025. |
||
Sec61 translocase opened by a signal sequence: Canis lupus familiaris E Eukaryota, 3.6 Å
cryo-EM structure |
Voorhees & Hegde (2016).
Voorhees RM, & Hegde RS (2016). Structure of the Sec61 channel opened by a signal sequence.
Science 351 :88-91. PubMed Id: 26721998. doi:10.1126/science.aad4992. |
||
Sec61 translocase in inhibited state: Canis lupus familiaris E Eukaryota, 2.69 Å
cryo-EM structure |
Gérard et al. (2020).
Gérard SF, Hall BS, Zaki AM, Corfield KA, Mayerhofer PU, Costa C, Whelligan DK, Biggin PC, Simmonds RE, & Higgins MK (2020). Structure of the Inhibited State of the Sec Translocon.
Mol Cell 79 3:406-415.e7. PubMed Id: 32692975. doi:10.1016/j.molcel.2020.06.013. |
||
Sec61 ribosome-associated translocon complex with 5 accessory factors: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.84 Å
cryo-EM structure |
McGilvray et al. (2020).
McGilvray PT, Anghel SA, Sundaram A, Zhong F, Trnka MJ, Fuller JR, Hu H, Burlingame AL, & Keenan RJ (2020). An ER translocon for multi-pass membrane protein biogenesis.
Elife 9 :e56889. PubMed Id: 32820719. doi:10.7554/eLife.56889. |
||
Sec61 translocase, partially-open apo state (class 1): Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.03 Å
cryo-EM structure partially open state (class 2), 3.40 Å: 8DNW in complex with inhibitor cotransin, 2.98 Å: 8DNX in complex with inhibitor decantransin, 2.85 Å: 8DNY in complex with inhibitor apratoxin F, 2.57 Å: 8DNZ in complex with inhibitor mycolatone, 2.86 Å: 8DO0 in complex with inhibitor ipomoeassin F, 3.01 Å: 8DO1 in complex with inhibitor cyclotriazadisulfonamide, 2.95 Å: 8DO2 in complex with inhibitor eeyarestatin I, 3.22 Å: 8DO3 |
Itskanov et al. (2023).
Itskanov S, Wang L, Junne T, Sherriff R, Xiao L, Blanchard N, Shi WQ, Forsyth C, Hoepfner D, Spiess M, & Park E (2023). A common mechanism of Sec61 translocon inhibition by small molecules.
Nat Chem Biol 19 9:1063-1071. PubMed Id: 37169959. doi:10.1038/s41589-023-01337-y. |
||
80S ribosome stalled on a 2-TMD Rhodopsin intermediate in complex with the Sec61 translocon: Oryctolagus cuniculus E Eukaryota (expressed in HEK293 cells), 3.25 Å
cryo-EM structure stalled on a 4-TMD Rhodopsin intermediate, 3.88 Å: 7TUT These important structures show that for multipass membrane proteins, the TM segments are inserted on the backside of Sec61 without passing through the Sec61 lateral gate. |
Smalinskaitė et al. (2022).
Smalinskaitė L, Kim MK, Lewis AJO, Keenan RJ, & Hegde RS (2022). Mechanism of an intramembrane chaperone for multipass membrane proteins.
Nature 611 7934:161-166. PubMed Id: 36261528. doi:10.1038/s41586-022-05336-2. |
||
Sec protein-translocation channel complex (Sec61-Sec63-Sec71-Sec72): Saccharomyces cerevisiae E Eukaryota, 3.68 Å
cryo-EM structure |
Itskanov & Park (2019).
Itskanov S, & Park E (2019). Structure of the posttranslational Sec protein-translocation channel complex from yeast.
Science 363 6422:84-87. PubMed Id: 30545845. doi:10.1126/science.aav6740. |
||
Sec protein-translocation channel complex (Sec61-Sec63-Sec71-Sec72): Saccharomyces cerevisiae E Eukaryota, 4.1 Å
cryo-EM structure |
Wu et al. (2019).
Wu X, Cabanos C, & Rapoport TA (2019). Structure of the post-translational protein translocation machinery of the ER membrane.
Nature 566 7742:136-139. PubMed Id: 30644436. doi:10.1038/s41586-018-0856-x. |
||
Sec protein-translocation channel complex (Sec61-Sec63-Sec71-Sec72) post-translational complex: Saccharomyces cerevisiae E Eukaryota, 4.40 Å
cryo-EM structure x-ray: Sec62 cytoplasmic domain, 2.54 Å: 6ZZZ |
Weng et al. (2021).
Weng TH, Steinchen W, Beatrix B, Berninghausen O, Becker T, Bange G, Cheng J, & Beckmann R (2021). Architecture of the active post-translational Sec translocon.
EMBO J 40 3:e105643. PubMed Id: 33305433. doi:10.15252/embj.2020105643. |
||
Sec protein-translocation channel complexes. Wild-type Sec61 without Sec62: Saccharomyces cerevisiae E Eukaryota, 3.10 Å
cryo-EM structure with Sec62, conformation 1 (C1), 3.20 Å: 7KAI with Sec62, conformation 2, 3.10 Å: 7KAJ Sec61 pore mutant without Sec62, 4.00 Å: 7KAO Sec61 pore mutant w. Sec62, conformation 1, 4.10 Å: 7KAP Sec61 pore mutant w. Sec62, conformation 2, 4.00 Å: 7KAQ Sec63 FN3 mutant, without Sec62, 4.00 Å: 7KAR Sec61 pore ring and Sec63 FN3 double mutant without Sec62, 4.40 Å: 7KAT Sec61 pore ring and Sec63 FN3 double mutant with Sec62, 4.00 Å: 7KAU Sec63 FN3 and residues 210-216 mutated, 3.80 Å: 7KB5 |
Itskanov et al. (2021).
Itskanov S, Kuo KM, Gumbart JC, & Park E (2021). Stepwise gating of the Sec61 protein-conducting channel by Sec63 and Sec62.
Nat Struct Mol Biol 28 2:162-172. PubMed Id: 33398175. doi:10.1038/s41594-020-00541-x. |
||
Sec protein-translocation channel complexes. Sec61 wild-type without Sec62: Thermomyces lanuginosus E Eukaryota (expressed in S. cerevisiae), 3.90 Å
cryo-EM structure wild-type Sec61 with Sec62, plug-open conformation, 4.00 Å: 7KAL wild-type Sec61 with Sec62, plug-closed conformation, 3.80 Å: 7KAM wild-type Sec61, Sec62-lacking mutant (Delta Sec62), 3.70 Å: 7KAN |
Itskanov et al. (2021).
Itskanov S, Kuo KM, Gumbart JC, & Park E (2021). Stepwise gating of the Sec61 protein-conducting channel by Sec63 and Sec62.
Nat Struct Mol Biol 28 2:162-172. PubMed Id: 33398175. doi:10.1038/s41594-020-00541-x. |
||
YidC27-266 insertase: Bacillus halodurans B Bacteria (expressed in E. coli), 2.40 Å
YidC27-267, 3.20 Å: 3WO7 |
Kumazaki et al. (2014).
Kumazaki K, Chiba S, Takemoto M, Furukawa A, Nishiyama K, Sugano Y, Mori T, Dohmae N, Hirata K, Nakada-Nakura Y, Maturana AD, Tanaka Y, Mori H, Sugita Y, Arisaka F, Ito K, Ishitani R, Tsukazaki T, & Nureki O (2014). Structural basis of Sec-independent membrane protein insertion by YidC.
Nature 509 :516-520. PubMed Id: 24739968. doi:10.1038/nature13167. |
||
YidC insertase, full length: Escherichia coli B Bacteria, 3.20 Å
|
Kumazaki et al. (2014).
Kumazaki K, Kishimoto T, Furukawa A, Mori H, Tanaka Y, Dohmae N, Ishitani R, Tsukazaki T, & Nureki O (2014). Crystal structure of Escherichia coli YidC, a membrane protein chaperone and insertase.
Sci Rep 4 :7299. PubMed Id: 25466392. doi:10.1038/srep07299. |
||
YidC insertase, full length: Escherichia coli B Bacteria, 2.8 Å
|
Tanaka et al. (2018).
Tanaka Y, Izumioka A, Abdul Hamid A, Fujii A, Haruyama T, Furukawa A, & Tsukazaki T (2018). 2.8-Å crystal structure of Escherichia coli YidC revealing all core regions, including flexible C2 loop.
Biochem Biophys Res Commun 505 1:141-145. PubMed Id: 30241934. doi:10.1016/j.bbrc.2018.09.043. |
||
YidC insertase: Thermotoga maritima B Bacteria (expressed in E. coli), 3.84 Å
Periplasmic domain alone, 2.52 Å: 5Y82 |
Xin et al. (2018).
Xin Y, Zhao Y, Zheng J, Zhou H, Zhang XC, Tian C, & Huang Y (2018). Structure of YidC from Thermotoga maritima and its implications for YidC-mediated membrane protein insertion.
FASEB J 32 5:2411-2421. PubMed Id: 29295859. doi:10.1096/fj.201700893RR. |
||
YidC insertase with N-terminal amphipathic helix resolved: Thermotoga maritima B Bacteria (expressed in E. coli), 3.40 Å
|
Nass et al. (2022).
Nass KJ, Ilie IM, Saller MJ, Driessen AJM, Caflisch A, Kammerer RA, & Li X (2022). The role of the N-terminal amphipathic helix in bacterial YidC: Insights from functional studies, the crystal structure and molecular dynamics simulations.
Biochim Biophys Acta Biomembr 1864 3:18325. PubMed Id: 34871574. doi:10.1016/j.bbamem.2021.183825. |
||
WRB/CAML/TRC40 insertase: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 4.20 Å
cryo-EM structure |
McDowell et al. (2020).
McDowell MA, Heimes M, Fiorentino F, Mehmood S, Farkas Á, Coy-Vergara J, Wu D, Bolla JR, Schmid V, Heinze R, Wild K, Flemming D, Pfeffer S, Schwappach B, Robinson CV, & Sinning I (2020). Structural Basis of Tail-Anchored Membrane Protein Biogenesis by the GET Insertase Complex.
Mol Cell 80 1:72-86.e7. PubMed Id: 32910895. doi:10.1016/j.molcel.2020.08.012. |
||
WRB/CAML/TRC40 (Get1/Get2/Get3) insertase: Homo sapiens E Eukaryota (expressed in E. coli), 3.20 Å
cryo-EM structure with helix α3’ deletion of Get2, 4.20 Å: 8CR2 |
McDowell et al. (2023).
McDowell MA, Heimes M, Enkavi G, Farkas Á, Saar D, Wild K, Schwappach B, Vattulainen I, & Sinning I (2023). The GET insertase exhibits conformational plasticity and induces membrane thinning.
Nat Commun 14 1:7355. PubMed Id: 37963916. doi:10.1038/s41467-023-42867-2. |
||
WRB/TRP40 (Get1-cytoplasmic domain/Get3) complex: Homo sapiens E Eukaryota (expressed in E. coli), 2.80 Å
X-ray structure |
McDowell et al. (2023).
McDowell MA, Heimes M, Enkavi G, Farkas Á, Saar D, Wild K, Schwappach B, Vattulainen I, & Sinning I (2023). The GET insertase exhibits conformational plasticity and induces membrane thinning.
Nat Commun 14 1:7355. PubMed Id: 37963916. doi:10.1038/s41467-023-42867-2. |
||
WRB/CAML/TRC40 (Get1/Get2/Get3) insertase in amphipol:: Chaetomium thermophilum E Eukaryota (expressed in E. coli), 5.00 Å
cryo-EM structure in nanodisc, 4.70 Å: 8ODV |
McDowell et al. (2023).
McDowell MA, Heimes M, Enkavi G, Farkas Á, Saar D, Wild K, Schwappach B, Vattulainen I, & Sinning I (2023). The GET insertase exhibits conformational plasticity and induces membrane thinning.
Nat Commun 14 1:7355. PubMed Id: 37963916. doi:10.1038/s41467-023-42867-2. |
||
DUF106 YidC-like protein: Methanocaldococcus jannaschi A Archaea (expressed in E. coli), 3.50 Å
This structure establishes the universality of the YidC/Oxa1/Alb3 family in the three domains of life |
Borowska et al. (2015).
Borowska MT, Dominik PK, Anghel SA, Kossiakoff AA, & Keenan RJ (2015). A YidC-like Protein in the Archaeal Plasma Membrane.
Structure 23 :1715-1724. PubMed Id: 26256539. doi:10.1016/j.str.2015.06.025. |
||
SecDF protein-export enhancer: Thermus thermophilus B Bacteria (expressed in E. coli), 3.30 Å
SecDF associates with SecYEG to enhance protein export using the transmembrane proton motive force (PMF). It is a member of the resistance nodulation and cell division (RND) superfamily. A related member of the RND superfamily is the AcrB multi-drug efflux transporter. P1 periplasmic domain, 2.6 Å: 3AQO P4 periplasmic domain, NMR structure: 2RRN |
Tsukazaki et al. (2011).
Tsukazaki T, Mori H, Echizen Y, Ishitani R, Fukai S, Tanaka T, Perederina A, Vassylyev DG, Kohno T, Maturana AD, Ito K, & Nureki O (2011). Structure and function of a membrane component SecDF that enhances protein export.
Nature 474 :235-238. PubMed Id: 21562494. doi:10.1038/nature09980. |
||
SecDF protein-export enhancer in super-membrane-facing (Super F) form: Thermus thermophilus B Bacteria (expressed in E. coli), 2.8 Å
|
Furukawa et al. (2018).
Furukawa A, Nakayama S, Yoshikaie K, Tanaka Y, & Tsukazaki T (2018). Remote Coupled Drastic β-Barrel to β-Sheet Transition of the Protein Translocation Motor.
Structure 26 :485-489.e2. PubMed Id: 29398525. doi:10.1016/j.str.2018.01.002. |
||
Furukawa et al. (2017).
Furukawa A, Yoshikaie K, Mori T, Mori H, Morimoto YV, Sugano Y, Iwaki S, Minamino T, Sugita Y, Tanaka Y, & Tsukazaki T (2017). Tunnel Formation Inferred from the I-Form Structures of the Proton-Driven Protein Secretion Motor SecDF.
Cell Rep 19 5:895-901. PubMed Id: 28467902. doi:10.1016/j.celrep.2017.04.030. |
|||
TatA twin-arginine translocase monomer: Bacillus subtilis B Bacteria (expressed in E. coli), NMR structure
structure determined in DPC micelles |
Hu et al. (2010).
Hu Y, Zhao E, Li H, Xia B, & Jin C (2010). Solution NMR structure of the TatA component of the twin-arginine protein transport system from gram-positive bacterium Bacillus subtilis.
J Am Chem Soc 132 :15942-15944. PubMed Id: 20726548. doi:10.1021/ja1053785. |
||
TatA twin-arginine translocase, model of oligomeric complex: Escherichia coli B Bacteria, NMR/Molecular Dynamics Model
TatA monomer, NMR Structure: 2LZR |
Rodriguez et al. (2013).
Rodriguez F, Rouse SL, Tait CE, Harmer J, De Riso A, Timmel CR, Sansom MS, Berks BC, & Schnell JR (2013). Structural model for the protein-translocating element of the twin-arginine transport system.
Proc Natl Acad Sci USA 110 :E1092-E1101. PubMed Id: 23471988. doi:10.1073/pnas.1219486110. |
||
TatC twin-arginine translocase receptor: Aquifex aeolicus B Bacteria (expressed in E. coli), 3.50 Å
Crystallized using lauryl maltose neopentyl glycol (LMNG) |
Rollauer et al. (2012).
Rollauer SE, Tarry MJ, Graham JE, Jääskeläinen M, Jäger F, Johnson S, Krehenbrink M, Liu SM, Lukey MJ, Marcoux J, McDowell MA, Rodriguez F, Roversi P, Stansfeld PJ, Robinson CV, Sansom MS, Palmer T, Högbom M, Berks BC, & Lea SM (2012). Structure of the TatC core of the twin-arginine protein transport system.
Nature 492 :210-214. PubMed Id: 23201679. doi:10.1038/nature11683. |
||
TatC twin-arginine translocase receptor: Aquifex aeolicus B Bacteria (expressed in E. coli), 4.00 Å
Crystallized using DHCP Structure using DDM for crystallization, 6.80 Å: 4HTT |
Ramasamy et al. (2013).
Ramasamy S, Abrol R, Suloway CJ, & Clemons WM Jr (2013). The Glove-like Structure of the Conserved Membrane Protein TatC Provides Insight into Signal Sequence Recognition in Twin-Arginine Translocation.
Structure 21 :777-788. PubMed Id: 23583035. doi:10.1016/j.str.2013.03.004. |
||
ER-associated protein degradation (ERAD) protein. Hrd1 channel in complex with Hrd3: Saccharomyces cerevisiae E Eukaryota, 4.1 Å
cryo-EM structure E3 ubiquitin-protein ligase component HRD3, 3.9 Å: 5V7V |
Schoebel et al. (2017).
Schoebel S, Mi W, Stein A, Ovchinnikov S, Pavlovicz R, DiMaio F, Baker D, Chambers MG, Su H, Li D, Rapoport TA, & Liao M (2017). Cryo-EM structure of the protein-conducting ERAD channel Hrd1 in complex with Hrd3.
Nature 548 :352-355. PubMed Id: 28682307. doi:10.1038/nature23314. |
||
ER-associated protein degradation (ERAD) protein Hrd1 ubiquitin ligase complex: Saccharomyces cerevisiae E Eukaryota, 4.30 Å
cryo-EM structure Hrd1-Usa1/Der1/Hrd3 complex of the expected topology, 4.30 Å: 6VJZ Hrd1-Usa1/Der1/Hrd3 of the flipped topology, 4.10 Å: 6VK0 Hrd1/Hrd3 part from Hrd1-Usa1/Der1/Hrd3 complex, 3.90 Å: 6VK1 Hrd3/Yos9 complex, 3.70 Å: 6VK3 |
Wu et al. (2020).
Wu X, Siggel M, Ovchinnikov S, Mi W, Svetlov V, Nudler E, Liao M, Hummer G, & Rapoport TA (2020). Structural basis of ER-associated protein degradation mediated by the Hrd1 ubiquitin ligase complex.
Science 368 6489. PubMed Id: 32327568. doi:10.1126/science.aaz2449. |
||
Derlin-1 ERAD retrotranslocation channel: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.80 Å
cryo-EM structure |
Rao et al. (2021).
Rao B, Li S, Yao D, Wang Q, Xia Y, Jia Y, Shen Y, & Cao Y (2021). The cryo-EM structure of an ERAD protein channel formed by tetrameric human Derlin-1.
Sci Adv 7 10:eabe8591. PubMed Id: 33658201. doi:10.1126/sciadv.abe8591. |
||
Plasmodium translocon of exported protein (PTEX) Core Complex in the Engaged (Extended) State: Plasmodium falciparum E Eukaryota, 4.16 Å
cryo-EM structure in resetting (compact) state, 4.23 Å: 6E11 |
Ho et al. (2018).
Ho CM, Beck JR, Lai M, Cui Y, Goldberg DE, Egea PF, & Zhou ZH (2018). Malaria parasite translocon structure and mechanism of effector export.
Nature 561 7721:70-75. PubMed Id: 30150771. doi:10.1038/s41586-018-0469-4. |
||
ATG9A transmembrane protein of the core autophagy machinery, State A: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.80 Å
cryo-EM structure State B, 2.90 Å: 6WR4 |
Guardia et al. (2020).
Guardia CM, Tan XF, Lian T, Rana MS, Zhou W, Christenson ET, Lowry AJ, Faraldo-Gómez JD, Bonifacino JS, Jiang J, & Banerjee A (2020). Structure of Human ATG9A, the Only Transmembrane Protein of the Core Autophagy Machinery.
Cell Rep 31 13:107837. PubMed Id: 32610138. doi:10.1016/j.celrep.2020.107837. |
||
Maeda et al. (2020).
Maeda S, Yamamoto H, Kinch LN, Garza CM, Takahashi S, Otomo C, Grishin NV, Forli S, Mizushima N, & Otomo T (2020). Structure, lipid scrambling activity and role in autophagosome formation of ATG9A.
Nat Struct Mol Biol 27 12:1194-1201. PubMed Id: 33106659. doi:10.1038/s41594-020-00520-2. |
|||
ATG9A transmembrane protein of the core autophagy machinery: Schizosaccharomyces pombe E Eukaryota (expressed in Saccharomyces cerevisiae), 3.00 Å
cryo-EM structure |
Matoba et al. (2020).
Matoba K, Kotani T, Tsutsumi A, Tsuji T, Mori T, Noshiro D, Sugita Y, Nomura N, Iwata S, Ohsumi Y, Fujimoto T, Nakatogawa H, Kikkawa M, & Noda NN (2020). Atg9 is a lipid scramblase that mediates autophagosomal membrane expansion.
Nat Struct Mol Biol 27 12:1185-1193. PubMed Id: 33106658. doi:10.1038/s41594-020-00518-w. |
||
ER membrane protein complex (EMC): Homo sapiens E Eukaryota, 6.4 Å
cryo-EM structure x-ray structure of EMC2/EMC9 complex, 2.20 Å: |
O'Donnell et al. (2020).
O'Donnell JP, Phillips BP, Yagita Y, Juszkiewicz S, Wagner A, Malinverni D, Keenan RJ, Miller EA, & Hegde RS (2020). The architecture of EMC reveals a path for membrane protein insertion.
Elife 9 :e57887. PubMed Id: 32459176. doi:10.7554/eLife.57887. |
||
ER membrane protein complex (EMC) in nanodiscs: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.40 Å
cryo-EM structure |
Pleiner et al. (2020).
Pleiner T, Tomaleri GP, Januszyk K, Inglis AJ, Hazu M, & Voorhees RM (2020). Structural basis for membrane insertion by the human ER membrane protein complex.
Science 369 6502:433-436. PubMed Id: 32439656. doi:10.1126/science.abb5008. |
||
ER membrane protein complex (EMC) in GDN detergent: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.60 Å
cryo-EM structure in lipid nanodiscs, 3.39 Å: 7ADO |
Miller-Vedam et al. (2020).
Miller-Vedam LE, Bräuning B, Popova KD, Schirle Oakdale NT, Bonnar JL, Prabu JR, Boydston EA, Sevillano N, Shurtleff MJ, Stroud RM, Craik CS, Schulman BA, Frost A, & Weissman JS (2020). Structural and mechanistic basis of the EMC-dependent biogenesis of distinct transmembrane clients.
Elife 9 :e62611. PubMed Id: 33236988. doi:10.7554/eLife.62611. |
||
ER membrane protein complex (EMC) in complex with CaV1.2 and CaVβ3: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.40 Å
cryo-EM structure |
Chen et al. (2023).
Chen Z, Mondal A, Abderemane-Ali F, Jang S, Niranjan S, Montaño JL, Zaro BW, & Minor DL Jr (2023). EMC chaperone-CaV structure reveals an ion channel assembly intermediate.
Nature 619 7969:410-419. PubMed Id: 37196677. doi:10.1038/s41586-023-06175-5. |
||
ER membrane protein complex (EMC): Saccharomyces cerevisiae E Eukaryota, 3.00 Å
cryo-EM structure |
Bai et al. (2020).
Bai L, You Q, Feng X, Kovach A, & Li H (2020). Structure of the ER membrane complex, a transmembrane-domain insertase.
Nature 584 7821:475-478. PubMed Id: 32494008. doi:10.1038/s41586-020-2389-3. |
||
ER membrane protein complex (EMC) in DDM detergent: Saccharomyces cerevisiae E Eukaryota, 4.30 Å
cryo-EM structure complex in lipid nanodiscs, 3.20 Å: 7KRA |
Miller-Vedam et al. (2020).
Miller-Vedam LE, Bräuning B, Popova KD, Schirle Oakdale NT, Bonnar JL, Prabu JR, Boydston EA, Sevillano N, Shurtleff MJ, Stroud RM, Craik CS, Schulman BA, Frost A, & Weissman JS (2020). Structural and mechanistic basis of the EMC-dependent biogenesis of distinct transmembrane clients.
Elife 9 :e62611. PubMed Id: 33236988. doi:10.7554/eLife.62611. |
||
TIM22 complex from mitochondrial inner membrane: Saccharomyces cerevisiae E Eukaryota, 3.83 Å
cryo-EM structure |
Zhang et al. (2020).
Zhang Y, Ou X, Wang X, Sun D, Zhou X, Wu X, Li Q, & Li L (2020). Structure of the mitochondrial TIM22 complex from yeast.
Cell Res . PubMed Id: 32918038. doi:10.1038/s41422-020-00399-0. |
||
TIM22 complex from mitochondrial inner membrane: Homo sapiens E Eukaryota, 3.70 Å
cryo-EM structure |
Qi et al. (2020).
Qi L, Wang Q, Guan Z, Wu Y, Shen C, Hong S, Cao J, Zhang X, Yan C, & Yin P (2020). Cryo-EM structure of the human mitochondrial translocase TIM22 complex.
Cell Res . PubMed Id: 32901109. doi:10.1038/s41422-020-00400-w. |
||
Channels: Mechanosensitive
|
|||
MscL Mechanosensitive channel: Mycobacterium tuberculosis B Bacteria, 3.5 Å
This structure supersedes 1MSL. |
Chang et al. (1998).
Chang G, Spencer RH, Lee AT, Barclay MT, & Rees DC (1998). Structure of the MscL homolog from Mycobacterium tuberculosis: A gated mechanosensitive ion channel.
Science 282 :2220-2226. PubMed Id: 9856938. |
||
MscL Mechanosensitive channel, Δ95-120: Staphylococcus aureus B Bacteria, 3.8 Å
Shows MscL in an expanded intermediate state. |
Liu et al. (2009).
Liu Z, Gandhi CS, & Rees DC (2009). Structure of a tetrameric MscL in an expanded intermediate state.
Nature 461 :120-124. PubMed Id: 19701184. |
||
MscL mechanosensitive channel in closed state: Methanosarcina acetivorans A Archaea (expressed in E. coli), 3.5 Å
expanded intermediate state, 4.1 Å: 4Y7J |
Li et al. (2015).
Li J, Guo J, Ou X, Zhang M, Li Y, & Liu Z (2015). Mechanical coupling of the multiple structural elements of the large-conductance mechanosensitive channel during expansion.
Proc Natl Acad Sci USA 112 :10726-10731. PubMed Id: 26261325. doi:10.1073/pnas.1503202112. |
||
MscS voltage-modulated mechanosensitive channel: Escherichia coli B Bacteria, 3.70 Å
This structure supersedes 1MXM. |
Bass et al. (2002).
Bass RB, Strop P, Barclay M, & Rees DC (2002). Crystal Structure of Escherichia coli MscS, a Voltage-modulated and mechanosensitive channel.
Science 298 :1582-1587. PubMed Id: 12446901. |
||
MscS mechanosensitive channel in the open form: Escherichia coli B Bacteria, 3.45 Å
|
Wang et al. (2008).
Wang W, Black SS, Edwards MD, Miller S, Morrison EL, Bartlett W, Dong C, Naismith JH, & Booth IR (2008). The structure of an open form of an E. coli mechanosensitive channel at 3.45 Å resolution.
Science 321 :1179-1183. PubMed Id: 18755969. |
||
MscS voltage-modulated mechanosensitive channel, D67R1 mutant: Escherichia coli B Bacteria, 2.99 Å
|
Pliotas et al. (2015).
Pliotas C, Dahl AC, Rasmussen T, Mahendran KR, Smith TK, Marius P, Gault J, Banda T, Rasmussen A, Miller S, Robinson CV, Bayley H, Sansom MS, Booth IR, & Naismith JH (2015). The role of lipids in mechanosensation.
Nat Struct Mol Biol 22 :991-998. PubMed Id: 26551077. doi:10.1038/nsmb.3120. |
||
MscS mechanosensitive channel embedded in nanodiscs: Escherichia coli B Bacteria, 2.9 Å
cryo-EM structure |
Rasmussen et al. (2019).
Rasmussen T, Flegler VJ, Rasmussen A, & Böttcher B (2019). Structure of the Mechanosensitive Channel MscS Embedded in the Membrane Bilayer.
J Mol Biol 431 17:3081-3090. PubMed Id: 31291591. doi:10.1016/j.jmb.2019.07.006. |
||
Reddy et al. (2019).
Reddy B, Bavi N, Lu A, Park Y, & Perozo E (2019). Molecular basis of force-from-lipids gating in the mechanosensitive channel MscS.
Elife 8 . PubMed Id: 31880537. doi:10.7554/eLife.50486. |
|||
MscS voltage-modulated mechanosensitive channel in peptidiscs: Escherichia coli B Bacteria, 3.3 Å
cryo-EM structure |
Angiulli et al. (2020).
Angiulli G, Dhupar HS, Suzuki H, Wason IS, Duong Van Hoa F, & Walz T (2020). New approach for membrane protein reconstitution into peptidiscs and basis for their adaptability to different proteins.
Elife 9 :e53530. PubMed Id: 32125274. doi:10.7554/eLife.53530. |
||
Zhang et al. (2021).
Zhang Y, Daday C, Gu RX, Cox CD, Martinac B, de Groot BL, & Walz T (2021). Visualization of the mechanosensitive ion channel MscS under membrane tension.
Nature 590 7846:509-514. PubMed Id: 33568813. doi:10.1038/s41586-021-03196-w. |
|||
MscS voltage-modulated mechanosensitive channel, DDM-solubilized, closed conformation: Escherichia coli B Bacteria, 3.90 Å
cryo-EM structure DDM-solubilized, open conformation, 3.10 Å: 7OO0 DDM-solubilized, closed conformation with added lipid, 3.10 Å: 7OO6 LMNG-solubilized, open conformation, 2.30 Å: 7ONJ LMNG-solubilized, open conformation with added lipid, 2.70 Å: 7OOA LMNG-solubilized, closed conformation with added lipid, 3.70 Å: 7OO8 |
Flegler et al. (2021).
Flegler VJ, Rasmussen A, Borbil K, Boten L, Chen HA, Deinlein H, Halang J, Hellmanzik K, Löffler J, Schmidt V, Makbul C, Kraft C, Hedrich R, Rasmussen T, & Böttcher B (2021). Mechanosensitive channel gating by delipidation.
Proc Natl Acad Sci U S A 118 33:e2107095118. PubMed Id: 34376558. doi:10.1073/pnas.2107095118. |
||
Deng et al. (2020).
Deng Z, Maksaev G, Schlegel AM, Zhang J, Rau M, Fitzpatrick JAJ, Haswell ES, & Yuan P (2020). Structural mechanism for gating of a eukaryotic mechanosensitive channel of small conductance.
Nat Commun 11 1. PubMed Id: 32704140. doi:10.1038/s41467-020-17538-1. |
|||
MSL1 MscS voltage-modulated mechanosensitive channel homolog: Arabidopsis thaliana E Eukaryota (expressed in HEK293 cells), 3.30 Å
cryo-EM structure |
Li et al. (2020).
Li Y, Hu Y, Wang J, Liu X, Zhang W, & Sun L (2020). Structural Insights into a Plant Mechanosensitive Ion Channel MSL1.
Cell Rep 30 13:4518-4527.e3. PubMed Id: 32234484. doi:10.1016/j.celrep.2020.03.026. |
||
Zhang et al. (2023).
Zhang J, Maksaev G, & Yuan P (2023). Open structure and gating of the Arabidopsis mechanosensitive ion channel MSL10.
Nat Commun 14 1:6284. PubMed Id: 37805510. doi:10.1038/s41467-023-42117-5. |
|||
Piezo1 mechanosensitive channel by cryo-EM: Mus musculus E Eukaryota (expressed in HEK293 cells), 4.8 Å
C-terminal extracellular domain by x-ray, 1.45 Å: 4RAX |
Ge et al. (2015).
Ge J, Li W, Zhao Q, Li N, Chen M, Zhi P, Li R, Gao N, Xiao B, & Yang M (2015). Architecture of the mammalian mechanosensitive Piezo1 channel.
Nature 527 7576:64-69. PubMed Id: 26390154. doi:10.1038/nature15247. |
||
Piezo1 mechanosensitive channel, closed state: Mus musculus E Eukaryota (expressed in expressed in HEK293 cells), 3.8 Å
cryo-EM structure |
Guo & MacKinnon (2017).
Guo YR, & MacKinnon R (2017). Structure-based membrane dome mechanism for Piezo mechanosensitivity.
Elife 6 :e33660. PubMed Id: 29231809. doi:10.7554/eLife.33660. |
||
Piezo1 mechanosensitive channel, closed state: Mus musculus E Eukaryota (expressed in HEK293 cells), 3.8 Å
cryo-EM structure |
Saotome et al. (2018).
Saotome K, Murthy SE, Kefauver JM, Whitwam T, Patapoutian A, & Ward AB (2018). Structure of the mechanically activated ion channel Piezo1.
Nature 554 :481-486. PubMed Id: 29261642. doi:10.1038/nature25453. |
||
Piezo1 mechanosensitive channel, closed state: Mus musculus E Eukaryota (expressed in HEK293 cells), 3.97 Å
cryo-EM structure |
Zhao et al. (2018).
Zhao Q, Zhou H, Chi S, Wang Y, Wang J, Geng J, Wu K, Liu W, Zhang T, Dong MQ, Wang J, Li X, & Xiao B (2018). Structure and mechanogating mechanism of the Piezo1 channel.
Nature 554 :487-492. PubMed Id: 29469092. doi:10.1038/nature25743. |
||
Piezo1 mechanosensitive channel: Piezo 1.1 isoform: Mus musculus E Eukaryota (expressed in HEK293 cells), 4.50 Å
cryo-EM structure |
Geng et al. (2020).
Geng J, Liu W, Zhou H, Zhang T, Wang L, Zhang M, Li Y, Shen B, Li X, & Xiao B (2020). A Plug-and-Latch Mechanism for Gating the Mechanosensitive Piezo Channel.
Neuron 106 3:438-451.e6. PubMed Id: 32142647. doi:10.1016/j.neuron.2020.02.010. |
||
Piezo1 mechanosensitive channel in a lipid bilayer, curved structure: Mus musculus E Eukaryota (expressed in HEK293 cells), 3.46 Å
cryo-EM structure Flattened Structure, 6.81 Å 7WLU |
Yang et al. (2022).
Yang X, Lin C, Chen X, Li S, Li X, & Xiao B (2022). Structure deformation and curvature sensing of PIEZO1 in lipid membranes.
Nature 604 7905:377-383. PubMed Id: 35388220. doi:10.1038/s41586-022-04574-8. |
||
Piezo1 mechanosensitive channel in complex with MyoD family inhibitor MDFIC, composite map: Mus musculus E Eukaryota (expressed in HEK293 cells), 3.66 Å
cryo-EM structure |
Zhou et al. (2023).
Zhou Z, Ma X, Lin Y, Cheng D, Bavi N, Secker GA, Li JV, Janbandhu V, Sutton DL, Scott HS, Yao M, Harvey RP, Harvey NL, Corry B, Zhang Y, & Cox CD (2023). MyoD-family inhibitor proteins act as auxiliary subunits of Piezo channels.
Science 381 6659:799-804. PubMed Id: 37590348. doi:10.1126/science.adh8190. |
||
Piezo2 mechanosensitive channel, closed state: Mus musculus E Eukaryota (expressed in HEK293 cells), 3.8 Å
cryo-EM structure |
Wang et al. (2019).
Wang L, Zhou H, Zhang M, Liu W, Deng T, Zhao Q, Li Y, Lei J, Li X, & Xiao B (2019). Structure and mechanogating of the mammalian tactile channel PIEZO2.
Nature 573 7773:225-229. PubMed Id: 31435011. doi:10.1038/s41586-019-1505-8. |
||
Hyperosmolality-gated calcium-permeable channel (OSCA) 1.1: Arabidopsis thaliana E Eukaryota (expressed in sf9 cells), 3.5 Å
(The original PDB code for this structure, 5YD1, is obsolete.) cryo-EM structure The original PDB code for this structure, 5YD1, is obsolete. OSCA 3.1, 4.8 Å: 5Z1F |
Zhang et al. (2018).
Zhang M, Wang D, Kang Y, Wu JX, Yao F, Pan C, Yan Z, Song C, & Chen L (2018). Structure of the mechanosensitive OSCA channels.
Nat Struct Mol Biol 25 9:850-858. PubMed Id: 30190597. doi:10.1038/s41594-018-0117-6. |
||
Hyperosmolality-gated calcium-permeable channel (OSCA) 1.1, extended state: Arabidopsis thaliana E Eukaryota (expressed in HEK293 cells), 2.50 Å
cryo-EM structure |
Zhang et al. (2023).
Zhang M, Shan Y, Cox CD, & Pei D (2023). A mechanical-coupling mechanism in OSCA/TMEM63 channel mechanosensitivity.
Nat Commun 14 1:3943. PubMed Id: 37402734. doi:10.1038/s41467-023-39688-8. |
||
Mechanically-activated ion channel OSCA 1.2 in nanodiscs: Arabidopsis thaliana E Eukaryota (expressed in HEK293 cells), 3.1 Å
cryo-EM structure in LMNG detergent micelles, 3.5 Å: 6MGW |
Jojoa-Cruz et al. (2018).
Jojoa-Cruz S, Saotome K, Murthy SE, Tsui CCA, Sansom MS, Patapoutian A, & Ward AB (2018). Cryo-EM structure of the mechanically activated ion channel OSCA1.2.
Elife 7 :e41845. PubMed Id: 30382939. doi:10.7554/eLife.41845. |
||
Mechanically-activated ion channel OSCA 1.2 in peptidiscs: Arabidopsis thaliana E Eukaryota (expressed in HEK293 cells), 2.80 Å
cryo-EM structure |
Jojoa-Cruz et al. (2024).
Jojoa-Cruz S, Burendei B, Lee WH, & Ward AB (2024). Structure of mechanically activated ion channel OSCA2.3 reveals mobile elements in the transmembrane domain.
Structure 32 2:157-167.e5. PubMed Id: 38103547. doi:10.1016/j.str.2023.11.009. |
||
Mechanically-activated ion channel OSCA 1.2 in liposome, inside-in open state: Arabidopsis thaliana E Eukaryota (expressed in HEK293 cells), 3.29 Å
cryo-EM structure inside-out closed state, 3.56 Å: 8XNG in DOPC detergent (1:20), contracted state 1, 3.23 Å: 8XS4 in DOPC detergent (1:20), contracted state 2, 3.33 Å: 8XS5 in DOPC detergent (1:20), expanded state, 3.32 Å: 8XVX in DOPC detergent (1:50), contracted state, 3.59 Å: 8XW2 in DOPC detergent (1:50), expanded state, 3.63 Å: 8XW3 V335W mutant in DDM detergent, 4.49 Å: 8XW1 |
Han et al. (2024).
Han Y, Zhou Z, Jin R, Dai F, Ge Y, Ju X, Ma X, He S, Yuan L, Wang Y, Yang W, Yue X, Chen Z, Sun Y, Corry B, Cox CD, & Zhang Y (2024). Mechanical activation opens a lipid-lined pore in OSCA ion channels.
Nature . PubMed Id: 38570680. doi:10.1038/s41586-024-07256-9. |
||
Mechanically-activated ion channel OSCA 1.2: Oryza sativa E Eukaryota (expressed in P. pastoris), 4.9 Å
cryo-EM structure |
Maity et al. (2019).
Maity K, Heumann JM, McGrath AP, Kopcho NJ, Hsu PK, Lee CW, Mapes JH, Garza D, Krishnan S, Morgan GP, Hendargo KJ, Klose T, Rees SD, Medrano-Soto A, Saier MH Jr, Piñeros M, Komives EA, Schroeder JI, Chang G, & Stowell MHB (2019). Cryo-EM structure of OSCA1.2 from Oryza sativa elucidates the mechanical basis of potential membrane hyperosmolality gating.
Proc Natl Acad Sci USA 116 28:14309-14318. PubMed Id: 31227607. doi:10.1073/pnas.1900774116. |
||
Mechanically-activated ion channel OSCA 2.3 in peptidiscs: Arabidopsis thaliana E Eukaryota (expressed in HEK293 cells), 2.70 Å
cryo-EM structure |
Jojoa-Cruz et al. (2024).
Jojoa-Cruz S, Burendei B, Lee WH, & Ward AB (2024). Structure of mechanically activated ion channel OSCA2.3 reveals mobile elements in the transmembrane domain.
Structure 32 2:157-167.e5. PubMed Id: 38103547. doi:10.1016/j.str.2023.11.009. |
||
Hyperosmolality-gated calcium-permeable channel (OSCA) 3.1, contracted state: Arabidopsis thaliana E Eukaryota (expressed in HEK293 cells), 3.50 Å
cryo-EM structure extended state, 3.30 Å: 8GSO |
Zhang et al. (2023).
Zhang M, Shan Y, & Pei D (2023). Mechanism underlying delayed rectifying in human voltage-mediated activation Eag2 channel.
Nat Commun 14 1:1470. PubMed Id: 36928654. doi:10.1038/s41467-023-37204-6. |
||
Mechanically-activated ion channel OSCA 3.1, Y367N/G454S/Y458I mutant, open/open state: Arabidopsis thaliana E Eukaryota (expressed in HEK293 cells), 3.84 Å
cryo-EM structure open/desensitized state, 3.89 Å: 8XS0 R611E/R619E mutant, closed/open state, 3.71 Å: 8XVY R611E/R619E mutant, closed/desensitized state, 3.78 Å: 8XVZ WT, in GDN detergent, 3.11 Å: 8XW0 |
Han et al. (2024).
Han Y, Zhou Z, Jin R, Dai F, Ge Y, Ju X, Ma X, He S, Yuan L, Wang Y, Yang W, Yue X, Chen Z, Sun Y, Corry B, Cox CD, & Zhang Y (2024). Mechanical activation opens a lipid-lined pore in OSCA ion channels.
Nature . PubMed Id: 38570680. doi:10.1038/s41586-024-07256-9. |
||
Mechanically-activated ion channel OSCA 3.1 in nanodiscs: Arabidopsis thaliana E Eukaryota (expressed in HEK293 cells), 2.60 Å
cryo-EM structure |
Jojoa-Cruz et al. (2024).
Jojoa-Cruz S, Dubin AE, Lee WH, & Ward AB (2024). Structure-guided mutagenesis of OSCAs reveals differential activation to mechanical stimuli.
Elife 12 . PubMed Id: 38592763. doi:10.7554/eLife.93147. |
||
Hypo-osmolality-gated calcium-permeable channel TMEM63A: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.30 Å
cryo-EM structure |
Zhang et al. (2023).
Zhang M, Shan Y, Cox CD, & Pei D (2023). A mechanical-coupling mechanism in OSCA/TMEM63 channel mechanosensitivity.
Nat Commun 14 1:3943. PubMed Id: 37402734. doi:10.1038/s41467-023-39688-8. |
||
Hypo-osmolality-gated calcium-permeable channel TMEM63B in digitonin detergent: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.84 Å
cryo-EM structure |
Han et al. (2024).
Han Y, Zhou Z, Jin R, Dai F, Ge Y, Ju X, Ma X, He S, Yuan L, Wang Y, Yang W, Yue X, Chen Z, Sun Y, Corry B, Cox CD, & Zhang Y (2024). Mechanical activation opens a lipid-lined pore in OSCA ion channels.
Nature . PubMed Id: 38570680. doi:10.1038/s41586-024-07256-9. |
||
Hypo-osmolality-gated calcium-permeable channel TMEM63C: Mus musculus E Eukaryota (expressed in HEK293 cells), 3.56 Å
|
Qin et al. (2023).
Qin Y, Yu D, Wu D, Dong J, Li WT, Ye C, Cheung KC, Zhang Y, Xu Y, Wang Y, Shi YS, & Dang S (2023). Cryo-EM structure of TMEM63C suggests it functions as a monomer.
Nat Commun 14 1:7265. PubMed Id: 37945568. doi:10.1038/s41467-023-42956-2. |
||
Jojoa-Cruz et al. (2022).
Jojoa-Cruz S, Saotome K, Tsui CCA, Lee WH, Sansom MSP, Murthy SE, Patapoutian A, & Ward AB (2022). Structural insights into the Venus flytrap mechanosensitive ion channel Flycatcher1.
Nat Commun 13 1:850. PubMed Id: 35165281. doi:10.1038/s41467-022-28511-5. |
|||
Ynal Mechanosensitive channel in amphipols: Escherichia coli B Bacteria, 3.80 Å
cryo-EM structure |
Yu et al. (2018).
Yu J, Zhang B, Zhang Y, Xu CQ, Zhuo W, Ge J, Li J, Gao N, Li Y, & Yang M (2018). A binding-block ion selective mechanism revealed by a Na/K selective channel.
Protein Cell 9 7:629-639. PubMed Id: 28921397. doi:10.1007/s13238-017-0465-8. |
||
Ynal Mechanosensitive channel using SMA2000: Escherichia coli B Bacteria, 2.40 Å
cryo-EM structure |
Catalano et al. (2021).
Catalano C, Ben-Hail D, Qiu W, Blount P, des Georges A, & Guo Y (2021). Cryo-EM Structure of Mechanosensitive Channel YnaI Using SMA2000: Challenges and Opportunities.
Membranes (Basel) 11 11:849. PubMed Id: 34832078. doi:10.3390/membranes11110849. |
||
Jeong et al. (2022).
Jeong H, Clark S, Goehring A, Dehghani-Ghahnaviyeh S, Rasouli A, Tajkhorshid E, & Gouaux E (2022). Structures of the TMC-1 complex illuminate mechanosensory transduction.
Nature 610 7933:796-803. PubMed Id: 36224384. doi:10.1038/s41586-022-05314-8. |
|||
MscK mechanosenstive ion channel, G924S mutant in a closed conformation: Escherichia coli B Bacteria (expressed in Komagataella pastoris), 3.84 Å
cryo-EM structure Open Conformation, 3.48 Å: 7UX1 |
Mount et al. (2022).
Mount J, Maksaev G, Summers BT, Fitzpatrick JAJ, & Yuan P (2022). Structural basis for mechanotransduction in a potassium-dependent mechanosensitive ion channel.
Nat Commun 13 1:6904. PubMed Id: 36371466. doi:10.1038/s41467-022-34737-0. |
||
Channels: Potassium, Sodium, & Proton Ion-Selective
|
|||
KcsA Potassium channel, H+ gated: Streptomyces lividans B Bacteria (expressed in E. coli), 3.2 Å
|
Doyle et al. (1998).
Doyle DA, Cabral JM, Pfuetzner RA, Kuo AL, Gulbis JM, Cohen SL, Chait BT, & MacKinnon R (1998). The structure of the potassium channel: Molecular basis of K+conduction and selectivity.
Science 280 :69-77. PubMed Id: 9525859. |
||
KcsA Potassium channel, H+ gated. Complexed with Fab.: Streptomyces lividans B Bacteria (expressed in E. coli), 2.0 Å
R-free = 0.233. 1K4D, 2.3 Å, R-free = 0.235 |
Zhou et al. (2001).
Zhou Y, Morais-Cabral JH, Kaufman A, & MacKinnon R (2001). Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 Å.
Nature 414 :43-48. PubMed Id: 11689936. |
||
Full-length KcsA Potassium channel, H+ gated: Streptomyces lividans B Bacteria (expressed in E. coli), NMR structure
|
Cortes et al. (2001).
Cortes DM, Cuello LG, & Perozo E (2001). Molecular architecture of full-length KcsA: role of cytoplasmic domains in ion permeation and activation gating.
J Gen Physiol 117 2:165-180. PubMed Id: 11158168. doi:10.1085/jgp.117.2.165. |
||
KcsA Potassium channel, H+ gated. Complexed with Fab, Tl, & Tetrabutylammonium (TBA): Streptomyces lividans B Bacteria (expressed in E. coli), 2.76 Å
In complex with tetraethylarsonium (TEAS) rather than TBA, 3.01 Å: 2BOC |
Lenaeus et al. (2005).
Lenaeus MJ, Vamvouka M, Focia PJ, & Gross A (2005). Structural basis of TEA blockade in a model potassium channel.
Nat Struc Mol Biol 12 :454-459. PubMed Id: 15852022. |
||
Lockless et al. (2007).
Lockless SW, Zhou M, & MacKinnon R (2007). Structural and thermodynamic properties of selective ion binding in a K+ channel.
PLoS Biol 5 :e121. PubMed Id: 17472437. doi:10.1371/journal.pbio.0050121. |
|||
Full-length KcsA Potassium channel, H+ gated: Streptomyces lividans B Bacteria (expressed in E. coli), 3.80 Å
Crystallized with synthetic Fab2 antibodies. C-terminal domain alone (residues 129-158) crystallized with synthetic Fab4 antibodies 3EFD, 2.60 Å |
Uysal et al. (2009).
Uysal S, Vásquez V, Tereshko V, Esaki K, Fellouse FA, Sidhu SS, Koide S, Perozo E, & Kossiakoff A (2009). Crystal structure of full-length KcsA in its closed conformation.
Proc Natl Acad Sci USA 106 :6644-6649. PubMed Id: 19346472. |
||
Full-length KcsA Potassium channel, H+ gated: Streptomyces lividans B Bacteria (expressed in E. coli), 3.80 Å
Open conformation of the full-length channel. Reveals that the activation gate expands about 20 Å |
Uysal et al. (2011).
Uysal S, Cuello LG, Cortes DM, Koide S, Kossiakoff AA, & Perozo E (2011). Mechanism of activation gating in the full-length KcsA K+ channel.
Proc Natl Acad Sci USA 108 :11896-11899. PubMed Id: 21730186. doi:10.1073/pnas.1105112108. |
||
KcsA Potassium channel in the presence of 150 mM Li+ and 3 mM K+: Streptomyces lividans B Bacteria (expressed in E. coli), 2.75 Å
KcsA in the presence of 150 mM Li+ and 0 mM K+, 2.85 Å: 3GB7 |
Thompson et al. (2009).
Thompson AN, Kim I, Panosian TD, Iverson TM, Allen TW, & Nimigean CM (2009). Mechanism of potassium-channel selectivity revealed by Na+and L+binding sites within the KcsA pore.
Nat Struct Mol Biol 16 :1321-1324. PubMed Id: 19946269. |
||
Cuello et al. (2010).
Cuello LG, Jogini V, Cortes DM, & Perozo E (2010). Structural mechanism of C-type inactivation in K+channels.
Nature 466 :203-208. PubMed Id: 20613835. |
|||
KcsA Potassium channel E71H-F103A inactivated-state mutant (closed state): Streptomyces lividans B Bacteria (expressed in E. coli), 3.20 Å
KcsA open-state in the presence of Rb+, 3.30 Å: 3FB7 |
Cuello et al. (2010).
Cuello LG, Jogini V, Cortes DM, Pan AC, Gagnon DG, Dalmas O, Cordero-Morales JF, Chakrapani S, Roux B, & Perozo E (2010). Structural basis for the coupling between activation and inactivation gates in K+channels.
Nature 466 :272-275. PubMed Id: 20613845. |
||
KcsA Potassium channel E71I modal-gating mutant: Streptomyces lividans B Bacteria (expressed in E. coli), 2.30 Å
E71Q mutant, 2.70 Å: 3OR6 |
Chakrapani et al. (2011).
Chakrapani S, Cordero-Morales JF, Jogini V, Pan AC, Cortes DM, Roux B, & Perozo E (2011). On the structural basis of modal gating behavior in K+channels.
Nat Struct Mol Biol 18 :67-74. PubMed Id: 21186363. |
||
KcsA Y82C with bound Cadmium : Streptomyces lividans B Bacteria (expressed in E. coli), 2.40 Å
with nitroxide spin label, 2.50 Å: 3STZ |
Raghuraman et al. (2012).
Raghuraman H, Cordero-Morales JF, Jogini V, Pan AC, Kollewe A, Roux B, & Perozo E (2012). Mechanism of Cd2+ Coordination during Slow Inactivation in Potassium Channels.
Structure 20 :1332-1342. PubMed Id: 22771214. doi:10.1016/j.str.2012.03.027. |
||
KcsA Potassium channel Y78 ester mutant in high K+: Streptomyces lividans B Bacteria (expressed in E. coli + semi-synthesis), 2.06 Å
|
Matulef et al. (2013).
Matulef K, Komarov AG, Costantino CA, & Valiyaveetil FI (2013). Using protein backbone mutagenesis to dissect the link between ion occupancy and C-type inactivation in K+ channels.
Proc Natl Acad Sci USA 110 44:17886-17891. PubMed Id: 24128761. doi:10.1073/pnas.1314356110. |
||
Lenaeus et al. (2014).
Lenaeus MJ, Burdette D, Wagner T, Focia PJ, & Gross A (2014). Structures of KcsA in Complex with Symmetrical Quaternary Ammonium Compounds Reveal a Hydrophobic Binding Site.
Biochemistry 53 :5365-5373. PubMed Id: 25093676. doi:10.1021/bi500525s. |
|||
Matulef et al. (2016).
Matulef K, Annen AW, Nix JC, & Valiyaveetil FI (2016). Individual Ion Binding Sites in the K+ Channel Play Distinct Roles in C-type Inactivation and in Recovery from Inactivation.
Structure 24 :750-761. PubMed Id: 27150040. doi:10.1016/j.str.2016.02.021. |
|||
Cuello et al. (2017).
Cuello LG, Cortes DM, & Perozo E (2017). The gating cycle of a K+ channel at atomic resolution.
Elife 6 :e28032. PubMed Id: 29165243. doi:10.7554/eLife.28032. |
|||
Tilegenova et al. (2019).
Tilegenova C, Cortes DM, Jahovic N, Hardy E, Hariharan P, Guan L, & Cuello LG (2019). Structure, function, and ion-binding properties of a K+ channel stabilized in the 2,4-ion-bound configuration.
Proc Natl Acad Sci USA 116 34:16829-16834. PubMed Id: 31387976. doi:10.1073/pnas.1901888116. |
|||
KcsA Potassium channel, open state. Barium blocked. 1 mM BaCl2: Streptomyces lividans (expressed in E. coli), 3.24 Å
open state, 2 mM BaCl2, 3.60 Å: 6W0B open state, 4 mM BaCl2, 3.60 Å: 6W0C open state, 5 mM BaCl2, 3.64 Å: 6W0D open state, 10 BaCl2, 3.51 Å: 6W0E closed state, 5mM BaCl2, 2.40 Å: 6W0F closed state, 1 mM KCl, 5mM BaCl2, 2.60 Å: 6W0G closed state, 5mM KCl, 5mM BaCl2, 2.40 Å: 6W0H closed state, 10mM KCl, 5mM BaCl2, 2.33 Å: 6W0I closed state incubated in BaCl2 & NaCl, 2.50 Å: 6W0J |
Rohaim et al. (2020).
Rohaim A, Gong L, Li J, Rui H, Blachowicz L, & Roux B (2020). Open and Closed Structures of a Barium-Blocked Potassium Channel.
J Mol Biol 432 17:4783-4798. PubMed Id: 32615129. doi:10.1016/j.jmb.2020.06.012. |
||
Reddi et al. (2021).
Reddi R, Matulef K, Riederer E, Moenne-Loccoz P, & Valiyaveetil FI (2021). Structures of Gating Intermediates in a K+ channel.
J Mol Biol 433 23:167296. PubMed Id: 34627789. doi:10.1016/j.jmb.2021.167296. |
|||
Rohaim et al. (2022).
Rohaim A, Vermeulen BJA, Li J, Kümmerer F, Napoli F, Blachowicz L, Medeiros-Silva J, Roux B, & Weingarth M (2022). A distinct mechanism of C-type inactivation in the Kv-like KcsA mutant E71V.
Nat Commun 13 1:1574. PubMed Id: 35322021. doi:10.1038/s41467-022-28866-9. |
|||
KcsA Potassium channel, H+ gated. T75A mutant, closed and deep-inactivated conformation.: Streptomyces coelicolor B Bacteria (expressed in E. coli), 2.35 Å
Open and conductive conformation, 2.37 Å: 6BY3 |
Labro et al. (2018).
Labro AJ, Cortes DM, Tilegenova C, & Cuello LG (2018). Inverted allosteric coupling between activation and inactivation gates in K+ channels.
Proc Natl Acad Sci USA 115 21:5426-5431. PubMed Id: 29735651. doi:10.1073/pnas.1800559115. |
||
Two-Pore Domain Potassium Channel K2P1.1 (TWIK-1): Homo sapiens E Eukaryota (expressed in Pichia pastoris), 3.40 Å
The protein is a homodimer. It is sensitive to temperature, pH, and membrane stretch. The channel becomes permeable to Na+ during hypokalemia. |
Miller & Long (2012).
Miller AN & Long SB (2012). Crystal structure of the human two-pore domain potassium channel K2P1.
Science 335 :432-436. PubMed Id: 22282804. doi:10.1126/science.121327. |
||
Two-Pore Domain Potassium Channel K2P1.1 (TWIK-1) in MSP1D1 lipid nanodisc, pH 7.4: Rattus norvegicus E Eukaryota (expressed in Komagataella pastoris), 3.33 Å
cryo-EM structure in MSP1E3D1 Lipid Nanodisc at pH 5.5, 3.43 Å: 7SK1 |
Turney et al. (2022).
Turney TS, Li V, & Brohawn SG (2022). Structural Basis for pH-gating of the K+ channel TWIK1 at the selectivity filter.
Nat Commun 13 1:3232. PubMed Id: 35680900. doi:10.1038/s41467-022-30853-z. |
||
Rödström et al. (2020).
Rödström KEJ, Kiper AK, Zhang W, Rinné S, Pike ACW, Goldstein M, Conrad LJ, Delbeck M, Hahn MG, Meier H, Platzk M, Quigley A, Speedman D, Shrestha L, Mukhopadhyay SMM, Burgess-Brown NA, Tucker SJ, M¨ller T, Decher N, & Carpenter EP (2020). A lower X-gate in TASK channels traps inhibitors within the vestibule.
Nature :443-447. PubMed Id: 32499642. doi:10.1038/s41586-020-2250-8. |
|||
Two-Pore Domain Potassium Channel K2P5 (TASK2) in nanodisc at pH 6.5: Mus musculus E Eukaryota (expressed in Komagataella pastoris), 3.45 Å
cryo-EM structure pH 8.5, 3.52 Å: 6WM0 |
Li et al. (2020).
Li B, Rietmeijer RA, & Brohawn SG (2020). Structural basis for pH gating of the two-pore domain K+ channel TASK2.
Nature 586 7829:457-462. PubMed Id: 32999458. doi:10.1038/s41586-020-2770-2. |
||
Two-Pore Domain Potassium Channel K2P4.1 (TRAAK): Homo sapiens E Eukaryota (expressed in Pichia pastoris), 3.80 Å
The protein is a homodimer. This channel is sensitive to temperature, pH, voltage, lipid interactions, and membrane stretch. |
Brohawn et al. (2012).
Brohawn SG, del Mármol J, & MacKinnon R (2012). Crystal structure of the human K2P TRAAK, a lipid- and mechano-sensitive K+ ion channel.
Science 335 :436-441. PubMed Id: 22282805. doi:10.1126/science.1213808. |
||
Two-Pore Domain Potassium Channel K2P4.1 (TRAAK): Homo sapiens E Eukaryota (expressed in Pichia pastoris), 2.75 Å
This structure reveals a domain-swapped chain connectivity enabled by the helical cap that exchanges two opposing outer helices 180° around the channel. |
Brohawn et al. (2013).
Brohawn SG, Campbell EB, & Mackinnon R (2013). Domain-swapped chain connectivity and gated membrane access in a Fab-mediated crystal of the human TRAAK K+ channel.
Proc Natl Acad Sci USA 110 :2129-2134. PubMed Id: 23341632. doi:10.1073/pnas.1218950110. |
||
Two-Pore Domain Potassium Channel K2P4.1 (TRAAK) in non-conductive state in the presence of K+: Homo sapiens E Eukaryota (expressed in Pichia pastoris), 2.50 Å
Non-conductive state in the presence of Tl+, 3.01 Å: 4WFH Conductive state in the presence of K+, 2.50 Å: 4WFE Conductive state in the presence of Tl+, 3.00 Å: 4WFG |
Brohawn et al. (2014).
Brohawn SG, Campbell EB, & MacKinnon R (2014). Physical mechanism for gating and mechanosensitivity of the human TRAAK K+ channel.
Nature 516 7529:126-130. PubMed Id: 25471887. doi:10.1038/nature14013. |
||
Two-Pore Domain Potassium Channel K2P4.1 (TRAAK), G124I mutant: Homo sapiens E Eukaryota (expressed in Komagataella pastoris), 3.30 Å
W262S mutant, 3.40 Å: 4RUF |
Lolicato et al. (2014).
Lolicato M, Riegelhaupt PM, Arrigoni C, Clark KA, & Minor DL Jr (2014). Transmembrane helix straightening and buckling underlies activation of mechanosensitive and thermosensitive K2P channels.
Neuron 84 6:1198-1212. PubMed Id: 25500157. doi:10.1016/j.neuron.2014.11.017. |
||
Two-Pore Domain Potassium Channel K2P4.1 (TRAAK); FHIEG mutant A198E, conductive K+ bound state: Homo sapiens E Eukaryota (expressed in Komagataella pastoris), 2.26 Å
Tl+ bound conductive conformation, 2.77 Å 7LJA FHEIG mutant A270P in a K+ bound conductive conformation, 2.78 Å 7LJ4 G158D imutant in a K+ bound conductive conformation, 2.97 Å 7LJB |
Rietmeijer et al. (2021).
Rietmeijer RA, Sorum B, Li B, & Brohawn SG (2021). Physical basis for distinct basal and mechanically gated activity of the human K+ channel TRAAK.
Neuron 109 18:2902-2913.e4. PubMed Id: 34390650. doi:10.1016/j.neuron.2021.07.009. |
||
Two-Pore Domain Potassium Channel K2P4.1 (TRAAK) in complex with 1B10 Fab: Mus musculus E Eukaryota (expressed in Komagataella pastoris), 2.77 Å
|
Brohawn et al. (2019).
Brohawn SG, Wang W, Handler A, Campbell EB, Schwarz JR, & MacKinnon R (2019). The mechanosensitive ion channel TRAAK is localized to the mammalian node of Ranvier.
Elife 8 . PubMed Id: 31674909. doi:10.7554/eLife.50403. |
||
Lolicato et al. (2017).
Lolicato M, Arrigoni C, Mori T, Sekioka Y, Bryant C, Clark KA, & Minor DL Jr (2017). K2P2.1 (TREK-1)-activator complexes reveal a cryptic selectivity filter binding site.
Nature 7663:364-368. PubMed Id: 28693035. doi:10.1038/nature22988. |
|||
Pope et al. (2020).
Pope L, Lolicato M, & Minor DL Jr (2020). Polynuclear Ruthenium Amines Inhibit K2P Channels via a "Finger in the Dam" Mechanism.
Cell Chem Biol 27 5:511-524.e4. PubMed Id: 32059793. doi:10.1016/j.chembiol.2020.01.011. |
|||
Two-Pore Domain Potassium Channel K2P2.1 (TREK-1), 0 mM K+: Mus musculus E Eukaryota (expressed in Komagataella pastoris), 3.88 Å
1 mM K+, 3.40 Å: 6W7C 10 mM K+, 3.50 Å: 6W7D 30 mM K+, 3.29 Å: 6W7E 50 mM K+, 3.60 Å: 6W82 100 mM K+, 3.90 Å: 6W83 200 mM K+, 3.70 Å: 6W84 In complex with ML335: 0 mM K+, 3.40 Å: 6W8F 1 mM K+, 2.60 Å: 6W8C 10 mM K+, 3.00 Å: 6W8A 30 mM K+, 3.20 Å: 6W88 50 mM K+, 3.20 Å: 6W87 100 mM K+, 3.30 Å: 6W86 200 mM K+, 3.80 Å: 6W85 |
Lolicato et al. (2020).
Lolicato M, Natale AM, Abderemane-Ali F, Crottès D, Capponi S, Duman R, Wagner A, Rosenberg JM, Grabe M, & Minor DL Jr (2020). K2P channel C-type gating involves asymmetric selectivity filter order-disorder transitions.
Sci Adv 6 44. PubMed Id: 33127683. doi:10.1126/sciadv.abc9174. |
||
Dong et al. (2015).
Dong YY, Pike AC, Mackenzie A, McClenaghan C, Aryal P, Dong L, Quigley A, Grieben M, Goubin S, Mukhopadhyay S, Ruda GF, Clausen MV, Cao L, Brennan PE, Burgess-Brown NA, Sansom MS, Tucker SJ, & Carpenter EP (2015). K2P channel gating mechanisms revealed by structures of TREK-2 and a complex with Prozac.
Science 347 6227:1256-1259. PubMed Id: 25766236. doi:10.1126/science.1261512. |
|||
Two-pore channel TPC1: Arabidopsis thaliana E Eukaryota (expressed in S. cerevisiae), 2.87 Å
|
Kintzer & Stroud (2016).
Kintzer AF, & Stroud RM (2016). Structure, inhibition and regulation of two-pore channel TPC1 from Arabidopsis thaliana.
Nature 531 :258-262. PubMed Id: 26961658. doi:10.1038/nature17194. |
||
Two-pore channel TPC1: Arabidopsis thaliana E Eukaryota (expressed in Komagataella pastoris), 3.31 Å
|
Guo et al. (2016).
Guo J, Zeng W, Chen Q, Lee C, Chen L, Yang Y, Cang C, Ren D, & Jiang Y (2016). Structure of the voltage-gated two-pore channel TPC1 from Arabidopsis thaliana.
Nature 531 :196-201. PubMed Id: 26689363. doi:10.1038/nature16446. |
||
Two-pore channel TPC1 mutant, Na+ selective: Arabidopsis thaliana E Eukaryota (expressed in Komagataella pastoris), 3.3 Å
|
Guo et al. (2017).
Guo J, Zeng W, & Jiang Y (2017). Tuning the ion selectivity of two-pore channels.
Proc Natl Acad Sci USA 114 :1009-1014. PubMed Id: 28096396. doi:10.1073/pnas.1616191114. |
||
Two-pore channel TPC1 without Ca2+-chelating amino acids reconstituted in saposin A: Arabidopsis thaliana E Eukaryota (expressed in S. cerevisiae), 3.3 Å
cryo-EM structure removal of chelating amino acids: D240N, D545N, & E528Q (termed TPC1DDE) with cat06 Fab, 3.3 Å: 6E1K in state 1, 3.7 Å: 6E1N in state 2, 3.7 Å: 6E1P |
Kintzer et al. (2018).
Kintzer AF, Green EM, Dominik PK, Bridges M, Armache JP, Deneka D, Kim SS, Hubbell W, Kossiakoff AA, Cheng Y, & Stroud RM (2018). Structural basis for activation of voltage sensor domains in an ion channel TPC1.
Proc Natl Acad Sci USA 115 39:E9095-E9104. PubMed Id: 30190435. doi:10.1073/pnas.1805651115. |
||
Dickinson et al. (2022).
Dickinson MS, Lu J, Gupta M, Marten I, Hedrich R, & Stroud RM (2022). Molecular basis of multistep voltage activation in plant two-pore channel 1.
Proc Natl Acad Sci U S A 119 9:e2110936119. PubMed Id: 35210362. doi:10.1073/pnas.2110936119. |
|||
Ye et al. (2021).
Ye F, Xu L, Li X, Zeng W, Gan N, Zhao C, Yang W, Jiang Y, & Guo J (2021). Voltage-gating and cytosolic Ca2+ activation mechanisms of Arabidopsis two-pore channel AtTPC1.
Proc Natl Acad Sci U S A 118 49:e2113946118. PubMed Id: 34845029. doi:10.1073/pnas.2113946118. |
|||
Two-pore channel TPC1 with bound PtdIns(3,5)P2: Mus musculus E Eukaryota (expressed in HEK293F cells), 3.2 Å
cryo-EM structure apo protein, 3.4 Å: 6C96 |
She et al. (2018).
She J, Guo J, Chen Q, Zeng W, Jiang Y, & Bai XC (2018). Structural insights into the voltage and phospholipid activation of the mammalian TPC1 channel.
Nature 556 7699:130-134. PubMed Id: 29562233. doi:10.1038/nature26139. |
||
She et al. (2019).
She J, Zeng W, Guo J, Chen Q, Bai XC, & Jiang Y (2019). Structural mechanisms of phospholipid activation of the human TPC2 channel.
Elife 8 . PubMed Id: 30860481. doi:10.7554/eLife.45222. |
|||
Two-pore channel TPC3 in resting state: Danio rerio E Eukaryota (expressed in HEK293 cells), 3.11 Å
cryo-EM structure |
Dickinson et al. (2020).
Dickinson MS, Myasnikov A, Eriksen J, Poweleit N, & Stroud RM (2020). Resting state structure of the hyperdepolarization activated two-pore channel 3.
Proc Natl Acad Sci USA 117 4:1988-1993. PubMed Id: 31924746. doi:10.1073/pnas.1915144117. |
||
KvAP Voltage-gated potassium Channel in complex with Fab: Aeropyrum pernix A Archaea (expressed in E. coli), 3.2 Å
Voltage sensor domain, 1.9 Å: 1ORS |
Jiang et al. (2003).
Jiang Y, Lee A, Chen J, Ruta V, Cadene M, Chait BT, & MacKinnon R (2003). X-ray structure of a voltage-dependent K+channel.
Crystal structures.
Nature 423 :33-41. PubMed Id: 12721618. See also: Jiang et al. (2003). Jiang Y, Ruta V, Chen J, Lee A, & MacKinnon R (2003). The principle of gating charge movement in a voltage-dependent K+ channel.
Voltage sensor mechanism.
Nature 423 :42-48. PubMed Id: 12721619. |
||
KvAP Voltage-gated potassium Channel in complex with Fv fragments: Aeropyrum pernix A Archaea (expressed in E. coli), 3.9 Å
|
Lee et al. (2005).
Lee SY, Lee A, Chen J, & MacKinnon R (2005). Structure of the KvAP voltage-dependent K+ channel and its dependence on the lipid membrane.
Proc Natl Acad Sci USA 102 :15441-15446. PubMed Id: 16223877. |
||
KvAP Voltage-Sensing Domain in phospholipid micelles: Aeropyrum pernix A Archaea (expressed in E. coli), NMR Structure
|
Butterwick & MacKinnon (2010).
Butterwick JA & MacKinnon R (2010). Solution structure and phospholipid interactions of the isolated voltage-sensor domain from KvAP.
J Mol Biol 403 :591-606. PubMed Id: 20851706. |
||
KvAP Voltage-gated potassium Channel: Aeropyrum pernix B Bacteria (expressed in E. coli), 5.9 Å
cryo-EM structure |
Tao & MacKinnon (2019).
Tao X, & MacKinnon R (2019). Cryo-EM structure of the KvAP channel reveals a non-domain-swapped voltage sensor topology.
Elife 8 :e52164. PubMed Id: 31755864. doi:10.7554/eLife.52164. |
||
Shaker Kv channel: Drosophila melanogaster E Eukaryota (expressed in HEK293 cells), 3.00 Å
cryo-EM structure W434F mutant, 2.90 Å 7SJ1 |
Tan et al. (2022).
Tan XF, Bae C, Stix R, Fernández-Mariño AI, Huffer K, Chang TH, Jiang J, Faraldo-Gómez JD, & Swartz KJ (2022). Structure of the Shaker Kv channel and mechanism of slow C-type inactivation.
Sci Adv 8 11. PubMed Id: 35302848. doi:10.1126/sciadv.abm7814. |
||
Shaker Kv channel in low K+: Drosophila melanogaster E Eukaryota (expressed in HEK293 cells), 3.00 Å
cryo-EM structure |
Stix et al. (2023).
Stix R, Tan XF, Bae C, Fernández-Mariño AI, Swartz KJ, & Faraldo-Gómez JD (2023). Eukaryotic Kv channel Shaker inactivates through selectivity filter dilation rather than collapse.
Sci Adv 9 49:eadj5539. PubMed Id: 38064553. doi:10.1126/sciadv.adj5539. |
||
Kv1.2 Voltage-gated potassium Channel: Rattus norvegicus E Eukaryota (expressed in Pichia pastoris), 2.9 Å
|
Long et al. (2005).
Long SB, Campbell EB, & Mackinnon R (2005). Crystal Structure of a Mammalian Voltage-Dependent Shaker Family K+ Channel.
Science 309 :897-903. PubMed Id: 16002581. See also: Long et al. (2005). Long SB, Campbell EB, & Mackinnon R (2005). Voltage Sensor of Kv1.2: Structural Basis of Electromechanical Coupling.
Science 309 :903-908. PubMed Id: 16002579. |
||
Kv1.2 Voltage-gated potassium Channel (full length): Rattus norvegicus E Eukaryota (expressed in Pichia pastoris), 2.9 Å
Re-refinement of 2A79 above using normal-mode x-ray crystallographic refinement |
Chen et al. (2010).
Chen X, Wang Q, Ni F, & Ma J (2010). Structure of the full-length Shaker potassium channel Kv1.2 by normal-mode-based X-ray crystallographic refinement.
Proc Natl Acad Sci USA 107 :11352-11357. PubMed Id: 20534430. |
||
Kv1.2 Voltage-gated potassium Channel, C-type inactivation: Rattus norvegicus E Eukaryota (expressed in Komagataella pastoris), 3.10 Å
Kv 1.2 chimera-3m, 3.32 Å 7SIT |
Reddi et al. (2022).
Reddi R, Matulef K, Riederer EA, Whorton MR, & Valiyaveetil FI (2022). Structural basis for C-type inactivation in a Shaker family voltage-gated K+ channel.
Sci Adv 8 16:eabm8804. PubMed Id: 35452285. doi:10.1126/sciadv.abm8804. |
||
Kv1.2/Kv2.1 Voltage-gated potassium channel chimera: Rattus norvegicus E Eukaryota (expressed in Pichia pastoris), 2.4 Å
First Kv channel with resolved lipids. |
Long et al. (2007).
Long SB, Tao X, Campbell EB, & Mackinnon R (2007). Atomic structure of a voltage-dependent K+channel in a lipid membrane-like environment.
Nature 450 :376-382. PubMed Id: 18004376. |
||
Kv1.2/Kv2.1 Voltage-gated potassium channel chimera: Rattus norvegicus E Eukaryota (expressed in Pichia pastoris), 2.9 Å
F233W Mutant. |
Tao et al. (2010).
Tao X, Lee A, Limapichat W, Dougherty DA, & MacKinnon R (2010). A gating charge transfer center in voltage sensors.
Science 328 :67-73. PubMed Id: 20360102. |
||
Kv1.2/Kv2.1 Voltage-gated potassium channel chimera, V406W mutant: Rattus norvegicus E Eukaryota (expressed in Pichia pastoris), 3.3 Å
|
Pau et al. (2017).
Pau V, Zhou Y, Ramu Y, Xu Y, & Lu Z (2017). Crystal structure of an inactivated mutant mammalian voltage-gated K+ channel.
Nat Struct Mol Biol 24 :857-865. PubMed Id: 28846092. doi:10.1038/nsmb.3457. |
||
Matthies et al. (2018).
Matthies D, Bae C, Toombes GE, Fox T, Bartesaghi A, Subramaniam S, & Swartz KJ (2018). Single-particle cryo-EM structure of a voltage-activated potassium channel in lipid nanodiscs.
Elife 7 :e37558. PubMed Id: 30109985. doi:10.7554/eLife.37558. |
|||
Kv1.3 lymphocyte Voltage-gated potassium Channel: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.20 Å
cryo-EM structure H451N mutant, 3.30 Å: 7EJ2 |
Liu et al. (2021).
Liu S, Zhao Y, Dong H, Xiao L, Zhang Y, Yang Y, Ong ST, Chandy KG, Zhang L, & Tian C (2021). Structures of wild-type and H451N mutant human lymphocyte potassium channel KV1.3.
Cell Discov 7 1:39. PubMed Id: 34059645. doi:10.1038/s41421-021-00269-y. |
||
Kv1.3 lymphocyte Voltage-gated potassium Channel with beta subunits, apo state: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.40 Å
cryo-EM structure dalazatide-bound state, 3.40 Å 7WF4 |
Tyagi et al. (2022).
Tyagi A, Ahmed T, Jian S, Bajaj S, Ong ST, Goay SSM, Zhao Y, Vorobyov I, Tian C, Chandy KG, & Bhushan S (2022). Rearrangement of a unique Kv1.3 selectivity filter conformation upon binding of a drug.
Proc Natl Acad Sci U S A 119 5:e2113536119. PubMed Id: 35091471. doi:10.1073/pnas.2113536119. |
||
Chi et al. (2022).
Chi G, Liang Q, Sridhar A, Cowgill JB, Sader K, Radjainia M, Qian P, Castro-Hartmann P, Venkaya S, Singh NK, McKinley G, Fernandez-Cid A, Mukhopadhyay SMM, Burgess-Brown NA, Delemotte L, Covarrubias M, & Dürr KL (2022). Cryo-EM structure of the human Kv3.1 channel reveals gating control by the cytoplasmic T1 domain.
Nat Commun 13 1:4087. PubMed Id: 35840580. doi:10.1038/s41467-022-29594-w. |
|||
Kv3.1 voltage-gated potassium channel, apo channel: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.65 Å
cryo-EM structure with bound modulator Lu AG00563, 3.03 Å: 7PQU |
Botte et al. (2022).
Botte M, Huber S, Bucher D, Klint JK, Rodríguez D, Tagmose L, Chami M, Cheng R, Hennig M, & Abdul Rahman W (2022). Apo and ligand-bound high resolution Cryo-EM structures of the human Kv3.1 channel reveal a novel binding site for positive modulators.
PNAS Nexus 1 3:pgac083. PubMed Id: 36741467. doi:10.1093/pnasnexus/pgac083. |
||
Kv3.1 voltage-gated potassium channel with bound modulator AUT1: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.90 Å
cryo-EM structure with bound modulator AUT5, 2.50 Å: 8QUD |
Liang et al. (2024).
Liang Q, Chi G, Cirqueira L, Zhi L, Marasco A, Pilati N, Gunthorpe MJ, Alvaro G, Large CH, Sauer DB, Treptow W, & Covarrubias M (2024). The binding and mechanism of a positive allosteric modulator of Kv3 channels.
Nat Commun 15 1:2533. PubMed Id: 38514618. doi:10.1038/s41467-024-46813-8. |
||
Kv4.2 Voltage-gated potassium Channel: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.90 Å
cryo-EM structure Kv4.2-KChIP1 complex, 3.10 Å 7F3F Kv4.2-KChIP1 complex (Octodon degus), 3.10 Å 7E84 Kv4.2-KChIP1 complex, intracellular region, 3.10 Å 7E83 Kv4.2-KChIP1 complex, transmembrane region, 3.20 Å 7E7Z Kv4.2-DPP6S complex, 4.20 Å 7E8B Kv4.2-DPP6S complex, transmembrane and intracellular region, 3.40 Å 7E87 Kv4.2-DPP6S complex, extracellular region, 4.00 Å 7E89 Kv4.2-DPP6S-KChIP1 complex, 4.50 Å 7E8H Kv4.2-DPP6S-KChIP1 complex, transmembrane and intracellular region, 3.90 Å 7E8E Kv4.2-DPP6S-KChIP1 complex, extracellular region, 4.50 Å 7E8G |
Kise et al. (2021).
Kise Y, Kasuya G, Okamoto HH, Yamanouchi D, Kobayashi K, Kusakizako T, Nishizawa T, Nakajo K, & Nureki O (2021). Structural basis of gating modulation of Kv4 channel complexes.
Nature 599 7883:158-164. PubMed Id: 34552243. doi:10.1038/s41586-021-03935-z. |
||
Kv4.2 Voltage-gated potassium Channel, in complex with KChIP2, TM region, open state: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.76 Å
cryo-EM structure inactivated state, class 1, 3.00 Å: 7UKC inactivated state, class 2, 2.88 Å: 7UKD in an intermediate state, 3.01 Å: 7UKE putative resting state, 3.02 Å:7UKF in an open state, 2.24 Å: 7UKG in an open state, intracellular region, 2.33 Å:7UKH |
Ye et al. (2022).
Ye W, Zhao H, Dai Y, Wang Y, Lo YH, Jan LY, & Lee CH (2022). Activation and closed-state inactivation mechanisms of the human voltage-gated KV4 channel complexes.
Mol Cell 82 13:2427-2442.e4. PubMed Id: 35597238. doi:10.1016/j.molcel.2022.04.032. |
||
Ma et al. (2022).
Ma D, Zhao C, Wang X, Li X, Zha Y, Zhang Y, Fu G, Liang P, Guo J, & Lai D (2022). Structural basis for the gating modulation of Kv4.3 by auxiliary subunits.
Cell Res 32 4:411-414. PubMed Id: 34997220. doi:10.1038/s41422-021-00608-4. |
|||
Eag1 (KCNH1, Kv10.1) voltage-gated K+ channel with bound calmodulin (CaM): Rattus norvegicus E Eukaryota (expressed in SF9 cells), 3.78 Å
Cryo-EM structure |
Whicher & MacKinnon (2016).
Whicher JR, & MacKinnon R (2016). Structure of the voltage-gated K+ channel Eag1 reveals an alternative voltage sensing mechanism.
Science 353 :664-669. PubMed Id: 27516594. doi:10.1126/science.aaf8070. |
||
Eag2 (KCNH5) Kv voltage-gated K+ channel, closed state 1: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.40 Å
cryo-EM structure closed state 2, 3.40 Å: 7YIE pre-open state 1, 3.50 Å: 7YIF pre-open state 2, 3.60 Å: 7YIG open state, 3.50 Å: 7YIH pore dilation but the non-conducting state, 3.80 Å: 7YIJ |
Zhang et al. (2023).
Zhang M, Shan Y, & Pei D (2023). Mechanism underlying delayed rectifying in human voltage-mediated activation Eag2 channel.
Nat Commun 14 1:1470. PubMed Id: 36928654. doi:10.1038/s41467-023-37204-6. |
||
Mandala & MacKinnon (2022).
Mandala VS, & MacKinnon R (2022). Voltage-sensor movements in the Eag Kv channel under an applied electric field.
Proc Natl Acad Sci U S A 119 46:e2214151119. PubMed Id: 36331999. doi:10.1073/pnas.2214151119. |
|||
Wang & MacKinnon (2017).
Wang W, & MacKinnon R (2017). Cryo-EM Structure of the Open Human Ether-à-go-go-Related K+ Channel hERG.
Cell 169 3:422-430.e10. PubMed Id: 28431243. doi:10.1016/j.cell.2017.03.048. |
|||
hERG voltage-dependent K+ channel, K+ bound: homo sapiens E Eukaryota (expressed in HEK293 cells), 3.90 Å
cryo-EM structure in the presence of astemizole, 3.70 Å: 7CN1 |
Asai et al. (2021).
Asai T, Adachi N, Moriya T, Oki H, Maru T, Kawasaki M, Suzuki K, Chen S, Ishii R, Yonemori K, Igaki S, Yasuda S, Ogasawara S, Senda T, & Murata T (2021). Cryo-EM Structure of K+-Bound hERG Channel Complexed with the Blocker Astemizole.
Structure 29 3:203-212.e4. PubMed Id: 33450182. doi:10.1016/j.str.2020.12.007. |
||
KvLm voltaged-gated potassium channel: C-terminal pore module: Listeria monocytogenes B Bacteria (expressed in E. coli), 3.10 Å
Shows pore in transient conformation between closed and open. Crystallized under sodium condition, 3.35 Å: 4H37 |
Santos et al. (2012).
Santos JS, Asmar-Rovira GA, Han GW, Liu W, Syeda R, Cherezov V, Baker KA, Stevens RC, & Montal M (2012). Crystal Structure of a Voltage-gated K+ Channel Pore Module in a Closed State in Lipid Membranes.
J Biol Chem 287 :43063-43070. PubMed Id: 23095758. doi:10.1074/jbc.M112.415091. |
||
MthK Potassium channel, Ca++ gated: Methanothermobacter thermautotrophicus A Archaea (expressed in E. coli), 3.3 Å
|
Jiang et al. (2002).
Jiang Y, Lee A, Chen J, Cadene M, Chait BT, MacKinnon R (2002). Crystal structure and mechanism of a calcium-gated potassium channel.
Crystal structure and mechanism.
Nature 417 :515-22. PubMed Id: 12037559. See also: Jiang et al. (2002). Jiang Y, Lee A, Chen J, Cadene M, Chait BT, MacKinnon R (2002). The open pore conformation of potassium channels.
Open pore conformation.
Nature 417 :523-6. PubMed Id: 12037560. |
||
Ye et al. (2010).
Ye S, Li Y, & Jiang Y (2010). Novel insights into K+selectivity from high-resolution structures of an open K+channel pore.
Nature Struct Molec Biol 17 :1019-1023. PubMed Id: 20676101. |
|||
MthK Potassium channel, Ca++ gated: Methanothermobacter thermautotrophicus A Archaea (expressed in E. coli), 3.40 Å
RCK domain D184N mutant, Ca2+-bound, 2.80 Å: 3RBX |
Pau et al. (2011).
Pau VP, Smith FJ, Taylor AB, Parfenova LV, Samakai E, Callaghan MM, Abarca-Heidemann K, Hart PJ, & Rothberg BS (2011). Structure and function of multiple Ca2+-binding sites in a K+ channel regulator of K+ conductance (RCK) domain.
Proc Natl Acad Sci USA 108 :17684-17689. PubMed Id: 21997217. doi:10.1073/pnas.1107229108. |
||
MthK Potassium channel gating ring with bound Ba2+: Methanothermobacter thermautotrophicus A Archaea (expressed in E. coli), 3.10 Å
|
Smith et al. (2012).
Smith FJ, Pau VP, Cingolani G, Rothberg BS (2012). Crystal Structure of a Ba2+-Bound Gating Ring Reveals Elementary Steps in RCK Domain Activation.
Structure 20 :2038-2047. PubMed Id: 23085076. doi:10.1016/j.str.2012.09.014. |
||
MthK Potassium channel pore (S68H,V77C mutant): Methanothermobacter thermautotrophicus A Archaea (expressed in E. coli), 1.65 Å
In the presence of TBSb, 1.65 Å 4HZ3 |
Posson et al. (2013).
Posson DJ, McCoy JG, & Nimigean CM (2013). The voltage-dependent gate in MthK potassium channels is located at the selectivity filter.
Nature Struc Mol Biol 20 :159-166. PubMed Id: 23262489. doi:10.1038/nsmb.2473. |
||
Smith et al. (2013).
Smith FJ, Pau VP, Cingolani G, & Rothberg BS (2013). Structural basis of allosteric interactions among Ca2+-binding sites in a K+ channel RCK domain.
Nat Commun 4 :2621. PubMed Id: 24126388. doi:10.1038/ncomms3621. |
|||
MthK Potassium channel, full length: Methanothermobacter thermautotrophicus B Bacteria (expressed in E. coli), 3.11 Å
|
Kopec et al. (2019).
Kopec W, Rothberg BS, & de Groot BL (2019). Molecular mechanism of a potassium channel gating through activation gate-selectivity filter coupling.
Nat Commun 10 1:5366. PubMed Id: 31772184. doi:10.1038/s41467-019-13227-w. |
||
MthK Potassium channel, Ca++ gated, closed state with EDTA: Methanothermobacter thermautotrophicus B Bacteria (expressed in E.coli), 3.60 Å
cryo-EM structure calcium bound, open inactivated state, 4.50 Å: 6U68 Calcium bound, open-inactivated state 2, 6.30 Å: 6U6E Calcium-bound, closed state, 3.60 Å: 6U5R Calcium-bound, gating ring state 1, 3.30 Å: 6U5P Calcium-bound, gating ring state 2, 3.20 Å: 6U5N Calcium-bound, closed state, 3.60 Å: 6U5R N-terminal truncation state 1, 6.70 Å: 6UX7 N-terminal truncation state 2 bound with calcium, 4.50 Å: 6UXA N-terminal truncation state 3 bound with calcium, 4.90 Å: 6UXB N-terminal truncation RCK domain state 1 bound with calcium, 3.50 Å: 6UWN N-terminal truncation RCK domain state 2 bound with calcium, 3.50 Å: 6UX4 |
Fan et al. (2020).
Fan C, Sukomon N, Flood E, Rheinberger J, Allen TW, & Nimigean CM (2020). Ball-and-chain inactivation in a calcium-gated potassium channel.
Nature 580 7802:288-293. PubMed Id: 32269335. doi:10.1038/s41586-020-2116-0. |
||
Boiteux et al. (2020).
Boiteux C, Posson DJ, Allen TW, & Nimigean CM (2020). Selectivity filter ion binding affinity determines inactivation in a potassium channel.
Proc Natl Acad Sci U S A 117 47:29968-29978. PubMed Id: 33154158. doi:10.1073/pnas.2009624117. |
|||
MthK Potassium channel, Ca++ gated, in nanodisc, closed form, blocker-free: Methanothermobacter thermautotrophicus A Archaea (expressed in E. coli), 3.10 Å
cryo-EM structure with bound TPeA, 3.50 Å: 5BKJ with bound bbTBA, 3.50 Å: 5BKK A90L mutant, blocker-free, 3.18 Å: 8DJB A88F mutant, with bound TPeA, 2.88 Å: 8FZ7 |
Fan et al. (2024).
Fan C, Flood E, Sukomon N, Agarwal S, Allen TW, & Nimigean CM (2024). Calcium-gated potassium channel blockade via membrane-facing fenestrations.
Nat Chem Biol 20 1:52-61. PubMed Id: 37653172. doi:10.1038/s41589-023-01406-2. |
||
Slo1 (BK) calcium-activated K+ channel: Aplysia californica E Eukaryota (expressed in Trichoplusia ni), 3.5 Å
cryo-EM structure |
Tao et al. (2017).
Tao X, Hite RK, & MacKinnon R (2017). Cryo-EM structure of the open high-conductance Ca+2-activated K+ channel.
Nature 541 :46-51. PubMed Id: 27974795. doi:10.1038/nature20608. |
||
Slo1 (BK) calcium-activated K+ channel with bound Ca2+: Aplysia californica E Eukaryota (expressed in Trichoplusia ni), 3.8 Å
cryo-EM structure |
Hite et al. (2017).
Hite RK, Tao X, & MacKinnon R (2017). Structural basis for gating the high-conductance Ca2+-activated K+ channel.
Nature 541 :52-57. PubMed Id: 27974801. doi:10.1038/nature20775. |
||
Human BK (SLO1) Channel Ca2+-activation apparatus: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.0 Å
Consists of four BK subunits organized as a ring of 8 RCK (Regulator of K+ conductance) domains. Although not a transmembrane protein, it is an important accessory structure for regulating voltage-gated potassium channels. |
Yuan et al. (2010).
Yuan P, Leonetti MD, Pico AR, Hsiung Y, & MacKinnon R (2010). Structure of the human BK channel Ca2+-activation apparatus at 3.0 A resolution.
Science 329 :182-186. PubMed Id: 20508092. |
||
Human BK (SLO1) Channel Ca2+-activation apparatus: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.1 Å
Consists of four BK subunits organized as a ring of 8 RCK (Regulator of K+ conductance) domains. Although not a transmembrane protein, it is an important accessory structure for regulating voltage-gated potassium channels. |
Wu et al. (2010).
Wu Y, Yang Y, Ye S, & Jiang Y (2010). Structure of the gating ring from the human large-conductance Ca2+-gated K(+) channel.
Nature 466 :393-397. PubMed Id: 20574420. |
||
Tao & MacKinnon (2019).
Tao X, & MacKinnon R (2019). Molecular structures of the human Slo1 K+ channel in complex with β4.
Elife 8 :e51409. PubMed Id: 31815672. doi:10.7554/eLife.51409. |
|||
Human BK (SLO1) K+ channel, L390P mutant: Homo sapiens E Eukaryota (expressed in Komagataella pastoris), 2.00 Å
|
Geng et al. (2020).
Geng Y, Deng Z, Zhang G, Budelli G, Butler A, Yuan P, Cui J, Salkoff L, & Magleby KL (2020). Coupling of Ca2+ and voltage activation in BK channels through the ?B helix/voltage sensor interface.
Proc Natl Acad Sci USA 117 25:14512-14521. PubMed Id: 32513714. doi:10.1073/pnas.1908183117. |
||
Tao et al. (2023).
Tao X, Zhao C, & MacKinnon R (2023). Membrane protein isolation and structure determination in cell-derived membrane vesicles.
Proc Natl Acad Sci U S A 120 18:e2302325120. PubMed Id: 37098056. doi:10.1073/pnas.2302325120. |
|||
BK (SLO1) Channel Ca2+ gating ring from zebra fish in the open state: Danio rerio E Eukaryota (expressed in S. frugiperda), 3.61 Å
|
Yuan et al. (2012).
Yuan P, Leonetti MD, Hsiung Y, & Mackinnon R (2012). Open structure of the Ca2+ gating ring in the high-conductance Ca2+-activated K+ channel.
Nature 481 :94-97. PubMed Id: 22139424. doi:10.1038/nature10670. |
||
Raisch et al. (2021).
Raisch T, Brockmann A, Ebbinghaus-Kintscher U, Freigang J, Gutbrod O, Kubicek J, Maertens B, Hofnagel O, & Raunser S (2021). Small molecule modulation of the Drosophila Slo channel elucidated by cryo-EM.
Nat Commun 12 1:7164. PubMed Id: 34887422. doi:10.1038/s41467-021-27435-w. |
|||
Hite et al. (2015).
Hite RK, Yuan P, Li Z, Hsuing Y, Walz T, & MacKinnon R (2015). Cryo-electron microscopy structure of the Slo2.2 Na(+)-activated K(+) channel.
Nature 527 :198-203. PubMed Id: 26436452. doi:10.1038/nature14958. |
|||
Slo2.2 Na+-activated K+ channel (complete), open conformation: Gallus gallus E Eukaryota (expressed in S. frugiperda), 3.8 Å
cryo-EM structure closed conformation, 4.3 Å: 5U76 |
Hite & MacKinnon (2017).
Hite RK, & MacKinnon R (2017). Structural Titration of Slo2.2, a Na+-Dependent K+ Channel.
Cell 168 :390-399. PubMed Id: 28111072. doi:10.1016/j.cell.2016.12.030. |
||
Slo2.2 Na+-activated K+ channel, open conformation: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.18 Å
cryo-EM structure closed confirmation, 2.95 Å: 8HKM closed confirmation, state 1, 2.64 Å: 8HK6 closed confirmation, state 2, 2.66 Å: 8HKF closed confirmation, state 3, 2.84 Å: 8HKK with bound inhibitor Compound 23, 2.90 Å: 8HKQ |
Zhang et al. (2023).
Zhang J, Liu S, Fan J, Yan R, Huang B, Zhou F, Yuan T, Gong J, Huang Z, & Jiang D (2023). Structural basis of human Slo2.2 channel gating and modulation.
Cell Rep 42 8:112858. PubMed Id: 37494189. doi:10.1016/j.celrep.2023.112858. |
||
SLO3 K+ Channel pH-sensitive Gating Ring: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.40 Å
Although not a transmembrane protein, it is an important accessory structure for regulating voltage-gated potassium channels. |
Leonetti et al. (2012).
Leonetti MD, Yuan P, Hsiung Y, & Mackinnon R (2012). Functional and structural analysis of the human SLO3 pH- and voltage-gated K+ channel.
Proc Natl Acad Sci USA 109 :19274-19279. PubMed Id: 23129643. doi:10.1073/pnas.1215078109. |
||
Lee & MacKinnon (2018).
Lee CH, & MacKinnon R (2018). Activation mechanism of a human SK-calmodulin channel complex elucidated by cryo-EM structures.
Science 360 6388:508-513. PubMed Id: 29724949. doi:10.1126/science.aas9466. |
|||
GsuK multi-ligand gated K+ channel, L97D mutant: Geobacter sulfurreducens B Bacteria (expressed in E. coli), 2.60 Å
This a multi-ligand gated channel. Both ADP and NAD+ activate the channel, whereas Ca2+ serves as an allosteric inhibitor. L97D mutant with bound ADP, 2.80 Å: 4GX1 L97D mutant with bound NAD+, 3.20 Å: 4GX2 Wild-type channel, 3.70 Å: 4GX5 RCK domain, 3.00 Å: 4GVL |
Kong et al. (2012).
Kong C, Zeng W, Ye S, Chen L, Sauer DB, Lam Y, Derebe MG, & Jiang Y (2012). Distinct gating mechanisms revealed by the structures of a multi-ligand gated K+ channel.
eLife 1 :e00184. PubMed Id: 23240087. doi:10.7554/eLife.00184. |
||
Kir2.1 Inward-Rectifier Potassium 2.1 Channel: Homo sapiens E Eukaryota (expressed in Komagataella pastoris), 4.30 Å
cryo-EM structure |
Fernandes et al. (2022).
Fernandes CAH, Zuniga D, Fagnen C, Kugler V, Scala R, Péhau-Arnaudet G, Wagner R, Perahia D, Bendahhou S, & Vénien-Bryan C (2022). Cryo-electron microscopy unveils unique structural features of the human Kir2.1 channel.
Sci Adv 8 38:eabq8489. PubMed Id: 36149965. doi:10.1126/sciadv.abq8489. |
||
Kir2.2 Inward-Rectifier Potassium Channel (Complete): Gallus gallus E Eukaryota (expressed in Pichia pastoris), 3.1 Å
|
Tao et al (2009).
Tao X, Avalos JL, Chen J, & MacKinnon R (2009). Crystal structure of the eukaryotic strong inward-rectifier K+channel Kir2.2 at 3.1 Å resolution.
Science 326 :1668-1674. PubMed Id: 20019282. |
||
Kir2.2 Inward-Rectifier Potassium Channel in complex with PIP2: Gallus gallus E Eukaryota (expressed in Pichia pastoris), 3.31 Å
In complex with dioctanoylglycerol pyrophosphate (DGPP), 2.45 Å: 3SPC I223L mutant in complex with PIP2, 3.00 Å: 3SPH I223L mutant, apo form, 3.31 Å: 3SPJ R186A mutant in complex with PIP2, 2.61 Å: 3SPG |
Hansen et al. (2011).
Hansen SB, Tao X, & Mackinnon R (2011). Structural basis of PIP2 activation of the classical inward rectifier K+ channel Kir2.2.
Nature 477 :495-498. PubMed Id: 21874019. doi:10.1038/nature10370. |
||
Kir2.2 Inward-Rectifier Potassium Channel, K62W mutant (apo form): Gallus gallus E Eukaryota (expressed in Komagataella pastoris), 2.0 Å
in complex with PIP2, 2.8 Å: 5KUM |
Lee et al. (2016).
Lee SJ, Ren F, Zangerl-Plessl EM, Heyman S, Stary-Weinzinger A, Yuan P, & Nichols CG (2016). Structural basis of control of inward rectifier Kir2 channel gating by bulk anionic phospholipids.
J Gen Physiol 148 :227-237. PubMed Id: 27527100. doi:10.1085/jgp.201611616. |
||
Kir2.2 Inward-Rectifier Potassium Channel, forced open G178D mutant: Gallus gallus E Eukaryota (expressed in Komagataella pastoris), 3.6 Å
with bound PIP2, 2.81 Å: 6M84 |
Zangerl-Plessl et al. (2020).
Zangerl-Plessl EM, Lee SJ, Maksaev G, Bernsteiner H, Ren F, Yuan P, Stary-Weinzinger A, & Nichols CG (2020). Atomistic basis of opening and conduction in mammalian inward rectifier potassium (Kir2.2) channels.
J Gen Physiol 152 1. PubMed Id: 31744859. doi:10.1085/jgp.201912422. |
||
GIRK1 (Kir3.1) cytoplasmic domain: Mus musculus E Eukaryota (expressed in E. coli), 1.8 Å
GIRK = G-Protein-Gated Inward Rectifying Potassium Channel |
Nishida & MacKinnon (2002).
Nishida M & MacKinnon R (2002). Structural basis of inward rectification: cytoplasmic pore of the G protein-gated inward rectifier GIRK1 at 1.8 Å resolution.
Cell 111 :957-65. PubMed Id: 12507423. |
||
Kir3.1-Prokaryotic Kir Chimera: Mus musculus & Burkholderia xenovornas E Eukaryota (expressed in Escherichia coli), 2.2 Å
|
Nishida et al (2007).
Nishida M, Cadene M, Chait, BT & MacKinnon R (2007). Crystal structure of a Kir3.1-prokaryotic Kir channel chimera.
EMBO J 26 :4005-4015. PubMed Id: 17703190. |
||
Kir3.1 cytoplasmic domain: Mus musculus E Eukaryota (expressed in E. coli), 2.0 Å
|
Xu et al (2009).
Xu Y, Shin HG, Szép S, & Lu Z (2009). Physical determinants of strong voltage sensitivity of K+channel block.
Nat Struct Mol Biol 16 :1252-1258. PubMed Id: 19915587. |
||
GIRK2 (Kir3.2) G-protein-gated K+ channel: Mus musculus E Eukaryota (expressed in Pichia pastoris), 3.60 Å
First complete structure of a G-protein-gated potassium-selective channel. Wild-type protein + PIP2, 3.00 Å: 3SYA D228N mutant, 3.4 Å: 3SYC R201A mutant, 3.1 Å: 3SYP R201A mutant + PIP2, 3.45 Å: 3SYQ |
Whorton & Mackinnon (2011).
Whorton MR & Mackinnon R (2011). Crystal Structure of the Mammalian GIRK2 K+ Channel and Gating Regulation by G Proteins, PIP2, and Sodium
Cell 147 :199-208. PubMed Id: 21962516. doi:10.1016/j.cell.2011.07.046. |
||
GIRK2 (Kir3.2) G-protein-gated K+ channel in complex with βγ G-protein subunits: Mus musculus E Eukaryota (expressed in Pichia pastoris ), 3.45 Å
The β and γ subunits are from homo sapiens expressed in S. frugiperda |
Whorton & MacKinnon (2013).
Whorton MR & MacKinnon R (2013). X-ray structure of the mammalian GIRK2-βγ G-protein complex.
Nature 498 :190-197. PubMed Id: 23739333. doi:10.1038/nature12241. |
||
GIRK2 (Kir3.2) G-protein-gated K+ channel, apo form: Mus musculus E Eukaryota (expressed in Komagataella pastoris), 3.90 Å
cryo-EM structure in complex with PIP2, 3.30 Å: 6XIT |
Niu et al. (2020).
Niu Y, Tao X, Touhara KK, & MacKinnon R (2020). Cryo-EM analysis of PIP2 regulation in mammalian GIRK channels.
Elife 9 :e60552. PubMed Id: 32844743. doi:10.7554/eLife.60552. |
||
KirBac1.1 Inward-Rectifier Potassium channel (closed state): Burkholderia pseudomallei B Bacteria, 3.65 Å
For re-refined structure, see 2WLL |
Kuo et al (2003).
Kuo A, Gulbis JM, Antcliff JF, Rahman T, Lowe ED, Zimmer J, Cuthbertson J, Ashcroft FM, Ezaki T, & Doyle DA (2003). Crystal structure of the potassium channel KirBac1.1 in the closed state.
Science 300 :1922-1926. PubMed Id: 12738871. |
||
KirBac3.1 Inward-Rectifier Potassium channel (semi-latched): Magnetospirillum magnetotacticum B Bacteria (expressed in E. coli), 2.60 Å
(Re-refinement of 1XL4) Latched State, 2.80 Å: 2WLK (re-refinement of 1XL6) Semi-latched State, 3.09 Å: 2WLI Semi-latched State, 4.20 Å: 2WLO Semi-latched State, 3.61 Å: 2WLM Unlatched State, 3.44 Å: 2WLN Unlatched State, 3.28 Å: 2WLH Q170A mutant (stalled), 3.10 Å: 2X6A Q170A mutant (blocked with Ba++), 3.30 Å: 2X6B Q170A mutant (conductive), 2.70 Å: 2X6C |
Clarke et al. (2010).
Clarke OB, Caputo AT, Hill AP, Vandenberg JI, Smith BJ & Gulbis JM (2010). Domain reorientation and rotation of an intracellular assembly regulate conduction in Kir potassium channels.
Cell 141 :1018-1029. PubMed Id: 20564790. |
||
KirBac3.1 Open-State Channel (S129R mutant): Magnetospirillum magnetotacticum B Bacteria (expressed in E. coli), 3.05 Å
|
Bavro et al. (2012).
Bavro VN, De Zorzi R, Schmidt MR, Muniz JR, Zubcevic L, Sansom MS, Vénien-Bryan C, & Tucker SJ (2012). Structure of a KirBac potassium channel with an open bundle crossing indicates a mechanism of channel gating.
Nature Struc Mol Biol 19 :158-163. PubMed Id: 22231399. doi:10.1038/nsmb.2208. |
||
KirBac3.1 Open-State Channel (S129R/S205L mutant): Magnetospirillum magnetotacticum B Bacteria (expressed in E. coli), 2.46 Å
|
Zubcevic et al. (2014).
Zubcevic L, Bavro VN, Muniz JR, Schmidt MR, Wang S, De Zorzi R, Venien-Bryan C, Sansom MS, Nichols CG, & Tucker SJ (2014). Control of KirBac3.1 potassium channel gating at the interface between cytoplasmic domains.
J Biol Chem 289 :143-151. PubMed Id: 24257749. doi:10.1074/jbc.M113.501833 . |
||
Black et al. (2020).
Black KA, He S, Jin R, Miller DM, Bolla JR, Clarke OB, Johnson P, Windley M, Burns CJ, Hill AP, Laver D, Robinson CV, Smith BJ, & Gulbis JM (2020). A constricted opening in Kir channels does not impede potassium conduction.
Nat Commun 11 1:3024. PubMed Id: 32541684. doi:10.1038/s41467-020-16842-0. |
|||
KirBac3.1 Inward-Rectifier Potassium channel, C71S C262S mutant: Magnetospirillum magnetotacticum B Bacteria (expressed in E. coli), 2.40 Å
L124M mutant, 2.72 Å 7N9K |
Jin et al. (2022).
Jin R, He S, Black KA, Clarke OB, Wu D, Bolla JR, Johnson P, Periasamy A, Wardak A, Czabotar P, Colman PM, Robinson CV, Laver D, Smith BJ, & Gulbis JM (2022). Ion currents through Kir potassium channels are gated by anionic lipids.
Nat Commun 13 1:490. PubMed Id: 35079013. doi:10.1038/s41467-022-28148-4. |
||
KirBac3.1 Inward-Rectifier Potassium channel, W46R mutant: Magnetospirillum magnetotacticum B Bacteria (expressed in E. coli), 2.80 Å
|
Fagnen et al. (2021).
Fagnen C, Bannwarth L, Oubella I, Zuniga D, Haouz A, Forest E, Scala R, Bendahhou S, De Zorzi R, Perahia D, & Vénien-Bryan C (2021). Integrative Study of the Structural and Dynamical Properties of a KirBac3.1 Mutant: Functional Implication of a Highly Conserved Tryptophan in the Transmembrane Domain.
Int J Mol Sci 23 1:335. PubMed Id: 35008764. doi:10.3390/ijms23010335. |
||
SUR1/Kir6.2 pancreatic ATP-sensitive K+ channel: Cricetus cricetus/Rattus norvegicus E Eukaryota (expressed in HEK293 cells), 6.3 Å
cryo-EM strucuture. Chimeric protein, SUR1 is from hamster (C. cricetus) and Kir6.2 from rat. |
Martin et al. (2017).
Martin GM, Yoshioka C, Rex EA, Fay JF, Xie Q, Whorton MR, Chen JZ, & Shyng SL (2017). Cryo-EM structure of the ATP-sensitive potassium channel illuminates mechanisms of assembly and gating.
Elife 6 :e2419. PubMed Id: 28092267. doi:10.7554/eLife.24149. |
||
SUR1/Kir6.2 pancreatic ATP-sensitive K+ channel: C. cricetus/Rattus norvegicus E Eukaryota (expressed in INS-1 insulinoma cells), 3.63 Å
cryo-EM structure. Reveals ATP binding site. |
Martin et al. (2017).
Martin GM, Kandasamy B, DiMaio F, Yoshioka C, & Shyng SL (2017). Anti-diabetic drug binding site in a mammalian KATP channel revealed by Cryo-EM.
Elife 6 :e31054. PubMed Id: 29035201. doi:10.7554/eLife.31054. |
||
SUR1/Kir6.2 pancreatic ATP-sensitive K+ channel, SUR1 bound to ATP and repaglinide: Cricetus cricetus/Rattus norvegicus E Eukaryota (expressed in HEK293 cells), 3.65 Å
cryo-EM structure SUR1 bound to ATP and glibenclamide, 3.74 Å: 6PZA SUR1 bound to carbamazepine, 4.34 Å: 6PZC SUR1 bound to ATP only, 4.5 Å: 6PZI |
Martin et al. (2019).
Martin GM, Sung MW, Yang Z, Innes LM, Kandasamy B, David LL, Yoshioka C, & Shyng SL (2019). Mechanism of pharmacochaperoning in a mammalian KATP channel revealed by cryo-EM.
Elife 8 :e46417. PubMed Id: 31343405. doi:10.7554/eLife.46417. |
||
SUR1/Kir6.2 pancreatic ATP-sensitive K+ channel, bound to ATP and repaglinide with Kir6.2-CTD in the up conformation: Cricetus cricetus/Rattus norvegicus E Eukaryota (expressed in Rattus norvegicus), 3.41 Å
cryo-EM structure in the down conformation, 3.60 Å: 7TYT bound to ATP and repaglinide with SUR1-in conformation, 3.90 Å: 7U1Q bound to ATP and repaglinide with SUR1-out conformation, 3.80 Å: 7U1S in the presence of glibenclamide and ATP with Kir6.2-CTD in the down conformation, 7.40 Å: 7U6Y in the presence of carbamazepine and ATP with Kir6.2-CTD in the up conformation, 5.20 Å: 7U7M in the presence of carbamazepine and ATP with Kir6.2-CTD in the down conformation, 4.10 Å: 7U2X in the ATP-bound state with Kir6.2-CTD in the up conformation, 5.70 Å: 7UAA bound to ATP with Kir6.2-CTD in the down conformation, 4.52 Å: 7U1E |
Sung et al. (2022).
Sung MW, Driggers CM, Mostofian B, Russo JD, Patton BL, Zuckerman DM, & Shyng SL (2022). Ligand-mediated Structural Dynamics of a Mammalian Pancreatic KATP Channel.
J Mol Biol 434 19:e167789. PubMed Id: 35964676. doi:10.1016/j.jmb.2022.167789. |
||
SUR1/Kir6.2 pancreatic ATP-sensitive K+ channel, Q52R mutant, with bound PIP2, open conformation, NBD2 modeled: Mesocricetus auratus/Rattus norvegicus E Eukaryota (expressed in C. aethiops), 3.28 Å
cryo-EM structure NBD2 not modeled, 2.90 Å: 8TI1 |
Driggers et al. (2024).
Driggers CM, Kuo YY, Zhu P, ElSheikh A, & Shyng SL (2024). Structure of an open KATP channel reveals tandem PIP2 binding sites mediating the Kir6.2 and SUR1 regulatory interface.
Nat Commun 15 1:2502. PubMed Id: 38509107. doi:10.1038/s41467-024-46751-5. |
||
SUR1/Kir6.2 pancreatic ATP-sensitive K+ channel: Mesocricetus auratus/Mus musculus E Eukaryota (expressed in HEK293 cells), 5.6 Å
cryo-EM structure Chimeric protein, SUR1 is from golden hamster (M. auratus) and Kir6.2 from mouse (M. musculus). |
Li et al. (2017).
Li N, Wu JX, Ding D, Cheng J, Gao N, & Chen L (2017). Structure of a Pancreatic ATP-Sensitive Potassium Channel.
Cell 168 :101-110.e10. PubMed Id: 28086082. doi:10.1016/j.cell.2016.12.028. |
||
SUR1/Kir6.2 pancreatic ATP-sensitive K+ channel with bound bound with ATPγS: Mesocricetus auratus/Mus musculus E Eukaryota (expressed in HEK293 cells), 4.4 Å
cryo-EM structure with bound glibenclamide and ATPγS (focused refinement on TM) 4.11 Å: 5YKE 3D class1, 4.33 Å: 5YKF 3D class 2, 4.57 Å: 5YKG focused refinement on SUR1, 4.4 Å: 5YW7 with bound ATPγS, 5 Å: 5YW9 bound with ATPγS (CTD class 2), 6.1 Å: 5YWA with bound with Mg-ADP (CTD class1), 4.3 Å: 5YWC with Mg-ADP (CTD class2), 5.2 Å: 5YWB with Mg-ADP (focused refinement of SUR1), 4.22 Å: 5YWD |
Wu et al. (2018).
Wu JX, Ding D, Wang M, Kang Y, Zeng X, & Chen L (2018). Ligand binding and conformational changes of SUR1 subunit in pancreatic ATP-sensitive potassium channels.
Protein Cell 9 6:553-567. PubMed Id: 29594720. doi:10.1007/s13238-018-0530-y. |
||
SUR1/Kir6.2 pancreatic ATP-sensitive K+ channel with bound repaglinide: Mesocricetus auratus/Mus musculus E Eukaryota (expressed in HEK293 cells), 3.3 Å
cryo-EM structure Chimeric protein, SUR1 is from golden hamster (M. auratus) and Kir6.2 from mouse (M. musculus) SUR1 TM region, 3.5 Å: 6JB3 |
Ding et al. (2019).
Ding D, Wang M, Wu JX, Kang Y, & Chen L (2019). The Structural Basis for the Binding of Repaglinide to the Pancreatic KATP Channel.
Cell Rep 27 6:1848-1857.e4. PubMed Id: 31067468. doi:10.1016/j.celrep.2019.04.050. |
||
SUR1/Kir6.2 pancreatic ATP-sensitive K+ channel H175K mutant, pre-open state: Mesocricetus auratus/Mus musculus E Eukaryota (expressed in HEK293 cells), 2.96 Å
cryo-EM structure closed state, 3.19 Å 7W4P |
Wang et al. (2022).
Wang M, Wu JX, Ding D, & Chen L (2022). Structural insights into the mechanism of pancreatic KATP channel regulation by nucleotides.
Nat Commun 13 1:2770. PubMed Id: 35589716. doi:10.1038/s41467-022-30430-4. |
||
SUR1/Kir6.2 pancreatic ATP-sensitive K+ channel, bound to ATP and ADP in quatrefoil form: Homo sapiens E Eukaryota (expressed in HEK293S cells), 3.9 Å
cryo-EM structure bound to ATP and ADP in propeller form, 5.6 Å: 6C3P |
Lee et al. (2017).
Lee KPK, Chen J, & MacKinnon R (2017). Molecular structure of human KATP in complex with ATP and ADP.
Elife 6 :e32481. PubMed Id: 29286281. doi:10.7554/eLife.32481. |
||
KATP channel in open conformation, focused on Kir (C166S G334D double mutant) and SUR TMD0: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.10 Å
cryo-EM structure open conformation, focused on SUR, 3.30 Å 7S5V open conformation, focused on Kir and one SUR, position 1, 3.70 Å 7S5X open conformation, focused on Kir and one SUR, position 2, 3.90 Å 7S5Y open conformation, focused on Kir and one SUR, position 3, 3.90 Å 7S5Z open conformation, focused on Kir and one SUR, position 4, 3.70 Å 7S60 open conformation, focused on Kir and one SUR, position 5, 4.00 Å 7S61 |
Zhao & MacKinnon (2021).
Zhao C, & MacKinnon R (2021). Molecular structure of an open human KATP channel.
Proc Natl Acad Sci U S A 118 48:e2112267118. PubMed Id: 34815345. doi:10.1073/pnas.2112267118. |
||
NaK channel (Na+complex): Bacillus cereus B Bacteria (expressed in E. coli), 2.4 Å
K+ complex, 2.8 Å: 2AHZ. |
Shi et al. (2006).
Shi N, Ye S, Alam A, Chen L, & Jiang Y (2006). Atomic structure of a Na+- and K+-conducting channel.
Nature 440 :570-574. PubMed Id: 16467789. |
||
Alam et al. (2007).
Alam A, Shi N, & Jiang Y (2007). Structural insight into Ca2+ specificity in tetrameric cation channels.
Proc Natl Acad Sci USA 104 :15334-15339. PubMed Id: 17878296. |
|||
NaK channel in open state (NΔ19 mutant): Bacillus cereus B Bacteria (expressed in E. coli), 1.60 Å
|
Alam & Jiang (2009).
Alam A & Jiang Y (2009). High-resolution structure of the open NaK channel.
Nat Struct Mol Biol 16 :30-34. PubMed Id: 19098917. |
||
CNG-mimicking NaK channel mutant; NaK-ETPP/K+ complex: Bacillus cereus B Bacteria (expressed in E. coli), 1.95 Å
CNG-mimicking mutant; NaK-NTPP/K+ complex, 1.58 Å: 3K06 CNG-mimicking mutant; NaK-ETPP/Na+ complex, 1.95 Å: 3K0G CNG-mimicking mutant; NaK-DTPP/Na+ complex, 1.58 Å: 3K04 CNG-mimicking mutant; NaK-NTPP/Na+ complex, 1.62 Å: 3K08 |
Derebe et al. (2011).
Derebe MG, Zeng W, Li Y, Alam A, & Jiang Y (2011). Structural studies of ion permeation and Ca2+blockage of a bacterial channel mimicking the cyclic nucleotide-gated channel pore.
Proc Natl Acad Sci USA 108 :592-597. PubMed Id: 21187429. |
||
Derebe et al. (2011).
Derebe MG, Sauer DB, Zeng W, Alam A, Shi N, & Jiang Y (2011). Tuning the ion selectivity of tetrameric cation channels by changing the number of ion binding sites.
Proc Natl Acad Sci USA 108 :598-602. PubMed Id: 21187421. |
|||
Sauer et al. (2011).
Sauer DB, Zeng W, Raghunathan S, & Jiang Y (2011). Protein interactions central to stabilizing the K+ channel selectivity filter in a four-sited configuration for selective K+ permeation.
Proc Natl Acad Sci USA 108 :16634-16639. PubMed Id: 21933962. doi:10.1073/pnas.1111688108. |
|||
NaK channel: Bacillus cereus B Bacteria (expressed in E. coli), 1.53 Å
|
Roy et al. (2021).
Roy RN, Hendriks K, Kopec W, Abdolvand S, Weiss KL, de Groot BL, Lange A, Sun H, & Coates L (2021). Structural plasticity of the selectivity filter in a nonselective ion channel.
IUCrJ 8 :421-430. PubMed Id: 33953928. doi:10.1107/S205225252100213X. |
||
NaK channel chimera with grafted C-terminal region of a NaV channel: Bacillus weihenstephanensis (NaK) and Sulfitobacter pontiacus (NaV) B Bacteria (expressed in E. coli), 3.20 Å
The NaVSulP C-terminal region grafted onto the C-terminus of NaK forms a four-helix bundle. |
Irie et al. (2012).
Irie K, Shimomura T, & Fujiyoshi Y (2012). The C-terminal helical bundle of the tetrameric prokaryotic sodium channel accelerates the inactivation rate.
Nature Commun 3 :793. PubMed Id: 22531178. doi:10.1038/ncomms1797. |
||
Payandeh et al. (2011).
Payandeh J, Scheuer T, Zheng N, & Catterall WA (2011). The crystal structure of a voltage-gated sodium channel.
Nature 475 :353-358. PubMed Id: 21743477. doi:10.1038/nature10238. |
|||
Voltage-Gated Sodium Channel (NaV), wild-type: Arcobacter butzleri B Bacteria (expressed in Trichoplusia ni), 3.21 Å
Shows channel in two potentially inactivated states. |
Payandeh et al. (2012).
Payandeh J, Gamal El-Din TM, Scheuer T, Zheng N, & Catterall WA (2012). Crystal structure of a voltage-gated sodium channel in two potentially inactivated states.
Nature 486 :135-139. PubMed Id: 22678296. doi:10.1038/nature11077. |
||
Voltage-Gated Sodium Channel (NaV) in closed state (NaVAb/FY): Arcobacter butzleri B Bacteria (expressed in Trichoplusia ni), 3.2 Å
in open state (NaVAb/1-226), 2.85 Å: 5VB8 |
Lenaeus et al. (2017).
Lenaeus MJ, Gamal El-Din TM, Ing C, Ramanadane K, Pomès R, Zheng N, & Catterall WA (2017). Structures of closed and open states of a voltage-gated sodium channel.
Proc Natl Acad Sci USA 114 :E3051-E3060. PubMed Id: 28348242. doi:10.1073/pnas.1700761114. |
||
Jiang et al. (2018).
Jiang D, Gamal El-Din TM, Ing C, Lu P, Pomès R, Zheng N, & Catterall WA (2018). Structural basis for gating pore current in periodic paralysis.
Nature 557 7706:590-594. PubMed Id: 29769724. doi:10.1038/s41586-018-0120-4. |
|||
Gamal El-Din et al. (2019).
Gamal El-Din TM, Lenaeus MJ, Ramanadane K, Zheng N, & Catterall WA (2019). Molecular dissection of multiphase inactivation of the bacterial sodium channel NaVAb.
J Gen Physiol 151 2:174-185. PubMed Id: 30510035. doi:10.1085/jgp.201711884. |
|||
Gamal El-Din et al. (2018).
Gamal El-Din TM, Lenaeus MJ, Zheng N, & Catterall WA (2018). Fenestrations control resting-state block of a voltage-gated sodium channel.
Proc Natl Acad Sci USA 115 51:13111-13116. PubMed Id: 30518562. doi:10.1073/pnas.1814928115. |
|||
Voltage-Gated Sodium Channel (NaV), G94C/Q150C mutant in the activated state: Arcobacter butzleri B Bacteria (expressed in Trichoplusia ni)), 2.75 Å
V100C/Q150C disulfide cross-linked mutant in the activated state, 2.89 Å: 6P6Y N49K/L109A/M116V/G94C/Q150C disulfide cross-linked mutant in the resting state, 4 Å: 6P6W |
Wisedchaisri et al. (2019).
Wisedchaisri G, Tonggu L, McCord E, Gamal El-Din TM, Wang L, Zheng N, & Catterall WA (2019). Resting-State Structure and Gating Mechanism of a Voltage-Gated Sodium Channel.
Cell 178 4:993-1003.e12. PubMed Id: 31353218. doi:10.1016/j.cell.2019.06.031. |
||
Nax channel in complex with β3 subunit in nanodisc: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.20 Å
cryo-EM structure in glyco-diosgenin (GDN), 2.90 Å |
Noland et al. (2022).
Noland CL, Chua HC, Kschonsak M, Heusser SA, Braun N, Chang T, Tam C, Tang J, Arthur CP, Ciferri C, Pless SA, & Payandeh J (2022). Structure-guided unlocking of NaX reveals a non-selective tetrodotoxin-sensitive cation channel.
Nat Commun 13 1:1416. PubMed Id: 35301303. doi:10.1038/s41467-022-28984-4. |
||
Gao et al. (2020).
Gao S, Valinsky WC, On NC, Houlihan PR, Qu Q, Liu L, Pan X, Clapham DE, & Yan N (2020). Employing NaChBac for cryo-EM analysis of toxin action on voltage-gated Na+ channels in nanodisc.
Proc Natl Acad Sci USA 117 25:14187-14193. PubMed Id: 32513729. doi:10.1073/pnas.1922903117. |
|||
Voltage-Gated Sodium Channel (NaV): Alpha proteobacterium himb114 (Rickettsiales sp. HIMB114) B Bacteria (expressed in E. coli), 3.05 Å
Structure is probably of the channel in an inactivated state. |
Zhang et al. (2012).
Zhang X, Ren W, DeCaen P, Yan C, Tao X, Tang L, Wang J, Hasegawa K, Kumasaka T, He J, Wang J, Clapham DE, & Yan N (2012). Crystal structure of an orthologue of the NaChBac voltage-gated sodium channel.
Nature 486 :130-134. PubMed Id: 22678295. |
||
Voltage-Gated Sodium Channel (NaV): Magnetococcus marinus B Bacteria (expressed in E. coli), 3.49 Å
Shows channel in an open conformation. |
McCusker et al. (2012).
McCusker EC, Bagnéris C, Naylor CE, Cole AR, D'Avanzo N, Nichols CG, & Wallace BA (2012). Structure of a bacterial voltage-gated sodium channel pore reveals mechanisms of opening and closing.
Nat Commun 3 :1102. PubMed Id: 23033078. doi:10.1038/ncomms2077. |
||
Voltage-Gated Sodium Channel (NaV), complete structure with C-terminal domain: Magnetococcus marinus B Bacteria (expressed in E. coli), 2.92 Å
|
Bagnéris et al. (2013).
Bagnéris C, Decaen PG, Hall BA, Naylor CE, Clapham DE, Kay CW, & Wallace BA (2013). Role of the C-terminal domain in the structure and function of tetrameric sodium channels.
Nat Commun 4 :2465. PubMed Id: 24051986. doi:10.1038/ncomms3465. |
||
Voltage-Gated Sodium Channel (NaV), apo open form: Magnetococcus marinus B Bacteria (expressed in E. coli), 2.66 Å
Wild-type with Pl1 blocker by soaking crystal, 2.89 Å: 4P9O Wild-type with Pl1 blocker co-crystallized, 3.43 Å: 4PA9 T207A/F214A apo mutant, 3.08 Å: 4P2Z T207A/F214A mutant with bound Pl1, 3.31 Å: 4P30 Wild-type with bound Pl2 blocker, 2.80 Å: 4OXS Wild-type with bound Pl3 blocker, 3.25 Å: 4PA3 Wild-type with bound Pl4 blocker, 3.02 Å: 4PA4 Wild-type with bound Pl5 blocker, 2.91 Å: 4P9P Wild-type with bound Pl6 blocker, 3.36 Å: 4PA6 Wild-type with bound Pl7 blocker, 3.02 Å: 4PA7 |
Bagnéris et al. (2014).
Bagnéris C, DeCaen PG, Naylor CE, Pryde DC, Nobeli I, Clapham DE, & Wallace BA (2014). Prokaryotic NavMs channel as a structural and functional model for eukaryotic sodium channel antagonism.
Proc Natl Acad Sci USA 111 :8428-8433. PubMed Id: 24850863. doi:10.1073/pnas.1406855111. |
||
Voltage-Gated Sodium Channel (NaV) channel pore and C-terminal domain: Magnetococcus marinus B Bacteria (expressed in E. coli), 2.7 Å
E178D selectivity-filter mutant, 3.5 Å: 4X88 |
Naylor et al. (2016).
Naylor CE, Bagnéris C, DeCaen PG, Sula A, Scaglione A, Clapham DE, & Wallace BA (2016). Molecular basis of ion permeability in a voltage-gated sodium channel.
EMBO J 35 :820-830. PubMed Id: 26873592. doi:10.15252/embj.201593285. |
||
Voltage-Gated Sodium Channel (NaV), full length in activated open state: Magnetococcus marinus B Bacteria (expressed in E. coli), 2.45 Å
I218C mutant in open form, 2.6 Å: 5HVD |
Sula et al. (2017).
Sula A, Booker J, Ng LC, Naylor CE, DeCaen PG, & Wallace BA (2017). The complete structure of an activated open sodium channel.
Nat Commun 8 . PubMed Id: 28205548. doi:10.1038/ncomms14205. |
||
Voltage-Gated Sodium Channel (NaV) full length F208L mutant open-form: Magnetococcus marinus B Bacteria (expressed in E. coli), 2.20 Å
in complex with 4-hydroxytamoxifen, 2.40 Å: 6SXG F208L mutant in complex with 4-hydroxytamoxifen, 2.50 Å: 6SXC F208L mutant in complex with Endoxifen, 2.60 Å: 6SXE F208L mutant in complex with N-desmethyltamoxifen, 3.20 Å: 6Z8C F208L mutant alone, 2.50 Å: 6SX7 |
Sula et al. (2021).
Sula A, Hollingworth D, Ng LCT, Larmore M, DeCaen PG, & Wallace BA (2021). A tamoxifen receptor within a voltage-gated sodium channel.
Mol Cell 81 6:1160-1169.e5. PubMed Id: 33503406. doi:10.1016/j.molcel.2020.12.048. |
||
FPC1 cockroach voltage-gated sodium channel (NaVPaS): Periplaneta americana E Eukaryota (expressed in HEK293F), 3.8 Å
cryo-EM structure |
Shen et al. (2017).
Shen H, Zhou Q, Pan X, Li Z, Wu J, & Yan N (2017). Structure of a eukaryotic voltage-gated sodium channel at near-atomic resolution.
Science 355 :924. PubMed Id: 28183995. doi:10.1126/science.aal4326. Article summary. See Electronic Pub Id (doi) for full article |
||
Shen et al. (2018).
Shen H, Li Z, Jiang Y, Pan X, Wu J, Cristofori-Armstrong B, Smith JJ, Chin YKY, Lei J, Zhou Q, King GF, & Yan N (2018). Structural basis for the modulation of voltage-gated sodium channels by animal toxins.
Science 362 6412:eaau2596. PubMed Id: 30049784. doi:10.1126/science.aau2596. |
|||
Voltage-Gated Sodium Channel (NaV), human/cockroach chimera: Homo sapiens/Periplaneta americana E Eukaryota (expressed in HEK293 cells), 3.4 Å
cryo-EM structure with bound alpha-scorpion toxin AaH2, 3.5 Å: 6NT4 |
Clairfeuille et al. (2019).
Clairfeuille T, Cloake A, Infield DT, Llongueras JP, Arthur CP, Li ZR, Jian Y, Martin-Eauclaire MF, Bougis PE, Ciferri C, Ahern CA, Bosmans F, Hackos DH, Rohou A, & Payandeh J (2019). Structural basis of α-scorpion toxin action on Nav channels.
Science 363 6433. PubMed Id: 30733386. doi:10.1126/science.aav8573. |
||
Nav1.1-β4 complex: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.30 Å
cryo-EM structure |
Pan et al. (2021).
Pan X, Li Z, Jin X, Zhao Y, Huang G, Huang X, Shen Z, Cao Y, Dong M, Lei J, & Yan N (2021). Comparative structural analysis of human Nav1.1 and Nav1.5 reveals mutational hotspots for sodium channelopathies.
Proc Natl Acad Sci U S A 118 11:e2100066118. PubMed Id: 33712547. doi:10.1073/pnas.2100066118. |
||
NaV1.2-β2 complex with bound μ-conotoxin KIIIA: Homo sapiens/Conus kinoshitai E Eukaryota (expressed in HEK293 cells), 3 Å
cryo-EM structure |
Pan et al. (2019).
Pan X, Li Z, Huang X, Huang G, Gao S, Shen H, Liu L, Lei J, & Yan N (2019). Molecular basis for pore blockade of human Na+ channel NaV1.2 by the μ-conotoxin KIIIA.
Science 363 6433:1309-1313. PubMed Id: 30765605. doi:10.1126/science.aaw2999. |
||
NaV1.3-β1-β2 complex with bound antagonist ICA121431: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.35 Å
cryo-EM structure with bound bulleyaconitineA, 3.30 Å 7W77 |
Li et al. (2022).
Li X, Xu F, Xu H, Zhang S, Gao Y, Zhang H, Dong Y, Zheng Y, Yang B, Sun J, Zhang XC, Zhao Y, & Jiang D (2022). Structural basis for modulation of human NaV1.3 by clinical drug and selective antagonist.
Nat Commun 13 1:1286. PubMed Id: 35277491. doi:10.1038/s41467-022-28808-5. |
||
NaV1.4-β1 complex: Electrophorus electricus E Eukaryota, 4.0 Å
cryo-EM structure |
Yan et al. (2017).
Yan Z, Zhou Q, Wang L, Wu J, Zhao Y, Huang G, Peng W, Shen H, Lei J, & Yan N (2017). Structure of the Nav1.4-β1 Complex from Electric Eel.
Cell 170 :470-482.e11. PubMed Id: 28735751. doi:10.1016/j.cell.2017.06.039. |
||
NaV1.4-β1 complex: Homo sapiens E Eukaryota (expressed in sf9 cells), 3.2 Å
cryo-EM structure |
Pan et al. (2018).
Pan X, Li Z, Zhou Q, Shen H, Wu K, Huang X, Chen J, Zhang J, Zhu X, Lei J, Xiong W, Gong H, Xiao B, & Yan N (2018). Structure of the human voltage-gated sodium channel Nav1.4 in complex with β1.
Science 362 6412:eaau2486. PubMed Id: 30190309. doi:10.1126/science.aau2486. |
||
NaV1.4 C-Terminal domain in complex with apo rat calmodulin: Homo sapiens E Eukaryota (expressed in E. coli), 1.80 Å
C-Terminal (1599-1754) domain in complex with calcium-bound calmodulin, 3.3 Å: 6MC9 |
Yoder et al. (2019).
Yoder JB, Ben-Johny M, Farinelli F, Srinivasan L, Shoemaker SR, Tomaselli GF, Gabelli SB, & Amzel LM (2019). Ca2+-dependent regulation of sodium channels NaV1.4 and NaV1.5 is controlled by the post-IQ motif.
Nat Commun 10 1. PubMed Id: 30944319. doi:10.1038/s41467-019-09570-7. |
||
NaV1.5 cardiac sodium channel: Rattus norvegicus E Eukaryota (expressed in HEK293 cells), 3.5 Å
cryo-EM structure with bound flecainide, 3.24 Å: 6UZ0 |
Jiang et al. (2020).
Jiang D, Shi H, Tonggu L, Gamal El-Din TM, Lenaeus MJ, Zhao Y, Yoshioka C, Zheng N, & Catterall WA (2020). Structure of the Cardiac Sodium Channel.
Cell 180 1:122-134.e10. PubMed Id: 31866066. doi:10.1016/j.cell.2019.11.041. |
||
NaV1.5 cardiac sodium channel with bound α-toxin LqhIII from deathstalker scorpion: Rattus norvegicus E Eukaryota (expressed in HEK293 cells), 3.30 Å
cryo-EM structure |
Jiang et al. (2021).
Jiang D, Tonggu L, Gamal El-Din TM, Banh R, Pomès R, Zheng N, & Catterall WA (2021). Structural basis for voltage-sensor trapping of the cardiac sodium channel by a deathstalker scorpion toxin.
Nat Commun 12 1. PubMed Id: 33397917. doi:10.1038/s41467-020-20078-3. |
||
NaV1.5 cardiac sodium channel, open state: Rattus norvegicus E Eukaryota (expressed in Mammalian 1 orthobornavirus), 3.40 Å
cryo-EM structure |
Jiang et al. (2021).
Jiang D, Banh R, Gamal El-Din TM, Tonggu L, Lenaeus MJ, Pomès R, Zheng N, & Catterall WA (2021). Open-state structure and pore gating mechanism of the cardiac sodium channel.
Cell 184 20:5151-5162.e11. PubMed Id: 34520724. doi:10.1016/j.cell.2021.08.021. |
||
NaV1.5 cardiac sodium channel, E1784K mutant: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.30 Å
cryo-EM structure |
Li et al. (2021).
Li Z, Jin X, Wu T, Zhao X, Wang W, Lei J, Pan X, & Yan N (2021). Structure of human Nav1.5 reveals the fast inactivation-related segments as a mutational hotspot for the long QT syndrome.
Proc Natl Acad Sci U S A 118 11:e2100069118. PubMed Id: 33712541. doi:10.1073/pnas.2100069118. |
||
NaV1.6 with β1 and β2 subunits, apo state: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.40 Å
cryo-EM structure with β1 and β2-4 subunits in complex with 9-anhydro-tetrodotoxin, 3.30 Å: 8GZ2 |
Li et al. (2023).
Li Y, Yuan T, Huang B, Zhou F, Peng C, Li X, Qiu Y, Yang B, Zhao Y, Huang Z, & Jiang D (2023). Structure of human NaV1.6 channel reveals Na+ selectivity and pore blockade by 4,9-anhydro-tetrodotoxin.
Nat Commun 14 1:1030. PubMed Id: 36823201. doi:10.1038/s41467-023-36766-9. |
||
NaV1.6 voltage-gated sodium channel: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.10 Å
cryo-EM structure |
Fan et al. (2023).
Fan X, Huang J, Jin X, & Yan N (2023). Cryo-EM structure of human voltage-gated sodium channel Nav1.6.
Proc Natl Acad Sci U S A 120 5:e2220578120. PubMed Id: 36696443. doi:10.1073/pnas.2220578120. |
||
NaV1.7 VSD4 voltage dependent sodium channel: Homo sapiens E Eukaryota (expressed in Trichoplusia ni), 3.5 Å
Chimera: Portions of NaV1.7 on to the bacterial (Arcobacter butzleri) channel NaV |
Ahuja et al. (2015).
Ahuja S, Mukund S, Deng L, Khakh K, Chang E, Ho H, Shriver S, Young C, Lin S, Johnson JP Jr, Wu P, Li J, Coons M, Tam C, Brillantes B, Sampang H, Mortara K, Bowman KK, Clark KR, Estevez A, Xie Z, Verschoof H, Grimwood M, Dehnhardt C, Andrez JC, Focken T, Sutherlin DP, Safina BS, Starovasnik MA, Ortwine DF, Franke Y, Cohen CJ, Hackos DH, Koth CM, & Payandeh J (2015). Structural basis of Nav1.7 inhibition by an isoform-selective small-molecule antagonist.
Science 350 6267:1491. PubMed Id: 26680203. doi:10.1126/science.aac5464. |
||
NaV1.7 sodium channel voltage-sensor domain with bound ProTx2: Homo sapiens E Eukaryota (expressed in Trichoplusia ni), 3.54 Å
crystallographic structure. ProTx2 is from Thrixopelma pruriens Cryo-EM structures: Nav1.7 VSD2 (deactivated state) in complex with ProTx2, 4.2 Å:6N4R Nav1.7 VSD2 (activated state) in complex with ProTx2, 3.6 Å: 6N4Q |
Xu et al. (2019).
Xu H, Li T, Rohou A, Arthur CP, Tzakoniati F, Wong E, Estevez A, Kugel C, Franke Y, Chen J, Ciferri C, Hackos DH, Koth CM, & Payandeh J (2019). Structural Basis of Nav1.7 Inhibition by a Gating-Modifier Spider Toxin.
Cell 176 4:702-715.e14. PubMed Id: 30661758. doi:10.1016/j.cell.2018.12.018. |
||
NaV1.7 with β1β2 subunits in complex with huwentoxin-IV and saxitoxin (Y1755 up): Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.2 Å
cryo-EM structure in complex with huwentoxin-IV and saxitoxin (Y1755 down), 3.2 Å: 6J8H in complex with ProTx-II and tetrodotoxin (Y1755 up), 3.2 Å: 6J8I in complex with ProTx-II and tetrodotoxin (Y1755 down), 3.2 Å: 6J8J |
Shen et al. (2019).
Shen H, Liu D, Wu K, Lei J, & Yan N (2019). Structures of human NaV1.7 channel in complex with auxiliary subunits and animal toxins.
Science 363 6433:1303-1308. PubMed Id: 30765606. doi:10.1126/science.aaw2493. |
||
NaV1.7/NaVAb chimera-VS2A chimera trapped in the resting state by tarantula toxin: Homo sapiens/Arcobacter butzleri E Eukaryota (expressed in Trichoplusia ni), 3.60 Å
cryo-EM structure |
Wisedchaisri et al. (2021).
Wisedchaisri G, Tonggu L, Gamal El-Din TM, McCord E, Zheng N, & Catterall WA (2021). Structural Basis for High-Affinity Trapping of the NaV1.7 Channel in Its Resting State by Tarantula Toxin.
Mol Cell 81 1:38-48.e4. PubMed Id: 33232657. doi:10.1016/j.molcel.2020.10.039. |
||
Zhang et al. (2022).
Zhang J, Shi Y, Huang Z, Li Y, Yang B, Gong J, & Jiang D (2022). Structural basis for NaV1.7 inhibition by pore blockers.
Nat Struct Mol Biol 29 12:1208-1216. PubMed Id: 36424527. doi:10.1038/s41594-022-00860-1. |
|||
Nav1.7 voltage-gated sodium channel, with bound CBD: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.80 Å
cryo-EM structure |
Huang et al. (2023).
Huang J, Fan X, Jin X, Jo S, Zhang HB, Fujita A, Bean BP, & Yan N (2023). Cannabidiol inhibits Nav channels through two distinct binding sites.
Nat Commun 14 1:3613. PubMed Id: 37330538. doi:10.1038/s41467-023-39307-6. |
||
NaV1.7 VSD4 voltage dependent sodium channel with bound bupivacaine: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.70 Å
cryo-EM structure with bound PF-05089771, 2.70 Å: 8I5G with bound vinpocetine, 2.90 Å: 8I5X with bound vixotrigine, 2.60 Å: 8I5Y with bound hardwickiic acid, 3.00 Å: 8J4F with bound lacosamide, 2.90 Å: 8S9B with bound carbamazepine, 3.20 Å: 8S9C |
Wu et al. (2023).
Wu Q, Huang J, Fan X, Wang K, Jin X, Huang G, Li J, Pan X, & Yan N (2023). Structural mapping of Nav1.7 antagonists.
Nat Commun 14 1:3224. PubMed Id: 37270609. doi:10.1038/s41467-023-38942-3. |
||
NaV1.7 VSD4 voltage dependent sodium channel, with bound riluzole: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.90 Å
cryo-EM structure with bound lamotrigine, 2.70 Å: 8THH |
Huang et al. (2023).
Huang J, Fan X, Jin X, Teng L, & Yan N (2023). Dual-pocket inhibition of Nav channels by the antiepileptic drug lamotrigine.
Proc Natl Acad Sci U S A 120 41:e2309773120. PubMed Id: 37782796. doi:10.1073/pnas.2309773120. |
||
Huang et al. (2022).
Huang X, Jin X, Huang G, Huang J, Wu T, Li Z, Chen J, Kong F, Pan X, & Yan N (2022). Structural basis for high-voltage activation and subtype-specific inhibition of human Nav1.8.
Proc Natl Acad Sci U S A 119 30:e220821119. PubMed Id: 35858452. doi:10.1073/pnas.2208211119. |
|||
Shaya et al. (2014).
Shaya D, Findeisen F, Abderemane-Ali F, Arrigoni C, Wong S, Nurva SR, Loussouarn G, & Minor DL Jr (2014). Structure of a Prokaryotic Sodium Channel Pore Reveals Essential Gating Elements and an Outer Ion Binding Site Common to Eukaryotic Channels.
J Mol Biol 426 :467-483. PubMed Id: 24120938. doi:10.1016/j.jmb.2013.10.010. |
|||
Li et al. (2014).
Li Q, Wanderling S, Paduch M, Medovoy D, Singharoy A, McGreevy R, Villalba-Galea CA, Hulse RE, Roux B, Schulten K, Kossiakoff A, & Perozo E (2014). Structural mechanism of voltage-dependent gating in an isolated voltage-sensing domain.
Nat Struct Mol Biol 21 :244-252. PubMed Id: 24487958. doi:10.1038/nsmb.2768. |
|||
Hv1 chimeric (VSOP/Hv1) voltage-gated proton channel: Mus musculus E Eukaryota (expressed in S. frugiperda), 3.45 Å
|
Takeshita et al. (2014).
Takeshita K, Sakata S, Yamashita E, Fujiwara Y, Kawanabe A, Kurokawa T, Okochi Y, Matsuda M, Narita H, Okamura Y, & Nakagawa A (2014). X-ray crystal structure of voltage-gated proton channel.
Nat Struct Mol Biol 21 :352-357. PubMed Id: 24584463. doi:10.1038/nsmb.2783. |
||
Hv1 voltage-gated proton channel: Homo sapiens E Eukaryota (expressed in E. coli), NMR structure
|
Bayrhuber et al. (2019).
Bayrhuber M, Maslennikov I, Kwiatkowski W, Sobol A, Wierschem C, Eichmann C, Frey L, & Riek R (2019). Nuclear Magnetic Resonance Solution Structure and Functional Behavior of the Human Proton Channel.
Biochemistry 58 39:4017-4027. PubMed Id: 31365236. doi:10.1021/acs.biochem.9b00471. |
||
Trimeric intracellular cation (TRIC) channel orthologue: Saccharolobus solfataricus B Bacteria (expressed in E. coli), 2.64 Å
|
Kasuya et al. (2016).
Kasuya G, Hiraizumi M, Maturana AD, Kumazaki K, Fujiwara Y, Liu K, Nakada-Nakura Y, Iwata S, Tsukada K, Komori T, Uemura S, Goto Y, Nakane T, Takemoto M, Kato HE, Yamashita K, Wada M, Ito K, Ishitani R, Hattori M, & Nureki O (2016). Crystal structures of the TRIC trimeric intracellular cation channel orthologues.
Cell Res 26 12:1288-1301. PubMed Id: 27909292. doi:10.1038/cr.2016.140. |
||
Trimeric intracellular cation (TRIC) channel orthologue: Rhodobacter sphaeroides B Bacteria (expressed in E. coli), 3.41 Å
|
Kasuya et al. (2016).
Kasuya G, Hiraizumi M, Maturana AD, Kumazaki K, Fujiwara Y, Liu K, Nakada-Nakura Y, Iwata S, Tsukada K, Komori T, Uemura S, Goto Y, Nakane T, Takemoto M, Kato HE, Yamashita K, Wada M, Ito K, Ishitani R, Hattori M, & Nureki O (2016). Crystal structures of the TRIC trimeric intracellular cation channel orthologues.
Cell Res 26 12:1288-1301. PubMed Id: 27909292. doi:10.1038/cr.2016.140. |
||
Trimeric intracellular cation (TRIC) channel, B1 isoform with bound Ca2+: Caenorhabditis elegans E Eukaryota (expressed in Komagataella pastoris), 3.3 Å
B2 isoform in absence of Ca2+, 2.3 Å: 5EIK |
Yang et al. (2016).
Yang H, Hu M, Guo J, Ou X, Cai T, & Liu Z (2016). Pore architecture of TRIC channels and insights into their gating mechanism.
Nature 538 :537-541. PubMed Id: 27698420. doi:10.1038/nature19767. |
||
Su et al. (2017).
Su M, Gao F, Yuan Q, Mao Y, Li DL, Guo Y, Yang C, Wang XH, Bruni R, Kloss B, Zhao H, Zeng Y, Zhang FB, Marks AR, Hendrickson WA, & Chen YH (2017). Structural basis for conductance through TRIC cation channels.
Nat Commun 8 :15103. PubMed Id: 28524849. doi:10.1038/ncomms15103. |
|||
Trimeric intracellular cation (TRIC) channel: Colwellia psychrerythraea B Bacteria (expressed in E. coli), 2.40 Å
|
Su et al. (2017).
Su M, Gao F, Yuan Q, Mao Y, Li DL, Guo Y, Yang C, Wang XH, Bruni R, Kloss B, Zhao H, Zeng Y, Zhang FB, Marks AR, Hendrickson WA, & Chen YH (2017). Structural basis for conductance through TRIC cation channels.
Nat Commun 8 :15103. PubMed Id: 28524849. doi:10.1038/ncomms15103. |
||
Trimeric intracellular cation (TRIC) channel: Saccharolobus solfataricus A Archaea (expressed in E. coli), 2.2 Å
|
Ou et al. (2017).
Ou X, Guo J, Wang L, Yang H, Liu X, Sun J, & Liu Z (2017). Ion- and water-binding sites inside an occluded hourglass pore of a trimeric intracellular cation (TRIC) channel.
BMC Biol 15 1. PubMed Id: 28431535. doi:10.1186/s12915-017-0372-8. |
||
Trimeric intracellular cation (TRIC) channel, TRIC-A subtype, SeMet protein: Gallus gallus E Eukaryota (expressed in Schizosaccharomyces pombe), 2.20 Å
native protein with bound Ca2+ (12 KeV data), 1.8 Å: 6IYX native protein with bound Ca2+ (7 KeV data), 2.0 Å: 6IZF native protein, Ca2+-free, 2.2 Å: 6IYZ K129A mutant with bound Ca2+, 2.3 Å: 6IZ0 K129Q mutant with bound Ca2+, 2.4 Å: 6IZ1 |
Wang et al. (2019).
Wang XH, Su M, Gao F, Xie W, Zeng Y, Li DL, Liu XL, Zhao H, Qin L, Li F, Liu Q, Clarke OB, Lam SM, Shui GH, Hendrickson WA, & Chen YH (2019). Structural basis for activity of TRIC counter-ion channels in calcium release.
Proc Natl Acad Sci USA 116 :4283-4243. PubMed Id: 30770441. doi:10.1073/pnas.1817271116. |
||
Trimeric intracellular cation (TRIC) channel, TRIC-B subtype, Ca2+-free, cubic (7 KeV data): Xenopus laevis E Eukaryota (expressed in Schizosaccharomyces pombe), 3.70 Å
Ca2+-free trigonal (7 KeV data), 3.8 Å: 3.79 Å: 6IZ3 Ca2+-free tetrahedral, 3.10 Å: 6IZ4 with bound Ca2+ cubic (7 KeV data), 3.29 Å: 6IZ6 |
Wang et al. (2019).
Wang XH, Su M, Gao F, Xie W, Zeng Y, Li DL, Liu XL, Zhao H, Qin L, Li F, Liu Q, Clarke OB, Lam SM, Shui GH, Hendrickson WA, & Chen YH (2019). Structural basis for activity of TRIC counter-ion channels in calcium release.
Proc Natl Acad Sci USA 116 :4283-4243. PubMed Id: 30770441. doi:10.1073/pnas.1817271116. |
||
MlotK1 cyclic nucleotide-regulated K+-channel: Mesorhizobium loti B Bacteria (expressed in E. coli), 3.1 Å
|
Clayton et al. (2008).
Clayton GM, Altieri S, Heginbotham L, Unger VM, & Morais-Cabral JH (2008). Structure of the transmembrane regions of a bacterial cyclic nucleotide-regulated channel.
Proc Natl Acad Sci U S A 105 :1511-1515. PubMed Id: 18216238. |
||
MlotK1 cyclic nucleotide-regulated K+-channel, complete structure: Mesorhizobium loti B Bacteria (expressed in E. coli), 4.5 Å
cryo-EM structure |
Kowal et al. (2018).
Kowal J, Biyani N, Chami M, Scherer S, Rzepiela AJ, Baumgartner P, Upadhyay V, Nimigean CM, & Stahlberg H (2018). High-Resolution Cryoelectron Microscopy Structure of the Cyclic Nucleotide-Modulated Potassium Channel MloK1 in a Lipid Bilayer.
Structure 26 :20-27.e3. PubMed Id: 29249605. doi:10.1016/j.str.2017.11.012. |
||
MlotK1 cyclic nucleotide-regulated K+-channel, complete structure: Mesorhizobium japonicum B Bacteria (expressed in E. coli), 4 Å
cryo-EM structure from 2D crystals class 1 (extended conformation), 5.2 Å: 6IAX class 2 (intermediate conformation), 4.7 Å: 6CQY class 3 (intermediate extended conformation), 4.4 Å: 6QCZ class 4 (compact/open conformation), 4.5 Å: 6QD0 class 5 (intermediate compact conformation), 5.4 Å: 6QD1 class 6 (intermediate compact conformation), 4.8 Å: 6QD2 class 7 (intermediate conformation), 5 Å: 6QD3 class 8 (intermediate conformation), 5.6 Å: 6QD4 |
Righetto et al. (2019).
Righetto RD, Biyani N, Kowal J, Chami M, & Stahlberg H (2019). Retrieving high-resolution information from disordered 2D crystals by single-particle cryo-EM.
Nat Commun 10 1:1722. PubMed Id: 30979902. doi:10.1038/s41467-019-09661-5. |
||
Cyclic-nucleotide-gated (CNG) channel TAX-4, liganded open state: Caenorhabditis elegans E Eukaryota (expressed in Trichoplusia ni), 3.5 Å
cryo-EM structure. |
Li et al. (2017).
Li M, Zhou X, Wang S, Michailidis I, Gong Y, Su D, Li H, Li X, & Yang J (2017). Structure of a eukaryotic cyclic-nucleotide-gated channel.
Nature 7639:60-65. PubMed Id: 28099415. doi:10.1038/nature20819. |
||
Zheng et al. (2020).
Zheng X, Fu Z, Su D, Zhang Y, Li M, Pan Y, Li H, Li S, Grassucci RA, Ren Z, Hu Z, Li X, Zhou M, Li G, Frank J, & Yang J (2020). Mechanism of ligand activation of a eukaryotic cyclic nucleotide-gated channel.
Nat Struct Mol Biol 27 7:625-634. PubMed Id: 32483338. doi:10.1038/s41594-020-0433-5. |
|||
Zheng et al. (2022).
Zheng X, Li H, Hu Z, Su D, & Yang J (2022). Structural and functional characterization of an achromatopsia-associated mutation in a phototransduction channel.
Commun Biol 5 1:190. PubMed Id: 35233102. doi:10.1038/s42003-022-03120-6. |
|||
Cyclic-nucleotide-gated (CNG) channel: Leptospira licerasiae B Bacteria (expressed in E. coli), 4.2 Å
cryo-EM structure |
James et al. (2017).
James ZM, Borst AJ, Haitin Y, Frenz B, DiMaio F, Zagotta WN, & Veesler D (2017). CryoEM structure of a prokaryotic cyclic nucleotide-gated ion channel.
Proc Natl Acad Sci USA 114 :4430-4435. PubMed Id: 28396445. doi:10.1073/pnas.1700248114. |
||
Cyclic-nucleotide-gated (CNG) channel, apo form in K+/Ca2+: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.60 Å
cryo-EM structure cGMP-bound open state, 2.90 Å: 7LFW cGMP-bound open state in Na+, 3.60 Å: 7LFY cGMP-bound open state in Na+/Ca2+, 3.10 Å: 7LFX cGMP-bound E365Q mutant in Na+/Ca2+, 2.70 Å: 7LG1 |
Xue et al. (2021).
Xue J, Han Y, Zeng W, Wang Y, & Jiang Y (2021). Structural mechanisms of gating and selectivity of human rod CNGA1 channel.
Neuron 109 8:1302-1313.e4. PubMed Id: 33651975. doi:10.1016/j.neuron.2021.02.007. |
||
photoreceptor Cyclic-nucleotide-gated (CNGA1/B1) heterotetrameric channel, apo state: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.61 Å
cryo-EM structure with CLZ coiled coil, 3.03 Å 7RHL cAMP-bound state, 2.88 Å 7RHG cGMP-bound openI state, 3.31 Å 7RHH cGMP-bound openII state, 3.31 Å 7RHI L-cis-Diltiazem-blocked open state, 2.88 Å 7RHJ L-cis-Diltiazem-trapped closed state, 3.27 Å 7RHK |
Xue et al. (2022).
Xue J, Han Y, Zeng W, & Jiang Y (2022). Structural mechanisms of assembly, permeation, gating, and pharmacology of native human rod CNG channel.
Neuron 110 1:86-95.e5. PubMed Id: 34699778. doi:10.1016/j.neuron.2021.10.006. |
||
photoreceptor Cyclic-nucleotide-gated (CNGA1/B1) heterotetrameric channel, apo state: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.93 Å
cryo-EM structure |
Zheng et al. (2022).
Zheng X, Hu Z, Li H, & Yang J (2022). Structure of the human cone photoreceptor cyclic nucleotide-gated channel.
Nat Struct Mol Biol 29 1:40-46. PubMed Id: 34969976. doi:10.1038/s41594-021-00699-y. |
||
photoreceptor Cyclic-nucleotide-gated (CNGA1/B1) heterotetrameric channel: Bos taurus E Eukaryota, 3.40 Å
cryo-EM structure |
Barret et al. (2022).
Barret DCA, Schertler GFX, Benjamin Kaupp U, & Marino J (2022). The structure of the native CNGA1/CNGB1 CNG channel from bovine retinal rods.
Nat Struct Mol Biol 29 1:32-39. PubMed Id: 34969975. doi:10.1038/s41594-021-00700-8. |
||
photoreceptor Cyclic-nucleotide-gated (CNGA1/B1) heterotetrameric channel with bound calmodulin: Bos taurus E Eukaryota, 2.76 Å
cryo-EM structure |
Barret et al. (2023).
Barret DCA, Schuster D, Rodrigues MJ, Leitner A, Picotti P, Schertler GFX, Kaupp UB, Korkhov VM, & Marino J (2023). Structural basis of calmodulin modulation of the rod cyclic nucleotide-gated channel.
Proc Natl Acad Sci U S A 120 15:e2300309120. PubMed Id: 37011209. doi:10.1073/pnas.2300309120. |
||
Rheinberger et al. (2018).
Rheinberger J, Gao X, Schmidpeter PA, & Nimigean CM (2018). Ligand discrimination and gating in cyclic nucleotide-gated ion channels from apo and partial agonist-bound cryo-EM structures.
Elife 7 :e39775. PubMed Id: 30028291. doi:10.7554/eLife.39775. |
|||
Cyclic nucleotide-gated (CNG) potassium channel SthK, cAMP-bound closed state, in the presence of detergent: Spirochaeta thermophila B Bacteria (expressed in E. coli), 3.60 Å
cryo-EM structure cAMP-bound closed state, in the presence of POPA, 2.41 Å:7TJ5 cAMP-bound open state, in the presence of POPA, 2.90 Å: 7TJ6 |
Schmidpeter et al. (2022).
Schmidpeter PAM, Wu D, Rheinberger J, Riegelhaupt PM, Tang H, Robinson CV, & Nimigean CM (2022). Anionic lipids unlock the gates of select ion channels in the pacemaker family.
Nat Struct Mol Biol 29 11:1092-1100. PubMed Id: 36352139. doi:10.1038/s41594-022-00851-2. |
||
Cyclic nucleotide-gated (CNG) potassium channel SthK, Y26F Closed State: Spirochaeta thermophila B Bacteria (expressed in E. coli), 3.00 Å
cryo-EM structure R120A Closed State, 2.90 Å: 7RTF Y26F Activated State, 3.80 Å: 7RTJ R120A Open State 1, 4.30 Å: 7RU0 R120A Open State 2, 3.70 Å: 7RYS R120A Open State 3, 3.60 Å: 7RYR |
Gao et al. (2022).
Gao X, Schmidpeter PAM, Berka V, Durham RJ, Fan C, Jayaraman V, & Nimigean CM (2022). Gating intermediates reveal inhibitory role of the voltage sensor in a cyclic nucleotide-modulated ion channel.
Nat Commun 13 1:6919. PubMed Id: 36376326. doi:10.1038/s41467-022-34673-z. |
||
AKT1 K+ hyperpolization-activated channel in MSP2N2 lipid nanodisc: Arabidopsis thaliana E Eukaryota (expressed in HEK293 cells), 2.80 Å
cryo-EM structure |
Dickinson et al. (2022).
Dickinson MS, Pourmal S, Gupta M, Bi M, & Stroud RM (2022). Symmetry Reduction in a Hyperpolarization-Activated Homotetrameric Ion Channel.
Biochemistry 61 20:2177-2181. PubMed Id: 34964607. doi:10.1021/acs.biochem.1c00654. |
||
Lu et al. (2022).
Lu Y, Yu M, Jia Y, Yang F, Zhang Y, Xu X, Li X, Yang F, Lei J, Wang Y, & Yang G (2022). Structural basis for the activity regulation of a potassium channel AKT1 from Arabidopsis.
Nat Commun 13 1:5682. PubMed Id: 36167696. doi:10.1038/s41467-022-33420-8. |
|||
HCN1 hyperpolarization-activated channel: Homo sapiens E Eukaryota (expressed in HEK293S), 3.5 Å
cryo-EM structure with bound c-AMP, 3.51 Å: 5U6P |
Lee & MacKinnon (2017).
Lee CH, & MacKinnon R (2017). Structures of the Human HCN1 Hyperpolarization-Activated Channel.
Cell 168 :111-120.e11. PubMed Id: 28086084. doi:10.1016/j.cell.2016.12.023. |
||
HCN1 hyperpolarization-activated channel in hyperpolarized conformation: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.04 Å
cryoEM structure Y289D mutant, 3.54 Å: 6UQG |
Lee & MacKinnon (2019).
Lee CH, & MacKinnon R (2019). Voltage Sensor Movements during Hyperpolarization in the HCN Channel.
Cell 179 7:1582-1589.e7. PubMed Id: 31787376. doi:10.1016/j.cell.2019.11.006. |
||
HCN3 hyperpolarization-activated channel: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.19 Å
cryo-EM structure with bound cAMP, 3.19Å: 8IO0 |
Yu et al. (2024).
Yu B, Lu Q, Li J, Cheng X, Hu H, Li Y, Che T, Hua Y, Jiang H, Zhang Y, Xian C, Yang T, Fu Y, Chen Y, Nan W, McCormick PJ, Xiong B, Duan J, Zeng B, Li Y, Fu Y, & Zhang J (2024). Cryo-EM structure of human HCN3 channel and its regulation by cAMP.
J Biol Chem 300 6:107288. PubMed Id: 38636662. doi:10.1016/j.jbc.2024.107288. |
||
Saponaro et al. (2021).
Saponaro A, Bauer D, Giese MH, Swuec P, Porro A, Gasparri F, Sharifzadeh AS, Chaves-Sanjuan A, Alberio L, Parisi G, Cerutti G, Clarke OB, Hamacher K, Colecraft HM, Mancia F, Hendrickson WA, Siegelbaum SA, DiFrancesco D, Bolognesi M, Thiel G, Santoro B, & Moroni A (2021). Gating movements and ion permeation in HCN4 pacemaker channels.
Mol Cell 81 14:2929-2943.e6. PubMed Id: 34166608. doi:10.1016/j.molcel.2021.05.033. |
|||
KCNQ1 cardiac slow-delayed rectifier K+ channel in complex with calmodulin: Xenopus laevis E Eukaryota (expressed in HEK293S cells), 3.7 Å
cryo-EM structure |
Sun & MacKinnon (2017).
Sun J, & MacKinnon R (2017). Cryo-EM Structure of a KCNQ1/CaM Complex Reveals Insights into Congenital Long QT Syndrome.
Cell 169 6:1042-1050.e9. PubMed Id: 28575668. doi:10.1016/j.cell.2017.05.019. |
||
KCNQ1 cardiac slow-delayed rectifier K+ channel in complex with calmodulin (CaM): Xenopus laevis E Eukaryota (expressed in HEK293 cells), 3.84 Å
cryo-EM structure with bound ML277, 3.90 Å 7TCI |
Willegems et al. (2022).
Willegems K, Eldstrom J, Kyriakis E, Ataei F, Sahakyan H, Dou Y, Russo S, Van Petegem F, & Fedida D (2022). Structural and electrophysiological basis for the modulation of KCNQ1 channel currents by ML277.
Nat Commun 13 1:3760. PubMed Id: 35768468. doi:10.1038/s41467-022-31526-7. |
||
Sun & MacKinnon (2020).
Sun J, & MacKinnon R (2020). Structural Basis of Human KCNQ1 Modulation and Gating.
Cell 180 2:340-347.e9. PubMed Id: 31883792. doi:10.1016/j.cell.2019.12.003. |
|||
KCNQ1 cardiac slow-delayed rectifier K+ channel voltage sensor intermediate state: Homo sapiens E Eukaryota (expressed in E. coli), NMR structure
|
Taylor et al. (2020).
Taylor KC, Kang PW, Hou P, Yang ND, Kuenze G, Smith JA, Shi J, Huang H, White KM, Peng D, George AL, Meiler J, McFeeters RL, Cui J, & Sanders CR (2020). Structure and physiological function of the human KCNQ1 channel voltage sensor intermediate state.
Elife 9 :e53901. PubMed Id: 32096762. doi:10.7554/eLife.53901. |
||
Ma et al. (2022).
Ma D, Zhong L, Yan Z, Yao J, Zhang Y, Ye F, Huang Y, Lai D, Yang W, Hou P, & Guo J (2022). Structural mechanisms for the activation of human cardiac KCNQ1 channel by electro-mechanical coupling enhancers.
Proc Natl Acad Sci U S A 119 45:e2207067119. PubMed Id: 36763058. doi:10.1073/pnas.2207067119. |
|||
Mandala & MacKinnon (2023).
Mandala VS, & MacKinnon R (2023). The membrane electric field regulates the PIP2-binding site to gate the KCNQ1 channel.
Proc Natl Acad Sci U S A 120 21:e2301985120. PubMed Id: 37192161. doi:10.1073/pnas.2301985120. |
|||
KCNQ2 rectifier K+ channel in complex with CaM, apo state: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.60 Å
cryo-EM structure in complex with ztz240 in absence of CaM, 3.40 Å: 7CR1 in complex with ztz240, 3.40 Å: 3.90 Å: 7CR4 in complex with retigabine in absence of CaM, 3.20 Å: 7CR2 in complex with retigabine, 3.70 Å: 7CR7 |
Li et al. (2020).
Li X, Zhang Q, Guo P, Fu J, Mei L, Lv D, Wang J, Lai D, Ye S, Yang H, & Guo J (2020). Molecular basis for ligand activation of the human KCNQ2 channel.
Cell Res . PubMed Id: 32884139. doi:10.1038/s41422-020-00410-8. |
||
Li et al. (2021).
Li T, Wu K, Yue Z, Wang Y, Zhang F, & Shen H (2021). Structural Basis for the Modulation of Human KCNQ4 by Small-Molecule Drugs.
Mol Cell 81 1:25-37.e4. PubMed Id: 33238160. doi:10.1016/j.molcel.2020.10.037. |
|||
Zheng et al. (2022).
Zheng Y, Liu H, Chen Y, Dong S, Wang F, Wang S, Li GL, Shu Y, & Xu F (2022). Structural insights into the lipid and ligand regulation of a human neuronal KCNQ channel.
Neuron 110 2:237-247.e4. PubMed Id: 34767770. doi:10.1016/j.neuron.2021.10.029. |
|||
TMEM175 lysosomal K+ channel: Chamaesiphon minutus E Eukaryota (expressed in E. coli), 3.3 Å
|
Lee et al. (2017).
Lee C, Guo J, Zeng W, Kim S, She J, Cang C, Ren D, & Jiang Y (2017). The lysosomal potassium channel TMEM175 adopts a novel tetrameric architecture.
Nature 547 :472-475. PubMed Id: 28723891. doi:10.1038/nature23269. |
||
Oh et al. (2020).
Oh S, Paknejad N, & Hite RK (2020). Gating and selectivity mechanisms for the lysosomal K+ channel TMEM175.
Elife 9 . PubMed Id: 32228865. doi:10.7554/eLife.53430. |
|||
TMEM175 lysosomal K+ channel, open state: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.45 Å
cryo-EM structure closed state, 2.61 Å 7UNM |
Oh et al. (2022).
Oh S, Marinelli F, Zhou W, Lee J, Choi HJ, Kim M, Faraldo-Gómez JD, & Hite RK (2022). Differential ion dehydration energetics explains selectivity in the non-canonical lysosomal K+ channel TMEM175.
Elife 11 :75122. PubMed Id: 35608336. doi:10.7554/eLife.75122. |
||
TMEM175 lysosomal K+ channel, in complex with 4-aminopyridine: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.73 Å
cryo-EM structure |
Oh et al. (2022).
Oh S, Stix R, Zhou W, Faraldo-Gómez JD, & Hite RK (2022). Mechanism of 4-aminopyridine inhibition of the lysosomal channel TMEM175.
Proc Natl Acad Sci U S A 119 44:e2208882119. PubMed Id: 36279431. doi:10.1073/pnas.2208882119. |
||
TMEM175 lysosomal K+ channel, in complex with a Nanobody-MBP fusion protein: Marivirga tractuosa B Bacteria (expressed in E. coli), 2.40 Å
TMEM175 with rubidium, 3.50 Å: 6HD9 TMEM175 with cesium, 3.80 Å: 6HDA TMEM175 with zinc, 2.90 Å: 6HDB T38A variant in complex with a Nanobody-MBP fusion protein, 3.40 Å: 6HDC TMEM175 T38A mutant soaked with zinc, 3.20 Å: 6SWR |
Brunner et al. (2020).
Brunner JD, Jakob RP, Schulze T, Neldner Y, Moroni A, Thiel G, Maier T, & Schenck S (2020). Structural basis for ion selectivity in TMEM175 K+ channels.
Elife 9 . PubMed Id: 32267231. doi:10.7554/eLife.53683. |
||
Odorant-gated ion channel receptor ORCO: Apocrypta bakeri E Eukaryota (expressed in sf9 cells), 3.5 Å
cryo-EM structure |
Butterwick et al. (2018).
Butterwick JA, Del Mármol J, Kim KH, Kahlson MA, Rogow JA, Walz T, & Ruta V (2018). Cryo-EM structure of the insect olfactory receptor Orco.
Nature 560 7719:447-452. PubMed Id: 30111839. doi:10.1038/s41586-018-0420-8. |
||
KAT1 Hyperpolarization-Activated Potassium Channel, tetramer: Arabidopsis thaliana E Eukaryota (expressed in Spodoptera frugiperda), 3.50 Å
cryo-EM structure octamer, 3.80 Å: 6V1Y |
Clark et al. (2020).
Clark MD, Contreras GF, Shen R, & Perozo E (2020). Electromechanical coupling in the hyperpolarization-activated K+ channel KAT1.
Nature 583 7814:145-149. PubMed Id: 32461693. doi:10.1038/s41586-020-2335-4. |
||
KAT1 Hyperpolarization-Activated Potassium Channel: Arabidopsis thaliana E Eukaryota (expressed in Spodoptera frugiperda), 3.20 Å
cryo-EM structure |
Li et al. (2020).
Li S, Yang F, Sun D, Zhang Y, Zhang M, Liu S, Zhou P, Shi C, Zhang L, & Tian C (2020). Cryo-EM structure of the hyperpolarization-activated inwardly?rectifying potassium channel?KAT1?from?Arabidopsis.
Cell Res 30 11:1049-1052. PubMed Id: 32901112. doi:10.1038/s41422-020-00407-3. |
||
Na+ leak channel non-selective (NALCN) in complex with FAM155A, in nanodisc: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.80 Å
cryo-EM structure |
Kschonsak et al. (2020).
Kschonsak M, Chua HC, Noland CL, Weidling C, Clairfeuille T, Bahlke OØ, Ameen AO, Li ZR, Arthur CP, Ciferri C, Pless SA, & Payandeh J (2020). Structure of the human sodium leak channel NALCN.
Nature 587 7833:313-318. PubMed Id: 32698188. doi:10.1038/s41586-020-2570-8. |
||
Na+ leak channel non-selective (NALCN) in complex with FAM155A: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.10 Å
cryo-EM structure |
Xie et al. (2020).
Xie J, Ke M, Xu L, Lin S, Huang J, Zhang J, Yang F, Wu J, & Yan Z (2020). Structure of the human sodium leak channel NALCN in complex with FAM155A.
Nat Commun 11 1:5831. PubMed Id: 33203861. doi:10.1038/s41467-020-19667-z. |
||
Na+ leak channel non-selective (NALCN) in complex with FAM155A-UNC79-UNC80 with bound CaM, conformation 1/2: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.10 Å
cryo-EM structure conformation 2/2, 3.50 Å: 7SX4 |
Kschonsak et al. (2022).
Kschonsak M, Chua HC, Weidling C, Chakouri N, Noland CL, Schott K, Chang T, Tam C, Patel N, Arthur CP, Leitner A, Ben-Johny M, Ciferri C, Pless SA, & Payandeh J (2022). Structural architecture of the human NALCN channelosome.
Nature 603 7899:180-186. PubMed Id: 34929720. doi:10.1038/s41586-021-04313-5. |
||
Channels: Calcium Ion-Selective
|
|||
Voltage-Gated Calcium Channel (CaV) created by mutation of the NaVAb channel: Arcobacter butzleri B Bacteria (expressed in Trichoplusia ni ), 2.75 Å
Mutation of the NaV pore motif 175TLESWSM181 to 175TLDDWSN181. [Ca+2] = 15 mM [Ca+2] = 0.5 mM, 3.20 Å: 4MTF [Ca+2] = 2.5 mM, 3.30 Å: 4MTG [Ca+2] = 5.0 mM, 3.40 Å: 4MTO [Ca+2] = 10.0 mM, 3.20 Å: 4MVM [Ca+2] = 15.0 mM, 3.30 Å: 4MVO [Ca+2] = 15.0 mM, 3.30 Å: 4MW3 [Ca+2] = 15.0 mM, 3.20 Å: 4MVU NaVAb mutants with 175TLESWSM181 to 175TLDDWSD181: [Ca+2] = 15.0 mM, 3.40 Å: 4MVQ [Mn+2] = 100 mM, 3.20 Å: 4MVR [Cd+2] = 100 mM, 3.30 Å: 4MVS [Ca+2] = 15.0 mM, 3.30 Å: 4MVZ NaVAb wild-type: [Ca+2] = 15.0 mM, 3.26 Å: 4MW8 |
Tang et al. (2014).
Tang L, Gamal El-Din TM, Payandeh J, Martinez GQ, Heard TM, Scheuer T, Zheng N, & Catterall WA (2014). Structural basis for Ca2+ selectivity of a voltage-gated calcium channel.
Nature 505 :56-61. PubMed Id: 24270805. doi:10.1038/nature12775. |
||
Voltage-Gated Calcium Channel (CaV) created by mutation of the NaVAb channel: Arcobacter butzleri B Bacteria (expressed in Trichoplusia ni), 2.7 Å
[Ca2+] = 5mM W195Y mutant in complex with Br-dihydropyridine derivative UK-59811, 3.3 Å: 5KLG wild-type protein in complex with Br-dihydropyridine derivative UK-59811, 3.3 &Ariing;: 5KLS wild-type in complex with amlodipine, 3.2 Å: 5KMD wild-type in complex with nimodipine, 3.2 Å: 5KMF wild-type in complex with Br-verapamil, 3.2 Å: 5KMH |
Tang et al. (2016).
Tang L, El-Din TM, Swanson TM, Pryde DC, Scheuer T, Zheng N, & Catterall WA (2016). Structural basis for inhibition of a voltage-gated Ca2+ channel by Ca2+ antagonist drugs.
Nature 537 :117-121. PubMed Id: 27556947. doi:10.1038/nature19102. |
||
CaV1.1 L-type voltage-gated calcium channel: Oryctolagus cuniculus E Eukaryota (expressed in E. coli), 4.2 Å
cryo-EM structure |
Wu et al. (2015).
Wu J, Yan Z, Li Z, Yan C, Lu S, Dong M, & Yan N (2015). Structure of the voltage-gated calcium channel Cav1.1 complex.
Science 350 6267:1492. PubMed Id: 26680202. doi:10.1126/science.aad2395. |
||
CaV1.1 L-type voltage-gated calcium channel: Oryctolagus cuniculus E Eukaryota (expressed in E. coli), 3.6 Å
cryo-EM structure class II reconstruction map, 3.9 Å: 5GJW |
Wu et al. (2016).
Wu J, Yan Z, Li Z, Qian X, Lu S, Dong M, Zhou Q, & Yan N (2016). Structure of the voltage-gated calcium channel Cav1.1 at 3.6 Å resolution.
Nature 537 :191-196. PubMed Id: 27580036. doi:10.1038/nature19321. |
||
Zhao et al. (2019).
Zhao Y, Huang G, Wu J, Wu Q, Gao S, Yan Z, Lei J, & Yan N (2019). Molecular Basis for Ligand Modulation of a Mammalian Voltage-Gated Ca2+ Channel.
Cell 177 6:1495-1506.e12. PubMed Id: 31150622. doi:10.1016/j.cell.2019.04.043. |
|||
Gao & Yan (2020).
Gao S, & Yan N (2020). Structural Basis of the Modulation of the Voltage-Gated Calcium Ion Channel Cav1.1 by Dihydropyridine Compounds.
Angew Chem Int Ed Engl 60 :3131-3137. PubMed Id: 33125829. doi:10.1002/anie.202011793. |
|||
Yao et al. (2022).
Yao X, Gao S, Wang J, Li Z, Huang J, Wang Y, Wang Z, Chen J, Fan X, Wang W, Jin X, Pan X, Yu Y, Lagrutta A, & Yan N (2022). Structural basis for the severe adverse interaction of sofosbuvir and amiodarone on L-type Cav channels.
Cell 185 25:4801-4810.e13. PubMed Id: 36417914. doi:10.1016/j.cell.2022.10.024. |
|||
Cav1.2 L-type voltage-gated calcium channel, apo form: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.90 Å
cryo-EM structure in the presence of amiodarone and sofosbuvir, 3.30 Å: 8FHS in the presence of calciseptine, 3.20 Å: 8WE7 in the presence of pinaverium, class I, 3.00 Å: 8WE9 in the presence of pinaverium, class II, 3.20 Å: 8WEA in the presence of calciseptine, amlodipine and pinaverium, 2.90 Å: 8WE8 |
Gao et al. (2023).
Gao S, Yao X, Chen J, Huang G, Fan X, Xue L, Li Z, Wu T, Zheng Y, Huang J, Jin X, Wang Y, Wang Z, Yu Y, Liu L, Pan X, Song C, & Yan N (2023). Structural basis for human Cav1.2 inhibition by multiple drugs and the neurotoxin calciseptine.
Cell 186 24:5363-5374.e16. PubMed Id: 37972591. doi:10.1016/j.cell.2023.10.007. |
||
Cav1.2 L-type voltage-gated calcium channel in complex with L-leucine: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.30 Å
cryo-EM structure See also 8EOI |
Chen et al. (2023).
Chen Z, Mondal A, Abderemane-Ali F, Jang S, Niranjan S, Montaño JL, Zaro BW, & Minor DL Jr (2023). EMC chaperone-CaV structure reveals an ion channel assembly intermediate.
Nature 619 7969:410-419. PubMed Id: 37196677. doi:10.1038/s41586-023-06175-5. |
||
Cav1.2 L-type voltage-gated calcium channel with bound gabapentin: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.10 Å
cryo-EM structure |
Chen et al. (2023).
Chen Z, Mondal A, & Minor DL Jr (2023). Structural basis for CaVα2δ:gabapentin binding.
Nat Struct Mol Biol 30 6:735-739. PubMed Id: 36973510. doi:10.1038/s41594-023-00951-7. |
||
Cav1.3 L-type voltage-gated calcium channel: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.00 Å
cryo-EM structure in the presence of cinnarizine, 3.1 Å: 7UHF |
Yao et al. (2022).
Yao X, Gao S, & Yan N (2022). Structural basis for pore blockade of human voltage-gated calcium channel Cav1.3 by motion sickness drug cinnarizine.
Cell Res 32 10:946-948. PubMed Id: 35477996. doi:10.1038/s41422-022-00663-5. |
||
Yao et al. (2022).
Yao X, Gao S, Wang J, Li Z, Huang J, Wang Y, Wang Z, Chen J, Fan X, Wang W, Jin X, Pan X, Yu Y, Lagrutta A, & Yan N (2022). Structural basis for the severe adverse interaction of sofosbuvir and amiodarone on L-type Cav channels.
Cell 185 25:4801-4810.e13. PubMed Id: 36417914. doi:10.1016/j.cell.2022.10.024. |
|||
CaV2.2 N-type voltage-gated calcium channel, apo form: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.1 Å
cryo-EM structure in the presence of ziconotide, 3.0 Å: 7MIX |
Gao et al. (2021).
Gao S, Yao X, & Yan N (2021). Structure of human Cav2.2 channel blocked by the painkiller ziconotide.
Nature 596 7870:143-147. PubMed Id: 34234349. doi:10.1038/s41586-021-03699-6. |
||
Dong et al. (2021).
Dong Y, Gao Y, Xu S, Wang Y, Yu Z, Li Y, Li B, Yuan T, Yang B, Zhang XC, Jiang D, Huang Z, & Zhao Y (2021). Closed-state inactivation and pore-blocker modulation mechanisms of human CaV2.2.
Cell Rep 37 5:109931. PubMed Id: 34731621. doi:10.1016/j.celrep.2021.109931. |
|||
Cav voltage-gated calcium channel α2δ1 subunit alone: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.23 Å
cryo-EM structure with mirogabalin, 3.23 Å: 8IF3 |
Kozai et al. (2023).
Kozai D, Numoto N, Nishikawa K, Kamegawa A, Kawasaki S, Hiroaki Y, Irie K, Oshima A, Hanzawa H, Shimada K, Kitano Y, & Fujiyoshi Y (2023). Recognition Mechanism of a Novel Gabapentinoid Drug, Mirogabalin, for Recombinant Human α2δ1, a Voltage-Gated Calcium Channel Subunit.
J Mol Biol 435 10:168049. PubMed Id: 36933823. doi:10.1016/j.jmb.2023.168049. |
||
Cav2.3 R-type voltage-gated calcium channel, wild-type: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.10 Å
cryo-EM structure ΔCH2 mutant, 3.10 Å: 8EPM |
Yao et al. (2022).
Yao X, Wang Y, Wang Z, Fan X, Wu D, Huang J, Mueller A, Gao S, Hu M, Robinson CV, Yu Y, Gao S, & Yan N (2022). Structures of the R-type human Cav2.3 channel reveal conformational crosstalk of the intracellular segments.
Nat Commun 13 1:7358. PubMed Id: 36446785. doi:10.1038/s41467-022-35026-6. |
||
Cav2.3 R-type voltage-gated calcium channel in complex with the α2δ1 and β1 subunits, ligand-free (apo) state: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.10 Å
cryo-EM structure |
Gao et al. (2023).
Gao Y, Xu S, Cui X, Xu H, Qiu Y, Wei Y, Dong Y, Zhu B, Peng C, Liu S, Zhang XC, Sun J, Huang Z, & Zhao Y (2023). Molecular insights into the gating mechanisms of voltage-gated calcium channel CaV2.3.
Nat Commun 14 1:516. PubMed Id: 36720859. doi:10.1038/s41467-023-36260-2. |
||
CaV3.1 T-type voltage-gated calcium channel: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.3 Å
cryoEM structure in complex with selective blocker Z944, 3.1 Å: 6KZP |
Zhao et al. (2019).
Zhao Y, Huang G, Wu Q, Wu K, Li R, Lei J, Pan X, & Yan N (2019). Cryo-EM structures of apo and antagonist-bound human Cav3.1.
Nature 576 7787:492-497. PubMed Id: 31766050. doi:10.1038/s41586-019-1801-3. |
||
He et al. (2022).
He L, Yu Z, Geng Z, Huang Z, Zhang C, Dong Y, Gao Y, Wang Y, Chen Q, Sun L, Ma X, Huang B, Wang X, & Zhao Y (2022). Structure, gating, and pharmacology of human CaV3.3 channel.
Nat Commun 13 1:2084. PubMed Id: 35440630. doi:10.1038/s41467-022-29728-0. |
|||
Orai Calcium release-activated calcium (CRAC) channel: Drosophila melanogaster E Eukaryota (expressed in Pichia pastoris), 3.35 Å
K163W mutant, 3.35 Å: 4HKS |
Hou et al. (2012).
Hou X, Pedi L, Diver MM, & Long SB (2012). Crystal Structure of the Calcium Release-Activated Calcium Channel Orai.
Science 338 :1308-1313. PubMed Id: 23180775. doi:10.1126/science.1228757. |
||
Orai Calcium release-activated calcium (CRAC) channel in open state, H206A gain-of-function mutant: Drosophila melanogaster E Eukaryota (expressed in Komagataella pastoris), 6.71 Å
wild-type in intermediate conformation, 6.9 Å: 6BBG K163W loss-of-function mutant (I41 form), 6.1 Å: 6BBH K163W loss-of-function mutant (P42212 form), 4.35 Å: 6BBI |
Hou et al. (2018).
Hou X, Burstein SR, & Long SB (2018). Structures reveal opening of the store-operated calcium channel Orai.
eLife 7 :e36758. PubMed Id: 30160233. doi:10.7554/eLife.36758. |
||
Orai Calcium release-activated calcium (CRAC) channel, P288L mutant: Drosophila melanogaster E Eukaryota (expressed in HEK293 cells), 4.50 Å
cryo-EM structure |
Liu et al. (2019).
Liu X, Wu G, Yu Y, Chen X, Ji R, Lu J, Li X, Zhang X, Yang X, & Shen Y (2019). Molecular understanding of calcium permeation through the open Orai channel.
PLoS Biol 17 4:e3000096. PubMed Id: 31009446. doi:10.1371/journal.pbio.3000096. |
||
Orai Calcium release-activated calcium (CRAC) channel, H206A mutant in an open conformation: Drosophila melanogaster E Eukaryota (expressed in Komagataella pastoris), 3.30 Å
cryo-EM structure |
Hou et al. (2020).
Hou X, Outhwaite IR, Pedi L, & Long SB (2020). Cryo-EM structure of the calcium release-activated calcium channel Orai in an open conformation.
Elife 9 :e62772. PubMed Id: 33252040. doi:10.7554/eLife.62772. |
||
Stromal interaction molecule 1 (STIM1) coiled-coil 1 fragment: Homo sapiens E Eukaryota (expressed in E. coli), NMR structure
STIM1 modulates CRAC channel activation |
Rathner et al. (2021).
Rathner P, Fahrner M, Cerofolini L, Grabmayr H, Horvath F, Krobath H, Gupta A, Ravera E, Fragai M, Bechmann M, Renger T, Luchinat C, Romanin C, & Müller N (2021). Interhelical interactions within the STIM1 CC1 domain modulate CRAC channel activation.
Nat Chem Biol 17 2:196-204. PubMed Id: 33106661. doi:10.1038/s41589-020-00672-8. |
||
Chang et al. (2014).
Chang Y, Bruni R, Kloss B, Assur Z, Kloppmann E, Rost B, Hendrickson WA, & Liu Q (2014). Structural basis for a pH-sensitive calcium leak across membranes.
Science 344 :1131-1135. PubMed Id: 24904158. doi:10.1126/science.1252043. |
|||
Guo et al. (2019).
Guo G, Xu M, Chang Y, Luyten T, Seitaj B, Liu W, Zhu P, Bultynck G, Shi L, Quick M, & Liu Q (2019). Ion and pH Sensitivity of a TMBIM Ca2+ Channel.
Structure 27 6:1013-1021.e3. PubMed Id: 30930064. doi:10.1016/j.str.2019.03.003. |
|||
RyR1 ryanodine receptor, closed state in complex with FKBP12. Cryo-EM structure: Oryctolagus cuniculus E Eukaryota, 3.8 Å
|
Yan et al. (2015).
Yan Z, Bai X, Yan C, Wu J, Li Z, Xie T, Peng W, Yin C, Li X, Scheres SH, Shi Y, & Yan N (2015). Structure of the rabbit ryanodine receptor RyR1 at near-atomic resolution.
Nature 517 :50-55. PubMed Id: 25517095. doi:10.1038/nature14063. |
||
RyR1 ryanodine receptor, closed state in complex with FKBP12.6. Cryo-EM structure: Oryctolagus cuniculus E Eukaryota, 4.8 Å
|
Zalk et al. (2015).
Zalk R, Clarke OB, Georges AD, Grassucci RA, Reiken S, Mancia F, Hendrickson WA, Frank J, & Marks AR (2015). Structure of a mammalian ryanodine receptor.
Nature 517 :44-49. PubMed Id: 25470061. doi:10.1038/nature13950. |
||
RyR1 ryanodine receptor Repeat12 domain: Oryctolagus cuniculus E Eukaryota (expressed in E. coli), 1.55 Å
|
Yuchi et al. (2015).
Yuchi Z, Yuen SM, Lau K, Underhill AQ, Cornea RL, Fessenden JD, & Van Petegem F (2015). Crystal structures of ryanodine receptor SPRY1 and tandem-repeat domains reveal a critical FKBP12 binding determinant.
Nat Commun 6 :7947. PubMed Id: 26245150. doi:10.1038/ncomms8947. |
||
RyR1 ryanodine receptor in lipid nanodiscs in presence of Ca2+ & ATP: Oryctolagus cuniculus E Eukaryota, 8.2 Å
cryo-EM structure in the presence of ryanodine, 7.3 Å: 6FG3 |
Willegems & Efremov (2018).
Willegems K, & Efremov RG (2018). Influence of Lipid Mimetics on Gating of Ryanodine Receptor.
Structure 26 10:1303-1313.e4. PubMed Id: 30078641. doi:10.1016/j.str.2018.06.010. |
||
RyR1 ryanodine receptor in complex with Ca2+ and chlorantraniliprole (CHL): Oryctolagus cuniculus E Eukaryota, 4.70 Å
cryo-EM structure in complex with Ca2+,CHL,Caffeine, ATP, and calmodulin, 3.80 Å: 6M2W |
Ma et al. (2020).
Ma R, Haji-Ghassemi O, Ma D, Jiang H, Lin L, Yao L, Samurkas A, Li Y, Wang Y, Cao P, Wu S, Zhang Y, Murayama T, Moussian B, Van Petegem F, & Yuchi Z (2020). Structural basis for diamide modulation of ryanodine receptor.
Nat Chem Biol 16 11:1246-1254. PubMed Id: 32807966. doi:10.1038/s41589-020-0627-5. |
||
RyR1 ryanodine receptor embedded in a lipid bilayer, primed model: Oryctolagus cuniculus E Eukaryota, 3.36 Å
cryo-EM structure open model, 3.98 Å 7M6L |
Melville et al. (2022).
Melville Z, Kim K, Clarke OB, & Marks AR (2022). High-resolution structure of the membrane-embedded skeletal muscle ryanodine receptor.
Structure 30 :172-180. PubMed Id: 34469755. doi:10.1016/j.str.2021.08.001. |
||
RyR1 ryanodine receptor in the presence of AMP-PCP in nanodisc: Oryctolagus cuniculus E Eukaryota, 4.30 Å
cryo-EM structure with AMP-PCP and high Ca2+, inactivated conformation (Dataset-A), 3.80 Å 7TDG with AMP-PCP and high Ca2+ in closed-inactivated conformation class 1(Dataset-A), 3.70 Å 7TDJ with AMP-PCP and high Ca2+ in closed-inactivated conformation class 2 (Dataset-A), 3.30 Å 7TDI with AMP-PCP and high Ca2+ in open conformation, 4.00 Å 7TDH |
Nayak & Samsó (2022).
Nayak AR, & Samsó M (2022). Ca2+ inactivation of the mammalian ryanodine receptor type 1 in a lipidic environment revealed by cryo-EM.
Elife 11 :e75568. PubMed Id: 35257661. doi:10.7554/eLife.75568. |
||
Iyer et al. (2020).
Iyer KA, Hu Y, Nayak AR, Kurebayashi N, Murayama T, & Samsó M (2020). Structural mechanism of two gain-of-function cardiac and skeletal RyR mutations at an equivalent site by cryo-EM.
Sci Adv 6 31:eabb2964. PubMed Id: 32832689. doi:10.1126/sciadv.abb2964. |
|||
RyR1 ryanodine receptor disease mutant Y523S, embedded in lipidic nanodisc, closed state, in complex with FKBP12.6: Oryctolagus cuniculus E Eukaryota (expressed in HEK293 cells), 4.00 Å
cryo-EM structure in complex with FKBP12.6, 4.05 Å: 7T65 |
Iyer et al. (2022).
Iyer KA, Hu Y, Klose T, Murayama T, & Samsó M (2022). Molecular mechanism of the severe MH/CCD mutation Y522S in skeletal ryanodine receptor (RyR1) by cryo-EM.
Proc Natl Acad Sci U S A 119 30:e2122140119. PubMed Id: 35867837. doi:10.1073/pnas.2122140119. |
||
RyR2 ryanodine receptor, closed state: Sus scrofa E Eukaryota, 4.4 Å
Cryo-EM structure open-state structure, 4.2 Å: 5GOA |
Peng et al. (2016).
Peng W, Shen H, Wu J, Guo W, Pan X, Wang R, Chen SR, & Yan N (2016). Structural basis for the gating mechanism of the type 2 ryanodine receptor RyR2.
Science 354 :301. PubMed Id: 27708056. doi:10.1126/science.aah5324. One-page Research Article Summary on p. 301. For full article, follow the DOI. |
||
RyR2 ryanodine receptor bound to FKBP12.6 interacting with human calmodulin (CaM), apo CaM state: Sus scrofa E Eukaryota, 3.6 Å
cryo-EM structure. FKBP12.6 and CaM expressed in E. coli. ATP/caffeine/low Ca/Cam-M, 4.2 Å: 6JII ATP/caffeine/low Ca, 4.2 Å: 6JI0 ATP/caffeine/low Ca/Cam-M, 4.2 /Ca-CaM, 4.2 Å: 6JIU CHAPS and DOPC treated, ATP/caffeine/low Ca, 3.9 Å: 6JRR CHAPS and DOPC treated, ATP/caffeine/low Ca/Ca-CaM, 3.7 Å: 6JRS ATP/caffeine/high Ca/Ca-CaM, 3.9 Å: 6JIY PCB95/low Ca/Ca-CaM, 4.4 Å: 6JV2 |
Gong et al. (2019).
Gong D, Chi X, Wei J, Zhou G, Huang G, Zhang L, Wang R, Lei J, Chen SRW, & Yan N (2019). Modulation of cardiac ryanodine receptor 2 by calmodulin.
Nature 572 7769:347-351. PubMed Id: 31278385. doi:10.1038/s41586-019-1377-y. |
||
Chi et al. (2019).
Chi X, Gong D, Ren K, Zhou G, Huang G, Lei J, Zhou Q, & Yan N (2019). Molecular basis for allosteric regulation of the type 2 ryanodine receptor channel gating by key modulators.
Proc Natl Acad Sci USA 116 51:25575-25582. PubMed Id: 31792195. doi:10.1073/pnas.1914451116. |
|||
RyR2 ryanodine receptor SPRY1 domain critical in binding FKBP12: Mus musculus E Eukaryota (expressed in E. coli), 1.21 Å
|
Yuchi et al. (2015).
Yuchi Z, Yuen SM, Lau K, Underhill AQ, Cornea RL, Fessenden JD, & Van Petegem F (2015). Crystal structures of ryanodine receptor SPRY1 and tandem-repeat domains reveal a critical FKBP12 binding determinant.
Nat Commun 6 :7947. PubMed Id: 26245150. doi:10.1038/ncomms8947. |
||
RyR2 ryanodine receptor, EGTA dataset, class 1&2, closed state: Mus musculus E Eukaryota (expressed in HEK293 cells), 3.30 Å
cryo-EM structure EGTA dataset, class 1, closed state, 3.50 Å: 7VMM EGTA dataset, class 2, closed state, 3.50 Å: 7VMN Ca2+ dataset, class 1, open state, 3.50 Å: 7VMO Ca2+ dataset, class 2, open state, 3.50 Å: 7VMP Ca2+ dataset, class 3, open state, 3.70 Å: 7VMQ K4593A mutant (EGTA dataset), 3.30 Å: 7VMR K4593A mutant (Ca2+ dataset), 3.80Å: 7vMS |
Kobayashi et al. (2022).
Kobayashi T, Tsutsumi A, Kurebayashi N, Saito K, Kodama M, Sakurai T, Kikkawa M, Murayama T, & Ogawa H (2022). Molecular basis for gating of cardiac ryanodine receptor explains the mechanisms for gain- and loss-of function mutations.
Nat Commun 13 1:2821. PubMed Id: 35595836. doi:10.1038/s41467-022-30429-x. |
||
InsP3R1 Inositol-1,4,5-trisphosphate receptor: Rattus norvegicus E Eukaryota, 4.7 Å
Cryo-EM structure |
Fan et al. (2015).
Fan G, Baker ML, Wang Z, Baker MR, Sinyagovskiy PA, Chiu W, Ludtke SJ, & Serysheva II (2015). Gating machinery of InsP3R channels revealed by electron cryomicroscopy.
Nature 527 :336-341. PubMed Id: 26458101. doi:10.1038/nature15249. |
||
InsP3R1 Inositol-1,4,5-trisphosphate receptor in lipid nanodisc, the apo-state: Rattus norvegicus E Eukaryota, 3.30 Å
cryo-EM structure solubilized in LNMG & lipid in the apo-state, 2.96 Å: 7LHF |
Baker et al. (2021).
Baker MR, Fan G, Seryshev AB, Agosto MA, Baker ML, & Serysheva II (2021). Cryo-EM structure of type 1 IP3R channel in a lipid bilayer.
Commun Biol 4 1:625. PubMed Id: 34035440. doi:10.1038/s42003-021-02156-4. |
||
InsP3R1 Inositol-1,4,5-trisphosphate receptor in the presence of Calcium/IP3/ATP: Rattus norvegicus E Eukaryota, 3.50 Å
cryo-EM structure in high Ca2+, 3.26 Å: 8EAQ |
Fan et al. (2022).
Fan G, Baker MR, Terry LE, Arige V, Chen M, Seryshev AB, Baker ML, Ludtke SJ, Yule DI, & Serysheva II (2022). Conformational motions and ligand-binding underlying gating and regulation in IP3R channel.
Nat Commun 13 1:6942. PubMed Id: 36376291. doi:10.1038/s41467-022-34574-1. |
||
InsP3R3 Inositol-1,4,5-trisphosphate receptor, apo state: Homo sapiens E Eukaryota (expressed in Sf9 cells), 3.49 Å
cryo-EM structure IP3-bound, class 1, 3.33 Å: 6DQN IP3-bound, class 2, 3.82 Å: 6DQV IP3-bound, class 3, 4.12 Å: 6DQS IP3-bound, class 4, 6.01 Å: 6DQZ IP3-bound, class 5, 4.47 Å: 6DR0 Ca2+ bound, 4.33 Å: 6DR2 low IP3-Ca2+ bound, 3.96 Å: 6DRA high IP3-Ca2+ bound, 3.92 Å: 6DRC |
Paknejad & Hite (2018).
Paknejad N, & Hite RK (2018). Structural basis for the regulation of inositol trisphosphate receptors by Ca2+ and IP3.
Nat Struct Mol Biol 25 8:660-668. PubMed Id: 30013099. doi:10.1038/s41594-018-0089-6. |
||
InsP3R3 Inositol-1,4,5-trisphosphate receptor and presence of self-binding peptide: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.77 Å
cryo-EM structure |
Azumaya et al. (2020).
Azumaya CM, Linton EA, Risener CJ, Nakagawa T, & Karakas E (2020). Cryo-EM structure of human type-3 inositol triphosphate receptor reveals the presence of a self-binding peptide that acts as an antagonist.
J Biol Chem 295 6:1743-1753. PubMed Id: 31915246. doi:10.1074/jbc.RA119.011570. |
||
Schmitz et al. (2022).
Schmitz EA, Takahashi H, & Karakas E (2022). Structural basis for activation and gating of IP3 receptors.
Nat Commun 13 1:1408. PubMed Id: 35301323. doi:10.1038/s41467-022-29073-2. |
|||
InsP3R3 Inositol-1,4,5-trisphosphate receptor, resting state: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.49 Å
cryo-EM structure preactivated state, 3.70 Å: 8TKD preactivated state, with bound Ca2+, 3.60 Å: activated state, 3.20 Å: 8TKF resting state, 2.50 Å: 8TKG labile resting state 1, 3.50 Å: 8TKH labile resting state 2, 3.60 Å: 8TKI resting state, 3.30 Å: 8TL9 higher-order inhibited state, 3.20 Å: 8TLA |
Paknejad et al. (2023).
Paknejad N, Sapuru V, & Hite RK (2023). Structural titration reveals Ca2+-dependent conformational landscape of the IP3 receptor.
Nat Commun 14 1:6897. PubMed Id: 37898605. doi:10.1038/s41467-023-42707-3. |
||
Mitochondrial calcium uniporter (MCU): Caenorhabditis elegans E Eukaryota (expressed in E. coli), NMR structure
|
Oxenoid et al. (2016).
Oxenoid K, Dong Y, Cao C, Cui T, Sancak Y, Markhard AL, Grabarek Z, Kong L, Liu Z, Ouyang B, Cong Y, Mootha VK, & Chou JJ (2016). Architecture of the mitochondrial calcium uniporter.
Nature 533 :269-273. PubMed Id: 27135929. doi:10.1038/nature17656. |
||
Mitochondrial calcium uniporter (MCU), full length: Neurospora crassa E Eukaryota (expressed in E. coli), 3.7 Å
cryo-EM structure |
Yoo et al. (2018).
Yoo J, Wu M, Yin Y, Herzik MA Jr, Lander GC, & Lee SY (2018). Cryo-EM structure of a mitochondrial calcium uniporter.
Science 361 6401:506-511. PubMed Id: 29954988. doi:10.1126/science.aar4056. |
||
Mitochondrial calcium uniporter (MCU), full length: Neosartorya fischeri E Eukaryota (expressed in E. coli), 3.8 Å
cryo-EM structure in complex with saposin, 5 Å: 6D80 |
Nguyen et al. (2018).
Nguyen NX, Armache JP, Lee C, Yang Y, Zeng W, Mootha VK, Cheng Y, Bai XC, & Jiang Y (2018). Cryo-EM structure of a fungal mitochondrial calcium uniporter.
Nature 559 7715:570-574. PubMed Id: 29995855. doi:10.1038/s41586-018-0333-6. |
||
Mitochondrial calcium uniporter (MCU), full length: Metarhizium acridum E Eukaryota (expressed in E. coli), 3.10 Å
soluble domain, 3.10 Å: 6C5R |
Fan et al. (2018).
Fan C, Fan M, Orlando BJ, Fastman NM, Zhang J, Xu Y, Chambers MG, Xu X, Perry K, Liao M, & Feng L (2018). X-ray and cryo-EM structures of the mitochondrial calcium uniporter.
Nature 559 7715:575-579. PubMed Id: 29995856. doi:10.1038/s41586-018-0330-9. |
||
Mitochondrial calcium uniporter (MCU), full length: Cyphellophora europaea E Eukaryota (expressed in Komagataella pastoris), 3.2 Å
cryo-EM structure |
Baradaran et al. (2018).
Baradaran R, Wang C, Siliciano AF, & Long SB (2018). Cryo-EM structures of fungal and metazoan mitochondrial calcium uniporters.
Nature 559 7715:580-584. PubMed Id: 29995857. doi:10.1038/s41586-018-0331-8. |
||
Mitochondrial calcium uniporter (MCU) in complex with EMRE: Homo Sapiens E Eukaryota (expressed in HEK293 cells), 3.8 Å
cryo-EM structure |
Wang et al. (2019).
Wang Y, Nguyen NX, She J, Zeng W, Yang Y, Bai XC, & Jiang Y (2019). Structural Mechanism of EMRE-Dependent Gating of the Human Mitochondrial Calcium Uniporter.
Cell 177 5:1252-1261.e13. PubMed Id: 31080062. doi:10.1016/j.cell.2019.03.050. |
||
mitochondrial calcium uniporter (MCU) holocomplex, low Ca2+: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.20 Å
cryo-EM structure high Ca2+, 3.60 Å: 6WDO |
Fan et al. (2020).
Fan M, Zhang J, Tsai CW, Orlando BJ, Rodriguez M, Xu Y, Liao M, Tsai MF, & Feng L (2020). Structure and mechanism of the mitochondrial Ca2+ uniporter holocomplex.
Nature 582 7810:129-133. PubMed Id: 32494073. doi:10.1038/s41586-020-2309-6. |
||
Mitochondrial calcium uniporter (MCU) holocomplex (uniplex) in nanodiscs, high calcium state: Homo sapiens E Eukaryota (expressed in HEK293 cells), 4.17 Å
cryo-EM structure low-calcium blocking state, 4.60 Å: 6XJX |
Wang et al. (2020).
Wang Y, Han Y, She J, Nguyen NX, Mootha VK, Bai XC, & Jiang Y (2020). Structural insights into the Ca2+-dependent gating of the human mitochondrial calcium uniporter.
Elife 9 . PubMed Id: 32762847. doi:10.7554/eLife.60513. |
||
Mitochondrial calcium uniporter (MCU) in complex with MICU1/MICU2 subunits: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.60 Å
cryo-EM structure |
Zhuo et al. (2021).
Zhuo W, Zhou H, Guo R, Yi J, Zhang L, Yu L, Sui Y, Zeng W, Wang P, & Yang M (2021). Structure of intact human MCU supercomplex with the auxiliary MICU subunits.
Protein Cell 12 3:220-229. PubMed Id: 32862359. doi:10.1007/s13238-020-00776-w. |
||
RyR2 ryanodine receptor, PKA phosphorylated in the closed state: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.11 Å
cryo-EM structure in the open state, 3.69 Å: 7U9R in the closed state in the presence of Calmodulin, 2.68 Å: 7U9T RyR2-R2474S in the closed state, 2.58 Å: 7U9X RyR2-R2474S in the open state, 3.29 Å: 7U9Z RyR2-R2474S in the closed state in the presence of ARM210, 2.99 Å: 7UA1 RyR2-R2474S in the closed state in the presence of Calmodulin, 2.97 Å: 7UA3 RyR2-R2474S in the open state in the presence of Calmodulin, 2.93 Å: 7UA4 dephosphorylated in the closed state, 2.83 Å: 7UA5 dephosphorylated in the open state, 3.59 Å: 7UA9 |
Miotto et al. (2022).
Miotto MC, Weninger G, Dridi H, Yuan Q, Liu Y, Wronska A, Melville Z, Sittenfeld L, Reiken S, & Marks AR (2022). Structural analyses of human ryanodine receptor type 2 channels reveal the mechanisms for sudden cardiac death and treatment.
Sci Adv 8 29:eabo1272. PubMed Id: 35857850. doi:10.1126/sciadv.abo1272. |
||
Channels: Transient Receptor Potential (TRP)
Non-selective cation channels responding to a wide range of chemical and physical stimuli |
|||
TRP1 thermo-sensitive transient receptor potential channel in nanodiscs: Chlamydomonas reinhardtii E Eukaryota (expressed in HEK293 cells), 3.45 Å
in glyco-diosgenin (GDN) detergent, 3.53 Å: 6PW4 |
McGoldrick et al. (2019).
McGoldrick LL, Singh AK, Demirkhanyan L, Lin TY, Casner RG, Zakharian E, & Sobolevsky AI (2019). Structure of the thermo-sensitive TRP channel TRP1 from the alga Chlamydomonas reinhardtii.
Nat Commun 10 1:4180. PubMed Id: 31519888. doi:10.1038/s41467-019-12121-9. |
||
TRPA1 transient receptor potential channel (wasabi receptor): Homo sapiens E Eukaryota (expressed in HEK293S GnTI-), 4.24 Å
Structure determined using single-particle cryo-EM. |
Paulsen et al. (2015).
Paulsen CE, Armache JP, Gao Y, Cheng Y, & Julius D (2015). Structure of the TRPA1 ion channel suggests regulatory mechanisms.
Nature 520 7548:511-517. PubMed Id: 25855297. doi:10.1038/nature14367. |
||
Suo et al. (2020).
Suo Y, Wang Z, Zubcevic L, Hsu AL, He Q, Borgnia MJ, Ji RR, & Lee SY (2020). Structural Insights into Electrophile Irritant Sensing by the Human TRPA1 Channel.
Neuron 105 5:882-894.e5. PubMed Id: 31866091. doi:10.1016/j.neuron.2019.11.023. |
|||
TRPA1 transient receptor potential channel, modified by Bodipy-iodoacetamide with bound calcium in LMNG: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.60 Å
cryo-EM structure ligand-free with bound calcium in LMNG detergent, 3.10 Å: 6V9W TRPA1 modified by iodoacetamide in PMAL-C8, 3.30 Å: 6V9X bound with A-967079 in PMAL-C8, 3.60Å: 6V9Y |
Zhao et al. (2020).
Zhao J, Lin King JV, Paulsen CE, Cheng Y, & Julius D (2020). Irritant-evoked activation and calcium modulation of the TRPA1 receptor.
Nature 585 7823:141-145. PubMed Id: 32641835. doi:10.1038/s41586-020-2480-9. |
||
TRPA1 transient receptor potential channel in complex with antagonist compound 21: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.05 Å
cryo-EM structure |
Terrett et al. (2021).
Terrett JA, Chen H, Shore DG, Villemure E, Larouche-Gauthier R, Déry M, Beaumier F, Constantineau-Forget L, Grand-Maître C, Lépissier L, Ciblat S, Sturino C, Chen Y, Hu B, Lu A, Wang Y, Cridland AP, Ward SI, Hackos DH, Reese RM, Shields SD, Chen J, Balestrini A, Riol-Blanco L, Lee WP, Liu J, Suto E, Wu X, Zhang J, Ly JQ, La H, Johnson K, Baumgardner M, Chou KJ, Rohou A, Rougé L, Safina BS, Magnuson S, & Volgraf M (2021). Tetrahydrofuran-Based Transient Receptor Potential Ankyrin 1 (TRPA1) Antagonists: Ligand-Based Discovery, Activity in a Rodent Asthma Model, and Mechanism-of-Action via Cryogenic Electron Microscopy.
J Med Chem 64 7:3843-3869. PubMed Id: 33749283. doi:10.1021/acs.jmedchem.0c02023. |
||
TRPC3 ion channel, lipid-occupied closed state: Homo sapiens E Eukaryota (expressed in HEK 293), 3.3 Å
cryo-EM structure |
Fan et al. (2018).
Fan C, Choi W, Sun W, Du J, & Lu W (2018). Structure of the human lipid-gated cation channel TRPC3.
Elife 7 :e36852. PubMed Id: 29726814. doi:10.7554/eLife.36852. |
||
Guo et al. (2022).
Guo W, Tang Q, Wei M, Kang Y, Wu JX, & Chen L (2022). Structural mechanism of human TRPC3 and TRPC6 channel regulation by their intracellular calcium-binding sites.
Neuron 110 6:1023-1035.e5. PubMed Id: 35051376. doi:10.1016/j.neuron.2021.12.023. |
|||
TRPC4 ion channel, apo state: Danio rerio E Eukaryota (expressed in HEK 293 cells), 3.6 Å
cryo-EM structure |
Vinayagam et al. (2018).
Vinayagam D, Mager T, Apelbaum A, Bothe A, Merino F, Hofnagel O, Gatsogiannis C, & Raunser S (2018). Electron cryo-microscopy structure of the canonical TRPC4 ion channel.
Elife 7 . PubMed Id: 29717981. doi:10.7554/eLife.36615. |
||
TRPC4 ion channel in complex with inhibitor GFB-8438: Danio rerio E Eukaryota (expressed in HEK293 cells), 3.60 Å
cryo-EM structure in complex with inhibitor GFB-9289, 3.15 Å: 7B16 in complex with inhibitor GFB-8749, 3.80 Å: 7B05 in complex with Calmodulin, 3.60 Å: 7B1G in LMNG detergent, 2.85 Å: 7B0J |
Vinayagam et al. (2020).
Vinayagam D, Quentin D, Yu-Strzelczyk J, Sitsel O, Merino F, Stabrin M, Hofnagel O, Yu M, Ledeboer MW, Nagel G, Malojcic G, & Raunser S (2020). Structural basis of TRPC4 regulation by calmodulin and pharmacological agents.
Elife 9 :e60603. PubMed Id: 33236980. doi:10.7554/eLife.60603. |
||
TRPC4 ion channel, apo state: Mus musculus E Eukaryota (expressed in HEK293 cells), 3.28 Å
cryo-EM structure |
Duan et al. (2018).
Duan J, Li J, Zeng B, Chen GL, Peng X, Zhang Y, Wang J, Clapham DE, Li Z, & Zhang J (2018). Structure of the mouse TRPC4 ion channel.
Nat Commun 9 :3102. PubMed Id: 30082700. doi:10.1038/s41467-018-05247-9. |
||
Song et al. (2021).
Song K, Wei M, Guo W, Quan L, Kang Y, Wu JX, & Chen L (2021). Structural basis for human TRPC5 channel inhibition by two distinct inhibitors.
Elife 10 :e63429. PubMed Id: 33683200. doi:10.7554/eLife.63429. |
|||
TRPC5 ion channel in complex with riluzole: Homo sapiens E Eukaryota, 2.40 Å
cryo-EM structure |
Yang et al. (2022).
Yang Y, Wei M, & Chen L (2022). Structural identification of riluzole-binding site on human TRPC5.
Cell Discov 8 1:67. PubMed Id: 35821012. doi:10.1038/s41421-022-00410-5. |
||
Won et al. (2023).
Won J, Kim J, Jeong H, Kim J, Feng S, Jeong B, Kwak M, Ko J, Im W, So I, & Lee HH (2023). Molecular architecture of the Gαi-bound TRPC5 ion channel.
Nat Commun 14 1:2550. PubMed Id: 37137991. doi:10.1038/s41467-023-38281-3. |
|||
TRPC6 ion channel in complex with antagonist AM-1473: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.08 Å
cryo-EM structure in complex with agonist AM-0883, 2.84 Å: 6UZ8 |
Bai et al. (2020).
Bai Y, Yu X, Chen H, Horne D, White R, Wu X, Lee P, Gu Y, Ghimire-Rijal S, Lin DC, & Huang X (2020). Structural basis for pharmacological modulation of the TRPC6 channel.
Elife 9 :e53311. PubMed Id: 32149605. doi:10.7554/eLife.53311. |
||
TRPC6 ion channel in a nanodisc, high calcium state: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.90 Å
cryo-EM structure SAR7334-bound, 2.90 Å: 7DXG |
Guo et al. (2022).
Guo W, Tang Q, Wei M, Kang Y, Wu JX, & Chen L (2022). Structural mechanism of human TRPC3 and TRPC6 channel regulation by their intracellular calcium-binding sites.
Neuron 110 6:1023-1035.e5. PubMed Id: 35051376. doi:10.1016/j.neuron.2021.12.023. |
||
TRPM2 Ca2+-activated transient receptor potential channel, Ca2+-bound closed state: Nematostella vectensis E Eukaryota (expressed in S. frugiperda), 3.07 Å
cryo-EM structure |
Zhang et al. (2018).
Zhang Z, Tóth B, Szollosi A, Chen J, & Csanády L (2018). Structure of a TRPM2 channel in complex with Ca2+ explains unique gating regulation.
Elife 7 :e36409. PubMed Id: 29745897. doi:10.7554/eLife.36409. |
||
TRPM2 ion channel, apo state: Danio rerio E Eukaryota (expressed in HEK293 cells), 3.8 Å
cryo-EM structure with bound ADP-ribose and Ca2+, 3.3 Å: 6DRJ |
Huang et al. (2018).
Huang Y, Winkler PA, Sun W, Lü W, & Du J (2018). Architecture of the TRPM2 channel and its activation mechanism by ADP-ribose and calcium.
Nature 562 7725:145-149. PubMed Id: 30250252. doi:10.1038/s41586-018-0558-4. |
||
Yin et al. (2019).
Yin Y, Wu M, Hsu AL, Borschel WF, Borgnia MJ, Lander GC, & Lee SY (2019). Visualizing structural transitions of ligand-dependent gating of the TRPM2 channel.
Nat Commun 10 1. PubMed Id: 31431622. doi:10.1038/s41467-019-11733-5. |
|||
Wang et al. (2018).
Wang L, Fu TM, Zhou Y, Xia S, Greka A, & Wu H (2018). Structures and gating mechanism of human TRPM2.
Science 362 6421. PubMed Id: 30467180. doi:10.1126/science.aav4809. |
|||
Huang et al. (2019).
Huang Y, Roth B, Lü W, & Du J (2019). Ligand recognition and gating mechanism through three ligand-binding sites of human TRPM2 channel.
Elife 8 . PubMed Id: 31513012. doi:10.7554/eLife.50175. |
|||
TRPM2 ion channel, apo form: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.76 Å
cryo-EM structure channel TM domain, 3.68 Å 7VQ2 |
Yu et al. (2021).
Yu X, Xie Y, Zhang X, Ma C, Liu L, Zhen W, Xu L, Zhang J, Liang Y, Zhao L, Gao X, Yu P, Luo J, Jiang LH, Nie Y, Yang F, Guo J, & Yang W (2021). Structural and functional basis of the selectivity filter as a gate in human TRPM2 channel.
Cell Rep 37 7:110025. PubMed Id: 34788616. doi:10.1016/j.celrep.2021.110025. |
||
TRPM2 ion channel, apo form: Mus musculus E Eukaryota (expressed in HEK293 cells), 3.18 Å
cryo-EM structure |
Song et al. (2022).
Song X, Li J, Tian M, Zhu H, Hu X, Zhang Y, Cao Y, Ye H, McCormick PJ, Zeng B, Fu Y, Duan J, & Zhang J (2022). Cryo-EM structure of mouse TRPML2 in lipid nanodiscs.
J Biol Chem 298 2:e101487. PubMed Id: 34915027. doi:10.1016/j.jbc.2021.101487. |
||
TRPM4 Ca2+-activated transient receptor potential channel: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.8 Å
cryo-EM structure |
Winkler et al. (2017).
Winkler PA, Huang Y, Sun W, Du J, & Lü W (2017). Electron cryo-microscopy structure of a human TRPM4 channel.
Nature 552 7684:200-204. PubMed Id: 29211723. doi:10.1038/nature24674. |
||
TRPM4 Ca2+-activated transient receptor potential channel in lipid nanodisc (calcium-free state): Homo sapiens E Eukaryota (expressed in HEK 293 cells), 3.2 Å
cryo-EM structure with CaCl2, 3.1 Å: 6BQV |
Autzen et al. (2018).
Autzen HE, Myasnikov AG, Campbell MG, Asarnow D, Julius D, & Cheng Y (2018). Structure of the human TRPM4 ion channel in a lipid nanodisc.
Science 359 :228-232. PubMed Id: 29217581. doi:10.1126/science.aar4510. |
||
TRPM4 Ca2+-activated transient receptor potential channel, full length: Homo sapiens E Eukaryota (expressed in HEK 293S cells), 3.7 Å
cryo-EM structure. |
Duan et al. (2018).
Duan J, Li Z, Li J, Santa-Cruz A, Sanchez-Martinez S, Zhang J, & Clapham DE (2018). Structure of full-length human TRPM4.
Proc Natl Acad Sci USA 115 10:2377-2382. PubMed Id: 29463718. doi:10.1073/pnas.1722038115. |
||
Guo et al. (2017).
Guo J, She J, Zeng W, Chen Q, Bai XC, & Jiang Y (2017). Structures of the calcium-activated, non-selective cation channel TRPM4.
Nature 552 7684:205-209. PubMed Id: 29211714. doi:10.1038/nature24997. |
|||
Duan et al. (2018).
Duan J, Li Z, Li J, Hulse RE, Santa-Cruz A, Valinsky WC, Abiria SA, Krapivinsky G, Zhang J, & Clapham DE (2018). Structure of the mammalian TRPM7, a magnesium channel required during embryonic development.
Proc Natl Acad Sci USA 115 35:E8201-E8210. PubMed Id: 30108148. doi:10.1073/pnas.1810719115. |
|||
TRPM7 α-kinase and divalent-ion permeable channel, apo state, in MSP2N2 nanodiscs: Mus musculus E Eukaryota (expressed in HEK293 cells), 2.19 Å
cryo-EM structure with bound naltriben, open state, 2.17 Å: 8SI5 with bound naltriben, closed state, 2.44 Å: 8SI6 in GDN detergent: 2.61 Å: 8Si3 with bound VER155008, in GDN detergent, closed state, 2.59 Å: 8SI7 N1098Q mutant, in GDN detergent, open state, 2.46 Å: 8Si4 N1098Q mutant, with bound VER155008, in GDN detergent, closed state, 2.99 Å: 8SI8 N1098Q mutant, with bound NS8593, in GDN detergent, closed state, 2.91 Å: 8SIA |
Nadezhdin et al. (2023).
Nadezhdin KD, Correia L, Narangoda C, Patel DS, Neuberger A, Gudermann T, Kurnikova MG, Chubanov V, & Sobolevsky AI (2023). Structural mechanisms of TRPM7 activation and inhibition.
Nat Commun 14 1:2639. PubMed Id: 37156763. doi:10.1038/s41467-023-38362-3. |
||
TRPM7 α-kinase and divalent-ion permeable channel with anticancer agent CCT128930 in closed state: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.45 Å
cryo-EM structure |
Nadezhdin et al. (2024).
Nadezhdin KD, Correia L, Shalygin A, Aktolun M, Neuberger A, Gudermann T, Kurnikova MG, Chubanov V, & Sobolevsky AI (2024). Structural basis of selective TRPM7 inhibition by the anticancer agent CCT128930.
Cell Rep 43 4:114108. PubMed Id: 38615321. doi:10.1016/j.celrep.2024.114108. |
||
TRPM8 cold- & menthol-sensing channel: Ficedula albicollis E Eukaryota (expressed in HEK 293 cells), 4.1 Å
cryo-EM structure |
Yin et al. (2018).
Yin Y, Wu M, Zubcevic L, Borschel WF, Lander GC, & Lee SY (2018). Structure of the cold- and menthol-sensing ion channel TRPM8.
Science 359 :237-241. PubMed Id: 29217583. doi:10.1126/science.aan4325. |
||
TRPM8 cold- & menthol-sensing channel in complex with high occupancy icilin, PI(4,5)P2, and calcium: Ficedula albicollis E Eukaryota (expressed in HEK293 cells), 3.4 Å
cryo-EM structure in complex with with low occupancy icilin, PI(4,5)P2, and calcium; 4.3 Å: 6NR4 in complex with the menthol analog WS-12 and PI(4,5)P2; 4 Å: 6NR2 |
Yin et al. (2019).
Yin Y, Le SC, Hsu AL, Borgnia MJ, Yang H, & Lee SY (2019). Structural basis of cooling agent and lipid sensing by the cold-activated TRPM8 channel.
Science 363 6430. PubMed Id: 30733385. doi:10.1126/science.aav9334. |
||
Diver et al. (2019).
Diver MM, Cheng Y, & Julius D (2019). Structural insights into TRPM8 inhibition and desensitization.
Science 365 :1434-1440. PubMed Id: 31488702. doi:10.1126/science.aax6672. |
|||
TRPM8 cold- & menthol-sensing channel in complex with PI(4,5)P2: Ficedula albicollis E Eukaryota (expressed in HEK293 cells), 3.51 Å
cryo-EM structure |
Yin et al. (2022).
Yin Y, Zhang F, Feng S, Butay KJ, Borgnia MJ, Im W, & Lee SY (2022). Activation mechanism of the mouse cold-sensing TRPM8 channel by cooling agonist and PIP2.
Science 378 6616:eadd1268. PubMed Id: 36227998. doi:10.1126/science.add1268. |
||
TRPM8 cold- & menthol-sensing channel. Ligand- and PI(4,5)P2-free condition, Class I, C0 state: Mus musculus E Eukaryota (expressed in HEK293 cells), 3.59 Å
cryo-EM structure closed C1-state, in complex with putative PI(4,5)P2, 3.43 Å: 8E4O closed C1-state, in complex with PI(4,5)P2, 3.07 Å: 8E4N intermediate C2-state, in complex with the cooling agonist C3 and PI(4,5)P2, 3.44 Å: 8E4M open state, in complex with the cooling agonist C3, AITC, and PI(4,5)P2, 3.32 Å: 8E4L |
Yin et al. (2022).
Yin Y, Zhang F, Feng S, Butay KJ, Borgnia MJ, Im W, & Lee SY (2022). Activation mechanism of the mouse cold-sensing TRPM8 channel by cooling agonist and PIP2.
Science 378 6616:eadd1268. PubMed Id: 36227998. doi:10.1126/science.add1268. |
||
Yin et al. (2024).
Yin Y, Park CG, Zhang F, G Fedor J, Feng S, Suo Y, Im W, & Lee SY (2024). Mechanisms of sensory adaptation and inhibition of the cold and menthol receptor TRPM8.
Sci Adv 10 31:eadp2211. PubMed Id: 39093967. doi:10.1126/sciadv.adp2211. |
|||
TRPM8 cold- & menthol-sensing channel, closed state: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.65 Å
cryo-EM structure |
Palchevskyi et al. (2023).
Palchevskyi S, Czarnocki-Cieciura M, Vistoli G, Gervasoni S, Nowak E, Beccari AR, Nowotny M, & Talarico C (2023). Structure of human TRPM8 channel.
Commun Biol 6 1:1065. PubMed Id: 37857704. doi:10.1038/s42003-023-05425-6. |
||
Chen et al. (2017).
Chen Q, She J, Zeng W, Guo J, Xu H, Bai XC, & Jiang Y (2017). Structure of mammalian endolysosomal TRPML1 channel in nanodiscs.
Nature 550 :415-418. PubMed Id: 29019981. doi:10.1038/nature24035. |
|||
Gan et al. (2022).
Gan N, Han Y, Zeng W, Wang Y, Xue J, & Jiang Y (2022). Structural mechanism of allosteric activation of TRPML1 by PI(3,5)P2 and rapamycin.
Proc Natl Acad Sci U S A 119 7:e2120404119. PubMed Id: 35131932. doi:10.1073/pnas.2120404119. |
|||
TRPML3 ion channel: Callithrix jacchus E Eukaryota (expressed in S. frugiperda), 2.94 Å
cryo-EM structure |
Hirschi et al. (2017).
Hirschi M, Herzik MA Jr, Wie J, Suo Y, Borschel WF, Ren D, Lander GC, & Lee SY (2017). Cryo-electron microscopy structure of the lysosomal calcium-permeable channel TRPML3.
Nature 550 :411-414. PubMed Id: 29019979. doi:10.1038/nature24055. |
||
Zhou et al. (2017).
Zhou X, Li M, Su D, Jia Q, Li H, Li X, & Yang J (2017). Cryo-EM structures of the human endolysosomal TRPML3 channel in three distinct states.
Nat Struct Mol Biol 24 12:1146-1154. PubMed Id: 29106414. doi:10.1038/nsmb.3502. |
|||
TRPV1 transient receptor potential channel capsaicin receptor: Rattus norvegicus E Eukaryota (expressed in HEK293S GnTI- cells), 3.275 Å
cryo-EM structure Not only is this the first structure of a TRP channel, it is the first membrane protein whose structure was determined at atomic-resolution using single-particle cryo-EM. |
Liao et al. (2013).
Liao M, Cao E, Julius D, & Cheng Y (2013). Structure of the TRPV1 ion channel determined by electron cryo-microscopy.
Nature 504 :107-112. PubMed Id: 24305160. doi:10.1038/nature12822. |
||
TRPV1 transient receptor potential channel in complex with vanilloid agonist RTX: Rattus norvegicus E Eukaryota (expressed in HEK293S GnTI- cells), 3.8 Å
in complex with capsaicin, 4.2 Å: 3J5R |
Cao et al. (2013).
Cao E, Liao M, Cheng Y, & Julius D (2013). TRPV1 structures in distinct conformations reveal activation mechanisms.
Nature 504 :113-118. PubMed Id: 24305161. doi:10.1038/nature12823. |
||
Gao et al. (2016).
Gao Y, Cao E, Julius D, & Cheng Y (2016). TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action.
Nature 534 :347-351. PubMed Id: 27281200. doi:10.1038/nature17964. |
|||
TRPV1 transient receptor potential channel, T = 4ºC: Rattus norvegicus E Eukaryota (expressed in HEK293 cells), 2.63 Å
cryo-EM structure with capsaicin at 4ºC, 3.37 Å: 7LPA 48ºC, 3.06 Å: 7LPC with capsaicin at 25ºC, 3.54 Å: 7LPB with capsaicin at 48ºC (intermediate state, class 2), 3.55 Å: 7LPD with capsaicin at 48ºC (open state, class 1), 3.72 Å: 7LPE |
Kwon et al. (2021).
Kwon DH, Zhang F, Suo Y, Bouvette J, Borgnia MJ, & Lee SY (2021). Heat-dependent opening of TRPV1 in the presence of capsaicin.
Nat Struct Mol Biol 28 7:554-563. PubMed Id: 34239123. doi:10.1038/s41594-021-00616-3. |
||
TRPV1 transient receptor potential channel, unliganded minimal TRPV1: Rattus norvegicus E Eukaryota (expressed in HEK293 cells), 2.60 Å
cryo-EM structure DkTx-bound minimal TRPV1 at the pre-bound state, 2.71 Å 7L2S DkTx-bound minimal TRPV1 at the pre-open state, 3.30 Å 72LR DkTx-bound minimal TRPV1 in partial open state, 3.08 Å 7L2T DkTx-bound minimal TRPV1 in open state, 3.47 Å 7L2U RTX-bound minimal TRPV1 with NMDG at state a, 3.16 Å 7L2W RTX-bound minimal TRPV1 with NMDG at state b, 3.64 Å 7L2V RTX-bound minimal TRPV1 with NMDG at state c, 3.26 Å 7L2X minimal TRPV1 with 1 perturbed PI, 2.91 Å 7MZ6 minimal TRPV1 with 1 partially bound RTX, 3.18 Å 7MZ9 minimal TRPV1 with 4 partially bound RTX, 3.35 Å 7MZ7 minimal TRPV1 with 2 bound RTX in adjacent pockets, 3.46 Å 7MZA minimal TRPV1 with 2 bound RTX in opposite pockets, 3.42 Å 7MZE minimal TRPV1 with 3 bound RTX and 1 perturbed PI, 3.72 Å 7MZB minimal TRPV1 with RTX bound in C1 state, 3.03 Å 7MZC minimal TRPV1 with RTX bound in C2 state, 2.90 Å 7MZD unliganded full-length TRPV1 at neutral pH, 2.63 Å 7L2H DkTx/RTX-bound full-length TRPV1, 3.84 Å 7L2M RTX-bound full-length TRPV1 in C1 state, 3.09 Å 7L2N RTX-bound full-length TRPV1 in O1 state, 3.42 Å 7L2L RTX-bound full-length TRPV1 in C2 state, 2.76 Å 7MZ5 full-length TRPV1 at pH6a state, 3.70 Å 7L2I full-length TRPV1 at pH6b state, 3.89 Å 7L2K full-length TRPV1 at pH6c state, 3.66 Å 7L2J RTX-bound full-length TRPV1 at pH 5.5, 3.64 Å 7L2O |
Zhang et al. (2021).
Zhang K, Julius D, & Cheng Y (2021). Structural snapshots of TRPV1 reveal mechanism of polymodal functionality.
Cell 184 20:5138-5150.e12. PubMed Id: 34496225. doi:10.1016/j.cell.2021.08.012. |
||
full-length TRPV1 with RTx at 4°C, in a closed state, class I: Rattus norvegicus E Eukaryota (expressed in HEK293 cells), 3.05 Å
cryo-EM structure in an intermediate-closed state, class II, 3.45 Å: 7RQV in an open state, class III, 3.11 Å: 7RQW 25°C, in an intermediate-open state, class A, 3.36 Å: 7RQX 25°C, in an open state, class B, 3.04 Å: 7RQY 48°C in an open state, class alpha, 3.32 Å: 7RQZ |
Kwon et al. (2022).
Kwon DH, Zhang F, Fedor JG, Suo Y, & Lee SY (2022). Vanilloid-dependent TRPV1 opening trajectory from cryoEM ensemble analysis.
Nat Commun 13 1:2874. PubMed Id: 35610228. doi:10.1038/s41467-022-30602-2. |
||
Nadezhdin et al. (2021).
Nadezhdin KD, Neuberger A, Nikolaev YA, Murphy LA, Gracheva EO, Bagriantsev SN, & Sobolevsky AI (2021). Extracellular cap domain is an essential component of the TRPV1 gating mechanism.
Nat Commun 12 1:2154. PubMed Id: 33846324. doi:10.1038/s41467-021-22507-3. |
|||
Neuberger et al. (2023).
Neuberger A, Oda M, Nikolaev YA, Nadezhdin KD, Gracheva EO, Bagriantsev SN, & Sobolevsky AI (2023). Human TRPV1 structure and inhibition by the analgesic SB-366791.
Nat Commun 14 1:2451. PubMed Id: 37117175. doi:10.1038/s41467-023-38162-9. |
|||
TRPV2 transient receptor potential channel: Oryctolagus cuniculus E Eukaryota (expressed in S. frugiperda), 4 Å
cryo-EM structure |
Zubcevic et al. (2016).
Zubcevic L, Herzik MA Jr, Chung BC, Liu Z, Lander GC, & Lee SY (2016). Cryo-electron microscopy structure of the TRPV2 ion channel.
Nat Struct Mol Biol 23 :180-186. PubMed Id: 26779611. doi:10.1038/nsmb.3159. |
||
TRPV2 transient receptor potential channel, Ca2+ bound: Oryctolagus cuniculus E Eukaryota (expressed in S. frugiperda), 3.9 Å
in complex with RTx, 3.1 Å: 6BWJ |
Zubcevic et al. (2018).
Zubcevic L, Le S, Yang H, & Lee SY (2018). Conformational plasticity in the selectivity filter of the TRPV2 ion channel.
Nat Struct Mol Biol 25 5:405-415. PubMed Id: 29728656. doi:10.1038/s41594-018-0059-z. |
||
TRPV2 transient receptor potential channel: C4-symmetric TRPV2/RTx complex in amphipol: Oryctolagus cuniculus E Eukaryota (expressed in S. frugiperda), 2.9 Å
cryo-EM structure C2-symmetric TRPV2/RTx complex, 3.3 Å: 6OO4 C2-symmetric TRPV2/RTx complex, 4.2 Å: 6OO5 C2-symmetric TRPV2/RTx complex in nanodiscs, 3.8 Å: 6OO7 |
Zubcevic et al. (2019).
Zubcevic L, Hsu AL, Borgnia MJ, & Lee SY (2019). Symmetry transitions during gating of the TRPV2 ion channel in lipid membranes.
Elife 8 :e45779. PubMed Id: 31090543. doi:10.7554/eLife.45779. |
||
TRPV2 channel, full-length: Rattus norvegicus E Eukaryota (expressed in S. cerevisiae), 4.4 Å
cryo-EM structure |
Huynh et al. (2016).
Huynh KW, Cohen MR, Jiang J, Samanta A, Lodowski DT, Zhou ZH, & Moiseenkova-Bell VY (2016). Structure of the full-length TRPV2 channel by cryo-EM.
Nat Commun 7 :11130. PubMed Id: 27021073. doi:10.1038/ncomms11130. |
||
TRPV2 channel, full-length with resolved pore turret domain: Rattus norvegicus E Eukaryota (expressed in S. cerevisiae), 4.0 Å
cryo-EM structure channel in partially closed state, 3.6 Å: 6BO5 |
Dosey et al. (2019).
Dosey TL, Wang Z, Fan G, Zhang Z, Serysheva II, Chiu W, & Wensel TG (2019). Structures of TRPV2 in distinct conformations provide insight into role of the pore turret.
Nat Struct Mol Biol 26 1:40-49. PubMed Id: 30598551. doi:10.1038/s41594-018-0168-8. |
||
Pumroy et al. (2019).
Pumroy RA, Samanta A, Liu Y, Hughes TE, Zhao S, Yudin Y, Rohacs T, Han S, & Moiseenkova-Bell VY (2019). Molecular mechanism of TRPV2 channel modulation by cannabidiol.
Elife 8 :e48792. PubMed Id: 31566564. doi:10.7554/eLife.48792. |
|||
TRPV2 channel in nanodiscs with bound piperlongumine: Rattus norvegicus E Eukaryota (expressed in Saccharomyces cerevisiae), 3.46 Å
cryo-EM structure |
Conde et al. (2021).
Conde J, Pumroy RA, Baker C, Rodrigues T, Guerreiro A, Sousa BB, Marques MC, de Almeida BP, Lee S, Leites EP, Picard D, Samanta A, Vaz SH, Sieglitz F, Langini M, Remke M, Roque R, Weiss T, Weller M, Liu Y, Han S, Corzana F, Morais VA, Faria CC, Carvalho T, Filippakopoulos P, Snijder B, Barbosa-Morais NL, Moiseenkova-Bell VY, & Bernardes GJL (2021). Allosteric Antagonist Modulation of TRPV2 by Piperlongumine Impairs Glioblastoma Progression.
ACS Cent Sci 7 5:868-881. PubMed Id: 34079902. doi:10.1021/acscentsci.1c00070. |
||
TRPV2 channel in nanodiscs with bound 1 CBD (conformation A): Rattus norvegicus E Eukaryota (expressed in HEK293 cells), 3.23 Å
cryo-EM structure with bound 2 CBDs (conformation B), 3.32 Å: 8SLY |
Gochman et al. (2023).
Gochman A, Tan XF, Bae C, Chen H, Swartz KJ, & Jara-Oseguera A (2023). Cannabidiol sensitizes TRPV2 channels to activation by 2-APB.
Elife 12 :e86166. PubMed Id: 37199723. doi:10.7554/eLife.86166. |
||
TRPV2 channel in nanodiscs with bound ruthenium red: Rattus norvegicus E Eukaryota (expressed in S. cerevisiae), 3.47 Å
cryo-EM structure with bound ruthenium red and 2-APB, 2.90 Å: 8FFM |
Pumroy et al. (2024).
Pumroy RA, De Jesús-Pérez JJ, Protopopova AD, Rocereta JA, Fluck EC, Fricke T, Lee BH, Rohacs T, Leffler A, & Moiseenkova-Bell V (2024). Molecular details of ruthenium red pore block in TRPV channels.
EMBO Rep 25 2:506-523. PubMed Id: 38225355. doi:10.1038/s44319-023-00050-0. |
||
Su et al. (2023).
Su N, Zhen W, Zhang H, Xu L, Jin Y, Chen X, Zhao C, Wang Q, Wang X, Li S, Wen H, Yang W, Guo J, & Yang F (2023). Structural mechanisms of TRPV2 modulation by endogenous and exogenous ligands.
Nat Chem Biol 19 1:72-80. PubMed Id: 36163384. doi:10.1038/s41589-022-01139-8. |
|||
Singh et al. (2018).
Singh AK, McGoldrick LL, & Sobolevsky AI (2018). Structure and gating mechanism of the transient receptor potential channel TRPV3.
Nat Struct Mol Biol 25 9:805-813. PubMed Id: 30127359. doi:10.1038/s41594-018-0108-7. |
|||
TRPV3 transient receptor potential channel, closed state at 42°C: Mus musculus E Eukaryota (expressed in HEK293 cells), 4.4 Å
cryo-EM structure putative sensitized state at 42°C, 4.5 Å: 6PVM Y564A mutant in putative sensitized state at 4°C, 4.07 Å: 6PVN Y564A mutant in putative sensitized state at 37°C, 5.18 Å: 6PVO Y564A mutant in open state at 37°C, 4.48 Å: 6PVP Y564A mutant in intermediate state at 37°C, 4.75 Å: 6PVQ |
Singh et al. (2019).
Singh AK, McGoldrick LL, Demirkhanyan L, Leslie M, Zakharian E, & Sobolevsky AI (2019). Structural basis of temperature sensation by the TRP channel TRPV3.
Nat Struct Mol Biol 26 :994-998. PubMed Id: 31636415. doi:10.1038/s41594-019-0318-7. |
||
TRPV3 transient receptor potential channel in a lipid nanodisc: Mus musculus E Eukaryota (expressed in HEK293 cells), 3.30 Å
cryo-EM structure |
Shimada et al. (2020).
Shimada H, Kusakizako T, Dung Nguyen TH, Nishizawa T, Hino T, Tominaga M, & Nureki O (2020). The structure of lipid nanodisc-reconstituted TRPV3 reveals the gating mechanism.
Nat Struct Mol Biol 27 7:645-652. PubMed Id: 32572254. doi:10.1038/s41594-020-0439-z. |
||
TRPV3 transient receptor potential channel in MSP2N2 nanodiscs, closed state at 4C: Mus musculus E Eukaryota (expressed in HEK293 cells), 1.98 Å
cryo-EM structure closed state at 42C, 3.12 Å: 7MIK sensitized state at 42C, 3.86 Å: 7MIL in cNW11 nanodiscs, closed state at 4C, 3.42 Å: 7MIM in cNW11 nanodiscs, closed state at 42C, 3.09 Å: 7MIN in cNW11 nanodiscs, open state at 42C, 3.48 Å: 7MIO |
Nadezhdin et al. (2021).
Nadezhdin KD, Neuberger A, Trofimov YA, Krylov NA, Sinica V, Kupko N, Vlachova V, Zakharian E, Efremov RG, & Sobolevsky AI (2021). Structural mechanism of heat-induced opening of a temperature-sensitive TRP channel.
Nat Struct Mol Biol 28 7:564-572. PubMed Id: 34239124. doi:10.1038/s41594-021-00615-4. |
||
TRPV3 transient receptor potential channel. Y564A mutant in complex with osthole: Mus musculus E Eukaryota (expressed in HEK293 cells), 3.64 Å
cryo-EM structure in presence of 2APB, 3.99 Å 7RAU |
Neuberger et al. (2021).
Neuberger A, Nadezhdin KD, Zakharian E, & Sobolevsky AI (2021). Structural mechanism of TRPV3 channel inhibition by the plant-derived coumarin osthole.
EMBO Rep 22 11:e53233. PubMed Id: 34472684. doi:10.15252/embr.202153233. |
||
TRPV3 transient receptor potential channel in complex with anesthetic dyclonine: Mus musculus E Eukaryota (expressed in HEK293 cells), 3.16 Å
cryo-EM structure |
Neuberger et al. (2022).
Neuberger A, Nadezhdin KD, & Sobolevsky AI (2022). Structural mechanism of TRPV3 channel inhibition by the anesthetic dyclonine.
Nat Commun 13 1:2795. PubMed Id: 35589741. doi:10.1038/s41467-022-30537-8. |
||
TRPV3 transient receptor potential channel in apo conformation: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.4 Å
cryo-EM structure in putative sensitized conformation, 3.2 Å: 6MHS in the presence of 2-APB in C4 symmetry, 3.5 Å: 6MHV in the presence of 2-APB in C2 symmetry (1), 4 Å: 6MHW in the presence of 2-APB in C2 symmetry (2), 4 Å: 6MHX |
Zubcevic et al. (2018).
Zubcevic L, Herzik MA Jr, Wu M, Borschel WF, Hirschi M, Song AS, Lander GC, & Lee SY (2018). Conformational ensemble of the human TRPV3 ion channel.
Nat Commun 9 1. PubMed Id: 30429472. doi:10.1038/s41467-018-07117-w. |
||
TRPV3 transient receptor potential channel, K169A sensitized mutant: Homo sapiens E Eukaryota (expressed in S. frugiperda), 4.1 Å
cryo-EM structure K169A sensitized mutant in the presence of 2-APB, 3.6 Å: 6OT5 |
Zubcevic et al. (2019).
Zubcevic L, Borschel WF, Hsu AL, Borgnia MJ, & Lee SY (2019). Regulatory switch at the cytoplasmic interface controls TRPV channel gating.
Elife 8 :e47746. PubMed Id: 31070581. doi:10.7554/eLife.47746. |
||
Deng et al. (2020).
Deng Z, Maksaev G, Rau M, Xie Z, Hu H, Fitzpatrick JAJ, & Yuan P (2020). Gating of human TRPV3 in a lipid bilayer.
Nat Struct Mol Biol 27 7:635-644. PubMed Id: 32572252. doi:10.1038/s41594-020-0428-2. |
|||
Fan et al. (2023).
Fan J, Hu L, Yue Z, Liao D, Guo F, Ke H, Jiang D, Yang Y, & Lei X (2023). Structural basis of TRPV3 inhibition by an antagonist.
Nat Chem Biol 19 1:81-90. PubMed Id: 36302896. doi:10.1038/s41589-022-01166-5. |
|||
TRPV3 transient receptor potential channel, pentamer: Homo sapiens E Eukaryota (expressed in HEK293 cells), 4.38 Å
cryo-EM structure tetramer, 2.55 Å: 8GKA |
Lansky et al. (2023).
Lansky S, Betancourt JM, Zhang J, Jiang Y, Kim ED, Paknejad N, Nimigean CM, Yuan P, & Scheuring S (2023). A pentameric TRPV3 channel with a dilated pore.
Nature 621 7977:206-214. PubMed Id: 37648856. doi:10.1038/s41586-023-06470-1. |
||
TRPV4 transient receptor potential channel: Xenopus tropicalis E Eukaryota (expressed in Pichia pastoris), 3.8 Å
cryo-EM structure. The structures below are by x-ray crystallography: in the presence of cesium, 6.5 Å: 6C8F in the presence of barium, 6.31 Å: 6C8G in the presence of gadolinium, 6.5 Å: 6C8H |
Deng et al. (2018).
Deng Z, Paknejad N, Maksaev G, Sala-Rabanal M, Nichols CG, Hite RK, & Yuan P (2018). Cryo-EM and X-ray structures of TRPV4 reveal insight into ion permeation and gating mechanisms.
Nat Struct Mol Biol 25 :252-260. PubMed Id: 29483651. doi:10.1038/s41594-018-0037-5. |
||
TRPV4 transient receptor potential channel - RhoA complex, apo: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.75 Å
cryo-EM structure with bound GSK2798745, 3.30 Å: 8FC7 with bound 4alpha-Phorbol 12,13-didecanoate, 3.41 Å: 8FCA with bound GSK1016790A, 3.30 Å: 8FCB TRPV4-only, with bound GSK1016790A, 3.47 Å: 8FC8 |
Kwon et al. (2023).
Kwon DH, Zhang F, McCray BA, Feng S, Kumar M, Sullivan JM, Im W, Sumner CJ, & Lee SY (2023). TRPV4-Rho GTPase complex structures reveal mechanisms of gating and disease.
Nat Commun 14 1:3732. PubMed Id: 37353484. doi:10.1038/s41467-023-39345-0. |
||
TRPV4 transient receptor potential channel - RhoA complex, apo state: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.00 Å
cryo-EM structure in complex with agonist 4a-PDD, 3.35 Å: 8T1D closed state in the presence of 4a-PPD, 2.77 Å: 8T1E in complex with antagonist HC-067047, 3.49 Å: 8T1F ankyrin repeat domain in complex with GTPase RhoA, 3.49 Å: 8T1C |
Nadezhdin et al. (2023).
Nadezhdin KD, Talyzina IA, Parthasarathy A, Neuberger A, Zhang DX, & Sobolevsky AI (2023). Structure of human TRPV4 in complex with GTPase RhoA.
Nat Commun 14 1:3733. PubMed Id: 37353478. doi:10.1038/s41467-023-39346-z. |
||
Zhen et al. (2023).
Zhen W, Zhao Z, Chang S, Chen X, Wan Y, & Yang F (2023). Structural basis of ligand activation and inhibition in a mammalian TRPV4 ion channel.
Cell Discov 9 1:70. PubMed Id: 37429860. doi:10.1038/s41421-023-00579-3. |
|||
TRPV5 Ca2+-selective ion channel with econazole inhibitor: Oryctolagus cuniculus E Eukaryota (expressed in S. cerevisiae), 4.8 Å
cryo-EM structure. Transmembrane region has 3.5-4.0 Å resolution |
Hughes et al. (2018).
Hughes TET, Lodowski DT, Huynh KW, Yazici A, Del Rosario J, Kapoor A, Basak S, Samanta A, Han X, Chakrapani S, Zhou ZH, Filizola M, Rohacs T, Han S, & Moiseenkova-Bell VY (2018). Structural basis of TRPV5 channel inhibition by econazole revealed by cryo-EM.
Nat Struct Mol Biol 25 :53-60. PubMed Id: 29323279. doi:10.1038/s41594-017-0009-1. |
||
Dang et al. (2019).
Dang S, van Goor MK, Asarnow D, Wang Y, Julius D, Cheng Y, & van der Wijst J (2019). Structural insight into TRPV5 channel function and modulation.
Proc Natl Acad Sci USA 116 18:8869-8878. PubMed Id: 30975749. doi:10.1073/pnas.1820323116. |
|||
TRPV5 Ca2+-selective ion channel in nanodiscs, with bound ZINC9155420 inhibitor: Oryctolagus cuniculus E Eukaryota (expressed in S. cerevisiae), 4.2 Å
cryo-EM structure with bound ZINC17988990 inhibitor, 3.78 Å: 6PBE |
Hughes et al. (2019).
Hughes TE, Del Rosario JS, Kapoor A, Yazici AT, Yudin Y, Fluck EC 3rd, Filizola M, Rohacs T, & Moiseenkova-Bell VY (2019). Structure-based characterization of novel TRPV5 inhibitors.
Elife 8 . PubMed Id: 31647410. doi:10.7554/eLife.49572. |
||
TRPV5 Ca2+-selective ion channel in nanodiscs: Oryctolagus cuniculus E Eukaryota (expressed in Saccharomyces cerevisiae), 3.20 Å
cryo-EM structure at pH6, 3.00 Å: 7T6K at pH5, 3.70 Å: 7T6L with PI(4,5)P2 at pH6 state 1, 2.80 Å: 7T6M at pH6 state 2, 2.90 Å: 7T6N at pH6 state 3, 2.60 Å: 7T6O T709D mutant in nanodiscs, 2.80 Å: 7T6P T709D with PI(4,5)P2, 3.40 Å: 7T6Q T709D in the presence of Calmodulin, 3.00 Å: 7T6R |
Fluck et al. (2022).
Fluck EC, Yazici AT, Rohacs T, & Moiseenkova-Bell VY (2022). Structural basis of TRPV5 regulation by physiological and pathophysiological modulators.
Cell Rep 39 4:110737. PubMed Id: 35476976. doi:10.1016/j.celrep.2022.110737. |
||
Lee et al. (2023).
Lee BH, De Jesús Pérez JJ, Moiseenkova-Bell V, & Rohacs T (2023). Structural basis of the activation of TRPV5 channels by long-chain acyl-Coenzyme-A.
Nat Commun 14 1:5883. PubMed Id: 37735536. doi:10.1038/s41467-023-41577-z. |
|||
TRPV5 Ca2+-selective ion channel in nanodiscs with bound ruthenium red: Oryctolagus cuniculus E Eukaryota (expressed in S. cerevisiae), 2.96 Å
cryo-EM structure with bound ruthenium red and PI(4,5)P2, 2.65 Å: 8FFQ |
Pumroy et al. (2024).
Pumroy RA, De Jesús-Pérez JJ, Protopopova AD, Rocereta JA, Fluck EC, Fricke T, Lee BH, Rohacs T, Leffler A, & Moiseenkova-Bell V (2024). Molecular details of ruthenium red pore block in TRPV channels.
EMBO Rep 25 2:506-523. PubMed Id: 38225355. doi:10.1038/s44319-023-00050-0. |
||
Saotome et al. (2016).
Saotome K, Singh AK, Yelshanskaya MV, & Sobolevsky AI (2016). Crystal structure of the epithelial calcium channel TRPV6.
Nature 534 :506-511. PubMed Id: 27296226. doi:10.1038/nature17975. |
|||
TRPV6 transient receptor potential calcium channel, no domain swapping: TRPV6cryst: Rattus norvegicus E Eukaryota (expressed in HEK 293 cells), 3.31 Å
TRPV6* (domain swapped), 3.25 Å: 5WO7 TRPV6*-Del1 (4 deletions in S4-S5 linker), 3.4 Å: 5WO8 TRPV6* in the presence of Ca2+, 3.7 Å: 5WO9 TRPV6* in presence of Gd3+, 3.9 Å: 5WOA |
Singh et al. (2017).
Singh AK, Saotome K, & Sobolevsky AI (2017). Swapping of transmembrane domains in the epithelial calcium channel TRPV6.
Sci Rep 7 1:10669. PubMed Id: 28878326. doi:10.1038/s41598-017-10993-9. |
||
TRPV6* transient receptor potential calcium channel with bound 2-APB: Rattus norvegicus E Eukaryota (expressed in HEK293 cells), 3.45 Å
with bound brominated 2-APB, 4.3 Å: 6D7V Y466A mutant without 2-APB, 3.37 Å: 6D7P Y466A mutant with bound 2-APB, 3.50 Å: 6D7Q Y466A mutant with bound brominated 2-APB, 3.6 Å: 6D7X |
Singh et al. (2018).
Singh AK, Saotome K, McGoldrick LL, & Sobolevsky AI (2018). Structural bases of TRP channel TRPV6 allosteric modulation by 2-APB.
Nat Commun 9 1. PubMed Id: 29941865. doi:10.1038/s41467-018-04828-y. |
||
TRPV6 transient receptor in complex with (4- phenylcyclohexyl)piperazine inhibitor Br-cis-22a: Rattus norvegicus E Eukaryota (expressed in HEK293 cells), 3.70 Å
|
Bhardwaj et al. (2020).
Bhardwaj R, Lindinger S, Neuberger A, Nadezhdin KD, Singh AK, Cunha MR, Derler I, Gyimesi G, Reymond JL, Hediger MA, Romanin C, & Sobolevsky AI (2020). Inactivation-mimicking block of the epithelial calcium channel TRPV6.
Sci Adv 6 48:eabe1508. PubMed Id: 33246965. doi:10.1126/sciadv.abe1508. |
||
McGoldrick et al. (2018).
McGoldrick LL, Singh AK, Saotome K, Yelshanskaya MV, Twomey EC, Grassucci RA, & Sobolevsky AI (2018). Opening of the human epithelial calcium channel TRPV6.
Nature 553 :233-237. PubMed Id: 29258289. doi:10.1038/nature25182. |
|||
TRPV6 transient receptor potential calcium channel in amphipols, Y467A mutant: Homo sapiens E Eukaryota (expressed in HEK293 cells), 4.34 Å
cryo-EM structure with bound 2-APB, 4.44 Å: 6D7T |
Singh et al. (2018).
Singh AK, Saotome K, McGoldrick LL, & Sobolevsky AI (2018). Structural bases of TRP channel TRPV6 allosteric modulation by 2-APB.
Nat Commun 9 1. PubMed Id: 29941865. doi:10.1038/s41467-018-04828-y. |
||
TRPV6 transient receptor potential calcium channel, apo-state, in glyco-diosgenin detergent: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.69 Å
cryo-EM structure in cNW11 nanodiscs, 2.54 Å 7S89 in complex with channel blocker ruthenium red, 2.43 Å 7S8B in complex with inhibitor econazole, 2.85 Å 7S8C |
Neuberger et al. (2021).
Neuberger A, Nadezhdin KD, & Sobolevsky AI (2021). Structural mechanisms of TRPV6 inhibition by ruthenium red and econazole.
Nat Commun 12 1:6284. PubMed Id: 34725357. doi:10.1038/s41467-021-26608-x. |
||
TRPV6 transient receptor potential calcium channel, open state: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.26 Å
cryo-EM structure in complex with (4- phenylcyclohexyl)piperazine inhibitor cis-22a, 3.10 Å 7K4B in complex with (4- phenylcyclohexyl)piperazine inhibitor Br-cis-22a, 3.78 Å 7K4C in complex with (4- phenylcyclohexyl)piperazine inhibitor 3OG, 3.66 Å 7K4D in complex with (4- phenylcyclohexyl)piperazine inhibitor Br-cis-22a, 3.70 Å 7D2K |
Bhardwaj et al. (2020).
Bhardwaj R, Lindinger S, Neuberger A, Nadezhdin KD, Singh AK, Cunha MR, Derler I, Gyimesi G, Reymond JL, Hediger MA, Romanin C, & Sobolevsky AI (2020). Inactivation-mimicking block of the epithelial calcium channel TRPV6.
Sci Adv 6 48:eabe1508. PubMed Id: 33246965. doi:10.1126/sciadv.abe1508. |
||
TRPV6 transient receptor potential calcium channel, open state: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.71 Å
cryo-EM structure in complex with natural phytoestrogen genistein, 2.66 Å: 8FOA |
Neuberger et al. (2023).
Neuberger A, Trofimov YA, Yelshanskaya MV, Nadezhdin KD, Krylov NA, Efremov RG, & Sobolevsky AI (2023). Structural mechanism of human oncochannel TRPV6 inhibition by the natural phytoestrogen genistein.
Nat Commun 14 1:2659. PubMed Id: 37160865. doi:10.1038/s41467-023-38352-5. |
||
TRPV6 transient receptor potential calcium channel in cNW30 nanodisc with bound tetrahydrocannabivarin (THCV): Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.79 Å
cryo-EM structure |
Neuberger et al. (2023).
Neuberger A, Trofimov YA, Yelshanskaya MV, Khau J, Nadezhdin KD, Khosrof LS, Krylov NA, Efremov RG, & Sobolevsky AI (2023). Molecular pathway and structural mechanism of human oncochannel TRPV6 inhibition by the phytocannabinoid tetrahydrocannabivarin.
Nat Commun 14 1:4630. PubMed Id: 37532722. doi:10.1038/s41467-023-40362-2. |
||
PKD2 polycystic kidney disease channel in lipid nanodiscs: Homo sapiens E Eukaryota (expressed in HEK293S cells), 3.0 Å
cryo-EM structure |
Shen et al. (2016).
Shen PS, Yang X, DeCaen PG, Liu X, Bulkley D, Clapham DE, & Cao E (2016). The Structure of the Polycystic Kidney Disease Channel PKD2 in Lipid Nanodiscs.
Cell 167 :763-773.e11. PubMed Id: 27768895. doi:10.1016/j.cell.2016.09.048. |
||
PKD2 polycystic kidney disease channel in detergent: Homo sapiens E Eukaryota (expressed in S. frugiperda), 4.22 Å
cryo-EM structure |
Grieben et al. (2017).
Grieben M, Pike AC, Shintre CA, Venturi E, El-Ajouz S, Tessitore A, Shrestha L, Mukhopadhyay S, Mahajan P, Chalk R, Burgess-Brown NA, Sitsapesan R, Huiskonen JT, & Carpenter EP (2017). Structure of the polycystic kidney disease TRP channel Polycystin-2 (PC2).
Nat Struct Mol Biol 24 :114-122. PubMed Id: 27991905. doi:10.1038/nsmb.3343. |
||
PKD2 polycystic kidney disease channel in complex with cations and lipids: Homo sapiens E Eukaryota (expressed in HEK293S cells), 4.3 Å
cryo-EM structure in complex with Ca2+ and lipids, 4.2 Å: 5MKF |
Wilkes et al. (2017).
Wilkes M, Madej MG, Kreuter L, Rhinow D, Heinz V, De Sanctis S, Ruppel S, Richter RM, Joos F, Grieben M, Pike AC, Huiskonen JT, Carpenter EP, Kühlbrandt W, Witzgall R, & Ziegler C (2017). Molecular insights into lipid-assisted Ca2+ regulation of the TRP channel Polycystin-2.
Nat Struct Mol Biol 24 :123-130. PubMed Id: 28092368. doi:10.1038/nsmb.3357. |
||
PKD2 polycystic kidney disease channel in complex with PKD1 receptor: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.6 Å
cryo-EM structure. PKD1 comprised of residues 3049 to 4169 and PKD2 residues 185-723. |
Su et al. (2018).
Su Q, Hu F, Ge X, Lei J, Yu S, Wang T, Zhou Q, Mei C, & Shi Y (2018). Structure of the human PKD1-PKD2 complex.
Science 361 6406. PubMed Id: 30093605. doi:10.1126/science.aat9819. |
||
Human Polycsytin 2-l1 TRP channel: Homo sapiens E Eukaryota (expressed in sf9 cells), 3.11 Å
cryo-EM structure |
Hulse et al. (2018).
Hulse RE, Li Z, Huang RK, Zhang J, & Clapham DE (2018). Cryo-EM structure of the polycystin 2-l1 ion channel.
Elife 7 :e36931. PubMed Id: 30004384. doi:10.7554/eLife.36931. |
||
PKD2 polycystic kidney disease channel in UDM supplemented with PI(4,5)P2: Homo sapiens E Eukaryota (expressed in sf9 cells), 2.96 Å
cryo-EM structure in UDM supplemented with PI(3,5)P2, 3.39 Å: 6T9O |
Wang et al. (2020).
Wang Q, Corey RA, Hedger G, Aryal P, Grieben M, Nasrallah C, Baronina A, Pike ACW, Shi J, Carpenter EP, & Sansom MSP (2020). Lipid Interactions of a Ciliary Membrane TRP Channel: Simulation and Structural Studies of Polycystin-2.
Structure 28 2:169-184.e5. PubMed Id: 31806353. doi:10.1016/j.str.2019.11.005. |
||
PKD2 polycystic kidney disease channel, C331S disease variant: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.24 Å
cryo-EM structure |
Vien et al. (2020).
Vien TN, Wang J, Ng LCT, Cao E, & DeCaen PG (2020). Molecular dysregulation of ciliary polycystin-2 channels caused by variants in the TOP domain.
Proc Natl Acad Sci USA 117 19:10329-10338. PubMed Id: 32332171. doi:10.1073/pnas.1920777117. |
||
PKD2L1 polycystic kidney disease channel (residues 64-629): Mus musculus E Eukaryota (expressed in HEK 293 cells), 3.38 Å
cryo-EM structure. |
Su et al. (2018).
Su Q, Hu F, Liu Y, Ge X, Mei C, Yu S, Shen A, Zhou Q, Yan C, Lei J, Zhang Y, Liu X, & Wang T (2018). Cryo-EM structure of the polycystic kidney disease-like channel PKD2L1.
Nat Commun 9 1. PubMed Id: 29567962. doi:10.1038/s41467-018-03606-0. |
||
PKD2L1/ PKD1L3-CTD polycystic kidney disease channel, apo state: Mus musculus E Eukaryota (expressed in HEK293 cells), 3.40 Å
cryo-EM structure calcium-bound state, 3.10 Å 7D7F |
Su et al. (2021).
Su Q, Chen M, Wang Y, Li B, Jing D, Zhan X, Yu Y, & Shi Y (2021). Structural basis for Ca2+ activation of the heteromeric PKD1L3/PKD2L1 channel.
Nat Commun 12 1:4871. PubMed Id: 34381056. doi:10.1038/s41467-021-25216-z. |
||
NOMPC mechanotransduction channel: Drosophila melanogaster E Eukaryota (expressed in HEK293 cells), 3.55 Å
cryo-EM structure |
Jin et al. (2017).
Jin P, Bulkley D, Guo Y, Zhang W, Guo Z, Huynh W, Wu S, Meltzer S, Cheng T, Jan LY, Jan YN, & Cheng Y (2017). Electron cryo-microscopy structure of the mechanotransduction channel NOMPC.
Nature 7661:118-122. PubMed Id: 28658211. doi:10.1038/nature22981. |
||
Li et al. (2017).
Li M, Zhang WK, Benvin NM, Zhou X, Su D, Li H, Wang S, Michailidis IE, Tong L, Li X & Yang J (2017). Structural basis of dual Ca2+/pH regulation of the endolysosomal TRPML1 channel
Nature Struct Mol Biol 24 :205-213. PubMed Id: 28112729. doi:10.1038/nsmb.3362. |
|||
Endolysosomal TRPML1 channel with bound synthetic inhibitor ML-SI3: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.90 Å
cryo-EM structure |
Schmiege et al. (2021).
Schmiege P, Fine M, & Li X (2021). Atomic insights into ML-SI3 mediated human TRPML1 inhibition.
Structure 29 11:1295-1302.e3. PubMed Id: 34171299. doi:10.1016/j.str.2021.06.003. |
||
TRPY1 yeast vacuolar receptor conductance 1 (YVC1) channel: Saccharomyces cerevisiae E Eukaryota, 3.10 Å
cryo-EM structure |
Ahmed et al. (2022).
Ahmed T, Nisler CR, Fluck EC 3rd, Walujkar S, Sotomayor M, & Moiseenkova-Bell VY (2022). Structure of the ancient TRPY1 channel from Saccharomyces cerevisiae reveals mechanisms of modulation by lipids and calcium.
Structure 30 1:139-155.e5. PubMed Id: 34453887. doi:10.1016/j.str.2021.08.003. |
||
TRPM8 cold- & menthol-sensing channel in complex with TC-I 2014, D-state: Parus major E Eukaryota (expressed in HEK293 cells), 3.26 Å
cryo-EM structure |
Yin et al. (2024).
Yin Y, Park CG, Zhang F, G Fedor J, Feng S, Suo Y, Im W, & Lee SY (2024). Mechanisms of sensory adaptation and inhibition of the cold and menthol receptor TRPM8.
Sci Adv 10 31:eadp2211. PubMed Id: 39093967. doi:10.1126/sciadv.adp2211. |
||
Channels: Gap Junctions and Related Channels
|
|||
Connexin 26 (Cx26; GJB2) gap junction: Homo sapiens E Eukaryota (expressed in Sf9 cells), 3.5 Å
|
Maeda et al. (2009).
Maeda S, Nakagawa S, Suga M, Yamashita E, Oshima A, Fujiyoshi Y, & Tsukihara T (2009). Structure of the connexin 26 gap junction channel at 3.5 Å resolution.
Nature 458 :597-602. PubMed Id: 19340074. |
||
Brotherton et al. (2022).
Brotherton DH, Savva CG, Ragan TJ, Dale N, & Cameron AD (2022). Conformational changes and CO2-induced channel gating in connexin26.
Structure 30 5:697-706.e4. PubMed Id: 35276081. doi:10.1016/j.str.2022.02.010. |
|||
Connexin 36 (Cx36; GJD2) gap junction channel in detergents: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 2.20 Å
cryo-EM structure C6 symmetry, 3.60 Å: 8HKP with pore-lining N-terminal helices, in soybean lipids, 3.10 Å: 7XNH in soybean lipids, C6 symmetry, 3.40 Å: 7XNV BRIL-fused mutant, 2.20 Å: 7XKT N-terminal deletion mutant, in soybean lipids, D6 symmetry, 3.00 Å: 7XL8 N-terminal deletion BRIL-fused mutant, in soybean lipids, D6 symmetry, 3.40 Å: 7XKI |
Lee et al. (2023).
Lee SN, Cho HJ, Jeong H, Ryu B, Lee HJ, Kim M, Yoo J, Woo JS, & Lee HH (2023). Cryo-EM structures of human Cx36/GJD2 neuronal gap junction channel.
Nat Commun 14 1:1347. PubMed Id: 36906653. doi:10.1038/s41467-023-37040-8. |
||
Connexin 36 (Cx36; GJD2) gap junction channel: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.69 Å
cryo-EM structure |
Mao & Chen (2024).
Mao W, & Chen S (2024). Assembly mechanisms of the neuronal gap junction channel connexin 36 elucidated by Cryo-EM.
Arch Biochem Biophys 754 :109959. PubMed Id: 38490311. doi:10.1016/j.abb.2024.109959. |
||
Lee et al. (2020).
Lee HJ, Jeong H, Hyun J, Ryu B, Park K, Lim HH, Yoo J, & Woo JS (2020). Cryo-EM structure of human Cx31.3/GJC3 connexin hemichannel.
Sci Adv 6 35. PubMed Id: 32923625. doi:10.1126/sciadv.aba4996. |
|||
Innexin-6 gap junction channel: Caenorhabditis elegans E Eukaryota (expressed in Spodoptera frugiperda), 3.6 Å
cryo-EM structure hemichannel, 3.3 Å: 5H1Q |
Oshima et al. (2016).
Oshima A, Tani K, & Fujiyoshi Y (2016). Atomic structure of the innexin-6 gap junction channel determined by cryo-EM.
Nat Commun 7 :13681. PubMed Id: 27905396. doi:10.1038/ncomms13681. |
||
Burendei et al. (2020).
Burendei B, Shinozaki R, Watanabe M, Terada T, Tani K, Fujiyoshi Y, & Oshima A (2020). Cryo-EM structures of undocked innexin-6 hemichannels in phospholipids.
Sci Adv 6 7. PubMed Id: 32095518. doi:10.1126/sciadv.aax3157. |
|||
connexin (Cx)-46/50 intercellular gap junction channels. Cx46 channel: Ovis aries E Eukaryota, 3.4 Å
cryo-EM structure Cx50 channel, 3.4 Å: 6MHY |
Myers et al. (2018).
Myers JB, Haddad BG, O'Neill SE, Chorev DS, Yoshioka CC, Robinson CV, Zuckerman DM, & Reichow SL (2018). Structure of native lens connexin 46/50 intercellular channels by cryo-EM.
Nature 564 7736:372-377. PubMed Id: 30542154. doi:10.1038/s41586-018-0786-7. |
||
connexin (Cx)-46/50 intercellular gap junction channels in nanodiscs. Cx-50: Ovis aries E Eukaryota, 1.94 Å
cryo-EM structure Cx-46, 1.90 Å: 7JKC Cx-50, lipid class 1, 2.50 Å: 7JLW Cx-46, lipid class 1, 2.50 Å: 7JMD Cx-50, lipid class 2, 2.50 Å: 7JM9 Cx-46, lipid class 2, 2.50 Å: 7JN0 Cx-50, lipid class 3, 2.50 Å: 7JMC Cx-46, lipid class 3, 2.50Å: 7JN1 |
Flores et al. (2020).
Flores JA, Haddad BG, Dolan KA, Myers JB, Yoshioka CC, Copperman J, Zuckerman DM, & Reichow SL (2020). Connexin-46/50 in a dynamic lipid environment resolved by CryoEM at 1.9?Å.
Nat Commun 11 1. PubMed Id: 32859914. doi:10.1038/s41467-020-18120-5. |
||
Calcium homeostasis modulator (CALHM1) voltage-gated ATP release channel: Gallus gallus E Eukaryota (expressed in S. frugiperda), 3.63 Å
cryo-EM structure undecameric chicken CALHM1 and human CALHM2 chimera, 3.87 Å: 6VAL |
Syrjanen et al. (2020).
Syrjanen JL, Michalski K, Chou TH, Grant T, Rao S, Simorowski N, Tucker SJ, Grigorieff N, & Furukawa H (2020). Structure and assembly of calcium homeostasis modulator proteins.
Nat Struct Mol Biol 27 2:150-159. PubMed Id: 31988524. doi:10.1038/s41594-019-0369-9. |
||
Calcium homeostasis modulator (CLHM-1) voltage-gated ATP release channel:: Caenorhabditis elegans E Eukaryota (expressed in HEK293 cells), 3.60 Å
cryo-EM structure |
Demura et al. (2020).
Demura K, Kusakizako T, Shihoya W, Hiraizumi M, Nomura K, Shimada H, Yamashita K, Nishizawa T, Taruno A, & Nureki O (2020). Cryo-EM structures of calcium homeostasis modulator channels in diverse oligomeric assemblies.
Sci Adv 6 29. PubMed Id: 32832629. doi:10.1126/sciadv.aba8105. |
||
Calcium homeostasis modulator (CLHM-1) voltage-gated ATP release channel: Caenorhabditis elegans E Eukaryota (expressed in HEK293 cells), 3.73 Å
cryo-EM structure |
Yang et al. (2020).
Yang W, Wang Y, Guo J, He L, Zhou Y, Zheng H, Liu Z, Zhu P, & Zhang XC (2020). Cryo-electron microscopy structure of CLHM1 ion channel from Caenorhabditis elegans.
Protein Sci 29 8:1803-1815. PubMed Id: 32557855. doi:10.1002/pro.3904. |
||
Demura et al. (2020).
Demura K, Kusakizako T, Shihoya W, Hiraizumi M, Nomura K, Shimada H, Yamashita K, Nishizawa T, Taruno A, & Nureki O (2020). Cryo-EM structures of calcium homeostasis modulator channels in diverse oligomeric assemblies.
Sci Adv 6 29. PubMed Id: 32832629. doi:10.1126/sciadv.aba8105. |
|||
Calcium homeostasis modulator (CALHM1) voltage-gated ATP release channel: Danio rerio E Eukaryota (expressed in HEK293 cells), 3.10 Å
cryo-EM structure |
Ren et al. (2020).
Ren Y, Wen T, Xi Z, Li S, Lu J, Zhang X, Yang X, & Shen Y (2020). Cryo-EM structure of the calcium homeostasis modulator 1 channel.
Sci Adv 6 29. PubMed Id: 32832630. doi:10.1126/sciadv.aba8161. |
||
Choi et al. (2019).
Choi W, Clemente N, Sun W, Du J, & Lü W (2019). The structures and gating mechanism of human calcium homeostasis modulator 2.
Nature 576 7785:163-167. PubMed Id: 31776515. doi:10.1038/s41586-019-1781-3. |
|||
Calcium homeostasis modulator (CALHM2) voltage-gated ATP release channel: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.48 Å
cryo-EM structure dimer of undecameric CALHM2, 3.68 Å: 6VAI |
Syrjanen et al. (2020).
Syrjanen JL, Michalski K, Chou TH, Grant T, Rao S, Simorowski N, Tucker SJ, Grigorieff N, & Furukawa H (2020). Structure and assembly of calcium homeostasis modulator proteins.
Nat Struct Mol Biol 27 2:150-159. PubMed Id: 31988524. doi:10.1038/s41594-019-0369-9. |
||
Calcium homeostasis modulator (CALHM4), decameric in absence of Ca2+: Homo sapiens E Eukaryota (expressed in HEK293 cells), 4.07 Å
cryo-EM structure dimer of undecameric CALHM4 in the absence of Ca2+, 3.82 Å: 6YTL dimer of decameric CALHM4 in the presence of Ca2+, 4.24 Å: 6YTO dimer of undecameric CALHM4 in the presence of Ca2+, 4.02 Å: 6YTQ |
Drożdżyk et al. (2020).
Drożdżyk K, Sawicka M, Bahamonde-Santos MI, Jonas Z, Deneka D, Albrecht C, & Dutzler R (2020). Cryo-EM structures and functional properties of CALHM channels of the human placenta.
Elife 9 . PubMed Id: 32374262. doi:10.7554/eLife.55853. |
||
Liu et al. (2020).
Liu J, Wan F, Jin Q, Li X, Bhat EA, Guo J, Lei M, Guan F, Wu J, & Ye S (2020). Cryo-EM structures of human calcium homeostasis modulator 5.
Cell Discov 6 1:81. PubMed Id: 33298887. doi:10.1038/s41421-020-00228-z. |
|||
Calcium homeostasis modulator (CALHM6), decameric in presence of Ca2+: Homo sapiens E Eukaryota (expressed in HEK293 cells), 4.39 Å
cryo-EM structure undecameric form in presence of Ca2+, 6.23 Å: 6YTX |
Drożdżyk et al. (2020).
Drożdżyk K, Sawicka M, Bahamonde-Santos MI, Jonas Z, Deneka D, Albrecht C, & Dutzler R (2020). Cryo-EM structures and functional properties of CALHM channels of the human placenta.
Elife 9 . PubMed Id: 32374262. doi:10.7554/eLife.55853. |
||
Channels: Other Ion Channels
|
|||
GluA2 Glutamate receptor (AMPA-subtype): Rattus norvegicus E Eukaryota (expressed in sf9 cells), 3.60 Å
3KG2 is in complex with the competitive antagonist ZK 200775 GluA2 ligand-binding core complex with bound glutamate, 1.55 Å: 3KGC |
Sobolevsky et al. (2009).
Sobolevsky AI, Rosconi MP, & Gouaux E (2009). X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor.
Nature 462 :745-756. PubMed Id: 19946266. |
||
GluA2 Glutamate receptor (AMPA-subtype) with competitive antagonist ZK 200775: Rattus norvegicus E Eukaryota (expressed in S. frugiperda), 4.49 Å
In complex with partial agonist (S)-5-nitrowillardiine (NOW), 4.79 Å: 4U4F |
Yelshanskaya et al. (2014).
Yelshanskaya MV, Li M, & Sobolevsky AI (2014). Structure of an agonist-bound ionotropic glutamate receptor.
Science 345 :1070-1074. PubMed Id: 25103407. |
||
Meyerson et al. (2014).
Meyerson JR, Kumar J, Chittori S, Rao P, Pierson J, Bartesaghi A, Mayer ML, & Subramaniam S (2014). Structural mechanism of glutamate receptor activation and desensitization.
Nature 514 :328-334. PubMed Id: 25119039. doi:10.1038/nature13603. |
|||
GluA2 Glutamate receptor (AMPA-subtype), apo formA: Rattus norvegicus E Eukaryota (expressed in HEK293S cells), 3.24 Å
GluA2-kainate-(R,R)-2b complex crystal form A, 3.25 Å: 4U1W GluA2-kainate-(R,R)-2b complex crystal form B, 3.30 Å: 4U1X GluA2-FW-(R,R)-2b complex, 3.90 Å: 4U1Y GluA2 in complex with partial agonist kainate, 3.52 Å: 4U2Q |
Dürr et al. (2014).
Dürr KL, Chen L, Stein RA, De Zorzi R, Folea IM, Walz T, Mchaourab HS, & Gouaux E (2014). Structure and Dynamics of AMPA Receptor GluA2 in Resting, Pre-Open, and Desensitized States.
Cell 158 :778-792. PubMed Id: 25109876. doi:10.1016/j.cell.2014.07.023. |
||
GluA2 Glutamate receptor (AMPA-subtype) A622T in complex with cone snail toxin, partial agonist KA, and postitive modulator (R,R)-2b: Rattus norvegicus E Eukaryota (expressed in HEK293 cells), 3.50 Å
T625G with cone snail toxin, partial agonist KA, and positive modulator (R,R)-2b, 3.51 Å: 4U5E With snail toxin, partial agonist KA and positive modulator (R,R)-2b, 3.58 Å: 4U5D With snail toxin, partial agonist FW and positive modulator (R,R)-2b complex, 3.69 Å: 4U5C With snail toxin, partial agonist KA and postitive modulator (R,R)-2b complex ( crystal form 2), 3.70 Å: 4U5F |
Chen et al. (2014).
Chen L, Dür KL, & Gouaux E (2014). X-ray structures of AMPA receptor-cone snail toxin complexes illuminate activation mechanism.
Science 345 :1021-1026. PubMed Id: 25103405. doi:10.1126/science.1258409. |
||
Herguedas et al. (2016).
Herguedas B, García-Nafría J, Cais O, Fernández-Leiro R, Krieger J, Ho H, & Greger IH (2016). Structure and organization of heteromeric AMPA-type glutamate receptors.
Science 352 . PubMed Id: 26966189. doi:10.1126/science.aad3873. |
|||
GluA2 Glutamate receptor (AMPA-subtype) without bound stargazin (0-xSTZ) regulatory protein: Rattus norvegicus (GluA2) & Mus musculus (STZ) E Eukaryota (expressed in HEK293 cells), 8.7 Å
cryo-EM structures with 1 bound STZ (1xSTZ), 6.4 Å: 5KBT with 2 bound STZ (2xSTZ), 7.8 Å: 5KBU GluA2 with bound ZK200775, 6.8 Å: 5KBV |
Twomey et al. (2016).
Twomey EC, Yelshanskaya MV, Grassucci RA, Frank J, & Sobolevsky AI (2016). Elucidation of AMPA receptor-stargazin complexes by cryo-electron microscopy.
Science 353 :83-86. PubMed Id: 27365450. doi:10.1126/science.aaf8411. |
||
GluA2 Glutamate receptor (AMPA-subtype) saturated with TARPγ2 subunits: Rattus norvegicus E Eukaryota (expressed in HEK293 cells), 7.3 Å
cryo-EM structure TARPγ2 is stargazin |
Zhao et al. (2016).
Zhao Y, Chen S, Yoshioka C, Baconguis I, & Gouaux E (2016). Architecture of fully occupied GluA2 AMPA receptor-TARP complex elucidated by cryo-EM.
Nature 536 :108-111. PubMed Id: 27368053. doi:10.1038/nature18961. |
||
GluA2 Glutamate receptor (AMPA-subtype) bound to antagonist ZK and GSG1L in digitonin, state 1: Rattus norvegicus E Eukaryota (expressed in HEK293 cells), 4.6 Å
cryo-EM structure bound to antagonist ZK and GSG1L in digitonin, state 2; 4.4 Å: 5WEL bound to GSG1L in digitonin, state; 6.1 Å: 5WEM bound to GSG1L in digitonin, state 2; 6.8 Å: 5WEN bound to glutamate, cyclothiazide, and STZ in digitonin, 4.2 Å: 5WEO |
Twomey et al. (2017).
Twomey EC, Yelshanskaya MV, Grassucci RA, Frank J, & Sobolevsky AI (2017). Channel opening and gating mechanism in AMPA-subtype glutamate receptors.
Nature 549 :60-65. PubMed Id: 28737760. doi:10.1038/nature23479. |
||
Zhao et al. (2019).
Zhao Y, Chen S, Swensen AC, Qian WJ, & Gouaux E (2019). Architecture and subunit arrangement of native AMPA receptors elucidated by cryo-EM.
Science 364 6438:355-362. PubMed Id: 30975770. doi:10.1126/science.aaw8250. |
|||
Glutamate receptor (AMPA-subtype), GluA1/GluA2/GluA1/GluA2 tetramer in complex with TARP γ8: Rattus norvegicus E Eukaryota (expressed in HEK293 cells), 6.3 Å
cryo-EM structure Full length GluA1/2-γ8 complex, 4.4 Å: 6QKC |
Herguedas et al. (2019).
Herguedas B, Watson JF, Ho H, Cais O, García-Nafría J, & Greger IH (2019). Architecture of the heteromeric GluA1/2 AMPA receptor in complex with the auxiliary subunit TARP γ8.
Science 364 6438. PubMed Id: 30872532. doi:10.1126/science.aav9011. |
||
GluA2 Glutamate receptor (AMPA-subtype) in complex with cornichon homolog and antagonist ZK200775: Rattus norvegicus E Eukaryota (expressed in HEK293 cells), 2.97 Å
cryo-EM structure in pseudo-symmetric global conformation, 3.07 Å: 6U5S in asymmetric global conformation, 3.12 Å: 6U6I with antagonist ZK200775, LBD, TMD, CNIH3, and lipids; 3.28 Å: 6UCB in AS map II - (LBD-TMD-C3(AS) II)- with antagonist ZK200775, without NTD; 3.3 Å: 6UD4 with antagonist ZK200775, 3.2 Å: 6UD8 |
Nakagawa (2019).
Nakagawa T (2019). Structures of the AMPA receptor in complex with its auxiliary subunit cornichon.
Science 366 6470:1259-1263. PubMed Id: 31806817. doi:10.1126/science.aay2783. |
||
GluA2 Glutamate receptor (AMPA-subtype) in complex with trans-4-butylcyclohexane carboxylic acid (4-BCCA) inhibitor: Rattus norvegicus E Eukaryota (expressed in HEK293 cells), 4.25 Å
|
Yelshanskaya et al. (2022).
Yelshanskaya MV, Singh AK, Narangoda C, Williams RSB, Kurnikova MG, & Sobolevsky AI (2022). Structural basis of AMPA receptor inhibition by trans-4-butylcyclohexane carboxylic acid.
Br J Pharmacol 179 14:3628-3644. PubMed Id: 32959886. doi:10.1111/bph.15254. |
||
GluA2 Glutamate receptor (AMPA-subtype) in complex the antagonist ZK200775 and the negative allosteric modulator GYKI53655: Rattus norvegicus E Eukaryota (expressed in Sf9 cells), 4.65 Å
|
Krintel et al. (2021).
Krintel C, Dorosz J, Larsen AH, Thorsen TS, Venskutonyté R, Mirza O, Gajhede M, Boesen T, & Kastrup JS (2021). Binding of a negative allosteric modulator and competitive antagonist can occur simultaneously at the ionotropic glutamate receptor GluA2.
FEBS J 288 3:995-1007. PubMed Id: 32543078. doi:10.1111/febs.15455. |
||
GluA1/A2 Glutamate receptor (AMPA-subtype) in complex with TARP-γ8 and CNIH2 (LBD-TMD), resting state: Rattus norvegicus E Eukaryota (expressed in HEK293 cells), 3.10 Å
cryo-EM structure NTD of resting state GluA1/A2 heterotetramer, 3.40 Å: 7OCC Resting state GluA1/A2 heterotetramer in complex with auxiliary subunit TARP γ8 (LBD-TMD), 3.50 Å: 7OCD Active state GluA1/A2 heterotetramer in complex with auxiliary subunit TARP γ8 (LBD-TMD), 3.60 Å: 7OCF |
Zhang et al. (2021).
Zhang D, Watson JF, Matthews PM, Cais O, & Greger IH (2021). Gating and modulation of a hetero-octameric AMPA glutamate receptor.
Nature 594 7863:454-458. PubMed Id: 34079129. doi:10.1038/s41586-021-03613-0. |
||
AMPA receptor GluA2 with auxiliary subunit TARP gamma-5, bound to competitive antagonist ZK 200775: Rattus norvegicus E Eukaryota (expressed in HEK293 cells), 3.60 Å
cryo-EM structure LBD-TMD part bound to competitive antagonist ZK 200775, 3.30 Å 7RZ5 with auxiliary subunit TARP gamma-5 bound to agonist glutamate, 4.40 Å 7RZ6 with auxiliary subunit TARP gamma-5 bound to agonist Quisqualate, 4.20 Å 7RZ7 LBD-TMD part subunit TARP gamma-5 bound to agonist quisqualate, 4.10 Å 7RZ8 receptor GluA2 with auxiliary subunit GSG1L in the apo state, 4.15 Å 7RZ9 GluA2 with auxiliary subunit GSG1L bound to agonist quisqualate, 4.26 Å 7RZA LBD-TMD part of AMPA receptor GluA2 with auxiliary subunit GSG1L bound to agonist quisqualate, 4.15 Å 7RYZ |
Klykov et al. (2021).
Klykov O, Gangwar SP, Yelshanskaya MV, Yen L, & Sobolevsky AI (2021). Structure and desensitization of AMPA receptor complexes with type II TARP γ5 and GSG1L.
Mol Cell 81 23:4771-4783.e7. PubMed Id: 34678168. doi:10.1016/j.molcel.2021.09.030. |
||
GluA1/A2 Glutamate receptor (AMPA-subtype) in complex with TARP-γ8, with L-glutamate and CTZ: Rattus norvegicus E Eukaryota (expressed in HEK293 cells), 3.50 Å
cryo-EM structure in complex with TARP-γ 8 (TMD-LBD), 3.60 Å 7QHH |
Herguedas et al. (2022).
Herguedas B, Kohegyi BK, Dohrke JN, Watson JF, Zhang D, Ho H, Shaikh SA, Lape R, Krieger JM, & Greger IH (2022). Mechanisms underlying TARP modulation of the GluA1/2-γ8 AMPA receptor.
Nat Commun 13 1:734. PubMed Id: 35136046. doi:10.1038/s41467-022-28404-7. |
||
GluA2 Glutamate receptor (NNNN of AMPA-subtype)/γ2 (stargazin) complex in the presence of glutamate (20μM) & cyclothiazide (100μM): Rattus norvegicus E Eukaryota (expressed in HEK293 cells), 4.02 Å
cryo-EM structure GNNN of AMPA-subtype, 4.50 Å 7TNK GNGN1 of AMPA-subtype, 3.59 Å 7TNL GNGN2 of AMPA-subtype, 4.74 Å 7TNM GGNN of AMPA-subtype, 3.91 Å 7TNN GGGN of AMPA-subtype, 4.02 Å 7TNO GGGG of AMPA-subtype, 3.96 Å 7TNP |
Yelshanskaya et al. (2022).
Yelshanskaya MV, Patel DS, Kottke CM, Kurnikova MG, & Sobolevsky AI (2022). Opening of glutamate receptor channel to subconductance levels.
Nature 605 7908:172-178. PubMed Id: 35444281. doi:10.1038/s41586-022-04637-w. |
||
GluA2 Glutamate receptor (AMPA-subtype) L504Y, N775S mutant (LBD) in complex with L-glutamate and positive allosteric modulator BPAM395: Rattus norvegicus E Eukaryota (expressed in E. coli), 1.55 Å
x-ray structure |
Francotte et al. (2023).
Francotte P, Bay Y, Goffin E, Colson T, Lesenfants C, Dorosz J, Laulumaa S, Fraikin P, de Tullio P, Beaufour C, Botez I, Pickering DS, Frydenvang K, Danober L, Kristensen AS, Kastrup JS, & Pirotte B (2023). Exploring thienothiadiazine dioxides as isosteric analogues of benzo- and pyridothiadiazine dioxides in the search of new AMPA and kainate receptor positive allosteric modulators.
Eur J Med Chem 264 :116036. PubMed Id: 38101041. doi:10.1016/j.ejmech.2023.116036. |
||
GluA2 Glutamate receptor (AMPA-subtype), F231A mutant, in complex with TARP-γ2, resting state: Rattus norvegicus E Eukaryota (expressed in HEK293 cells), 3.20 Å
cryo-EM structure transmembrane domain, 3.00 Å: 8C1S flip isoform (R/G-edited; Q/R-edited), desensitized conformation 1, 3.36 Å: 8P3X flip isoform (R/G-edited; Q/R-edited), desensitized conformation 2, 3.46 Å: 8P3Z flip isoform (R/G-edited; Q/R-edited), desensitized conformation 3, 3.55 Å: 8P3Y flip isoform (R/G-unedited; Q/R-edited), desensitized conformation 1, 3.46 Å: 8PIV flip isoform (R/G-unedited; Q/R-edited), desensitized conformation 2, 2.95 Å: 8P3S flip isoform (R/G-unedited; Q/R-edited), desensitized conformation 3, 2.95 Å: 8P3Q |
Zhang et al. (2023).
Zhang D, Ivica J, Krieger JM, Ho H, Yamashita K, Stockwell I, Baradaran R, Cais O, & Greger IH (2023). Structural mobility tunes signalling of the GluA1 AMPA glutamate receptor.
Nature 621 7980:877-882. PubMed Id: 37704721. doi:10.1038/s41586-023-06528-0. |
||
Yu et al. (2021).
Yu J, Rao P, Clark S, Mitra J, Ha T, & Gouaux E (2021). Hippocampal AMPA receptor assemblies and mechanism of allosteric inhibition.
Nature 594 7863:448-453. PubMed Id: 33981040. doi:10.1038/s41586-021-03540-0. |
|||
GluD1 ionotropic glutamate receptor in complex with 7-CKA and Calcium, compact state: Rattus norvegicus E Eukaryota (expressed in HEK293 cells), 8.1 Å
cryo-EM structure in complex with 7-CKA and Calcium, splayed state, 8.1 Å: 6KSP |
Burada et al. (2020).
Burada AP, Vinnakota R, & Kumar J (2020). Cryo-EM structures of the ionotropic glutamate receptor GluD1 reveal a non-swapped architecture.
Nat Struct Mol Biol 27 1:84-91. PubMed Id: 31925409. doi:10.1038/s41594-019-0359-y. |
||
GluD2 ionotropic glutamate receptor in complex with 7-CKA and Calcium: Rattus norvegicus E Eukaryota (expressed in HEK293 cells), 8.80 Å
cryo-EM structure |
Burada et al. (2020).
Burada AP, Vinnakota R, & Kumar J (2020). The architecture of GluD2 ionotropic delta glutamate receptor elucidated by cryo-EM.
J Struct Biol 211 2:107546. PubMed Id: 32512155. doi:10.1016/j.jsb.2020.107546. |
||
GluN1a/GluN2B NMDA receptor: Rattus norvegicus E Eukaryota (expressed in S. frugiperda), 3.96 Å
NMDA = N-methyl-D-aspartate |
Karakas et al. (2014).
Karakas E, & Furukawa H (2014). Crystal structure of a heterotetrameric NMDA receptor ion channel.
Science 344 :992-997. PubMed Id: 24876489. doi:10.1126/science.1251915. |
||
GluN1a/GluN2B NMDA receptor, apo-form crystal structure: Rattus norvegicus E Eukaryota (expressed in Trichoplusia ni), 2.9 Å
cryo-EM structures (S. frugiperda expression system): receptor in active conformation, 6.8 Å: 5FXG receptor in non-active-1 conformation, 5.0 Å: 5FXH receptor in non-active-2 conformation, 6.4 Å: 5FXI receptor structure-Class X, 6.25 Å: 5FXJ receptor structure-Class Y, 6.4 Å: 5YXK |
Tajima et al. (2016).
Tajima N, Karakas E, Grant T, Simorowski N, Diaz-Avalos R, Grigorieff N, & Furukawa H (2016). Activation of NMDA receptors and the mechanism of inhibition by ifenprodil.
Nature 534 :63-68. PubMed Id: 27135925. doi:10.1038/nature17679. |
||
Chou et al. (2022).
Chou TH, Epstein M, Michalski K, Fine E, Biggin PC, & Furukawa H (2022). Structural insights into binding of therapeutic channel blockers in NMDA receptors.
Nat Struct Mol Biol 29 6:507-518. PubMed Id: 35637422. doi:10.1038/s41594-022-00772-0. |
|||
GluN1a/GluN2B NMDA receptor: Xenopus laevis E Eukaryota (expressed in HEK293S GnTI-), 3.59 Å
The protein is the K216C mutant. Structure at 3.77 Å: 4TLM |
Lee et al. (2014).
Lee CH, Lü W, Michel JC, Goehring A, Du J, Song X, & Gouaux E (2014). NMDA receptor structures reveal subunit arrangement and pore architecture.
Nature 511 :191-197. PubMed Id: 25008524. doi:10.1038/nature13548. |
||
GluN1a/GluN2B NMDA receptor: Xenopus laevis E Eukaryota (expressed in HEK293S), 7.0 Å
Cryo-EM structures. 5IOU is glutamate/glycine-bound. glutamate/glycine/Ro25-6981-bound conformation, 7.5 Å: 5IOV DCKA/D-APV-bound conformation, state 2, 13.5 Å: 5IPQ DCKA/D-APV-bound conformation, state 3, 14.1 Å: 5IPR DCKA/D-APV-bound conformation, state 4, 13.5 Å: 5IPS DCKA/D-APV-bound conformation, state 5, 14.1 Å: 5IPT DCKA/D-APV-bound conformation, state 6, 15.4 Å: 5IPU DCKA/D-APV-bound conformation, state 1, 9.25 Å: 5IPV |
Zhu et al. (2016).
Zhu S, Stein RA, Yoshioka C, Lee CH, Goehring A, Mchaourab HS, & Gouaux E (2016). Mechanism of NMDA Receptor Inhibition and Activation.
Cell 165 :704-714. PubMed Id: 27062927. doi:10.1016/j.cell.2016.03.028. |
||
GluN1/GluN2A/GluN1/GluN2B heterotrimeric NMDA receptor in complex with Gly, Glu, & MK-801: Xenopus laevis E Eukaryota (expressed in HEK293S cells), 4.5 Å
cryo-EM structure additionally in complex with Ro 25-6981, 4.5 Å: 5UP2 |
Lü et al. (2017).
Lü W, Du J, Goehring A, & Gouaux E (2017). Cryo-EM structures of the triheteromeric NMDA receptor and its allosteric modulation.
Science 355 6331. PubMed Id: 28232581. doi:10.1126/science.aal3729. |
||
GluN1a/GluN2B NMDA receptor lacking N-terminal domain (ΔATD): Xenopus laevis E Eukaryota (expressed in S. frugiperda), 3.6 Å
|
Song et al. (2018).
Song X, Jensen MØ, Jogini V, Stein RA, Lee CH, Mchaourab HS, Shaw DE, & Gouaux E (2018). Mechanism of NMDA receptor channel block by MK-801 and memantine.
Nature 556 7702:515-519. PubMed Id: 29670280. doi:10.1038/s41586-018-0039-9. |
||
GluN1a/GluN2C NMDA receptor with bound D-cycloserine and glutamate, intact conformation: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.96 Å
cryo-EM structure splayed conformation, 3.71 Å: 8E93 with bound PYD-106, intact conformation, 3.72 Å: 8E94 with bound PYD-106, splayed conformation, 4.19 Å: 8E97 in nanodisc with bound D-cycloserine and glutamate, intact conformation, 3.75 Å: 8E98 |
Chou et al. (2022).
Chou TH, Kang H, Simorowski N, Traynelis SF, & Furukawa H (2022). Structural insights into assembly and function of GluN1-2C, GluN1-2A-2C, and GluN1-2D NMDARs.
Mol Cell 82 23:4548-4563.e4. PubMed Id: 36309015. doi:10.1016/j.molcel.2022.10.008. |
||
GluN1a/GluN2D NMDA receptor with bound Glycine and glutamate: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.38 Å
cryo-EM structure |
Chou et al. (2022).
Chou TH, Kang H, Simorowski N, Traynelis SF, & Furukawa H (2022). Structural insights into assembly and function of GluN1-2C, GluN1-2A-2C, and GluN1-2D NMDARs.
Mol Cell 82 23:4548-4563.e4. PubMed Id: 36309015. doi:10.1016/j.molcel.2022.10.008. |
||
GluN1a/GluN2D NMDA receptor with bound glycine and glutamate: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.90 Å
cryo-EM structure with bound glycine and CPP, 3.60 Å: 7YFF GluN1a mutant (E698C)/GluN2D, in cystines crosslinked state, 6.40 Å: 7YFO GluN1a mutant (E698C)/GluN2D, in cystines non-crosslinked state, 5.10 Å: 7YFR |
Zhang et al. (2023).
Zhang J, Zhang M, Wang Q, Wen H, Liu Z, Wang F, Wang Y, Yao F, Song N, Kou Z, Li Y, Guo F, & Zhu S (2023). Distinct structure and gating mechanism in diverse NMDA receptors with GluN2C and GluN2D subunits.
Nat Struct Mol Biol 30 5:629-639. PubMed Id: 36959261. doi:10.1038/s41594-023-00959-z. |
||
GluN1a/GluN2A/GluN2C NMDA receptor in complex with Nb-4: Homo sapiens E Eukaryota (expressed in S. frugiperda), 4.24 Å
cryo-EM structure |
Chou et al. (2022).
Chou TH, Kang H, Simorowski N, Traynelis SF, & Furukawa H (2022). Structural insights into assembly and function of GluN1-2C, GluN1-2A-2C, and GluN1-2D NMDARs.
Mol Cell 82 23:4548-4563.e4. PubMed Id: 36309015. doi:10.1016/j.molcel.2022.10.008. |
||
GluN1b-GluN2B NMDA receptor heterodimer, amino-terminal domains bound to allosteric inhibitor 93-4: Xenopus laevis/Rattus norvegicus E Eukaryota (expressed in Trichoplusia ni), 2.1 Å
bound to allosteric inhibitor 93-5, 2.72 Å: 6E7S bound to allosteric inhibitor 93-6, 2.31 Å: 6E7T bound to allosteric inhibitor 93-31, 2.27 Å: 6E7U bound to allosteric inhibitor 93-88, 2.6 Å: 6E7V bound to allosteric inhibitor 93-115, 2.67 Å: 6E7W bound to allosteric inhibitor 93-97, 2.58 Å: 6E7X |
Regan et al. (2019).
Regan MC, Zhu Z, Yuan H, Myers SJ, Menaldino DS, Tahirovic YA, Liotta DC, Traynelis SF, & Furukawa H (2019). Structural elements of a pH-sensitive inhibitor binding site in NMDA receptors.
Nat Commun 10 1:321. PubMed Id: 30659174. doi:10.1038/s41467-019-08291-1. |
||
GluN1b-GluN2B NMDA receptor heterodimer, non-active state 1: Rattus norvegicus E Eukaryota (expressed in Spodoptera frugiperda), 4.00 Å
cryo-EM structure non-active state 2, 3.99 Å: 6WHR active conformation, 4.39 Å: 6WHT in complex with SDZ 220-040 and L689,560, class 1. 3.93 Å: 6WHU in complex with SDZ 220-040 and L689,560, class 2. 4.05 Å: 6WHV in complex with GluN2B antagonist SDZ 220-040, class 1. 4.09 Å: 6WHW in complex with GluN2B antagonist SDZ 220-040, class 2, 4.09 Å: 6WHX in complex with GluN1 antagonist L689,560, class 1. 4.03 Å: 6WHY complex with GluN1 antagonist L689,560, class 2. 4.27 Å: 6WI0 GluN1/GluN2A ligand-binding domain in complex with L689,560 and glutamate (x-ray) 2.09 Å: 6USU GluN1/GluN2A ligand-binding domain in complex with glycine and SDZ 220-040 (x-ray) 2.30 Å: 6USV |
Chou et al. (2020).
Chou TH, Tajima N, Romero-Hernandez A, & Furukawa H (2020). Structural Basis of Functional Transitions in Mammalian NMDA Receptors.
Cell 182 2:357-371.e13. PubMed Id: 32610085. doi:10.1016/j.cell.2020.05.052. |
||
GluN1b-GluN2B NMDA receptor heterodimer, complexed to Fab2 class1: Rattus norvegicus E Eukaryota (expressed in Spodoptera frugiperda), 3.92 Å
cryo-EM structure complexed to Fab2 non-active1-like, 4.23 Å 7TEB complexed to Fab2 Non-active2-like, 6.59 Å 7TEE complexed with Fab5 active conformation, 7.51 Å 7TEQ complexed with Fab5 non-active2 conformation, 5.23 Å 7TER complexed with Fab5 in Non-active1 conformation, 4.70 Å 7TES complexed with Fab5 in non-active2-like conformation, 4.45 Å 7TET |
Tajima et al. (2022).
Tajima N, Simorowski N, Yovanno RA, Regan MC, Michalski K, Gómez R, Lau AY, & Furukawa H (2022). Development and characterization of functional antibodies targeting NMDA receptors.
Nat Commun 13 1:923. PubMed Id: 35177668. doi:10.1038/s41467-022-28559-3. |
||
GluN1b-GluN2B NMDA receptor heterodimer, amino-terminal domains bound to allosteric inhibitor 93-108: Xenopus laevis/Rattus norvegicus E Eukaryota (expressed in Trichoplusia ni), 2.85 Å
|
Harris et al. (2023).
Harris LD, Regan MC, Myers SJ, Nocilla KA, Akins NS, Tahirovic YA, Wilson LJ, Dingledine R, Furukawa H, Traynelis SF, & Liotta DC (2023). Novel GluN2B-Selective NMDA Receptor Negative Allosteric Modulator Possesses Intrinsic Analgesic Properties and Enhances Analgesia of Morphine in a Rodent Tail Flick Pain Model.
ACS Chem Neurosci 14 5:917-935. PubMed Id: 36779874. doi:10.1021/acschemneuro.2c00779. |
||
GluN1b/GluN2D NMDA receptor with bound glycine and glutamate: Homo sapiens E Eukaryota (expressed in HEK293 cells), 5.10 Å
cryo-EM structure |
Zhang et al. (2023).
Zhang J, Zhang M, Wang Q, Wen H, Liu Z, Wang F, Wang Y, Yao F, Song N, Kou Z, Li Y, Guo F, & Zhu S (2023). Distinct structure and gating mechanism in diverse NMDA receptors with GluN2C and GluN2D subunits.
Nat Struct Mol Biol 30 5:629-639. PubMed Id: 36959261. doi:10.1038/s41594-023-00959-z. |
||
Zhang et al. (2018).
Zhang JB, Chang S, Xu P, Miao M, Wu H, Zhang Y, Zhang T, Wang H, Zhang J, Xie C, Song N, Luo C, Zhang X, & Zhu S (2018). Structural Basis of the Proton Sensitivity of Human GluN1-GluN2A NMDA Receptors.
Cell Rep 25 13:3582-3590.e4. PubMed Id: 30590034. doi:10.1016/j.celrep.2018.11.071. |
|||
GluN1/GluN2A NMDA receptor in complex with S-ketamine, glycine, and glutamate: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.50 Å
cryo-EM structure GluN1-GluN2B NMDA receptor in complex with S-ketamine, glycine, and glutamate, 4.07 Å 7EU8 |
Zhang et al. (2021).
Zhang Y, Ye F, Zhang T, Lv S, Zhou L, Du D, Lin H, Guo F, Luo C, & Zhu S (2021). Structural basis of ketamine action on human NMDA receptors.
Nature 596 7871:301-305. PubMed Id: 34321660. doi:10.1038/s41586-021-03769-9. |
||
GluN1/GluN2A NMDA receptor, glycine/glutamate bound state: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.90 Å
cryo-EM structure in the glycine/CPP bound state, 4.10 Å 7EOQ in the CGP-78608/glutamate bound state, 3.80 Å 7EOT in the glycine/glutamate/GNE-6901 bound state, 4.00 Å 7EOR in the glycine/glutamate/GNE-6901/9-AA bound state, 4.30 Å 7EOU |
Wang et al. (2021).
Wang H, Lv S, Stroebel D, Zhang J, Pan Y, Huang X, Zhang X, Paoletti P, & Zhu S (2021). Gating mechanism and a modulatory niche of human GluN1-GluN2A NMDA receptors.
Neuron 109 15:2443-2456.e5. PubMed Id: 34186027. doi:10.1016/j.neuron.2021.05.031. |
||
Zhang et al. (2023).
Zhang J, Zhang M, Wang Q, Wen H, Liu Z, Wang F, Wang Y, Yao F, Song N, Kou Z, Li Y, Guo F, & Zhu S (2023). Distinct structure and gating mechanism in diverse NMDA receptors with GluN2C and GluN2D subunits.
Nat Struct Mol Biol 30 5:629-639. PubMed Id: 36959261. doi:10.1038/s41594-023-00959-z. |
|||
GluN1/GluN2A/GluN2C NMDA receptor with bound glycine and glutamate: Rattus norvegicus E Eukaryota (expressed in HEK293 cells), 3.30 Å
cryo-EM structure |
Zhang et al. (2023).
Zhang J, Zhang M, Wang Q, Wen H, Liu Z, Wang F, Wang Y, Yao F, Song N, Kou Z, Li Y, Guo F, & Zhu S (2023). Distinct structure and gating mechanism in diverse NMDA receptors with GluN2C and GluN2D subunits.
Nat Struct Mol Biol 30 5:629-639. PubMed Id: 36959261. doi:10.1038/s41594-023-00959-z. |
||
GluR1 Glutamate receptor ligand binding domain with bound Glu: Adineta vaga E Eukaryota (expressed in E. coli), 1.37 Å
The structure does not include transmembrane domain. with bound Asp, 1.66 Å: 4IO3 with bound Ser, 1.94 Å: 4IO4 with bound Ala, 1.72 Å: 4IO5 with bound Met, 1.60 Å: 4IO6 with bound Phe, 1.92 Å: 4IO7 |
Lomash et al. (2013).
Lomash S, Chittori S, Brown P, & Mayer ML (2013). Anions Mediate Ligand Binding in Adineta vaga Glutamate Receptor Ion Channels.
Structure 21 :414-425. PubMed Id: 23434404. doi:10.1016/j.str.2013.01.006. |
||
GluK1 Glutamate receptor (Kainate-subtype; full length) with L-Glu: Rattus norvegicus E Eukaryota (expressed in HEK293 cells), 4.60 Å
cryo-EM structure |
Selvakumar et al. (2021).
Selvakumar P, Lee J, Khanra N, He C, Munguba H, Kiese L, Broichhagen J, Reiner A, Levitz J, & Meyerson JR (2021). Structural and compositional diversity in the kainate receptor family.
Cell Rep 37 4:109891. PubMed Id: 34706237. doi:10.1016/j.celrep.2021.109891. |
||
GluK2 Glutamate receptor (Kainate-subtype) in desensitized state with bound 2S,4R-4-methylglutamate: Rattus norvegicus E Eukaryota (expressed in S. frugiperda), 7.6 Å
|
Meyerson et al. (2014).
Meyerson JR, Kumar J, Chittori S, Rao P, Pierson J, Bartesaghi A, Mayer ML, & Subramaniam S (2014). Structural mechanism of glutamate receptor activation and desensitization.
Nature 514 :328-334. PubMed Id: 25119039. doi:10.1038/nature13603. |
||
GluK2EM Glutamate receptor (Kainate-subtype) with bound 2S,4R-4-methylglutamate: Rattus norvegicus E Eukaryota (expressed in S. frugiperda), 3.8 Å
cryo-EM structure GluK2EM with LY66195, 11.6 Å: 5KUH GluK2EM dimer assembly complex with with bound 2S,4R-4-methylglutamate, x-ray 1.27 Å: 5CMM GluK2EM dimer assembly complex with LY66195, x-ray 1.8 Å: 5CMK |
Meyerson et al. (2016).
Meyerson JR, Chittori S, Merk A, Rao P, Han TH, Serpe M, Mayer ML, & Subramaniam S (2016). Structural basis of kainate subtype glutamate receptor desensitization.
Nature 537 :567-571. PubMed Id: 27580033. doi:10.1038/nature19352. |
||
GluK2 Glutamate receptor in complex with NETO2, desensitized state: Rattus norvegicus E Eukaryota (expressed in HEK293 cells), 3.80 Å
cryo-EM structure DNQX-bound GluK2-2xNeto2 complex, 6.40 Å 7F5A DNQX-bound GluK2-1xNeto2 complex, 4.20 Å 7F59 LBD-TMD focused reconstruction of DNQX-bound GluK2-1xNeto2 complex, 3.90 Å 7F5B DNQX-bound GluK2-1xNeto2 complex, with asymmetric LBD 4.10 Å 7F56 |
He et al. (2021).
He L, Sun J, Gao Y, Li B, Wang Y, Dong Y, An W, Li H, Yang B, Ge Y, Zhang XC, Shi YS, & Zhao Y (2021). Kainate receptor modulation by NETO2.
Nature 599 7884:325-329. PubMed Id: 34552241. doi:10.1038/s41586-021-03936-y. |
||
GluK2 Glutamate receptor (Kainate-subtype), full-length, with bound positive allosteric modulator BPAM344: Rattus norvegicus E Eukaryota (expressed in HEK293 cells), 3.96 Å
cryo-EM structure amino-terminal domain, with bound BPAM344, 3.10 Å: 8FWR ligand-binding and transmembrane domains, with bound BPAM344, 3.23 Å: 8FWS amino-terminal domain, with bound BPAM344 and competitive antagonist DNQX, 3.09 Å: 8FWT ligand-binding and transmembrane domains, with bound BPAM344 and DNQX, 3.18 Å: 8FWU amino-terminal domain, with bound BPAM344 and noncompetitive inhibitor perampanel , 3.10 Å: 8FWV ligand-binding and transmembrane domains, with bound BPAM344 and perampanel, 3.10 Å: 8FWW |
Gangwar et al. (2023).
Gangwar SP, Yen LY, Yelshanskaya MV, & Sobolevsky AI (2023). Positive and negative allosteric modulation of GluK2 kainate receptors by BPAM344 and antiepileptic perampanel.
Cell Rep 42 2:112124. PubMed Id: 36857176. doi:10.1016/j.celrep.2023.112124. |
||
GluK2/K5 heteromeric Glutamate receptor (Kainate-subtype) in complex with with 6-Cyano-7-nitroquinoxaline-2,3-dione (CNQX): Rattus norvegicus E Eukaryota (expressed in HEK293 cells), 5.30 Å
cryo-EM structure in complex with L-Glu, 5.80 Å: 7KS3 |
Khanra et al. (2021).
Khanra N, Brown PMGE, Perozzo AM, Bowie D, & Meyerson JR (2021). Architecture and structural dynamics of the heteromeric GluK2/K5 kainate receptor.
Elife 10 :e66097. PubMed Id: 33724189. doi:10.7554/eLife.66097. |
||
Kumari et al. (2019).
Kumari J, Vinnakota R, & Kumar J (2019). Structural and Functional Insights into GluK3-kainate Receptor Desensitization and Recovery.
Sci Rep 9 1:10254. PubMed Id: 31311973. doi:10.1038/s41598-019-46770-z. |
|||
GluK3 Glutamate receptor (Kainate-subtype) in complex with kainate: Rattus norvegicus E Eukaryota (expressed in HEK293 cells), 9.6 Å
cryo-EM structure in complex with UBP301, 10.6 Å: 6L6F |
Kumari et al. (2020).
Kumari J, Bendre AD, Bhosale S, Vinnakota R, Burada AP, Tria G, Ravelli RBG, Peters PJ, Joshi M, & Kumar J (2020). Structural dynamics of the GluK3-kainate receptor neurotransmitter binding domains revealed by cryo-EM.
Int J Biol Macromol 149 :1051-1058. PubMed Id: 32006583. doi:10.1016/j.ijbiomac.2020.01.282. |
||
M2 proton channel (AM2): Influenza A (synthesized) V Viruses, 2.05 Å
with amantadine inhibitor, 3.50 Å: 3C9J |
Stouffer et al. (2008).
Stouffer AL, Acharya R, Salom D, Levine AS, Di Costanzo L, Soto CS, Tereshko V, Nanda V, Stayrook S, & DeGrado WF. (2008). Structural basis for the function and inhibition of an influenza virus proton channel.
Nature 451 :596-599. PubMed Id: 18235504. |
||
M2 proton channel (AM2): Influenza A V Viruses (expressed in E. coli), NMR structure
with rimantadine inhibitor |
Schnell & Chou. (2008).
Schnell JR & Chou JJ (2008). Structure and mechanism of the M2 proton channel of influenza A virus.
Nature 451 :591-595. PubMed Id: 18235503. |
||
M2 proton channel (AM2) H5N1 S31N drug-resistant mutant: Influenza A V Viruses (expressed in E. coli), NMR structure
|
Pielak et al. (2009).
Pielak RM, Schnell JR, & Chou JJ (2009). Mechanism of drug inhibition and drug resistance of influenza A M2 channel.
Proc Natl Acad Sci USA 106 :7379-7384. PubMed Id: 19383794. doi:10.1073/pnas.0902548106. |
||
M2 proton channel (AM2) in a hydrated lipid bilayer: Influenza A V Viruses (expressed in E. coli), NMR structure
|
Sharma et al. (2010).
Sharma M, Yi M, Dong H, Qin H, Peterson E, Busath DD, Zhou HX, & Cross TA (2010). Insight into the mechanism of the influenza A proton channel from a structure in a lipid bilayer.
Science 330 :509-512. PubMed Id: 20966252. |
||
M2 proton channel (AM2), S31N mutant in complex with M2WJ332: Influenza A V Viruses (expressed in E. coli), NMR Structure
|
Wang et al. (2013).
Wang J, Wu Y, Ma C, Fiorin G, Wang J, Pinto LH, Lamb RA, Klein ML, & DeGrado WF (2013). Structure and inhibition of the drug-resistant S31N mutant of the M2 ion channel of influenza A virus.
Proc Natl Acad Sci USA 110 :1315-1320. PubMed Id: 23302696. doi:10.1073/pnas.1216526110. |
||
M2 proton channel (AM2): Influenza A V Viruses (expressed in Synthesized), 1.65 Å
|
Acharya et al. (2010).
Acharya R, Carnevale V, Fiorin G, Levine BG, Polishchuk AL, Balannik V, Samish I, Lamb RA, Pinto LH, DeGrado WF, & Klein ML (2010). Structure and mechanism of proton transport through the transmembrane tetrameric M2 protein bundle of the influenza A virus.
Proc Natl Acad Sci USA 107 :15075-15080. PubMed Id: 20689043. doi:10.1073/pnas.1007071107. |
||
M2 proton channel (AM2) at low pH: Influenza A V Viruses (expressed in Synthesized), 1.10 Å
at high pH, 1.10 Å: 4QK7 |
Thomaston et al. (2015).
Thomaston JL, Alfonso-Prieto M, Woldeyes RA, Fraser JS, Klein ML, Fiorin G, & DeGrado WF (2015). High-resolution structures of the M2 channel from influenza A virus reveal dynamic pathways for proton stabilization and transduction.
Proc Natl Acad Sci USA 112 :14260-14265. PubMed Id: 26578770. doi:10.1073/pnas.1518493112. |
||
Thomaston et al. (2017).
Thomaston JL, Woldeyes RA, Nakane T, Yamashita A, Tanaka T, Koiwai K, Brewster AS, Barad BA, Chen Y, Lemmin T, Uervirojnangkoorn M, Arima T, Kobayashi J, Masuda T, Suzuki M, Sugahara M, Sauter NK, Tanaka R, Nureki O, Tono K, Joti Y, Nango E, Iwata S, Yumoto F, Fraser JS, & DeGrado WF (2017). XFEL structures of the influenza M2 proton channel: Room temperature water networks and insights into proton conduction.
Proc Natl Acad Sci USA 114 51:13357-13362. PubMed Id: 28835537. doi:10.1073/pnas.1705624114. |
|||
Thomaston et al. (2018).
Thomaston JL, Polizzi NF, Konstantinidi A, Wang J, Kolocouris A, & DeGrado WF (2018). Inhibitors of the M2 Proton Channel Engage and Disrupt Transmembrane Networks of Hydrogen-Bonded Waters.
J Am Chem Soc 140 45:15219-15226. PubMed Id: 30165017. doi:10.1021/jacs.8b06741. |
|||
M2 proton channel (AM2), S31N mutant: Influenza A virus V Viruses, 2.06 Å
|
Thomaston et al. (2019).
Thomaston JL, Wu Y, Polizzi N, Liu L, Wang J, & DeGrado WF (2019). X-ray Crystal Structure of the Influenza A M2 Proton Channel S31N Mutant in Two Conformational States: An Open and Shut Case.
J Am Chem Soc 141 29:11481-11488. PubMed Id: 31184871. doi:10.1021/jacs.9b02196. |
||
M2 proton channel (AM2) V27A mutant bound to spiroadamantyl amine inhibitor: Influenza A virus V Viruses (expressed in synthesized), 2.5 Å
TM + cytosolic helix construct, 3.01 Å: 6OUG |
Thomaston et al. (2020).
Thomaston JL, Konstantinidi A, Liu L, Lambrinidis G, Tan J, Caffrey M, Wang J, Degrado WF, & Kolocouris A (2020). X-ray Crystal Structures of the Influenza M2 Proton Channel Drug-Resistant V27A Mutant Bound to a Spiro-Adamantyl Amine Inhibitor Reveal the Mechanism of Adamantane Resistance.
Biochemistry 59 4:627-634. PubMed Id: 31894969. doi:10.1021/acs.biochem.9b00971. |
||
M2 proton channel (BM2): Influenza B V Viruses (expressed in Escherichia coli), NMR Structure
Cytoplasmic domain, NMR Structure: 2KJ1 |
Wang et al. (2009).
Wang J, Pielak RM, McClintock MA, & Chou JJ (2009). Solution structure and functional analysis of the influenza B proton channel.
Nat Struct Mol Biol 16 :1267-1271. PubMed Id: 19898475. |
||
M2 proton channel (BM2): closed state, pH 7.5: influenza B V Viruses (expressed in E. coli), NMR structure
open state pH 4.5, 6PVT |
Mandala et al. (2020).
Mandala VS, Loftis AR, Shcherbakov AA, Pentelute BL, & Hong M (2020). Atomic structures of closed and open influenza B M2 proton channel reveal the conduction mechanism.
Nat Struct Mol Biol 27 2:160-167. PubMed Id: 32015551. doi:10.1038/s41594-019-0371-2. |
||
M2A-M2B chimeric proton channel (AM2-BM2): Influenza A/Influenza B V Viruses (expressed in E. coli), NMR Structure
With rimantadine inhibitor, NMR structure: 2LJC |
Pielak et al. (2011).
Pielak RM, Oxenoid K, & Chou JJ (2011). Structural Investigation of Rimantadine Inhibition of the AM2-BM2 Chimera Channel of Influenza Viruses.
Structure 19 :1655-1663. PubMed Id: 22078564. doi:10.1016/j.str.2011.09.003. |
||
SARS-CoV-2 Envelope Protein Transmembrane Domain: Pentameric: Severe acute respiratory syndrome coronavirus 2 V Viruses (expressed in E. coli), NMR structure
|
Mandala et al. (2020).
Mandala VS, McKay MJ, Shcherbakov AA, Dregni AJ, Kolocouris A, & Hong M (2020). Structure and drug binding of the SARS-CoV-2 envelope protein transmembrane domain in lipid bilayers.
Nat Struct Mol Biol 27 12:1202-1208. PubMed Id: 33177698. doi:10.1038/s41594-020-00536-8. |
||
p7 hexamer channel: Hepatitis C virus (isolate EUH1480) V Viruses (expressed in E. coli), NMR Structure
|
OuYang et al. (2013).
OuYang B, Xie S, Berardi MJ, Zhao X, Dev J, Yu W, Sun B, & Chou JJ (2013). Unusual architecture of the p7 channel from hepatitis C virus.
Nature 498 :521-525. PubMed Id: 23739335. doi:10.1038/nature12283. |
||
ASIC1 Acid-Sensing Ion Channel (ΔASIC1; N- and C-term deletions): Gallus gallus E Eukaryota (expressed in S. frugiperda), 1.9 Å
Construct does not exhibit proton-dependent gating |
Jasti et al. (2007).
Jasti J, Furukawa H, Gonzales EB, & Gouaux E (2007). Structure of acid-sensing ion channel 1 at 1.9 Å resolution and low pH.
Nature 449 :316-323. PubMed Id: 17882215. |
||
ASIC1 Acid-Sensing Ion Channel (ASIC1mfc; minimal functional channel): Gallus gallus E Eukaryota (expressed in S. frugiperda), 3.0 Å
Desensitized State |
Gonzales et al. (2009).
Gonzales EB, Kawate T, & Gouaux E (2009). Pore architecture and ion sites in acid-sensing ion channels and P2X receptors.
Nature 460 :599-604. PubMed Id: 19641589. |
||
ASIC1 Acid-Sensing Ion Channel in complex with psalmotoxin 1 (PcTx1): Gallus gallus E Eukaryota (expressed in S. frugiperda), 2.99 Å
Apo protein, 2.60 Å: 3S3W |
Dawson et al. (2012).
Dawson RJ, Benz J, Stohler P, Tetaz T, Joseph C, Huber S, Schmid G, Hügin D, Pflimlin P, Trube G, Rudolph MG, Hennig M, & Ruf A (2012). Structure of the Acid-sensing ion channel 1 in complex with the gating modifier Psalmotoxin 1.
Nature Commun 3 :936. PubMed Id: 22760635. doi:10.1038/ncomms1917. |
||
ASIC1 Acid-Sensing Ion Channel in complex with psalmotoxin 1 (PcTx1), pH 5.5: Gallus gallus E Eukaryota (expressed in S. frugiperda), 2.80 Å
13 AA removed from N-terminus, 63 AA removed from C-terminus (referred to as Δ13) at pH 7.25, 3.36 Å: 4FZ1 |
Baconguis & Gouaux (2012).
Baconguis I & Gouaux E (2012). Structural plasticity and dynamic selectivity of acid-sensing ion channel-spider toxin complexes.
Nature 489 :400-405. PubMed Id: 22842900. doi:10.1038/nature11375. |
||
Baconguis et al. (2014).
Baconguis I, Bohlen CJ, Goehring A, Julius D, & Gouaux E (2014). X-Ray Structure of Acid-Sensing Ion Channel 1-Snake Toxin Complex Reveals Open State of a Na(+)-Selective Channel.
Cell 156 :717-729. PubMed Id: 24507937. doi:10.1016/j.cell.2014.01.011. |
|||
Yoder et al. (2018).
Yoder N, Yoshioka C, & Gouaux E (2018). Gating mechanisms of acid-sensing ion channels.
Nature 555 7696:397-401. PubMed Id: 29513651. doi:10.1038/nature25782. |
|||
ASIC1 Acid-Sensing Ion Channel (full length) solubilized by styrene maleic acid copolymer; desensitized state at low pH: Gallus gallus E Eukaryota (expressed in HEK293 cells), 2.82 Å
cryo-EM structure resting state at high pH, 3.65 Å: 6VTL |
Yoder & Gouaux (2020).
Yoder N, & Gouaux E (2020). The His-Gly motif of acid-sensing ion channels resides in a reentrant 'loop' implicated in gating and ion selectivity.
Elife 9 . PubMed Id: 32496192. doi:10.7554/eLife.56527. |
||
ASIC1a Acid-Sensing Ion Channel, pH 8: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.56 Å
cryo-EM structure in complex with snake toxin Mambalgin1 at pH 8.0, 3.90 Å: 7CFT |
Sun et al. (2020).
Sun D, Liu S, Li S, Zhang M, Yang F, Wen M, Shi P, Wang T, Pan M, Chang S, Zhang X, Zhang L, Tian C, & Liu L (2020). Structural insights into human acid-sensing ion channel 1a inhibition by snake toxin mambalgin1.
Elife 9 :e57096. PubMed Id: 32915133. doi:10.7554/eLife.57096. |
||
ASIC1a Acid-Sensing Ion Channel in complex with Nb.C1 nanobody: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.86 Å
cryo-EM structure |
Wu et al. (2021).
Wu Y, Chen Z, Sigworth FJ, & Canessa CM (2021). Structure and analysis of nanobody binding to the human ASIC1a ion channel.
Elife 10 :e67115. PubMed Id: 34319232. doi:10.7554/eLife.67115. |
||
proton-activated chloride (PAC/ASOR) channel, pH 8: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.60 Å
cryo-EM structure at pH 4, 3.73 Å: 7JNC |
Ruan et al. (2020).
Ruan Z, Osei-Owusu J, Du J, Qiu Z, & Lü W (2020). Structures and pH-sensing mechanism of the proton-activated chloride channel.
Nature 588 7837:350-354. PubMed Id: 33149300. doi:10.1038/s41586-020-2875-7. |
||
Wang et al. (2022).
Wang C, Polovitskaya MM, Delgado BD, Jentsch TJ, & Long SB (2022). Gating choreography and mechanism of the human proton-activated chloride channel ASOR.
Sci Adv 8 5:eabm3942. PubMed Id: 35108041. doi:10.1126/sciadv.abm3942. |
|||
proton-activated chloride (PAC/ASOR) channel, pH 4.0 with diC8-PI(4,5)P2 using full map: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.71 Å
cryo-EM structure using focused map on the ECD and part of the TMD (residues 78-316), 2.70 Å: 8FBL |
Mihaljević et al. (2023).
Mihaljević L, Ruan Z, Osei-Owusu J, Lü W, & Qiu Z (2023). Inhibition of the proton-activated chloride channel PAC by PIP2.
Elife 12 :83935. PubMed Id: 36633397. doi:10.7554/eLife.83935. |
||
epithelial sodium channel ENaC: Homo sapiens E Eukaryota (expressed in HEK293S cells), 3.9 Å
cryo-EM structure |
Noreng et al. (2018).
Noreng S, Bharadwaj A, Posert R, Yoshioka C, & Baconguis I (2018). Structure of the human epithelial sodium channel by cryo-electron microscopy.
Elife 7 :e39340. PubMed Id: 30251954. doi:10.7554/eLife.39340. |
||
epithelial sodium channel ENaC, reveals molecular source of assembly: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.06 Å
cryo-EM structure |
Noreng et al. (2020).
Noreng S, Posert R, Bharadwaj A, Houser A, & Baconguis I (2020). Molecular principles of assembly, activation, and inhibition in epithelial sodium channel.
Elife 9 :e59038. PubMed Id: 32729833. doi:10.7554/eLife.59038. |
||
Hattori et al. (2007).
Hattori M, Tanaka Y, Fukai S, Ishitani R, & Nureki O (2007). Crystal structure of the MgtE Mg2+transporter.
Nature 448 :1072-1075. PubMed Id: 17700703. |
|||
MgtE Mg2+ Transporter: Thermus thermophilus B Bacteria (expressed in E. coli), 2.9 Å
|
Hattori et al. (2009).
Hattori M, Iwase N, Furuya N, Tanaka Y, Tsukazaki T, Ishitani R, Maguire ME, Ito K, Maturana A, & Nureki O (2009). Mg(2+)-dependent gating of bacterial MgtE channel underlies Mg(2+) homeostasis.
EMBO J 28 :3602-3612. PubMed Id: 19798051. |
||
Takeda et al. (2014).
Takeda H, Hattori M, Nishizawa T, Yamashita K, Shah ST, Caffrey M, Maturana AD, Ishitani R, & Nureki O (2014). Structural basis for ion selectivity revealed by high-resolution crystal structure of Mg2+ channel MgtE.
Nat Commun 5 :5374. PubMed Id: 25367295. doi:10.1038/ncomms6374. |
|||
MgtE Mg2+ Transporter in complex with ATP: Thermus thermophilus B Bacteria (expressed in E. coli), 3.60 Å
cytosolic domain, 3.00 Å: 5X9G |
Tomita et al. (2017).
Tomita A, Zhang M, Jin F, Zhuang W, Takeda H, Maruyama T, Osawa M, Hashimoto KI, Kawasaki H, Ito K, Dohmae N, Ishitani R, Shimada I, Yan Z, Hattori M, & Nureki O (2017). ATP-dependent modulation of MgtE in Mg2+ homeostasis.
Nat Commun 8 1. PubMed Id: 28747715. doi:10.1038/s41467-017-00082-w. |
||
MgtE Mg2+ Transporter, Mg2+ free: Thermus thermophilus B Bacteria (expressed in E. coli), 3.70 Å
cryo-EM structure |
Jin et al. (2021).
Jin F, Sun M, Fujii T, Yamada Y, Wang J, Maturana AD, Wada M, Su S, Ma J, Takeda H, Kusakizako T, Tomita A, Nakada-Nakura Y, Liu K, Uemura T, Nomura Y, Nomura N, Ito K, Nureki O, Namba K, Iwata S, Yu Y, & Hattori M (2021). The structure of MgtE in the absence of magnesium provides new insights into channel gating.
PLoS Biol 19 4. PubMed Id: 33905418. doi:10.1371/journal.pbio.3001231. |
||
Chen et al. (2010).
Chen YH, Hu L, Punta M, Bruni R, Hillerich B, Kloss B, Rost B, Love J, Siegelbaum SA, & Hendrickson WA (2010). Homologue structure of the SLAC1 anion channel for closing stomata in leaves.
Nature 467 :1074-1080. PubMed Id: 20981093. |
|||
SLAC1 anion channel, TehA homolog (wild-type) at room temperature.: Haemophilus influenzae B Bacteria (expressed in E. coli), 2.30 Å
|
Axford et al. (2015).
Axford D, Foadi J, Hu NJ, Choudhury HG, Iwata S, Beis K, Evans G, & Alguel Y (2015). Structure determination of an integral membrane protein at room temperature from crystals in situ.
Acta Crystallogr D Biol Crystallogr 71 :1228-1237. PubMed Id: 26057664. doi:10.1107/S139900471500423X. |
||
SLAC1 anion channel, TehA homolog, native-SAD structure determined at 5 keV in helium: Haemophilus influenzae B Bacteria (expressed in E. coli), 2.60 Å
|
Karasawa et al. (2022).
Karasawa A, Andi B, Fuchs MR, Shi W, McSweeney S, Hendrickson WA, & Liu Q (2022). Multi-crystal native-SAD phasing at 5 keV with a helium environment.
IUCrJ 9 6:768-777. PubMed Id: 36381147. doi:10.1107/S205225252200971X. |
||
SLAC1 anion channel: Brachypodium distachyon E Eukaryota (expressed in Schizosaccharomyces pombe), 2.97 Å
cryo-EM structure |
Deng et al. (2021).
Deng YN, Kashtoh H, Wang Q, Zhen GX, Li QY, Tang LH, Gao HL, Zhang CR, Qin L, Su M, Li F, Huang XH, Wang YC, Xie Q, Clarke OB, Hendrickson WA, & Chen YH (2021). Structure and activity of SLAC1 channels for stomatal signaling in leaves.
Proc Natl Acad Sci U S A 118 18:e2015151118. PubMed Id: 33926963. doi:10.1073/pnas.2015151118. |
||
SLAC1 anion channel, S59A mutant: Arabidopsis thaliana E Eukaryota (expressed in HEK293 cells), 2.70 Å
cryo-EM structure |
Li et al. (2022).
Li Y, Ding Y, Qu L, Li X, Lai Q, Zhao P, Gao Y, Xiang C, Cang C, Liu X, & Sun L (2022). Structure of the Arabidopsis guard cell anion channel SLAC1 suggests activation mechanism by phosphorylation.
Nat Commun 13 1:2511. PubMed Id: 35523967. doi:10.1038/s41467-022-30253-3. |
||
SLAC1 anion channel, 6D (T62D/S65D/S107D/S124D/S146D/S152D) mutant, closed state: Arabidopsis thaliana E Eukaryota (expressed in S. frugiperda), 3.30 Å
cryo-EM structure 6D mutant, open state, 3.30 Å: 8GW7 8D (S59D/T62D/S65D/S86D/S107D/S124D/S146D/S152D) mutant, closed state, 2.70 Å: 8J0J WT, open state, 3.84 Å: 8J1E |
Lee et al. (2023).
Lee Y, Jeong HS, Jung S, Hwang J, Le CTH, Jun SH, Du EJ, Kang K, Kim BG, Lim HH, & Lee S (2023). Cryo-EM structures of the plant anion channel SLAC1 from Arabidopsis thaliana suggest a combined activation model.
Nat Commun 14 1:7345. PubMed Id: 37963863. doi:10.1038/s41467-023-43193-3. |
||
ATP-gated P2X2 ion channel in the presence of ATP and Zn2+: Amblyomma maculatum E Eukaryota (expressed in Spodoptera frugiperda), 2.90 Å
|
Kasuya et al. (2016).
Kasuya G, Fujiwara Y, Takemoto M, Dohmae N, Nakada-Nakura Y, Ishitani R, Hattori M, & Nureki O (2016). Structural Insights into Divalent Cation Modulations of ATP-Gated P2X Receptor Channels.
Cell Rep 14 4:932-944. PubMed Id: 26804916. doi:10.1016/j.celrep.2015.12.087. |
||
ATP-gated P2X3 ion channel, closed apo state: Homo sapiens E Eukaryota (expressed in HEK293S), 2.98 Å
ATP-bound, open state, 2.77 Å: 5SVK ATP-bound, closed(desensitized) state, 2.9 Å: 5SVL bound to agonist 2-methylthio-ATP in the desensitized state, 3.09 Å: 5SVM agonist 2-methylthio-ATP bound in desensitized state, 3.3 Å: 5SVP bound to competitive antagonist TNP-ATP, 3.25 Å: 5SVQ bound to competitive antagonist A-317491, 3.13 Å: 5SVR Mn2+ divalent cation-binding site, 4.03 Å: 5SVS Cs+ at Na+ entry site, 3.79 Å: 5SVT |
Mansoor et al. (2016).
Mansoor SE, Lü W, Oosterheert W, Shekhar M, Tajkhorshid E, & Gouaux E (2016). X-ray structures define human P2X3 receptor gating cycle and antagonist action.
Nature 538 :66-71. PubMed Id: 27626375. doi:10.1038/nature19367. |
||
ATP-gated P2X3 ion channel in complex with AF-219 negative allosteric modulator: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.4 Å
|
Wang et al. (2018).
Wang J, Wang Y, Cui WW, Huang Y, Yang Y, Liu Y, Zhao WS, Cheng XY, Sun WS, Cao P, Zhu MX, Wang R, Hattori M, & Yu Y (2018). Druggable negative allosteric site of P2X3 receptors.
Proc Natl Acad Sci USA 115 19:4939-4944. PubMed Id: 29674445. doi:10.1073/pnas.1800907115. |
||
ATP-gated P2X3 ion channel in complex with ATP and Ca2+: Homo sapiens E Eukaryota (expressed in HEK293), 3.30 Å
in complex with ATP and Mg2+, 3.82 Å:6AH5 |
Li et al. (2019).
Li M, Wang Y, Banerjee R, Marinelli F, Silberberg S, Faraldo-Gómez JD, Hattori M, & Swartz KJ (2019). Molecular mechanisms of human P2X3 receptor channel activation and modulation by divalent cation bound ATP.
Elife 8 :e47060. PubMed Id: 31232692. doi:10.7554/eLife.47060. |
||
ATP-gated P2X3 ion channel in complex with compound 26a: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.61 Å
cryo-EM structure |
Kim et al. (2024).
Kim GR, Kim S, Kim YO, Han X, Nagel J, Kim J, Song DI, Müller CE, Yoon MH, Jin MS, & Kim YC (2024). Discovery of Triazolopyrimidine Derivatives as Selective P2X3 Receptor Antagonists Binding to an Unprecedented Allosteric Site as Evidenced by Cryo-Electron Microscopy.
J Med Chem 67 16:14443-14465. PubMed Id: 39102524. doi:10.1021/acs.jmedchem.4c01214. |
||
ATP-gated P2X4 ion channel (apo protein; ΔP2X4-B construct): Danio rerio (zebra fish) E Eukaryota (expressed in S. frugiperda), 3.1 Å
Closed state. ΔP2X4-A construct, 3.5 Å: 3I5D |
Kawate et al. (2009).
Kawate T, Michel JC, Birdsong WT, & Gouaux E (2009). Crystal structure of the ATP-gated P2X4ion channel in the closed state.
Nature 460 :592-598. PubMed Id: 19641588. |
||
ATP-gated P2X4 ion channel with bound ATP in open-pore conformation: Danio rerio (zebra fish) E Eukaryota (expressed in S. frugiperda ), 2.80 Å
Structure without bound ATP, 2.90 Å: 4DW0 |
Hattori & Gouaux (2012).
Hattori M & Gouaux E (2012). Molecular mechanism of ATP binding and ion channel activation in P2X receptors.
Nature 485 :207-2112. PubMed Id: 22535247. doi:10.1038/nature11010. |
||
ATP-gated P2X4 ion channel with bound BX430: Danio rerio E Eukaryota (expressed in S. frugiperda), 3.23 Å
cryo-EM structure with bound BAY-1797, 3.43 Å: 8JV6 |
Shen et al. (2023).
Shen C, Zhang Y, Cui W, Zhao Y, Sheng D, Teng X, Shao M, Ichikawa M, Wang J, & Hattori M (2023). Structural insights into the allosteric inhibition of P2X4 receptors.
Nat Commun 14 1:6437. PubMed Id: 37833294. doi:10.1038/s41467-023-42164-y. |
||
ATP-gated P2X7 ion channel: Gallus gallus E Eukaryota (expressed in HEK293S cells), 3.1 Å
|
Kasuya et al. (2017).
Kasuya G, Yamaura T, Ma XB, Nakamura R, Takemoto M, Nagumo H, Tanaka E, Dohmae N, Nakane T, Yu Y, Ishitani R, Matsuzaki O, Hattori M, & Nureki O (2017). Structural insights into the competitive inhibition of the ATP-gated P2X receptor channel.
Nat Commun 8 1:876. PubMed Id: 29026074. doi:10.1038/s41467-017-00887-9. |
||
ATP-gated P2X7 ion channel, apo protein in closed state: Rattus norvegicus E Eukaryota (expressed in HEK293 cells), 2.9 Å
cryo-EM structure ATP-bound open state, 3.3 Å: 6U9W |
McCarthy et al. (2019).
McCarthy AE, Yoshioka C, & Mansoor SE (2019). Full-Length P2X7 Structures Reveal How Palmitoylation Prevents Channel Desensitization.
Cell 179 3:659-670.e13. PubMed Id: 31587896. doi:10.1016/j.cell.2019.09.017. |
||
Bestrophin-1 (BEST1) Ca2+-activated Cl- channel: Gallus gallus E Eukaryota (expressed in Pichia pastoris), 2.85 Å
|
Kane Dickson et al. (2014).
Kane Dickson V, Pedi L, & Long SB (2014). Structure and insights into the function of a Ca2+-activated Cl- channel.
Nature 516 7530:213-218. PubMed Id: 25337878. doi:10.1038/nature13913. |
||
Bestrophin-1 (BEST1) Ca2+-activated Cl- channel I76A, F80A, F84A mutant: Gallus gallus E Eukaryota (expressed in Pichia pastoris), 3.1 Å
|
Vaisey et al. (2016).
Vaisey G, Miller AN, & Long SB (2016). Distinct regions that control ion selectivity and calcium-dependent activation in the bestrophin ion channel.
Proc Natl Acad Sci USA 113 :E7399–E7408. PubMed Id: 27821745. doi:10.1073/pnas.1614688113. |
||
Bestrophin-1 (BEST1) Ca2+-activated Cl- channel, calcium-bound inactivated state: Gallus gallus E Eukaryota (expressed in Komagataella pastoris), 3.1 Å
cryo-EM structure W287F mutant in open calcium-free state, 3.0 Å: 6N24 W287F mutant in open calcium-bound state, 2.7 Å: 6N25 calcium-free closed state, 3.0 Å: 2N26 calcium-bound closed state, 3.0 Å: 6N27 calcium-bound open state, 2.9 Å: 2N28 |
Miller et al. (2019).
Miller AN, Vaisey G, & Long SB (2019). Molecular mechanisms of gating in the calcium-activated chloride channel bestrophin.
Elife 8 :e43231. PubMed Id: 30628889. doi:10.7554/eLife.43231. |
||
Bestrophin-2 (BEST2) Ca2+-activated Cl-1 channel, Ca2+-unbound state: Bos taurus E Eukaryota (expressed in HEK293 cells), 3.03 Å
cryo-EM structure Ca2+-bound state, 3.00 Å: 6VX6 Ca2+-bound state (5 mM Ca2+), 2.36 Å: 6VX7 Ca2+-unbound state 2 (EGTA), 2.33 Å: 6VX8 Ca2+-unbound state 1 (EGTA), 2.17 Å: 6VX9 |
Owji et al. (2020).
Owji AP, Zhao Q, Ji C, Kittredge A, Hopiavuori A, Fu Z, Ward N, Clarke OB, Shen Y, Zhang Y, Hendrickson WA, & Yang T (2020). Structural and functional characterization of the bestrophin-2 anion channel.
Nat Struct Mol Biol 27 4:382-391. PubMed Id: 32251414. doi:10.1038/s41594-020-0402-z. |
||
KpBest Bestrophin homolog of the BEST1 Ca2+-activated Cl- channel (ΔC7): Klebsiella pneumoniae B Bacteria (expressed in E. coli), 2.90 Å
This homolog is not Ca2+ activated and conducts cations rather than anions. ΔC11, 2.30 Å: 4WD8 |
Yang et al. (2014).
Yang T, Liu Q, Kloss B, Bruni R, Kalathur RC, Guo Y, Kloppmann E, Rost B, Colecraft HM, & Hendrickson WA (2014). Structure and selectivity in bestrophin ion channels.
Science 346 :355-359. PubMed Id: 25324390. doi:10.1126/science.1259723. |
||
Bestrophin-1 (BEST1) Ca2+-activated Cl− channel, 1uM Ca2+ closed state: Homo sapiens E Eukaryota (expressed in HEK293 cells), 1.82 Å
cryo-EM structure closed state, 5mM Ca2+, 2.05 Å: 8D1J Ca2+-bound partially open neck state, 2.28 Å: 8D1K Ca2+-bound partially open aperture state, 2.12 Å:8D1L Ca2+-unbound closed state, 3.11 Å: 8D1M truncated at residue 345, Ca2+-bound open state, 2.44 Å: 8D1O |
Owji et al. (2022).
Owji AP, Wang J, Kittredge A, Clark Z, Zhang Y, Hendrickson WA, & Yang T (2022). Structures and gating mechanisms of human bestrophin anion channels.
Nat Commun 13 1:3836. PubMed Id: 35789156. doi:10.1038/s41467-022-31437-7. |
||
Bestrophin-2 (BEST2) Ca2+-activated Cl− channel, 1uM Ca2+, closed state: Homo sapiens E Eukaryota (expressed in HEK293 cells), 1.78 Å
cryo-EM structure 5mM Ca2+, closed state, 1.82 Å: 8D1F Ca2+-bound open state, 2.07 Å: 8D1G Ca2+-unbound closed state, 1.94 Å: 8D1H truncated at residue 345, Ca2+-bound open state, 8D1N |
Owji et al. (2022).
Owji AP, Wang J, Kittredge A, Clark Z, Zhang Y, Hendrickson WA, & Yang T (2022). Structures and gating mechanisms of human bestrophin anion channels.
Nat Commun 13 1:3836. PubMed Id: 35789156. doi:10.1038/s41467-022-31437-7. |
||
ExbB/ExbD complex associated with TonB complex, pH 7.0: Escherichia coli B Bacteria, 2.6 Å
ExbB/ExbD complex at pH 4.5, 3.5 Å: 5SV1 |
Celia et al. (2016).
Celia H, Noinaj N, Zakharov SD, Bordignon E, Botos I, Santamaria M, Barnard TJ, Cramer WA, Lloubes R, & Buchanan SK (2016). Structural insight into the role of the Ton complex in energy transduction.
Nature 538 :60-65. PubMed Id: 27654919. doi:10.1038/nature19757. |
||
ExbB/ExbD complex associated with TonB complex in nanodiscs: Escherichia coli B Bacteria, 3.3 Å
cryo-EM structure |
Celia et al. (2019).
Celia H, Botos I, Ni X, Fox T, De Val N, Lloubes R, Jiang J, & Buchanan SK (2019). Cryo-EM structure of the bacterial Ton motor subcomplex ExbB-ExbD provides information on structure and stoichiometry.
Commun Biol 2 . PubMed Id: 31602407. doi:10.1038/s42003-019-0604-2. |
||
CLC-K chloride ion channel, class 1: Bos taurus E Eukaryota (expressed in S. frugiperda), 3.76 Å
cryo-EM structure class 2, 3.95 Å: 5TR1 |
Park et al. (2017).
Park E, Campbell EB, & MacKinnon R (2017). Structure of a CLC chloride ion channel by cryo-electron microscopy.
Nature 541 :500-505. PubMed Id: 28002411. doi:10.1038/nature20812. |
||
CLC-1 ion channel: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.36 Å
cryo-EM structure C-terminal cytosolic domain, 3.36 Å: 6COZ |
Park & MacKinnon (2018).
Park E, & MacKinnon R (2018). Structure of the CLC-1 chloride channel from Homo sapiens.
Elife 7 :e36629. PubMed Id: 29809153. doi:10.7554/eLife.36629. |
||
Wang et al. (2019).
Wang K, Preisler SS, Zhang L, Cui Y, Missel JW, Grønberg C, Gotfryd K, Lindahl E, Andersson M, Calloe K, Egea PF, Klaerke DA, Pusch M, Pedersen PA, Zhou ZH, & Gourdon P (2019). Structure of the human ClC-1 chloride channel.
PLoS Biol 17 4. PubMed Id: 31022181. doi:10.1371/journal.pbio.3000218. |
|||
Ma et al. (2023).
Ma T, Wang L, Chai A, Liu C, Cui W, Yuan S, Wing Ngor Au S, Sun L, Zhang X, Zhang Z, Lu J, Gao Y, Wang P, Li Z, Liang Y, Vogel H, Wang YT, Wang D, Yan K, & Zhang H (2023). Cryo-EM structures of ClC-2 chloride channel reveal the blocking mechanism of its specific inhibitor AK-42.
Nat Commun 14 1:3424. PubMed Id: 37296152. doi:10.1038/s41467-023-39218-6. |
|||
Deneka et al. (2018).
Deneka D, Sawicka M, Lam AKM, Paulino C, & Dutzler R (2018). Structure of a volume-regulated anion channel of the LRRC8 family.
Nature . PubMed Id: 29769723. doi:10.1038/s41586-018-0134-y. |
|||
LRRC8A-DCPIB in MSP1E3D1 nanodisc constricted state: Mus musculus E Eukaryota (expressed in S. frugiperda), 3.21 Å
cryo-EM structure nanodisc expanded state, 3.32 Å: 6NZZ |
Kern et al. (2019).
Kern DM, Oh S, Hite RK, & Brohawn SG (2019). Cryo-EM structures of the DCPIB-inhibited volume-regulated anion channel LRRC8A in lipid nanodiscs.
eLife 8 . PubMed Id: 30775971. doi:10.7554/eLife.42636. |
||
LRRC8A volume-regulated anion channel in complex with synthetic nanobody Sb1: Mus musculus E Eukaryota (expressed in HEK293 cells), 3.06 Å
cryo-EM structure in complex with synthetic nanobody Sb2, 3.50 Å: 7P5W in complex with synthetic nanobody Sb3, 3.29 Å: 7P5Y in complex with synthetic nanobody Sb4 at 1:0.5 ratio, 3.80 Å: 7P60 in complex with synthetic nanobody Sb5, 3.80 Å: 7P6K |
Deneka et al. (2021).
Deneka D, Rutz S, Hutter CAJ, Seeger MA, Sawicka M, & Dutzler R (2021). Allosteric modulation of LRRC8 channels by targeting their cytoplasmic domains.
Nat Commun 12 1:5435. PubMed Id: 34521847. doi:10.1038/s41467-021-25742-w. |
||
LRRC8A (SWELL1) volume-regulated anion channel in MSP1E3D1 lipid nanodiscs (Pose-1): Mus musculus E Eukaryota (expressed in Spodoptera frugiperda), 3.65 Å
cryo-EM structure Pose-2, 3.69 Å |
Gunasekar et al. (2022).
Gunasekar SK, Xie L, Kumar A, Hong J, Chheda PR, Kang C, Kern DM, My-Ta C, Maurer J, Heebink J, Gerber EE, Grzesik WJ, Elliot-Hudson M, Zhang Y, Key P, Kulkarni CA, Beals JW, Smith GI, Samuel I, Smith JK, Nau P, Imai Y, Sheldon RD, Taylor EB, Lerner DJ, Norris AW, Klein S, Brohawn SG, Kerns R, & Sah R (2022). Small molecule SWELL1 complex induction improves glycemic control and nonalcoholic fatty liver disease in murine Type 2 diabetes.
Nat Commun 13 1:784. PubMed Id: 35145074. doi:10.1038/s41467-022-28435-0. |
||
LRRC8A volume-regulated anion channel: Homo sapiens E Eukaryota (expressed in HEK293 cells), 4.25 Å
cryo-EM structure |
Kasuya et al. (2018).
Kasuya G, Nakane T, Yokoyama T, Jia Y, Inoue M, Watanabe K, Nakamura R, Nishizawa T, Kusakizako T, Tsutsumi A, Yanagisawa H, Dohmae N, Hattori M, Ichijo H, Yan Z, Kikkawa M, Shirouzu M, Ishitani R, & Nureki O (2018). Cryo-EM structures of the human volume-regulated anion channel LRRC8.
Nat. Struct. Mol. Biol. 25 9:797-804. PubMed Id: 30127360. doi:10.1038/s41594-018-0109-6. |
||
LRRC8A (SWELL1) volume-regulated anion channel: Homo sapiens E Eukaryota (expressed in HEK293 cells), 4.4 Å
cryo-EM structure |
Kefauver et al. (2018).
Kefauver JM, Saotome K, Dubin AE, Pallesen J, Cottrell CA, Cahalan SM, Qiu Z, Hong G, Crowley CS, Whitwam T, Lee WH, Ward AB, & Patapoutian A (2018). Structure of the human volume regulated anion channel.
Elife 7 :e38461. PubMed Id: 30095067. doi:10.7554/eLife.38461. |
||
Takahashi et al. (2023).
Takahashi H, Yamada T, Denton JS, Strange K, & Karakas E (2023). Cryo-EM structures of an LRRC8 chimera with native functional properties reveal heptameric assembly.
Elife 12 :e82431. PubMed Id: 36897307. doi:10.7554/eLife.82431. |
|||
Rutz et al. (2023).
Rutz S, Deneka D, Dittmann A, Sawicka M, & Dutzler R (2023). Structure of a volume-regulated heteromeric LRRC8A/C channel.
Nat Struct Mol Biol 30 1:52-61. PubMed Id: 36522427. doi:10.1038/s41594-022-00899-0. |
|||
LRRC8D volume-regulated anion channel: Homo sapiens E Eukaryota (expressed in sf9 cells), 4.36 Å
cryo-EM structure |
Nakamura et al. (2020).
Nakamura R, Numata T, Kasuya G, Yokoyama T, Nishizawa T, Kusakizako T, Kato T, Hagino T, Dohmae N, Inoue M, Watanabe K, Ichijo H, Kikkawa M, Shirouzu M, Jentsch TJ, Ishitani R, Okada Y, & Nureki O (2020). Cryo-EM structure of the volume-regulated anion channel LRRC8D isoform identifies features important for substrate permeation.
Commun Biol 3 1:240. PubMed Id: 32415200. doi:10.1038/s42003-020-0951-z. |
||
SatP bacterial acetate channel: Escherichia coli B Bacteria, 2.80 Å
Structurally similar to UreI-like channel 3UX4. |
Sun et al. (2018).
Sun P, Li J, Zhang X, Guan Z, Xiao Q, Zhao C, Song M, Zhou Y, Mou L, Ke M, Guo L, Geng J, & Deng D (2018). Crystal structure of the bacterial acetate transporter SatP reveals that it forms a hexameric channel.
J Biol Chem 293 50:19492-19500. PubMed Id: 30333234. doi:10.1074/jbc.RA118.003876. |
||
Ctr1 high-affinity copper transporter, Cu+-free form: Salmo salar E Eukaryota (expressed in Pichia pastoris), 3.03 Å
with bound Cu+, 3.21 Å: 6M98 |
Ren et al. (2019).
Ren F, Logeman BL, Zhang X, Liu Y, Thiele DJ, & Yuan P (2019). X-ray structures of the high-affinity copper transporter Ctr1.
Nat Commun 10 1. PubMed Id: 30918258. doi:10.1038/s41467-019-09376-7. |
||
OTOP1 otopetrin proton channel in nanodiscs: Danio rerio E Eukaryota (expressed in HEK-293 cells), 2.98 Å
cryo-EM structure |
Saotome et al. (2019).
Saotome K, Teng B, Tsui CCA, Lee WH, Tu YH, Kaplan JP, Sansom MSP, Liman ER, & Ward AB (2019). Structures of the otopetrin proton channels Otop1 and Otop3.
Nat Struct Mol Biol 26 6:518-525. PubMed Id: 31160780. doi:10.1038/s41594-019-0235-9. |
||
OTOP3 otopetrin proton channel: Xenopus tropicalis E Eukaryota (expressed in HEK293 cells), 3.92 Å
cryo-EM structure |
Chen et al. (2019).
Chen Q, Zeng W, She J, Bai XC, & Jiang Y (2019). Structural and functional characterization of an otopetrin family proton channel.
Elife 8 :e46710. PubMed Id: 30973323. doi:10.7554/eLife.46710. |
||
OTOP3 otopetrin proton channel in nanodiscs: Gallus gallus E Eukaryota (expressed in HEK-293 cells), 3.32 Å
cryo-EM structure |
Saotome et al. (2019).
Saotome K, Teng B, Tsui CCA, Lee WH, Tu YH, Kaplan JP, Sansom MSP, Liman ER, & Ward AB (2019). Structures of the otopetrin proton channels Otop1 and Otop3.
Nat Struct Mol Biol 26 6:518-525. PubMed Id: 31160780. doi:10.1038/s41594-019-0235-9. |
||
Pannexin 1 (Panx1) ATP release channel: Xenopus tropicalis E Eukaryota (expressed in Komagataella pastoris), 3.38 Å
cryo-EM structure |
Deng et al. (2020).
Deng Z, He Z, Maksaev G, Bitter RM, Rau M, Fitzpatrick JAJ, & Yuan P (2020). Cryo-EM structures of the ATP release channel pannexin 1.
Nat Struct Mol Biol 27 4:373-381. PubMed Id: 32231289. doi:10.1038/s41594-020-0401-0. |
||
Pannexin 1 (Panx1) ATP release channel: Xenopus tropicalis E Eukaryota (expressed in Spodoptera frugiperda), 3.02 Å
cryo-EM structure |
Michalski et al. (2020).
Michalski K, Syrjanen JL, Henze E, Kumpf J, Furukawa H, & Kawate T (2020). The Cryo-EM structure of pannexin 1 reveals unique motifs for ion selection and inhibition.
Elife 9 :e54670. PubMed Id: 32048993. doi:10.7554/eLife.54670. |
||
Pannexin 1 (Panx1) ATP release channel: Homo sapiens E Eukaryota (expressed in Komagataella pastoris), 3.77 Å
cryo-EM structure |
Deng et al. (2020).
Deng Z, He Z, Maksaev G, Bitter RM, Rau M, Fitzpatrick JAJ, & Yuan P (2020). Cryo-EM structures of the ATP release channel pannexin 1.
Nat Struct Mol Biol 27 4:373-381. PubMed Id: 32231289. doi:10.1038/s41594-020-0401-0. |
||
Jin et al. (2020).
Jin Q, Zhang B, Zheng X, Li N, Xu L, Xie Y, Song F, Bhat EA, Chen Y, Gao N, Guo J, Zhang X, & Ye S (2020). Cryo-EM structures of human pannexin 1 channel.
Cell Res 30 5:449-451. PubMed Id: 32246089. doi:10.1038/s41422-020-0310-0. |
|||
Pannexin 1 (Panx1) ATP release channel. Wild-type: Homo sapiens E Eukaryota (expressed in HEK tsA201 cells), 2.83 Å
cryo-EM structure with C-terminal tail cleaved by caspase-7, 2.97 Å: 6WBG C-terminal tail cleaved by caspase-7, in complex with CBX, 4.39 Å: 6WBI with deletion of N-terminal helix and C-terminal tail, 6.01 Å: 6WBK with deletion of N-terminal helix and C-terminal tail, in complex with CBX, 5.13 Å: 6WBL N255A mutant, 2.86 Å: 6WBM N255A mutant, gap junction. 2.83 Å: 6WBN |
Ruan et al. (2020).
Ruan Z, Orozco IJ, Du J, & Lü W (2020). Structures of human pannexin 1 reveal ion pathways and mechanism of gating.
Nature 584 7822:646-651. PubMed Id: 32494015. doi:10.1038/s41586-020-2357-y. |
||
Pannexin 1 (Panx1) ATP release channel, full length: Homo sapiens E Eukaryota (expressed in insect cells), 3.10 Å
cryo-EM structure C-terminal truncated (Δ 380-426), 3.10 Å: 6LTN |
Mou et al. (2020).
Mou L, Ke M, Song M, Shan Y, Xiao Q, Liu Q, Li J, Sun K, Pu L, Guo L, Geng J, Wu J, & Deng D (2020). Structural basis for gating mechanism of Pannexin 1 channel.
Cell Res 30 5:452-454. PubMed Id: 32284561. doi:10.1038/s41422-020-0313-x. |
||
Pannexin 1 (Panx1) ATP release channel: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.20 Å
cryo-EM structure |
Qu et al. (2020).
Qu R, Dong L, Zhang J, Yu X, Wang L, & Zhu S (2020). Cryo-EM structure of human heptameric Pannexin 1 channel.
Cell Res 30 5:446-448. PubMed Id: 32203128. doi:10.1038/s41422-020-0298-5. |
||
Pannexin 1 (Panx1) ATP release channel, full-length: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.15 Å
cryo-EM structure |
Zhang et al. (2021).
Zhang S, Yuan B, Lam JH, Zhou J, Zhou X, Ramos-Mandujano G, Tian X, Liu Y, Han R, Li Y, Gao X, Li M, & Yang M (2021). Structure of the full-length human Pannexin1 channel and insights into its role in pyroptosis.
Cell Discov 7 1:30. PubMed Id: 33947837. doi:10.1038/s41421-021-00259-0. |
||
Kuzuya et al. (2022).
Kuzuya M, Hirano H, Hayashida K, Watanabe M, Kobayashi K, Terada T, Mahmood MI, Tama F, Tani K, Fujiyoshi Y, & Oshima A (2022). Structures of human pannexin-1 in nanodiscs reveal gating mediated by dynamic movement of the N terminus and phospholipids.
Sci Signal 15 720:eabg6941. PubMed Id: 35133866. doi:10.1126/scisignal.abg6941. |
|||
Pannexin 1 (Panx1) ATP release channel, R217H mutant: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.87 Å
cryo-EM structure W74R/R75D mutant, 3.20 Å: 8GTT |
Hussain et al. (2024).
Hussain N, Apotikar A, Pidathala S, Mukherjee S, Burada AP, Sikdar SK, Vinothkumar KR, & Penmatsa A (2024). Cryo-EM structures of pannexin 1 and 3 reveal differences among pannexin isoforms.
Nat Commun 15 1:2942. PubMed Id: 38580658. doi:10.1038/s41467-024-47142-6. |
||
Pannexin 1 (Panx1) ATP release channel purified in Salipro nanoparticles: Mus musculus E Eukaryota (expressed in HEK293 cells), 3.10 Å
cryo-EM structure |
Drulyte et al. (2023).
Drulyte I, Gutgsell AR, Lloris-Garcerá P, Liss M, Geschwindner S, Radjainia M, Frauenfeld J, & Löving R (2023). Direct cell extraction of membrane proteins for structure-function analysis.
Sci Rep 13 1:1420. PubMed Id: 36697499. doi:10.1038/s41598-023-28455-w. |
||
Pannexin 2 (Panx2) large pore ATP release channel: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.44 Å
cryo-EM structure |
Zhang et al. (2023).
Zhang H, Wang S, Zhang Z, Hou M, Du C, Zhao Z, Vogel H, Li Z, Yan K, Zhang X, Lu J, Liang Y, Yuan S, Wang D, & Zhang H (2023). Cryo-EM structure of human heptameric pannexin 2 channel.
Nat Commun 14 1:1118. PubMed Id: 36869038. doi:10.1038/s41467-023-36861-x. |
||
Pannexin 2 (Panx2) large pore ATP release channel: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.92 Å
cryo-EM structure |
He et al. (2023).
He Z, Zhao Y, Rau MJ, Fitzpatrick JAJ, Sah R, Hu H, & Yuan P (2023). Structural and functional analysis of human pannexin 2 channel.
Nat Commun 14 1:1712. PubMed Id: 36973289. doi:10.1038/s41467-023-37413-z. |
||
Pannexin 3 (Panx3) ATP release channel: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.91 Å
cryo-EM structure |
Hussain et al. (2024).
Hussain N, Apotikar A, Pidathala S, Mukherjee S, Burada AP, Sikdar SK, Vinothkumar KR, & Penmatsa A (2024). Cryo-EM structures of pannexin 1 and 3 reveal differences among pannexin isoforms.
Nat Commun 15 1:2942. PubMed Id: 38580658. doi:10.1038/s41467-024-47142-6. |
||
TMEM206 proton-activated chloride channel: Takifugu bimaculatus E Eukaryota (expressed in Komagataella pastoris), 3.46 Å
cryo-EM structure |
Deng et al. (2021).
Deng Z, Zhao Y, Feng J, Zhang J, Zhao H, Rau MJ, Fitzpatrick JAJ, Hu H, & Yuan P (2021). Cryo-EM structure of a proton-activated chloride channel TMEM206.
Sci Adv 7 9:eabe5983. PubMed Id: 33627432. doi:10.1126/sciadv.abe5983. |
||
sperm cation channel complex (CatSper) β, γ, δ, ε, ζ, and EFCAB9 complex: Mus musculus E Eukaryota, 2.90 Å
cryo-EM structure |
Lin et al. (2021).
Lin S, Ke M, Zhang Y, Yan Z, & Wu J (2021). Structure of a mammalian sperm cation channel complex.
Nature 595 7869:746-750. PubMed Id: 34225353. doi:10.1038/s41586-021-03742-6. |
||
Del Mármol et al. (2021).
Del Mármol J, Yedlin MA, & Ruta V (2021). The structural basis of odorant recognition in insect olfactory receptors.
Nature 597 7874:126-131. PubMed Id: 34349260. doi:10.1038/s41586-021-03794-8. |
|||
glutamate receptor-like channel GLR3.4, full-length: Arabidopsis thaliana E Eukaryota (expressed in HEK293 cells), 3.57 Å
cryo-EM structure after ATD & micelle subtraction, 4.39 Å 7LZI x-ray structures: ligand-binding domain in complex with glutamate, 2.29 Å 7LZ0 ligand-binding domain in complex with serine, 1.51 Å 7LZ1 ligand-binding domain in complex with methionine, 1.50 Å 7LZ2 |
Green et al. (2021).
Green MN, Gangwar SP, Michard E, Simon AA, Portes MT, Barbosa-Caro J, Wudick MM, Lizzio MA, Klykov O, Yelshanskaya MV, Feijó JA, & Sobolevsky AI (2021). Structure of the Arabidopsis thaliana glutamate receptor-like channel GLR3.4.
Mol Cell 81 15:3216-3226.e8. PubMed Id: 34161757. doi:10.1016/j.molcel.2021.05.025. |
||
GluA1 Glutamate receptor (AMPA-subtype) in complex with TARP-γ3, resting state: Rattus norvegicus E Eukaryota (expressed in HEK293 cells), 2.82 Å
cryo-EM structure transmembrane domain, 2.70 Å: 8C2I active state, 2.90 Å: 8C1P active state, transmembrane domain, 2.64 Å: 8C2H desensitized conformation 1, 3.39 Å: 8P3T desensitized conformation 2, 3.77 Å: 8P3U desensitized conformation 3, 3.53 Å: 8P3V desensitized conformation 4, 3.53 Å: 8P3W |
Zhang et al. (2023).
Zhang D, Ivica J, Krieger JM, Ho H, Yamashita K, Stockwell I, Baradaran R, Cais O, & Greger IH (2023). Structural mobility tunes signalling of the GluA1 AMPA glutamate receptor.
Nature 621 7980:877-882. PubMed Id: 37704721. doi:10.1038/s41586-023-06528-0. |
||
Channels: Fluc Family
These are F--selective channels |
|||
Stockbridge et al. (2015).
Stockbridge RB, Kolmakova-Partensky L, Shane T, Koide A, Koide S, Miller C, & Newstead S (2015). Crystal structures of a double-barrelled fluoride ion channel.
Nature 525 7570:548-551. PubMed Id: 26344196. doi:10.1038/nature14981. |
|||
Fluc F- ion channel homolog in complex with monobody S8: Bordetella pertussis B Bacteria (expressed in E. coli), 2.8 Å
|
McIlwain et al. (2018).
McIlwain BC, Newstead S, & Stockbridge RB (2018). Cork-in-Bottle Occlusion of Fluoride Ion Channels by Crystallization Chaperones.
Structure 26 4:635-639.e1. PubMed Id: 29526432. doi:10.1016/j.str.2018.02.004. |
||
Fluc F- ion channel homolog in complex Ec2-S9 monobody F801 mutant: Escherichia coli B Bacteria, 2.48 Å
F831 mutant, 2.69 Å: 5KOM |
Last et al. (2016).
Last NB, Kolmakova-Partensky L, Shane T, & Miller C (2016). Mechanistic signs of double-barreled structure in a fluoride ion channel.
Elife 5 :e18767. PubMed Id: 27449280. doi:10.7554/eLife.18767. |
||
Last et al. (2017).
Last NB, Sun S, Pham MC, & Miller C (2017). Molecular determinants of permeation in a fluoride-specific ion channel.
Elife 6 :e31259. PubMed Id: 28952925. doi:10.7554/eLife.31259. |
|||
McIlwain et al. (2021).
McIlwain BC, Gundepudi R, Koff BB, & Stockbridge RB (2021). The fluoride permeation pathway and anion recognition in Fluc family fluoride channels.
Elife 10 :e69482. PubMed Id: 34250906. doi:10.7554/eLife.69482. |
|||
Channels: Aquaporins and Glyceroporins
|
|||
AQP0 aquaporin water channel: Bos taurus (Bovine) lens E Eukaryota, 2.24 Å
|
Harries et al. (2004).
Harries WE, Akhavan D, Miercke LJ, Khademi S, & Stroud RM (2004). The channel architecture of aquaporin 0 at a 2.2 Å resolution.
Proc Natl Acad Sci U S A 101 :14045-14050. PubMed Id: 15377788. |
||
AQP0 aquaporin water channel from sheep lens.: Ovis aries E Eukaryota, 3.0 Å
AQP0 reconstituted with dimyristoylphosphatidylcholine and organized as a membrane junction. Electron Diffraction. Resolution: 3 Å in membrane plane, 3.5 Å normal to membrane plane. |
Gonen et al. (2004).
Gonen T, Sliz P, Kistler J, Cheng Y, & Walz T (2004). Aquaporin-0 membrane junctions reveal the structure of a closed water pore.
Nature 429 :193-197. PubMed Id: 15141214. |
||
AQP0 aquaporin sheep lens junction: Ovis aries E Eukaryota, 1.90 Å
Electron Diffraction Non-junctional form, 2.4 Å: 2B6P |
Gonen et al. (2005).
Gonen T, Cheng Y, Sliz P, Hiroaki Y, Fujiyoshi Y, Harrison SC, & Walz T (2005). Lipid-protein interactions in double-layered two-dimensional AQP0 crystals.
Nature 438 :633-638. PubMed Id: 16319884. |
||
AQP0 aquaporin sheep lens junction: Ovis aries E Eukaryota, 2.5 Å
Electron Diffraction. AQP0 reconstituted with E. coli polar lipids and organized as a membrane junction |
Hite et al. (2010).
Hite RK, Li Z, & Walz T. (2010). Principles of membrane protein interactions with annular lipids deduced from aquaporin-0 2D crystals.
EMBO J 29 :1652-1658. PubMed Id: 20389283. |
||
AQP1 red blood cell aquaporin water channel: Homo sapiens E Eukaryota, 3.8 Å
Electron Diffraction. Resolution shown is in-plane. |
Murata et al. (2000).
Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann J B, Engel A, & Fujiyoshi Y (2000). Structural determinants of water permeation through aquaporin-1.
Nature 407 :599-605. PubMed Id: 11034202. |
||
AQP1 red blood cell aquaporin water channel: Homo sapiens E Eukaryota, 3.7 Å
Electron Diffraction. Protein in vitreous ice. |
Ren et al. (2001).
Ren G, Reddy VS, Cheng A, Melnyk P, & Mitra AK (2001). Visualization of a water-selective pore by electron crystallography in vitreous ice.
Proc Natl Acad Sci USA 98 :1398-1403. PubMed Id: 11171962. |
||
AQP1 red blood cell aquaporin water channel: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.28 Å
|
Ruiz Carrillo et al. (2014).
Ruiz Carrillo D, To Yiu Ying J, Darwis D, Soon CH, Cornvik T, Torres J, & Lescar J (2014). Crystallization and preliminary crystallographic analysis of human aquaporin 1 at a resolution of 3.28 Å.
Acta Crystallogr F Struct Biol Commun 70 :1657-1663. PubMed Id: 25484221. doi:10.1107/S2053230X14024558. |
||
AQP1 red blood cell aquaporin water channel: Homo sapiens E Eukaryota (expressed in Komagataella pastoris), NMR structure
Solid-state NMR structure under nearly physiological conditions |
Dingwell et al. (2019).
Dingwell DA, Brown LS, & Ladizhansky V (2019). Structure of the Functionally Important Extracellular Loop C of Human Aquaporin 1 Obtained by Solid-State NMR under Nearly Physiological Conditions.
J Phys Chem B 123 36:7700-7710. PubMed Id: 31411472. doi:10.1021/acs.jpcb.9b06430. |
||
AQP1 aquaporin red blood cell water channel: Bos taurus E Eukaryota, 2.20 Å
X-ray Diffraction |
Sui et al. (2001).
Sui H, Han BG, Lee JK, Walian P, & Jap BK (2001). Structural basis of water-specific transport through the AQP1 water channel.
Nature 414 :872-8. PubMed Id: 11780053. |
||
AQP1aa aquaporin water channel, with unique conformation of loop C: Anabas testudineus E Eukaryota (expressed in Komagataella pastoris), 1.90 Å
3.46 Å: 7W7R |
Zeng et al. (2022).
Zeng J, Schmitz F, Isaksson S, Glas J, Arbab O, Andersson M, Sundell K, Eriksson LA, Swaminathan K, Törnroth-Horsefield S, & Hedfalk K (2022). High-resolution structure of a fish aquaporin reveals a novel extracellular fold.
Life Sci Alliance 5 12:e202201491. PubMed Id: 36229063. doi:10.26508/lsa.202201491. |
||
AQP2 Aquaporin from kidney: Homo sapiens E Eukaryota (expressed in Pichia pastoris), 2.75 Å
|
Frick et al. (2014).
Frick A, Eriksson UK, de Mattia F, Oberg F, Hedfalk K, Neutze R, de Grip WJ, Deen PM, & Törnroth-Horsefield S (2014). X-ray structure of human aquaporin 2 and its implications for nephrogenic diabetes insipidus and trafficking.
Proc Natl Acad Sci USA 111 :6305-6310. PubMed Id: 24733887. doi:10.1073/pnas.1321406111. |
||
AQP2 Aquaporin from kidney crystallized on a silicon chip: Homo sapiens E Eukaryota (expressed in Komagataella phaffii), 3.7 Å
|
Lieske et al. (2019).
Lieske J, Cerv M, Kreida S, Komadina D, Fischer J, Barthelmess M, Fischer P, Pakendorf T, Yefanov O, Mariani V, Seine T, Ross BH, Crosas E, Lorbeer O, Burkhardt A, Lane TJ, Guenther S, Bergtholdt J, Schoen S, Törnroth-Horsefield S, Chapman HN, & Meents A (2019). On-chip crystallization for serial crystallography experiments and on-chip ligand-binding studies.
IUCrJ 6 :714-728. PubMed Id: 31316815. doi:10.1107/S2052252519007395. |
||
AQP2 Aquaporin, T125M mutant: Homo sapiens E Eukaryota (expressed in Komagataella pastoris), 3.90 Å
T126M mutant, 3.15 Å: 8OEE |
Hagströmer et al. (2023).
Hagströmer CJ, Hyld Steffen J, Kreida S, Al-Jubair T, Frick A, Gourdon P, & Törnroth-Horsefield S (2023). Structural and functional analysis of aquaporin-2 mutants involved in nephrogenic diabetes insipidus.
Sci Rep 13 1:14674. PubMed Id: 37674034. doi:10.1038/s41598-023-41616-1. |
||
AQP4 aquaporin rat glial cell water channel: Rattus norvegicus E Eukaryota (expressed in S. frugiperda), 3.2 Å
Electron Diffraction. |
Hiroaki et al. (2005).
Hiroaki Y, Tani K, Kamegawa A, Gyobu N, Nishikawa K, Suzuki H, Walz T, Sasaki S, Mitsuoka K, Kimura K, Mizoguchi A, & Fujiyoshi Y (2005). Implications of the Aquaporin-4 Structure on Array Formation and Cell Adhesion.
J Mol Biol 355 :628-639. PubMed Id: 16325200. |
||
AQP4 aquaporin rat glial cell water channel: Rattus norvegicus E Eukaryota (expressed in S. frugiperda), 2.80 Å
Electron Diffraction. S180D mutant. Structure reveals five lipids associated with AQP4. |
Tani et al. (2009).
Tani K, Mitsuma T, Hiroaki Y, Kamegawa A, Nishikawa K, Tanimura Y, & Fujiyoshi Y (2009). Mechanism of aquaporin-4's fast and highly selective water conduction and proton exclusion.
J Mol Biol 389 :694-706. PubMed Id: 19406128. |
||
AQP4 aquaporin water channel: Homo sapiens E Eukaryota (expressed in Pichia pastoris), 1.8 Å
|
Ho et al. (2009).
Ho JD, Yeh R, Sandstrom A, Chorny I, Harries WE, Robbins RA, Miercke LJ, & Stroud RM (2009). Crystal structure of human aquaporin 4 at 1.8 A and its mechanism of conductance.
Proc Natl Acad Sci USA 106 :7437-74422. PubMed Id: 19383790. |
||
AQP5 aquaporin water channel (HsAQP5): Homo sapiens E Eukaryota (expressed in Pichia pastoris), 2.0 Å
|
Horsefield et al. (2008).
Horsefield R, Nordén K, Fellert M, Backmark A, Törnroth-Horsefield S, Terwisscha van Scheltinga AC, Kvassman J, Kjellbom P, Johanson U, & Neutze R. (2008). High-resolution x-ray structure of human aquaporin 5.
Proc Natl Acad Sci USA 105 :13327-13332. PubMed Id: 18768791. |
||
AQP7 aquaporin glycerol channel: Homo sapiens E Eukaryota (expressed in Komagataella pastoris), 1.9 Å
structure at 2.2 Å: 6QZJ |
de Maré et al. (2020).
de Maré SW, Venskutonyté R, Eltschkner S, de Groot BL, & Lindkvist-Petersson K (2020). Structural Basis for Glycerol Efflux and Selectivity of Human Aquaporin 7.
Structure 28 2:215-222.e3. PubMed Id: 31831212. doi:10.1016/j.str.2019.11.011. |
||
AQP7 aquaporin glycerol channel, dimer of tetramers, D4 symmetry: Homo sapiens E Eukaryota (expressed in Komagataella pastoris), 2.55 Å
cryo-EM structure C1 symmetry, 3.00 Å: 8AMW |
Huang et al. (2023).
Huang P, Venskutonytė R, Prasad RB, Ardalani H, de Maré SW, Fan X, Li P, Spégel P, Yan N, Gourdon P, Artner I, & Lindkvist-Petersson K (2023). Cryo-EM structure supports a role of AQP7 as a junction protein.
Nat Commun 14 1:600. PubMed Id: 36737436. doi:10.1038/s41467-023-36272-y. |
||
AQP10 aquaglyceroporin: Homo sapiens E Eukaryota (expressed in S. cerevisiae), 2.30 Å
|
Gotfryd et al. (2018).
Gotfryd K, Mósca AF, Missel JW, Truelsen SF, Wang K, Spulber M, Krabbe S, Hélix-Nielsen C, Laforenza U, Soveral G, Pedersen PA, & Gourdon P (2018). Human adipose glycerol flux is regulated by a pH gate in AQP10.
Nat Commun 9 1. PubMed Id: 30420639. doi:10.1038/s41467-018-07176-z. |
||
AqpM aquaporin water channel: Methanothermobacter marburgensis A Archaea (expressed in E. coli), 1.68 Å
Initial structure, 2.3 Å: 2EVU |
Lee et al. (2005).
Lee JK, Kozono D, Remis J, Kitagawa Y, Agre P, & Stroud RM (2005). Structural basis for conductance by the archaeal aquaporin AqpM at 1.68 Å.
Proc Natl Acad Sci USA 102 :18932-18937. PubMed Id: 16361443. |
||
AqpZ aquaporin water channel: Escherichia coli B Bacteria, 2.5 Å
|
Savage et al. (2003).
Savage DF, Egea PF, Robles-Colmenares Y, Iii JD, & Stroud RM (2003). Architecture and Selectivity in Aquaporins: 2.5 Å X-Ray Structure of Aquaporin Z.
PLoS Biol 1 :334-340. PubMed Id: 14691544. |
||
AqpZ aquaporin showing two conformations of Arg-189: Escherichia coli B Bacteria, 3.2 Å
|
Jiang et al. (2006).
Jiang J, Daniels BV, & Fu D (2006). Crystal structure of AqpZ tetramer reveals two distinct R189 conformations associated with water permeation through the narrowest constriction of the water-conducting channel.
J Biol Chem 281 :454-460. PubMed Id: 16239219. |
||
Savage & Stroud (2007).
Savage DF & Stroud RM (2007). Structural basis of aquaporin inhibition by mercury.
J Mol Biol 368 :607-617. PubMed Id: 17376483. |
|||
Savage et al. (2010).
Savage DF, O'Connell JD 3rd, Miercke LJ, Finer-Moore J, & Stroud RM (2010). Structural context shapes the aquaporin selectivity filter.
Proc Natl Acad Sci USA 107 :17164-17169. PubMed Id: 20855585. |
|||
PIP2;1 plant aquaporin (closed conformation): Spinacia oleracea E Eukaryota (expressed in Pichia pastoris), 2.10 Å
Open conformation, 3.90 Å: 2B5F |
Törnroth-Horsefield et al. (2006).
Törnroth-Horsefield S, Wang Y, Hedfalk K, Johanson U, Karlsson M, Tajkhorshid E, Neutze R, & Kjellbom P (2006). Structural mechanism of plant aquaporin gating.
Nature 439 :688-694. PubMed Id: 16340961. |
||
Nyblom et al. (2009).
Nyblom M, Frick A, Wang Y, Ekvall M, Hallgren K, Hedfalk K, Neutze R, Tajkhorshid E, & Törnroth-Horsefield S (2009). Structural and functional analysis of SoPIP2;1 mutants adds insight into plant aquaporin gating.
J Mol Biol 387 :653-668. PubMed Id: 19302796. doi:10.1016/j.jmb.2009.01.065. |
|||
PIP2;4 plant aquaporin: Arabidopsis thaliana E Eukaryota (expressed in Komagataella pastoris), 3.7 Å
Structure provides insight into hydrogen peroxide (H2O2) transport by aquaporins. |
Wang et al. (2019).
Wang H, Schoebel S, Schmitz F, Dong H, & Hedfalk K (2019). Characterization of aquaporin-driven hydrogen peroxide transport.
Biochim Biophys Acta Biomembr 1862 :183065. PubMed Id: 31521632. doi:10.1016/j.bbamem.2019.183065. |
||
TIP2;1 ammonia-permeable aquaporin: Arabidopsis thaliana E Eukaryota (expressed in Komagataella pastoris), 1.18 Å
|
Kirscht et al. (2016).
Kirscht A, Kaptan SS, Bienert GP, Chaumont F, Nissen P, de Groot BL, Kjellbom P, Gourdon P, & Johanson U (2016). Crystal Structure of an Ammonia-Permeable Aquaporin.
PLoS Biol 14 3. PubMed Id: 27028365. doi:10.1371/journal.pbio.1002411. |
||
GlpF glycerol facilitator channel: Escherichia coli B Bacteria, 2.2 Å
|
Fu et al. (2000).
Fu D, Libson A, Miercke LJW, Weitzman C, Nollert P, Krucinski J, & Stroud RM (2000). Structure of a glycerol-conducting channel and the basis for its selectivity.
Science 290 :481-486. PubMed Id: 11039922. |
||
Tajkhorshid et al. (2002).
Tajkhorshid E, Nollert P, Jensen MØ, Miercke LJ, O'Connell J, Stroud RM, & Schulten K (2002). Control of the selectivity of the aquaporin water channel family by global orientational tuning.
Science 296 :525-530. PubMed Id: 11964478. |
|||
AQP aquaglyceroporin: Plasmodium falciparum E Eukaryota, 2.05 Å
Transports water and glycerol equally well. |
Newby et al. (2008).
Newby ZE, O'Connell J 3rd, Robles-Colmenares Y, Khademi S, Miercke LJ, & Stroud RM (2008). Crystal structure of the aquaglyceroporin PfAQP from the malarial parasite Plasmodium falciparum.
Nature Struc Mol Biol 15 :619-625. PubMed Id: 18500352. |
||
Fischer et al. (2009).
Fischer G, Kosinska-Eriksson U, Aponte-Santamaría C, Palmgren M, Geijer C, Hedfalk K, Hohmann S, de Groot BL, Neutze R, & Lindkvist-Petersson K. (2009). Crystal structure of a yeast aquaporin at 1.15 Å reveals a novel gating mechanism.
PLoS Bio 7 6:e1000130. PubMed Id: 19529756. doi:10.1371/journal.pbio.1000130. |
|||
Aqy1 yeast aquaporin (pH 8.0): Pischia pastoris E Eukaryota, 0.88 Å
|
Kosinska Eriksson et al. (2013).
Kosinska Eriksson U, Fischer G, Friemann R, Enkavi G, Tajkhorshid E, & Neutze R (2013). Subangstrom resolution X-ray structure details aquaporin-water interactions.
Science 340 :1346-1349. PubMed Id: 23766328. doi:10.1126/science.1234306. |
||
NIP2;1 aquaporin (metalloid porin) silicon transporter.: Oryza sativa E Eukaryota (expressed in Saccharomyces cerevisiae), 3.00 Å
|
van den Berg et al. (2021).
van den Berg B, Pedebos C, Bolla JR, Robinson CV, Baslé A, & Khalid S (2021). Structural Basis for Silicic Acid Uptake by Higher Plants.
J Mol Biol 433 21:167226. PubMed Id: 34487790. doi:10.1016/j.jmb.2021.167226. |
||
Lsi1 aquaporin (metalloid porin) silicon transporter: Oryza sativa E Eukaryota (expressed in Spodoptera frugiperda), 1.80 Å
|
Saitoh et al. (2021).
Saitoh Y, Mitani-Ueno N, Saito K, Matsuki K, Huang S, Yang L, Yamaji N, Ishikita H, Shen JR, Ma JF, & Suga M (2021). Structural basis for high selectivity of a rice silicon channel Lsi1.
Nat Commun 12 1:6236. PubMed Id: 34716344. doi:10.1038/s41467-021-26535-x. |
||
Channels : Formate/Nitrite Transporter (FNT) Family
|
|||
FocA, pentameric aquaporin-like formate transporter: Escherichia coli B Bacteria, 2.20 Å
3KCU structure is for P212121 space group. P32 space group: 3KCV, 3.2 Å |
Wang et al. (2009).
Wang Y, Huang Y, Wang J, Cheng C, Huang W, Lu P, Xu YN, Wang P, Yan N, & Shi Y (2009). Structure of the formate transporter FocA reveals a pentameric aquaporin-like channel.
Nature 462 :467-472. PubMed Id: 19940917. |
||
FocA formate transporter without formate: Vibrio cholerae B Bacteria (expressed in E. coli), 2.10 Å
FocA with bound formate: 3KLZ, 2.50 Å |
Waight et al. (2010).
Waight AB, Love J, & Wang DN (2010). Structure and mechanism of a pentameric formate channel.
Nat Struct Mol Biol 17 :31-37. PubMed Id: 20010838. |
||
FocA formate transporter at pH 4.0: Salmonella typhimurium B Bacteria, 2.80 Å
Three different conformations are observed in the asymmetric unit: Open, Intermediate, & closed |
Lü et al. (2011).
Lü W, Du J, Wacker T, Gerbig-Smentek E, Andrade SL, & Einsle O (2011). pH-dependent gating in a FocA formate channel
Science 332 :352-354. PubMed Id: 21493860. doi:10.1126/science.1199098. |
||
Czyzewski & Wang (2012).
Czyzewski BK & Wang DN (2012). Identification and characterization of a bacterial hydrosulphide ion channel.
Nature 483 :494-497. PubMed Id: 22407320. doi:10.1038/nature10881. |
|||
Formate-nitrite transporter PfFNT: Plasmodium falciparum E Eukaryota (expressed in HEK293 cells), 2.56 Å
cryo-EM structure PfFNT-inhibitor complex, 2.78 Å: 6VQR |
Lyu et al. (2021).
Lyu M, Su CC, Kazura JW, & Yu EW (2021). Structural basis of transport and inhibition of the Plasmodium falciparum transporter PfFNT.
EMBO Rep 22 3:e51628. PubMed Id: 33471955. doi:10.15252/embr.202051628. |
||
Channels: Urea Transporters
|
|||
Urea transporter: Desulfovibrio vulgaris B Bacteria (expressed in E. coli), 2.30 Å
Structure with bound dimethyl urea: 3K3G, 2.40 Å |
Levin et al. (2009).
Levin EJ, Quick M, & Zhou MG (2009). Crystal structure of a bacterial homologue of the kidney urea transporter.
Nature 462 :757-761. PubMed Id: 19865084. |
||
UT-B Urea Transporter: Bos taurus E Eukaryota (expressed in S. frugiperda), 2.36 Å
First structure of a mammalian urea transporter. Bound to Selenourea, 2.50 Å: 4EZD |
Levin et al. (2012).
Levin EJ, Cao Y, Enkavi G, Quick M, Pan Y, Tajkhorshid E, & Zhou M (2012). Structure and permeation mechanism of a mammalian urea transporter.
Proc Natl Acad Sci USA 109 :11194-11199. PubMed Id: 22733730. doi:10.1073/pnas.1207362109. |
||
UreI proton-gated inner membrane urea channel: Helicobacter pylori B Bacteria (expressed in E. coli), 3.26 Å
Formed from six protomers with a two-helix hairpin motif. |
Strugatsky et al. (2013).
Strugatsky D, McNulty R, Munson K, Chen CK, Soltis SM, Sachs G, & Luecke H (2013). Structure of the proton-gated urea channel from the gastric pathogen Helicobacter pylori.
Nature 493 :255-258. PubMed Id: 23222544. doi:10.1038/nature11684. |
||
Channels: Intercellular
Channels found in sporulating bacteria that connect mother cell to forespore |
|||
SpoIIQ-SpoIIIAH Complex: Bacillus subtilis B Bacteria (expressed in E. coli), 2.26 Å
This is the protomer structure. Modeling studies suggest that the pore is formed from 12 protomers to form a channel with a diameter of 60 Å. |
Levdikov et al. (2012).
Levdikov VM, Blagova EV, McFeat A, Fogg MJ, Wilson KS, & Wilkinson AJ (2012). Structure of components of an intercellular channel complex in sporulating Bacillus subtilis.
Proc Natl Acad Sci USA 109 :5441-5445. PubMed Id: 22431604. doi:10.1073/pnas.1120087109. |
||
SpoIIQ-SpoIIIAH Complex: Bacillus subtilis B Bacteria (expressed in E. coli), 2.82 Å
The structure is of the protomer. Modeling studies suggest that the pore is formed from 15 or 18 protomers to form a channel with a diameter of 82 or 116 Å. |
Meisner et al. (2012).
Meisner J, Maehigashi T, André I, Dunham CM, & Moran CP Jr (2012). Structure of the basal components of a bacterial transporter.
Proc Natl Acad Sci USA 109 :5446-5451. PubMed Id: 22431613. doi:10.1073/pnas.1120113109. |
||
Channels: Amt/Mep/Rh proteins
|
|||
Khademi et al. (2004).
Khademi S, O'Connell J 3rd, Remis J, Robles-Colmenares Y, Miercke LJ, & Stroud RM (2004). Mechanism of ammonia transport by Amt/MEP/Rh: structure of AmtB at 1.35 Å.
Science 305 :1587-1594. PubMed Id: 15361618. |
|||
AmtB ammonia channel (wild-type): Escherichia coli B Bacteria, 1.8 Å (P63 crystal form)
R3 crystal form: 1XQE, 2.1 Å resolution |
Zheng et al. (2004).
Zheng L, Kostrewa D, Berneche S, Winkler FK, & Li XD (2004). The mechanism of ammonia transport based on the crystal structure of AmtB of Escherichia coli.
Proc Natl Acad Sci U S A 101 :17090-17095. PubMed Id: 15563598. |
||
AmtB ammonia channel (wild-type): Escherichia coli B Bacteria, 2.1 Å
Wild-type in the presence of ammonium with imidazole: 2NOP, 2.0 Å H168E mutant in the presence of ammonium: 2NOW, 2.2 Å H168A mutant in the presence of ammonium with imidazole: 2NPC, 2.1 Å H168F mutant in the presence of ammonium with imidazole: 2NPD, 2.1 Å H318A mutant in the absence of ammonium: 2NPE, 2.1 Å H318F mutant in the presence of ammonium: 2NPG, 2.0 Å H318F mutant in the presence of ammonium with imidazole: 2NPJ, 2.0 Å H168A/H318A mutant in the presence of ammonium with imidazole: 2NPK, 2.0 Å |
Javelle et al. (2006).
Javelle A, Lupo D, Zheng L, Li XD, Winkler FK, & Merrick M (2006). An unusual twin-his arrangement in the pore of ammonia channels is essential for substrate conductance.
J Biol Chem 281 :39492-39498. PubMed Id: 17040913. |
||
AmtB ammonia channel in complex with GlnK: Escherichia coli B Bacteria, 2.5 Å
|
Conroy et al. (2007).
Conroy MJ, Durand A, Lupo D, Li X-D, Bullough PA, Winkler FK, & Merrick M (2007). The crystal structure of the Escherichia coli AmtB-GlnK complex reveals how GlnK regulates the ammonia channel.
Proc Natl Acad Sci USA 104 :1213-1218. PubMed Id: 17220269. |
||
AmtB ammonia channel in complex with inhibitory GlnK: Escherichia coli B Bacteria, 1.96 Å
|
Gruswitz et al. (2007).
Gruswitz F, O'Connell III J, & Stroud RM (2007). Inhibitory complex of the transmembrane ammonia channel, AmtB, and the cytosolic regulatory protein, GlnK, at 1.96 Å.
Proc Natl Acad Sci USA 104 :42-47. PubMed Id: 17190799. |
||
AmtB ammonia channel in complex with phosphatidylglycerol: Escherichia coli B Bacteria, 2.30 Å
Structure reveals distinct conformational changes that re-position AmtB residues to interact with the lipid bilayer. |
Laganowsky et al. (2014).
Laganowsky A, Reading E, Allison TM, Ulmschneider MB, Degiacomi MT, Baldwin AJ, & Robinson CV (2014). Membrane proteins bind lipids selectively to modulate their structure and function.
Nature 510 :172-175. PubMed Id: 24899312. doi:10.1038/nature13419. |
||
AmtB ammonia channel with bound TopFluor cardiolipin: Escherichia coli B Bacteria, 2.45 Å
|
Patrick et al. (2018).
Patrick JW, Boone CD, Liu W, Conover GM, Liu Y, Cong X, & Laganowsky A (2018). Allostery revealed within lipid binding events to membrane proteins.
Proc Natl Acad Sci USA 115 12:2976-2981. PubMed Id: 29507234. doi:10.1073/pnas.1719813115. |
||
Andrade et al. (2005).
Andrade SL, Dickmanns A, Ficner R, & Einsle O (2005). Crystal structure of the archaeal ammonium transporter Amt-1 from Archaeoglobus fulgidus.
Proc Natl Acad Sci U S A 102 :14994-14999. PubMed Id: 16214888. |
|||
Rh protein, possible ammonia or CO2 channel: Nitrosomonas europaea B Bacteria (expressed in Methylococcus capsulatus), 1.85 Å
CO2 pressurized protein, 1.85 Å: 3B9Z |
Li et al. (2007).
Li X, Jayachandran S, Nguyen HH, & Chan MK (2007). Structure of the Nitrosomonas europaea Rh protein.
Proc Natl Acad Sci U S A 104 :19279-19284. PubMed Id: 18040042. |
||
Rh protein, possible ammonia or CO2 channel: Nitrosomonas europaea B Bacteria (expressed in E. coli), 1.30 Å
|
Lupo et al. (2007).
Lupo D, Li XD, Durand A, Tomizaki T, Cherif-Zahar B, Matassi G, Merrick M, & Winkler FK (2007). The 1.3-Å resolution structure of Nitrosomonas europaea Rh50 and mechanistic implications for NH3transport by Rhesus family proteins.
Proc Natl Acad Sci U S A 104 :19303-19308. PubMed Id: 18032606. |
||
Human Rh C glycoprotein ammonia transporter: Homo sapiens E Eukaryota (expressed in HEK293s cells), 2.10 Å
|
Gruswitz et al. (2010).
Gruswitz F, Chaudhary S, Ho JD, Schlessinger A, Pezeshki B, Ho CM, Sali A, Westhoff CM, & Stroud RM (2010). Function of human Rh based on structure of RhCG at 2.1 Å.
Proc Natl Acad Sci USA 107 :9638-9643. PubMed Id: 20457942. |
||
Mep2 ammonium transceptor: Saccharomyces cerevisiae E Eukaryota, 3.2 Å
|
van den Berg et al. (2016).
van den Berg B, Chembath A, Jefferies D, Basle A, Khalid S, & Rutherford JC (2016). Structural basis for Mep2 ammonium transceptor activation by phosphorylation.
Nat Commun 7 :11337. PubMed Id: 27088325. doi:10.1038/ncomms11337. |
||
van den Berg et al. (2016).
van den Berg B, Chembath A, Jefferies D, Basle A, Khalid S, & Rutherford JC (2016). Structural basis for Mep2 ammonium transceptor activation by phosphorylation.
Nat Commun 7 :11337. PubMed Id: 27088325. doi:10.1038/ncomms11337. |
|||
Ammonium sensor/transducer: Candidatus (Kuenenia stuttgartiensis) B Bacteria (expressed in E. colli), 1.98 Å
Regarding Candidatus, see https://en.wikipedia.org/wiki/Candidatus |
Pflüger et al. (2018).
Pflüger T, Hernández CF, Lewe P, Frank F, Mertens H, Svergun D, Baumstark MW, Lunin VY, Jetten MSM, & Andrade SLA (2018). Signaling ammonium across membranes through an ammonium sensor histidine kinase.
Nat Commun 9 1:164. PubMed Id: 29323112. doi:10.1038/s41467-017-02637-3. |
||
Cys-Loop Receptor Family
Cation-selective and Anion-selective Ligand-gated Channels Cation-selective include nicotinic acetylcholine and serotonin 5-HT3 receptors. Anion-selective include γ-aminobutyric, glycine, and invertebrate glutamate-gated chloride channels (GluCl) |
|||
Nicotinic Acetylcholine Receptor Pore (closed state): Torpedo marmorata E Eukaryota, 4.0 Å
Electron Diffraction |
Miyazawa et al. (2003).
Miyazawa A, Fujiyoshi Y, & Unwin N (2003). Structure and gating mechanism of the acetylcholine receptor pore.
Nature 423 :949-955. PubMed Id: 12827192. |
||
Nicotinic Acetylcholine Receptor, refined structure: Torpedo marmorata E Eukaryota, 4.0 Å
Electron Diffraction |
Unwin (2005).
Unwin N. (2005). Refined structure of the nicotinic acetylcholine receptor at 4 Å resolution.
J Mol Biol 346 :967-989. PubMed Id: 15701510. |
||
Acetylcholine receptor analysed by time-resolved electron cryo-microscopy (closed class): Torpedo marmorata E Eukaryota, 6.2 Å
Open class, 6.5 Å: 4AQ9 |
Unwin & Fujiyoshi (2012).
Unwin N & Fujiyoshi Y (2012). Gating movement of acetylcholine receptor caught by plunge-freezing.
J Mol Biol 422 :617-634. PubMed Id: 22841691. doi:10.1016/j.jmb.2012.07.010. |
||
acetylcholine (ACh) receptor in complex with alpha-bungarotoxin in nanodiscs: Tetronarce californica E Eukaryota, 2.69 Å
|
Rahman et al. (2020).
Rahman MM, Teng J, Worrell BT, Noviello CM, Lee M, Karlin A, Stowell MHB, & Hibbs RE (2020). Structure of the Native Muscle-type Nicotinic Receptor and Inhibition by Snake Venom Toxins.
Neuron 106 6:952-962.e5. PubMed Id: 32275860. doi:10.1016/j.neuron.2020.03.012. |
||
Rahman et al. (2022).
Rahman MM, Basta T, Teng J, Lee M, Worrell BT, Stowell MHB, & Hibbs RE (2022). Structural mechanism of muscle nicotinic receptor desensitization and block by curare.
Nat Struct Mol Biol 29 4:386-394. PubMed Id: 35301478. doi:10.1038/s41594-022-00737-3. |
|||
Zarkadas et al. (2022).
Zarkadas E, Pebay-Peyroula E, Thompson MJ, Schoehn G, Uchański T, Steyaert J, Chipot C, Dehez F, Baenziger JE, & Nury H (2022). Conformational transitions and ligand-binding to a muscle-type nicotinic acetylcholine receptor.
Neuron 110 8:1358-1370.e5. PubMed Id: 35139364. doi:10.1016/j.neuron.2022.01.013. |
|||
acetylcholine (ACh) receptor in complex with alpha-neurotoxin in nanodiscs: Tetronarce californica E Eukaryota, 3.15 Å
cryo-EM structure |
Nys et al. (2022).
Nys M, Zarkadas E, Brams M, Mehregan A, Kambara K, Kool J, Casewell NR, Bertrand D, Baenziger JE, Nury H, & Ulens C (2022). The molecular mechanism of snake short-chain α-neurotoxin binding to muscle-type nicotinic acetylcholine receptors.
Nat Commun 13 1:4543. PubMed Id: 35927270. doi:10.1038/s41467-022-32174-7. |
||
Nicotinic acetylcholine (ACh) receptor in complex with rocuronium, resting-like state: Tetronarce californica E Eukaryota, 2.90 Å
cryo-EM structure in complex with rocuronium, pore-blocked state, 2.90 Å: 8F2S in complex with etomidate, desensitized-like state, 2.79 Å: 8F6Y in complex with succinylcholine, desensitized-like state, 2.70 Å: 8F6Z |
Goswami et al. (2023).
Goswami U, Rahman MM, Teng J, & Hibbs RE (2023). Structural interplay of anesthetics and paralytics on muscle nicotinic receptors.
Nat Commun 14 1:3169. PubMed Id: 37264005. doi:10.1038/s41467-023-38827-5. |
||
Nicotinic Acetylcholine α4β2 Receptor: Homo sapiens E Eukaryota (expressed in HEK293S), 3.94 Å
|
Morales-Perez et al. (2016).
Morales-Perez CL, Noviello CM, & Hibbs RE (2016). X-ray structure of the human α4β2 nicotinic receptor.
Nature 538 :411-415. PubMed Id: 27698419. doi:10.1038/nature19785. |
||
Nicotinic Acetylcholine α4β2 Receptor, 2α3β stiochiometry: Homo sapiens E Eukaryota (expressed in HEK cells), 3.7 Å
cryo-EM structure 3α2β stiochiometry, 3.9 Å: 6CNK |
Walsh et al. (2018).
Walsh RM Jr, Roh SH, Gharpure A, Morales-Perez CL, Teng J, & Hibbs RE (2018). Structural principles of distinct assemblies of the human α4β2 nicotinic receptor.
Nature 557 7704:261-265. PubMed Id: 29720657. doi:10.1038/s41586-018-0081-7. |
||
Nicotinic Acetylcholine α3β4 Receptor: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.34 Å
cryo-EM structure in complex with AT-1001, 3.87 Å: 6PV8 |
Gharpure et al. (2019).
Gharpure A, Teng J, Zhuang Y, Noviello CM, Walsh RM Jr, Cabuco R, Howard RJ, Zaveri NT, Lindahl E, & Hibbs RE (2019). Agonist Selectivity and Ion Permeation in the α3β4 Ganglionic Nicotinic Receptor.
Neuron 104 3:501-511.e6. PubMed Id: 31488329. doi:10.1016/j.neuron.2019.07.030. |
||
Nicotinic Acetylcholine α4β2 Receptor with varenicline in complex with anti-BRIL synthetic antibody BAK5: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.87 Å
cryo-EM structure in complex with varenicline, 3.71 Å: 6UR8 structure of BRIL bound to an affinity matured synthetic antibody (x-ray), 1.87 Å: 6CBV |
Mukherjee et al. (2020).
Mukherjee S, Erramilli SK, Ammirati M, Alvarez FJD, Fennell KF, Purdy MD, Skrobek BM, Radziwon K, Coukos J, Kang Y, Dutka P, Gao X, Qiu X, Yeager M, Eric Xu H, Han S, & Kossiakoff AA (2020). Synthetic antibodies against BRIL as universal fiducial marks for single-particle cryoEM structure determination of membrane proteins.
Nat Commun 11 1. PubMed Id: 32221310. doi:10.1038/s41467-020-15363-0. |
||
Prokaryotic pentameric ligand-gated ion channel (ELIC): Erwinia chrysanthemi B Bacteria (expressed in E. coli), 3.3 Å
First high-resolution x-ray structure of an AChR-like channel. |
Hilf & Dutzler (2008).
Hilf RJC & Dutzler R (2008). X-ray structure of a prokaryotic pentameric ligand-gated ion channel.
Nature 452 :375-379. PubMed Id: 18322461. |
||
Prokaryotic pentameric ligand-gated ion channel (ELIC) in complex with acetylcholine: Erwinia chrysanthemi B Bacteria (expressed in E. coli), 2.91 Å
Apo protein, 3.09 Å: 3RQU |
Pan et al. (2012).
Pan J, Chen Q, Willenbring D, Yoshida K, Tillman T, Kashlan OB, Cohen A, Kong XP, Xu Y, & Tang P (2012). Structure of the pentameric ligand-gated ion channel ELIC cocrystallized with its competitive antagonist acetylcholine.
Nature Commun 3 :714. PubMed Id: 22395605. doi:10.1038/ncomms1703. |
||
Prokaryotic pentameric ligand-gated ion channel (ELIC) in complex with bromoform: Erwinia chrysanthemi B Bacteria (expressed in E. coli), 3.65 Å
|
Spurny et al. (2013).
Spurny R, Billen B, Howard RJ, Brams M, Debaveye S, Price KL, Weston DA, Strelkov SV, Tytgat J, Bertrand S, Bertrand D, Lummis SC, & Ulens C (2013). Multi-Site Binding Of A General Anesthetic To The Prokaryotic Pentameric Ligand-Gated Ion Channel ELIC.
J Biol Chem 288 :8355-8364. PubMed Id: 23364792. doi:10.1074/jbc.M112.424507. |
||
Prokaryotic pentameric ligand-gated ion channel (ELIC) in complex with Br-memantine: Dickeya chrysanthemi B Bacteria (expressed in E. coli), 3.20 Å
note: species formerly Erwinia chrysanthemi, now renamed as Dickeya dadantii, although the PDB designates it as Dickeya chrysanthemi. complexed with memantine, 3.90 Å: 4TWF apo form, 3.60 Å: 4TWH |
Ulens et al. (2014).
Ulens C, Spurny R, Thompson AJ, Alqazzaz M, Debaveye S, Han L, Price K, Villalgordo JM, Tresadern G, Lynch JW, & Lummis SC (2014). The Prokaryote Ligand-Gated Ion Channel ELIC Captured in a Pore Blocker-Bound Conformation by the Alzheimer's Disease Drug Memantine.
Structure 22 :1399-1407. PubMed Id: 25199693. doi:10.1016/j.str.2014.07.013. |
||
Hénault et al. (2019).
Hénault CM, Govaerts C, Spurny R, Brams M, Estrada-Mondragon A, Lynch J, Bertrand D, Pardon E, Evans GL, Woods K, Elberson BW, Cuello LG, Brannigan G, Nury H, Steyaert J, Baenziger JE, & Ulens C (2019). A lipid site shapes the agonist response of a pentameric ligand-gated ion channel.
Nat Chem Biol 15 12:1156-1164. PubMed Id: 31591563. doi:10.1038/s41589-019-0369-4. |
|||
Prokaryotic pentameric ligand-gated ion channel (ELIC) in POPC-only nanodiscs: Dickeya dadantii B Bacteria (expressed in E. coli), 4.1 Å
cryo-EM structure ELIC-propylammonium complex, 3.3 Å: 6V03 NOTE: Dickeya dadantii was formerly known as Erwinia chrysanthemi. |
Kumar et al. (2020).
Kumar P, Wang Y, Zhang Z, Zhao Z, Cymes GD, Tajkhorshid E, & Grosman C (2020). Cryo-EM structures of a lipid-sensitive pentameric ligand-gated ion channel embedded in a phosphatidylcholine-only bilayer.
Proc Natl Acad Sci USA 117 3:1788-1798. PubMed Id: 31911476. doi:10.1073/pnas.1906823117. |
||
Prokaryotic pentameric ligand-gated ion channel (ELIC) with PAM nanobody: Dickeya chrysanthemi B Bacteria (expressed in E. coli), 2.59 Å
in complex with NAM nanobody, 3.25 Å: 6SSP |
Brams et al. (2020).
Brams M, Govaerts C, Kambara K, Price KL, Spurny R, Gharpure A, Pardon E, Evans GL, Bertrand D, Lummis SC, Hibbs RE, Steyaert J, & Ulens C (2020). Modulation of the Erwinia ligand-gated ion channel (ELIC) and the 5-HT3 receptor via a common vestibule site.
Elife 9 :e51511. PubMed Id: 31990273. doi:10.7554/eLife.51511. |
||
Prokaryotic pentameric ligand-gated ion channel (GLIC): Gloeobacter violaceus B Bacteria (expressed in E. coli), 3.1 Å
Related to ELIC (above), this pentameric channel is apparently in an open state. E221A mutant, 3.50 Å: 3EI0 |
Hilf & Dutzler (2009).
Hilf RJC & Dutzler R (2009). Structure of a potentially open state of a proton-activated pentameric ligand-gated ion channel.
Nature 457 :115-118. PubMed Id: 18987630. |
||
Prokaryotic pentameric ligand-gated ion channel (GLIC): Gloeobacter violaceus B Bacteria (expressed in E. coli), 2.9 Å
Related to ELIC (above), this pentameric channel is apparently in an open state. |
Bocquet et al. (2009).
Bocquet N, Nury H, Baaden M, Le Poupon C, Changeux JP, Delarue M, & Corringer PJ (2009). X-ray structure of a pentameric ligand-gated ion channel in an apparently open conformation.
Nature 457 :111-114. PubMed Id: 18987633. |
||
Prokaryotic pentameric ligand-gated ion channel (GLIC), wildtype-TBSb complex: Gloeobacter violaceus B Bacteria (expressed in E. coli), 3.70 Å
Wildtype-TEAs complex, 3.50 Å: 2XQ5 E221D-TEAs complex, 3.20 Å: 2XQ9 Wildtype-TMAs complex, 3.60 Å: 2XQ4 Wildtype-bromo-lidocaine complex, 3.50 Å: 2XQ3 Wildtype-Cd2+ complex, 3.40 Å: 2XQ7 Wildtype-Zn2+ complex, 3.60 Å: 2XQ8 Wildtype-Cs+ complex, 3.70 Å: 2XQ6 |
Hilf et al. (2010).
Hilf RJ, Bertozzi C, Zimmermann I, Reiter A, Trauner D, & Dutzler R (2010). Structure of a potentially open state of a proton-activated pentameric ligand-gated ion channel.
Nat Struct Mol Biol 17 :1330-1336. PubMed Id: 21037567. |
||
Prokaryotic pentameric ligand-gated ion channel (GLIC): Gloeobacter violaceus B Bacteria (expressed in E. coli), 2.40 Å
Channel is in the open state. Selenium-derived DDM, 3.30 Å: 4IL4 With sulfates, 3.00 Å: 4ILC A237F mutant + CsCl, 3.50 Å: 4ILA A237F mutant + NaBr, 2.83 Å: 4IL9 A237F mutant + RbCl, 3.15 Å: 4ILB |
Sauguet et al. (2013).
Sauguet L, Poitevin F, Murail S, Van Renterghem C, Moraga-Cid G, Malherbe L, Thompson AW, Koehl P, Corringer PJ, Baaden M, & Delarue M. (2013). Structural basis for ion permeation mechanism in pentameric ligand-gated ion channels.
EMBO J 32 :728-741. PubMed Id: 23403925. doi:10.1038/emboj.2013.17. |
||
Prokaryotic "pentameric" ligand-gated ion channel (GLIC) with hexameric quaternary structure: Gloeobacter violaceus B Bacteria (expressed in E. coli), 2.3 Å
|
Nury et al. (2010).
Nury H, Bocquet N, Le Poupon C, Raynal B, Haouz A, Corringer PJ, & Delarue M (2010). Crystal structure of the extracellular domain of a bacterial ligand-gated ion channel.
J Mol Biol 395 :1114-1127. PubMed Id: 19917292. |
||
Prokaryotic pentameric ligand-gated ion channel (GLIC) in complex with propofol anesthetic: Gloeobacter violaceus B Bacteria (expressed in E. coli), 3.30 Å
In complex with desflurane, 3.20 Å: 3P4W |
Nury et al. (2011).
Nury H, Van Renterghem C, Weng Y, Tran A, Baaden M, Dufresne V, Changeux JP, Sonner JM, Delarue M, & Corringer PJ (2011). X-ray structures of general anaesthetics bound to a pentameric ligand-gated ion channe.
Nature 469 :428-431. PubMed Id: 21248852. |
||
Prokaryotic pentameric ligand-gated ion channel (GLIC) in complex with ketamine anesthetic: Gloeobacter violaceus B Bacteria (expressed in E. coli), 2.99 Å
|
Pan et al. (2012).
Pan J, Chen Q, Willenbring D, Mowrey D, Kong XP, Cohen A, Divito CB, Xu Y, & Tang P (2012). Structure of the Pentameric Ligand-Gated Ion Channel GLIC Bound with Anesthetic Ketamine.
Structure 20 :1463-1469. PubMed Id: 22958642. doi:10.1016/j.str.2012.08.009. |
||
Prokaryotic pentameric ligand-gated ion channel (GLIC), pH 4: Gloeobacter violaceus B Bacteria (expressed in D. melanogaster), 3.35 Å
Neutral pH, 4.35 Å: 4NPQ |
Sauguet et al. (2014).
Sauguet L, Shahsavar A, Poitevin F, Huon C, Menny A, Nemecz A, Haouz A, Changeux JP, Corringer PJ, & Delarue M (2014). Crystal structures of a pentameric ligand-gated ion channel provide a mechanism for activation.
Proc Natl Acad Sci USA 111 3:966-971. PubMed Id: 24367074. doi:10.1073/pnas.1314997111. |
||
Prokaryotic pentameric ligand-gated ion channel (GLIC): Gloeobacter violaceus B Bacteria (expressed in E. coli), 3.00 Å
complex with bromoacetate, 3.40 Å: 4QH1 |
Fourati et al. (2015).
Fourati Z, Sauguet L, & Delarue M (2015). Genuine open form of the pentameric ligand-gated ion channel GLIC.
Acta Crystallogr D Biol Crystallogr 71 :454-460. PubMed Id: 25760595. doi:10.1107/S1399004714026698. |
||
Prokaryotic pentameric ligand-gated ion channel (GLIC), Bromoform bound, K33C-L246C mutant: Gloeobacter violaceus B Bacteria (expressed in E. coli), 2.95 Å
K33C-N245C cross-linked mutant, bromoform bound, 3.15 Å: 5HCM |
Laurent et al. (2016).
Laurent B, Murail S, Shahsavar A, Sauguet L, Delarue M, & Baaden M (2016). Sites of Anesthetic Inhibitory Action on a Cationic Ligand-Gated Ion Channel.
Structure 24 :595-605. PubMed Id: 27021161. doi:10.1016/j.str.2016.02.014. |
||
Fourati et al. (2017).
Fourati Z, Ruza RR, Laverty D, Drège E, Delarue-Cochin S, Joseph D, Koehl P, Smart T, & Delarue M (2017). Barbiturates Bind in the GLIC Ion Channel Pore and Cause Inhibition by Stabilizing a Closed State.
J Biol Chem 292 :1550-1558. PubMed Id: 27986812. doi:10.1074/jbc.M116.766964. |
|||
Prokaryotic pentameric ligand-gated ion channel (GLIC) in complex with DHA: Gloeobacter violaceus B Bacteria, 3.25 Å
DHA: docosahexaenoic acid |
Basak et al. (2017).
Basak S, Schmandt N, Gicheru Y, & Chakrapani S (2017). Crystal structure and dynamics of a lipid-induced potential desensitized-state of a pentameric ligand-gated channel.
Elife 6 :e23886. PubMed Id: 28262093. doi:10.7554/eLife.23886. |
||
Prokaryotic pentameric ligand-gated ion channel (GLIC), open channel-stabilized mutant G-2'I + I9'A: Gloeobacter violaceus B Bacteria (expressed in E. coli), 3.12 Å
open channel-stabilized mutant C27S + K33C + I9'A + N21'C, 3.36 Å: 5V6N |
Gonzalez-Gutierrez et al. (2017).
Gonzalez-Gutierrez G, Wang Y, Cymes GD, Tajkhorshid E, & Grosman C (2017). Chasing the open-state structure of pentameric ligand-gated ion channels.
J Gen Physiol 149 12:1119-1138. PubMed Id: 29089419. doi:10.1085/jgp.201711803. |
||
Prokaryotic pentameric ligand-gated ion channel (GLIC), H235Q apo mutant: Gloeobacter violaceus B Bacteria (expressed in E. coli), 2.95 Å
H235Q mutant with propofol, 2.65 Å: 5MZR H235Q mutant with bromoform, 2.65 Å: 5MZT M205W mutant with propofol, 3.49 Å: 5MVN M205W mutant with bromoform, 2.8 Å: 5MZQ F14'A mutant with propofol, 3.1 Å: 5MUR F14'A -N15'A double mutant with propofol, 3.1 Å: 5MVM 2-22' locally-closed mutant with propofol, 3.19 Å: 5MUO |
Fourati et al. (2018).
Fourati Z, Howard RJ, Heusser SA, Hu H, Ruza RR, Sauguet L, Lindahl E, & Delarue M (2018). Structural Basis for a Bimodal Allosteric Mechanism of General Anesthetic Modulation in Pentameric Ligand-Gated Ion Channels.
Cell Rep 23 4:993-1004. PubMed Id: 29694907. doi:10.1016/j.celrep.2018.03.108. |
||
Pentameric ligand-gated ion channel (GLIC), wild-type: Gloeobacter violaceus B Bacteria (expressed in E. coli), 2.22 Å
Q193C mutant, 2.58 Å: 6HY5 Q193C mutant + MMTS, 3.5 Å: 6HYR Q193M mutant, 2.95 Å: 6HY9 Q193L mutant, 3.39 Å: 6HYA Y197F-P250C mutant, 3.0 Å: 6HYX Y119A mutant, 2.8 Å: 6HYV Y119F mutant, 2.8 Å: 6HYW K248C mutant, 3.05 Å: 6HYZ K248A mutant, 2.75 Å: 6HZ0 E243C mutant, 2.5 Å: 6HZ1 E243G mutant, 3.15 Å: 6HZ3 E243C-I201W mutant, 3.0 Å: 6I08 |
Hu et al. (2018).
Hu H, Ataka K, Menny A, Fourati Z, Sauguet L, Corringer PJ, Koehl P, Heberle J, & Delarue M (2018). Electrostatics, proton sensor, and networks governing the gating transition in GLIC, a proton-gated pentameric ion channel.
Proc Natl Acad Sci USA 115 52:E12172-E12181. PubMed Id: 30541892. doi:10.1073/pnas.1813378116. |
||
Rovšnik et al. (2021).
Rovšnik U, Zhuang Y, Forsberg BO, Carroni M, Yvonnesdotter L, Howard RJ, & Lindahl E (2021). Dynamic closed states of a ligand-gated ion channel captured by cryo-EM and simulations.
Life Sci Alliance 4 8:e202101011. PubMed Id: 34210687. doi:10.26508/lsa.202101011. |
|||
Prokaryotic pentameric ligand-gated ion channel (GLIC) reconstituted in asolectin nanodisc, pH 7.5: Gloeobacter violaceus B Bacteria (expressed in E. coli), 3.42 Å
cryo-EM structure PE:PS:PC nanodiscs, 2.92 Å: 8I42 PE:PS:PC nanodiscs, pH 5.5, 2.70 Å: 8I47 PE:PS:PC nanodiscs, pH 4.0, closed state, 2.74 Å: 8I48 PE:PS:PC nanodiscs, pH 4.0, intermediate state, 3.35 Å: 8WCQ PE:PS:PC nanodiscs, pH 4.0, open state, 2.74 Å: 8WCR PE:PS:PC nanodiscs, pH 2.5, 2.65 Å: 8JJ3 |
Bharambe et al. (2024).
Bharambe N, Li Z, Seiferth D, Balakrishna AM, Biggin PC, & Basak S (2024). Cryo-EM structures of prokaryotic ligand-gated ion channel GLIC provide insights into gating in a lipid environment.
Nat Commun 15 1:2967. PubMed Id: 38580666. doi:10.1038/s41467-024-47370-w. |
||
Prokaryotic pentameric ligand-gated ion channel (ELIC) in POPC nanodisc: Dickeya dadantii B Bacteria (expressed in E. coli), 3.14 Å
cryo-EM structure with cysteamine in POPC nanodisc, 3.14 Å: 8D64 apo in 2:1:1 POPC:POPE:POPG nanodisc, 3.47 Å: 8D65 with cysteamine in 2:1:1 POPC:POPE:POPG nanodisc, 3.14 Å: 8D66 with cysteamine in 2:1:1 POPC:POPE:POPG nanodisc, 3.30 Å: 8D67 with cysteamine in 2:1:1 POPC:POPE:POPG nanodisc in open conformation, 3.36 Å: 8VUW. Supersedes 8D68. |
Petroff et al. (2022).
Petroff JT 2nd, Dietzen NM, Santiago-McRae E, Deng B, Washington MS, Chen LJ, Trent Moreland K, Deng Z, Rau M, Fitzpatrick JAJ, Yuan P, Joseph TT, Hénin J, Brannigan G, & Cheng WWL (2022). Open-channel structure of a pentameric ligand-gated ion channel reveals a mechanism of leaflet-specific phospholipid modulation.
Nat Commun 13 1:7017. PubMed Id: 36385237. doi:10.1038/s41467-022-34813-5. |
||
Prokaryotic pentameric ligand-gated ion channel (pLGIC) with additional N-terminal domain, closed pore: Desulfofustis sp. PB-SRB1 B Bacteria (expressed in E. coli), 3.55 Å
open conformation, 3.83 Å: 6V4A DeCLIC N-terminal Domain 34-202, 1.75 Å: |
Hu et al. (2020).
Hu H, Howard RJ, Bastolla U, Lindahl E, & Delarue M (2020). Structural basis for allosteric transitions of a multidomain pentameric ligand-gated ion channel.
Proc Natl Acad Sci USA 117 24:13437-13446. PubMed Id: 32482881. doi:10.1073/pnas.1922701117. |
||
Hu et al. (2018).
Hu H, Nemecz Á Van Renterghem C, Fourati Z, Sauguet L, Corringer PJ, & Delarue M (2018). Crystal structures of a pentameric ion channel gated by alkaline pH show a widely open pore and identify a cavity for modulation.
Proc Natl Acad Sci USA 115 17:E3959-E3968. PubMed Id: 29632192. doi:10.1073/pnas.1717700115. |
|||
Human glycine receptor (hGlyR-α1) transmembrane domain monomer: Homo sapiens E Eukaryota (expressed in E. coli), NMR Structure
Pentameric open-channel structure (putative): 2M6I |
Mowrey et al. (2013).
Mowrey DD, Cui T, Jia Y, Ma D, Makhov AM, Zhang P, Tang P, & Xu Y (2013). Open-Channel Structures of the Human Glycine Receptor ?1 Full-Length Transmembrane Domain.
Structure 21 :1897-1904. PubMed Id: 23994010. doi:10.1016/j.str.2013.07.014. |
||
Human glycine receptor (hGlyR-α3) in complex with strychnine: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.04 Å
|
Huang et al. (2015).
Huang X, Chen H, Michelsen K, Schneider S, & Shaffer PL (2015). Crystal structure of human glycine receptor-α3 bound to antagonist strychnine.
Nature 526 7572:277-280. PubMed Id: 26416729. doi:10.1038/nature14972. |
||
Human glycine receptor (hGlyR-α3) N38Q mutant in complex with AM-3607: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.61 Å
wildtype w. bound AM-3607, 3.25 Å: 5TIO |
Huang et al. (2017).
Huang X, Shaffer PL, Ayube S, Bregman H, Chen H, Lehto SG, Luther JA, Matson DJ, McDonough SI, Michelsen K, Plant MH, Schneider S, Simard JR, Teffera Y, Yi S, Zhang M, DiMauro EF, & Gingras J (2017). Crystal structures of human glycine receptor α3 bound to a novel class of analgesic potentiators.
Nat Struct Mol Biol 24 :108-113. PubMed Id: 27991902. doi:10.1038/nsmb.3329. |
||
Human glycine receptor (hGlyR-α3) in complex with Gly and ivermectin: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.85 Å
N38Q mutant with bound AM-3607, 3.1 Å: 5VDI |
Huang et al. (2017).
Huang X, Chen H, & Shaffer PL (2017). Crystal Structures of Human GlyRα3 Bound to Ivermectin.
Structure 25 :945-950.e2. PubMed Id: 28479061. doi:10.1016/j.str.2017.04.007. |
||
Du et al. (2015).
Du J, Lü W, Wu S, Cheng Y, & Gouaux E (2015). Glycine receptor mechanism elucidated by electron cryo-microscopy.
Nature 526 7572:224-229. PubMed Id: 26344198. doi:10.1038/nature14853. |
|||
α1 GlyR Glycine receptor, full-length in nanodiscs. Apo/Resting conformation: Danio rerio E Eukaryota (expressed in Spodoptera frugiperda), 3.33 Å
cryo-EM structure Gly-bound desensitized conformation, 3.55 Å: 6UBT Gly/PTX-bound open/blocked conformation, 3.50 Å: 6UD3 Gly/IVM-conformation (State-1), 3.14 Å: 6VM0 Gly/IVM-conformation (State-2), 3.34 Å: 6VM2 Gly/IVM-conformation (State-3), 3.07 Å: 6VM3 |
Kumar et al. (2020).
Kumar A, Basak S, Rao S, Gicheru Y, Mayer ML, Sansom MSP, & Chakrapani S (2020). Mechanisms of activation and desensitization of full-length glycine receptor in lipid nanodiscs.
Nat Commun 11 1:3752. PubMed Id: 32719334. doi:10.1038/s41467-020-17364-5. |
||
α1 GlyR Glycine receptor in nanodisc, desensitized with bound glycine: Danio rerio E Eukaryota (expressed in Spodoptera frugiperda), 3.20 Å
cryo-EM structure with bound taurine, 3.00 Å: 6PLS closed state with bound taurine, 3.20 Å: 6PLT desensitized state with bound GABA, 3.30 Å: 6PLU closed state with bound GABA, 3.30 Å: 6PLV in SMA: with bound GABA, super-open state, 3.00 Å: 6PLW with bound GABA, desensitized state, 2.90 Å: 6PLX with bound GABA, open state, 2.90 Å: 6PLY with bound GABA, closed state, 3.00 Å: 6PLZ with bound taurine, super-open state, 3.10 Å: 6PM0 with bound taurine, desensitized state, 3.00 Å: 6PM1 with bound taurine, open state, 3.00 Å: 6PM2 with bound taurine, closed state, 3.00 Å: 6PM3 with bound glycine, super-open state, 4.00 Å: 6PM4 with bound glycine, desensitized state, 3.10 Å: 6PM5 YGF mutant with bound GABA, open state, 3.30 Å: 6PLO YGF mutant with bound GABA, desensitized state, 3.30 Å: 6PLP YGF mutant with bound GABA, super-open state, 3.40 Å: 6PLQ in micelle, apo state, 2.90 Å: 6PXD |
Yu et al. (2021).
Yu J, Zhu H, Lape R, Greiner T, Du J, Lü W, Sivilotti L, & Gouaux E (2021). Mechanism of gating and partial agonist action in the glycine receptor.
Cell 184 4:957-968.e21. PubMed Id: 33567265. doi:10.1016/j.cell.2021.01.026. |
||
α1 GlyR Glycine receptor in presence of 32uM Tetrahydrocannabinol: Danio rerio E Eukaryota (expressed in Spodoptera frugiperda), 3.09 Å
cryo-EM structure in presence of 0.1mM Glycine, 2.61 Å: 7M6N in presence of 0.1mM Glycine and 32uM Tetrahydrocannabinol, 2.84 Å: 7M6O in presence of 1mM Glycine and 32uM Tetrahydrocannabinol, State 1, 2.91 Å: 7M6Q in presence of 1mM Glycine, 3.28 Å: 7M6P in presence of 1mM Glycine and 32uM Tetrahydrocannabinol, State 3, 3.61 Å: 7M6S |
Kumar et al. (2022).
Kumar A, Kindig K, Rao S, Zaki AM, Basak S, Sansom MSP, Biggin PC, & Chakrapani S (2022). Structural basis for cannabinoid-induced potentiation of alpha1-glycine receptors in lipid nanodiscs.
Nat Commun 13 1:4862. PubMed Id: 35982060. doi:10.1038/s41467-022-32594-5. |
||
Gibbs et al. (2023).
Gibbs E, Klemm E, Seiferth D, Kumar A, Ilca SL, Biggin PC, & Chakrapani S (2023). Conformational transitions and allosteric modulation in a heteromeric glycine receptor.
Nat Commun 14 1:1363. PubMed Id: 36914669. doi:10.1038/s41467-023-37106-7. |
|||
Hibbs & Gouaux (2011).
Hibbs RE & Gouaux E (2011). Principles of activation and permeation in an anion-selective Cys-loop receptor
Nature 474 :54-60. PubMed Id: 21572436. doi:10.1038/nature10139. |
|||
α7 neuronal ACh recptor TM domain: Homo sapiens E Eukaryota (expressed in E. coli), NMR Structure
|
Bondarenko et al. (2014).
Bondarenko V, Mowrey DD, Tillman TS, Seyoum E, Xu Y, & Tang P (2014). NMR structures of the human α7 nAChR transmembrane domain and associated anesthetic binding sites.
Biochim. Biophys. Acta 1838 :1389-1395. PubMed Id: 24384062. doi:10.1016/j.bbamem.2013.12.018. |
||
Noviello et al. (2021).
Noviello CM, Gharpure A, Mukhtasimova N, Cabuco R, Baxter L, Borek D, Sine SM, & Hibbs RE (2021). Structure and gating mechanism of the α7 nicotinic acetylcholine receptor.
Cell 184 8:2121-2134.e13. PubMed Id: 33735609. doi:10.1016/j.cell.2021.02.049. |
|||
Zhao et al. (2021).
Zhao Y, Liu S, Zhou Y, Zhang M, Chen H, Eric Xu H, Sun D, Liu L, & Tian C (2021). Structural basis of human α7 nicotinic acetylcholine receptor activation.
Cell Res . PubMed Id: 33958730. doi:10.1038/s41422-021-00509-6. |
|||
α7 neuronal ACh receptor, intracellular domain with transmembrane domain: Homo sapiens E Eukaryota (expressed in E. coli), NMR structure
|
Bondarenko et al. (2022).
Bondarenko V, Wells MM, Chen Q, Tillman TS, Singewald K, Lawless MJ, Caporoso J, Brandon N, Coleman JA, Saxena S, Lindahl E, Xu Y, & Tang P (2022). Structures of highly flexible intracellular domain of human α7 nicotinic acetylcholine receptor.
Nat Commun 13 1:793. PubMed Id: 35145092. doi:10.1038/s41467-022-28400-x. |
||
GABAA receptor (β3 homopentamer): Homo sapiens E Eukaryota (expressed in HEK293F cells), 2.97 Å
|
Miller et al. (2014).
Miller PS, & Aricescu AR (2014). Crystal structure of a human GABAA receptor.
Nature 512 :270-275. PubMed Id: 24909990. doi:10.1038/nature13293. |
||
GABAA receptor (α1β2γ2) in complex with GABA and flumazenil antagonist: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.92 Å
cryo-EM structure conformation B, 3.86 Å: 6D6T |
Zhu et al. (2018).
Zhu S, Noviello CM, Teng J, Walsh RM Jr, Kim JJ, & Hibbs RE (2018). Structure of a human synaptic GABAA receptor.
Nature 559 7712:67-72. PubMed Id: 29950725. doi:10.1038/s41586-018-0255-3. |
||
GABAA receptor (α1β2γ2) in complex with bicuculline methbromide: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.12 Å
cryo-EM structure in complex with GABA plus propofol, 2.55 Å: 6X3T in complex with GABA plus flumazenil, 3.50 Å: 6X3U in complex with GABA plus etomidate, 3.50 Å: 6X3V in complex with GABA plus phenobarbital, 3.30 Å: 6X3W in complex with GABA plus diazepam, 2.92 Å: 6X3X in complex with GABA, 3.23 Å: 6X3Z in complex with GABA plus picrotoxin, 2.86 Å: 6X40 |
Kim et al. (2020).
Kim JJ, Gharpure A, Teng J, Zhuang Y, Howard RJ, Zhu S, Noviello CM, Walsh RM Jr, Lindahl E, & Hibbs RE (2020). Shared structural mechanisms of general anaesthetics and benzodiazepines.
Nature 585 7824:303-308. PubMed Id: 32879488. doi:10.1038/s41586-020-2654-5. |
||
GABAA receptor (α1β2γ2) in complex with zolpidem: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.90 Å
cryo-EM structure in complex with DMCM, 2.90 Å 8DD3 |
Zhu et al. (2022).
Zhu S, Sridhar A, Teng J, Howard RJ, Lindahl E, & Hibbs RE (2022). Structural and dynamic mechanisms of GABAA receptor modulators with opposing activities.
Nat Commun 13 1:4582. PubMed Id: 35933426. doi:10.1038/s41467-022-32212-4. |
||
GABAA receptor (α1β3γ2L) in nanodiscs: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.2 Å
cryo-EM structure |
Laverty et al. (2019).
Laverty D, Desai R, Uchański T, Masiulis S, Stec WJ, Malinauskas T, Zivanov J, Pardon E, Steyaert J, Miller KW, & Aricescu AR (2019). Cryo-EM structure of the human α1β3γ2L GABAA receptor in a lipid bilayer.
Nature 565 7740:516-520. PubMed Id: 30602789. doi:10.1038/s41586-018-0833-4. |
||
GABAA receptor (α1β3γ2L) in complex with picrotoxin: Homo sapiens E Eukaryota (expressed in HEK293S cells), 3.1 Å
cryo-EM structure of protein in nanodiscs in complex with picrotoxin & GABA, 3.04 Å: 6HUJ in complex with bicuculline, 3.69 Å: 6HUK in complex with alprazolam (Xanax) & GABA, 3.26 Å: 6HUO in complex with diazepam (Valium) & GABA, 3.58 Å: 6HUP |
Masiulis et al. (2019).
Masiulis S, Desai R, Uchański T, Serna Martin I, Laverty D, Karia D, Malinauskas T, Zivanov J, Pardon E, Kotecha A, Steyaert J, Miller KW, & Aricescu AR (2019). GABAA receptor signalling mechanisms revealed by structural pharmacology.
Nature 565 7740:454-459. PubMed Id: 30602790. doi:10.1038/s41586-018-0832-5. |
||
GABAA receptor (β3 homopentamer) in complex with histamine and megabody Mb25 in lipid nanodisc: Homo sapiens E Eukaryota (expressed in HEK293 cells), 1.70 Å
cryo-EM structure |
Nakane et al. (2020).
Nakane T, Kotecha A, Sente A, McMullan G, Masiulis S, Brown PMGE, Grigoras IT, Malinauskaite L, Malinauskas T, Miehling J, Uchański T, Yu L, Karia D, Pechnikova EV, de Jong E, Keizer J, Bischoff M, McCormack J, Tiemeijer P, Hardwick SW, Chirgadze DY, Murshudov G, Aricescu AR, & Scheres SHW (2020). Single-particle cryo-EM at atomic resolution.
Nature 587 7832:152-156. PubMed Id: 33087931. doi:10.1038/s41586-020-2829-0. |
||
GABAA receptor (β3 homopentamer) in complex with histamine and megabody Mb25: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.49 Å
cryo-EM structure x-ray structures: structure of Mb-cHopQ-Nb207, 2.84 Å 6QD6 structure of Megabody Mb-Nb207-c7HopQ_G10, 3.15 Å 6XV8 structure of Megabody Mb-Nb207-cYgjK_NO, 1.90 Å 6XUX |
Uchański et al. (2021).
Uchański T, Masiulis S, Fischer B, Kalichuk V, López-Sánchez U, Zarkadas E, Weckener M, Sente A, Ward P, Wohlkönig A, Zögg T, Remaut H, Naismith JH, Nury H, Vranken W, Aricescu AR, Pardon E, & Steyaert J (2021). Megabodies expand the nanobody toolkit for protein structure determination by single-particle cryo-EM.
Nat Methods 18 1:60-68. PubMed Id: 33408403. doi:10.1038/s41592-020-01001-6. |
||
Kasaragod et al. (2022).
Kasaragod VB, Mortensen M, Hardwick SW, Wahid AA, Dorovykh V, Chirgadze DY, Smart TG, & Miller PS (2022). Mechanisms of inhibition and activation of extrasynaptic αβ GABAA receptors.
Nature 602 7897:529-533. PubMed Id: 35140402. doi:10.1038/s41586-022-04402-z. |
|||
GABAA receptor (α4β3δ), apo: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.50 Å
cryo-EM structure in complex with GABA and histamine, 3.00 Å 7QN7 in complex with GABA and histamine (pre-open/closed state), 2.90 Å 7QN9 in complex with THIP and histamine, 2.90 Å 7QNC β3δ apo, 2.90 Å 7QN6 β3δ in complex with histamine, 3.10 Å 7QN8 β3δ in complex with THIP and histamine, 3.40 Å 7QND α4β3γ2 in complex with GABA, 3.00 Å 7QNA β3γ2 in complex with GABA, 3.10 Å 7QNB α1β3γ2 in complex with Ro15-4513, 2.70 Å 7QNE |
Sente et al. (2022).
Sente A, Desai R, Naydenova K, Malinauskas T, Jounaidi Y, Miehling J, Zhou X, Masiulis S, Hardwick SW, Chirgadze DY, Miller KW, & Aricescu AR (2022). Differential assembly diversifies GABAA receptor structures and signalling.
Nature 604 7904:190-194. PubMed Id: 35355020. doi:10.1038/s41586-022-04517-3. |
||
GABAA receptor in complex with autoimmune antibody Fab175: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.00 Å
cryo-EM structure in complex with autoimmune antibody Fab115, 3.00 Å: 7T0W |
Noviello et al. (2022).
Noviello CM, Kreye J, Teng J, Prüss H, & Hibbs RE (2022). Structural mechanisms of GABAA receptor autoimmune encephalitis.
Cell 185 14:2469-2477.e13. PubMed Id: 35803245. doi:10.1016/j.cell.2022.06.025. |
||
GABAA receptor (α1β2γ2) in complex with GABA and PPTQ: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.57 Å
cryo-EM structure in complex with GABA and methaqualone, 2.82 Å: 8VQY |
Chojnacka et al. (2024).
Chojnacka W, Teng J, Kim JJ, Jensen AA, & Hibbs RE (2024). Structural insights into GABAA receptor potentiation by Quaalude.
Nat Commun 15 1:5244. PubMed Id: 38898000. doi:10.1038/s41467-024-49471-y. |
||
Benzodiazepine-sensitive α1β1γ2S tri-heteromeric GABAA receptor: Rattus norvegicus E Eukaryota (expressed in TSA201 cells), 3.8 Å
cryo-EM structure Structure is in complex with GABA extra cellular domain (ECD), 3.1 Å: 6DW1 |
Phulera et al. (2018).
Phulera S, Zhu H, Yu J, Claxton DP, Yoder N, Yoshioka C, & Gouaux E (2018). Cryo-EM structure of the benzodiazepine-sensitive α1β1γ2S tri-heteromeric GABAA receptor in complex with GABA.
Elife 7 :e39383. PubMed Id: 30044221. doi:10.7554/eLife.39383. |
||
Serotonin 5-HT3A receptor: Mus musculus E Eukaryota (expressed in HEK293F cells), 3.50 Å
|
Hassaine et al. (2014).
Hassaine G, Deluz C, Grasso L, Wyss R, Tol MB, Hovius R, Graff A, Stahlberg H, Tomizaki T, Desmyter A, Moreau C, Li XD, Poitevin F, Vogel H, & Nury H (2014). X-ray structure of the mouse serotonin 5-HT3 receptor.
Nature 512 :276-281. PubMed Id: 25119048. doi:10.1038/nature13552. |
||
Serotonin 5-HT3A receptor: Mus musculus E Eukaryota (expressed in S. frugiperda), 4.31 Å
cryo-EM structure |
Basak et al. (2018).
Basak S, Gicheru Y, Samanta A, Molugu SK, Huang W, Fuente M, Hughes T, Taylor DJ, Nieman MT, Moiseenkova-Bell V, & Chakrapani S (2018). Cryo-EM structure of 5-HT3A receptor in its resting conformation.
Nat Commun 9 :514. PubMed Id: 29410406. doi:10.1038/s41467-018-02997-4. |
||
Polovinkin et al. (2018).
Polovinkin L, Hassaine G, Perot J, Neumann E, Jensen AA, Lefebvre SN, Corringer PJ, Neyton J, Chipot C, Dehez F, Schoehn G, & Nury H (2018). Conformational transitions of the serotonin 5-HT3 receptor.
Nature 563 7730:275-279. PubMed Id: 30401839. doi:10.1038/s41586-018-0672-3. |
|||
Serotonin 5-HT3A receptor with bound serotonin, State 1: Mus musculus E Eukaryota (expressed in sf9 cells), 3.32 Å
cryo-EM structure State 2, 3.89 Å: 6DG8 |
Basak et al. (2018).
Basak S, Gicheru Y, Rao S, Sansom MSP, & Chakrapani S (2018). Cryo-EM reveals two distinct serotonin-bound conformations of full-length 5-HT3A receptor.
Nature 563 7730:270-274. PubMed Id: 30401837. doi:10.1038/s41586-018-0660-7. |
||
Serotonin 5-HT3A receptor with bound granisetron: mus musculus E Eukaryota, 2.92 Å
|
Basak et al. (2019).
Basak S, Gicheru Y, Kapoor A, Mayer ML, Filizola M, & Chakrapani S (2019). Molecular mechanism of setron-mediated inhibition of full-length 5-HT3A receptor.
Nat Commun 10 1. PubMed Id: 31324772. doi:10.1038/s41467-019-11142-8. |
||
Serotonin 5-HT3A receptor in complex with palonosetron: Mus musculus E Eukaryota (expressed in HEK-293 cells), 2.82 Å
cryo-EM structure |
Zarkadas et al. (2020).
Zarkadas E, Zhang H, Cai W, Effantin G, Perot J, Neyton J, Chipot C, Schoehn G, Dehez F, & Nury H (2020). The Binding of Palonosetron and Other Antiemetic Drugs to the Serotonin 5-HT3 Receptor.
Structure 28 10:1131-1140.e4. PubMed Id: 32726573. doi:10.1016/j.str.2020.07.004. |
||
Basak et al. (2020).
Basak S, Kumar A, Ramsey S, Gibbs E, Kapoor A, Filizola M, & Chakrapani S (2020). High-resolution structures of multiple 5-HT3AR-setron complexes reveal a novel mechanism of competitive inhibition.
Elife 9 :e57870. PubMed Id: 33063666. doi:10.7554/eLife.57870. |
|||
Zhang et al. (2021).
Zhang Y, Dijkman PM, Zou R, Zandl-Lang M, Sanchez RM, Eckhardt-Strelau L, Köfeler H, Vogel H, Yuan S, & Kudryashev M (2021). Asymmetric opening of the homopentameric 5-HT3A serotonin receptor in lipid bilayers.
Nat Commun 12 1:1074. PubMed Id: 33594077. doi:10.1038/s41467-021-21016-7. |
|||
Serotonin 5-HT3A receptor with bound vortioxetine: Mus musculus E Eukaryota (expressed in HEK293 cells), 3.01 Å
cryo-EM structure |
López-Sánchez et al. (2024).
López-Sánchez U, Munro LJ, Ladefoged LK, Pedersen AJ, Brun CC, Lyngby SM, Baud D, Juillan-Binard C, Pedersen MG, Lummis SCR, Bang-Andersen B, Schiøtt B, Chipot C, Schoehn G, Neyton J, Dehez F, Nury H, & Kristensen AS (2024). Structural determinants for activity of the antidepressant vortioxetine at human and rodent 5-HT3 receptors.
Nat Struct Mol Biol :1009. PubMed Id: 38698207. doi:10.1038/s41594-024-01282-x. |
||
Serotonin 5-HT3A receptor, Apo/Resting conformation: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.98 Å
cryo-EM structure Apo/Active-distorted conformation, 3.21 Å: 8BL8 |
López-Sánchez et al. (2024).
López-Sánchez U, Munro LJ, Ladefoged LK, Pedersen AJ, Brun CC, Lyngby SM, Baud D, Juillan-Binard C, Pedersen MG, Lummis SCR, Bang-Andersen B, Schiøtt B, Chipot C, Schoehn G, Neyton J, Dehez F, Nury H, & Kristensen AS (2024). Structural determinants for activity of the antidepressant vortioxetine at human and rodent 5-HT3 receptors.
Nat Struct Mol Biol :1009. PubMed Id: 38698207. doi:10.1038/s41594-024-01282-x. |
||
Octopus sensory receptor CRT1: Octopus bimaculoides E Eukaryota (expressed in HEK293 cells), 2.62 Å
cryo-EM structure |
Kang et al. (2023).
Kang G, Allard CAH, Valencia-Montoya WA, van Giesen L, Kim JJ, Kilian PB, Bai X, Bellono NW, & Hibbs RE (2023). Sensory specializations drive octopus and squid behaviour.
Nature 616 7956:378-383. PubMed Id: 37045917. doi:10.1038/s41586-023-05808-z. |
||
Squid sensory receptor CRB1: Sepioloidea lineolata E Eukaryota (expressed in HEK293 cells), 3.13 Å
cryo-EM structure |
Kang et al. (2023).
Kang G, Allard CAH, Valencia-Montoya WA, van Giesen L, Kim JJ, Kilian PB, Bai X, Bellono NW, & Hibbs RE (2023). Sensory specializations drive octopus and squid behaviour.
Nature 616 7956:378-383. PubMed Id: 37045917. doi:10.1038/s41586-023-05808-z. |
||
GABAA receptor (α1β2γ2) - Fab complex (two-Fab) with bound GABA and didesethylflurazepam (DID): Mus musculus E Eukaryota (expressed in S. frugiperda), 3.06 Å
cryo-EM structure with bound GABA and allopregnanolone (APG), 2.50 Å: 8FOI with bound GABA, Zolpidem (ZOL), and endogenous neurosteroids, 2.67 Å: 8G4N (α1α3β2γ2) - Fab complex (meta-one-Fab*) with bound GABA and allopregnanolone (APG), 2.56 Å: 8G4X with bound GABA, ZOL, and endogenous neurosteroids (meta-one-Fab*), 2.94 Å: 8G5G with bound GABA and APG (ortho-one-Fab*), 2.64 Å: 8G5F with bound GABA, ZOL, and endogenous neurosteroids (ortho-one-Fab*), 2.89 Å: 8G5H *meta-one-Fab and ortho-one-Fab were defined by the relative position of their α1 and γ subunits. |
Sun et al. (2023).
Sun C, Zhu H, Clark S, & Gouaux E (2023). Cryo-EM structures reveal native GABAA receptor assemblies and pharmacology.
Nature 622 7981:195-201. PubMed Id: 37730991. doi:10.1038/s41586-023-06556-w. |
||
Type VII Secretion Systems
|
|||
ring-shaped virulence factor EspB of the ESX-1 system: Mycobacterium tuberculosis B Bacteria (expressed in E. coli), 3.37 Å
cryoEM structure |
Piton et al. (2020).
Piton J, Pojer F, Wakatsuki S, Gati C, & Cole ST (2020). High resolution CryoEM structure of the ring-shaped virulence factor EspB from Mycobacterium tuberculosis.
J Struct Biol X 4 :100029. PubMed Id: 32875288. doi:10.1016/j.yjsbx.2020.100029. |
||
Korotkova et al. (2015).
Korotkova N, Piton J, Wagner JM, Boy-Röttger S, Japaridze A, Evans TJ, Cole ST, Pojer F, & Korotkov KV (2015). Structure of EspB, a secreted substrate of the ESX-1 secretion system of Mycobacterium tuberculosis.
J Struct Biol 191 2:236-244. PubMed Id: 26051906. doi:10.1016/j.jsb.2015.06.003. |
|||
Mycobacterial secretion system ESX-5 inner membrane complex, Composite C1 model: Mycobacterium tuberculosis B Bacteria (expressed in Mycolicibacterium smegmatis), 4.03 Å
cryo-EM structure Composite C3 model, 3.82 Å: 7NPR periplasmic assembly of inner membrane complex, C1 model, 3.81 Å: 7NPS Cytosolic bridge of intact ESX-5, 3.27 Å: 3.27 Å: 7NPB MycP5-free ESX-5 complex, state I, 4.48 Å: 7NPU MycP5-free ESX-5 complex, State II, 6.66 Å: 7NPV |
Bunduc et al. (2021).
Bunduc CM, Fahrenkamp D, Wald J, Ummels R, Bitter W, Houben ENG, & Marlovits TC (2021). Structure and dynamics of a mycobacterial type VII secretion system.
Nature 593 7859:445-448. PubMed Id: 33981042. doi:10.1038/s41586-021-03517-z. |
||
Famelis et al. (2019).
Famelis N, Rivera-Calzada A, Degliesposti G, Wingender M, Mietrach N, Skehel JM, Fernandez-Leiro R, Böttcher B, Schlosser A, Llorca O, & Geibel S (2019). Architecture of the mycobacterial type VII secretion system.
Nature 576 7786:321-325. PubMed Id: 31597161. doi:10.1038/s41586-019-1633-1. |
|||
ESX-3 Mycobacterial secretion system complete structure: Mycolicibacterium smegmatis B Bacteria, 3.7 Å
cryo-EM structure |
Poweleit et al. (2019).
Poweleit N, Czudnochowski N, Nakagawa R, Trinidad DD, Murphy KC, Sassetti CM, & Rosenberg OS (2019). The structure of the endogenous ESX-3 secretion system.
Elife 8 :e52983. PubMed Id: 31886769. doi:10.7554/eLife.52983. |
||
Beckham et al. (2021).
Beckham KSH, Ritter C, Chojnowski G, Ziemianowicz DS, Mullapudi E, Rettel M, Savitski MM, Mortensen SA, Kosinski J, & Wilmanns M (2021). Structure of the mycobacterial ESX-5 type VII secretion system pore complex.
Sci Adv 7 26:eabg9923. PubMed Id: 34172453. doi:10.1126/sciadv.abg9923. |
|||
G PROTEIN-COUPLED RECEPTORS (GPCRs)
Wikipedia Entry GPCRdb Home Page GPCR Molecular Dynamics Database |
|||
G Protein-Coupled Receptors: Class A
|
|||
Rhodopsin: Bos taurus (Bovine) Rod Outer Segment E Eukaryota, 2.80 Å
See also 1HZX and RPE65 retinoid isomerase |
Palczewski et al. (2000).
Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, & Miyano M (2000). Crystal structure of rhodopsin: A G protein-coupled receptor.
Science 289 :739-745. PubMed Id: 10926528. |
||
Rhodopsin: Bos taurus (Bovine) Rod Outer Segment E Eukaryota, 2.6 Å
|
Okada et al. (2002).
Okada T, Fujiyoshi Y, Silow M, Navarro J, Landau EM, & Shichida Y (2002). Functional role of internal water molecules in rhodopsin revealed by X-ray crystallography.
Proc Natl Acad Sci U S A 99 :5982-5987. PubMed Id: 11972040. |
||
Rhodopsin: Bos taurus (Bovine) Rod Outer Segment E Eukaryota, 2.65 Å
|
Li et al. (2004).
Li J, Edwards PC, Burghammer M, Villa C, & Schertler GF (2004). Structure of bovine rhodopsin in a trigonal crystal form.
J Mol Biol. 343 :511-521. PubMed Id: 15491621. |
||
Rhodopsin: Bos taurus E Eukaryota, 2.65 Å
Alternative model for 1GZM. Described using spacegroup P64 |
Stenkamp (2008).
Stenkamp RE (2008). Alternative models for two crystal structures of bovine rhodopsin.
Acta Crystallogr D Biol Crystallogr D64 :902-904. PubMed Id: 18645239. doi:10.1107/S0907444908017162. |
||
Rhodopsin: Bos taurus (Bovine) Rod Outer Segment E Eukaryota, 2.2 Å
|
Okada et al. (2004).
Okada T, Sugihara M, Bondar AN, Elstner M, Entel P, & Buss V (2004). The retinal conformation and its environment in rhodopsin in light of a new 2.2 Å crystal structure.
J Mol Biol 342 :571-583. PubMed Id: 15327956. |
||
Rhodopsin: Bos taurus (Bovine) Rod Outer Segment E Eukaryota (expressed in COS cells), 3.4 Å
Recombinant rhodopsin mutant, N2C/D282C |
Standfuss et al. (2007).
Standfuss J, Xie G, Edwards PC, Burghammer M, Oprian DD, & Schertler GF (2007). Crystal structure of a thermally stable rhodopsin mutant.
J Mol Biol 372 :1179-1188. PubMed Id: 17825322. |
||
Rhodopsin: Bos taurus E Eukaryota, 3.40 Å
Recombinant rhodopsin mutant, N2C/D282C. Refinement of 2J4Y using P64 subgroup. |
Stenkamp (2008).
Stenkamp RE (2008). Alternative models for two crystal structures of bovine rhodopsin.
Acta Crystallogr D Biol Crystallogr D64 :902-904. PubMed Id: 18645239. doi:10.1107/S0907444908017162. |
||
Salom et al. (2006).
Salom D, Ladowski DT, Stenkamp RE, Trong IL, Golczak M, Jastrzebska B, Harris T, Ballesteros JA & Palczewski K (2006). Crystal structure of a photoactivated deprotonated intermediate of rhodopsin.
Proc Natl Acad Sci USA 103 :16123-16128. PubMed Id: 17060607. |
|||
Rhodopsin in ligand-free state (opsin): Bos taurus (Bovine) Rod Outer Segment E Eukaryota, 2.9 Å
2 molecules in asymmetric unit. |
Park et al. (2008).
Park JH, Scheerer P, Hofmann KP, Choe HW, & Ernst OP (2008). Crystal structure of the ligand-free G-protein-coupled receptor opsin.
Nature 454 :183-187. PubMed Id: 18563085. |
||
Rhodopsin in ligand-free state (opsin): Bos taurus E Eukaryota, 2.65 Å
with bound GαCT2 peptide |
Park et al. (2013).
Park JH, Morizumi T, Li Y, Hong JE, Pai EF, Hofmann KP, Choe HW, & Ernst OP (2013). Opsin, a structural model for olfactory receptors?
Angew Chem Int Ed Engl 52 :11021-11024. PubMed Id: 24038729. doi:10.1002/anie.201302374. |
||
Rhodopsin in ligand-free state (opsin): Bos taurus E Eukaryota, 2.29 Å
with bound GαCT2 peptide. |
Blankenship et al. (2015).
Blankenship E, Vahedi-Faridi A, & Lodowski DT (2015). The High-Resolution Structure of Activated Opsin Reveals a Conserved Solvent Network in the Transmembrane Region Essential for Activation.
Structure 23 :2358-2364. PubMed Id: 26526852. doi:10.1016/j.str.2015.09.015. |
||
Rhodopsin in ligand-free state (opsin) in complex with ArrFL-1: Bos taurus E Eukaryota, 2.75 Å
|
Szczepek et al. (2014).
Szczepek M, Beyrière F, Hofmann KP, Elgeti M, Kazmin R, Rose A, Bartl FJ, von Stetten D, Heck M, Sommer ME, Hildebrand PW, & Scheerer P (2014). Crystal structure of a common GPCR-binding interface for G protein and arrestin.
Nat Comms 5 :4801. PubMed Id: 25205354. doi:10.1038/ncomms5801. |
||
Rhodopsin, Ops*-GαCT peptide complex: Bos taurus (Bovine) Rod Outer Segment E Eukaryota, 3.2 Å
|
Scheerer et al. (2008).
Scheerer P, Park JH, Hildebrand PW, Kim YJ, Krauss N, Choe HW, Hofmann KP, & Ernst OP (2008). Crystal structure of opsin in its G-protein-interacting conformation.
Nature 455 :497-502. PubMed Id: 18818650. |
||
Rhodopsin in Meta II state: Bos taurus (Bovine) Rod Outer Segment E Eukaryota, 3.00 Å
Metarhodopsin II in complex with C-terminal fragment of Gα (GαCT2), 2.85 Å: 3PQR |
Choe et al. (2011).
Choe HW, Kim YJ, Park JH, Morizumi T, Pai EF, Krauß N, Hofmann KP, Scheerer P, & Ernst OP (2011). Crystal structure of metarhodopsin II.
Nature 471 :651-655. PubMed Id: 21389988. |
||
Rhodopsin in constitutively active meta-II state: Bos taurus E Eukaryota (expressed in HEK2935-GnTl- cells), 3.30 Å
M257Y mutant in complex with GαCT. |
Deupi et al. (2012).
Deupi X, Edwards P, Singhal A, Nickle B, Oprian D, Schertler G, & Standfuss J (2012). Stabilized G protein binding site in the structure of constitutively active metarhodopsin-II.
Proc Natl Acad Sci USA 109 :119-124. PubMed Id: 22198838. doi:10.1073/pnas.1114089108. |
||
Rhodopsin in agonist-induced active state: Bos taurus E Eukaryota, 3.00 Å
|
Standfuss et al. (2011).
Standfuss J, Edwards PC, D'Antona A, Fransen M, Xie G, Oprian DD, & Schertler GF (2011). The structural basis of agonist-induced activation in constitutively active rhodopsin
Nature 471 7340:656-660. PubMed Id: 21389983. doi:10.1038/nature09795. |
||
Rhodopsin, N2C/D282C stabilized opsin bound to RS01: Bos taurus E Eukaryota (expressed in HEK293S cells), 2.36 Å
bound to RS06, 2.62 Å: 6FK7 bound to RS08, 2.87 Å: 6FK8 bound to RS09, 2.63 Å:6FK9 bound to RS11, 2.7 Å: 6FKA bound to RS13, 3.03 Å: 6FKB bound to RS15, 2.46 Å: 6FKC bound to RS16, 2.49 Å: 6FKD |
Mattle et al. (2018).
Mattle D, Kuhn B, Aebi J, Bedoucha M, Kekilli D, Grozinger N, Alker A, Rudolph MG, Schmid G, Schertler GFX, Hennig M, Standfuss J, & Dawson RJP (2018). Ligand channel in pharmacologically stabilized rhodopsin.
Proc Natl Acad Sci USA 115 14:3640-3645. PubMed Id: 29555765. doi:10.1073/pnas.1718084115. |
||
Rhodopsin-Gαi-βγ complex: Bos taurus E Eukaryota (expressed in HEK 293 cells), 4.38 Å
cryo-EM structure, N2C/M257Y/D282C mutant FAB fragment targeting Gi protein heterotrimer, 1.9 Å: 6QNK |
Tsai et al. (2019).
Tsai CJ, Marino J, Adaixo R, Pamula F, Muehle J, Maeda S, Flock T, Taylor NM, Mohammed I, Matile H, Dawson RJ, Deupi X, Stahlberg H, & Schertler G (2019). Cryo-EM structure of the rhodopsin-Gαi-βγ complex reveals binding of the rhodopsin C-terminal tail to the gβ subunit.
Elife 8 :e46041. PubMed Id: 31251171. doi:10.7554/eLife.46041. |
||
Rhodopsin-Transducin Complex: Bos taurus E Eukaryota, 3.9 Å
cryo-EM structure Rhodopsin-Transducin-Nanobody Complex, 3.3 Å: 6OYA |
Gao et al. (2019).
Gao Y, Hu H, Ramachandran S, Erickson JW, Cerione RA, & Skiniotis G (2019). Structures of the Rhodopsin-Transducin Complex: Insights into G-Protein Activation.
Mol Cell 75 4:781-790.e3. PubMed Id: 31300275. doi:10.1016/j.molcel.2019.06.007. |
||
Visual Signaling Complex between Transducin and Phosphodiesterase 6: Bos taurus E Eukaryota (expressed in E. coli), 3.20 Å
cryo-EM structure |
Gao et al. (2020).
Gao Y, Eskici G, Ramachandran S, Poitevin F, Seven AB, Panova O, Skiniotis G, & Cerione RA (2020). Structure of the Visual Signaling Complex between Transducin and Phosphodiesterase 6.
Mol Cell 80 2:237-245.e4. PubMed Id: 33007200. doi:10.1016/j.molcel.2020.09.013. |
||
Rhodopsin (native dimer) in nanodiscs: Bos taurus E Eukaryota, 4.5 Å
cryo-EM structure |
Zhao et al. (2019).
Zhao DY, Pöge M, Morizumi T, Gulati S, Van Eps N, Zhang J, Miszta P, Filipek S, Mahamid J, Plitzko JM, Baumeister W, Ernst OP, & Palczewski K (2019). Cryo-EM structure of the native rhodopsin dimer in nanodiscs.
J Biol Chem 294 39:14215-14230. PubMed Id: 31399513. doi:10.1074/jbc.RA119.010089. |
||
Rhodopsin, activated state (metarhodopsin II): Bos taurus E Eukaryota, NMR structure
|
Choi et al. (2002).
Choi G, Landin J, Galan JF, Birge RR, Albert AD, & Yeagle PL (2002). Structural studies of metarhodopsin II, the activated form of the G-protein coupled receptor, rhodopsin.
Biochemistry 41 :7318-7324. PubMed Id: 12044163. |
||
Rhodopsin in complex with rhodopsin kinase (GRK1): Bos taurus E Eukaryota (expressed in Spodoptera frugiperda), 7.00 Å
cryo-EM structure GRK1-S5E/S488E/T489E in complex with rhodopsin, 5.80 Å: 7MT8 GRK1-S5E/S488E/T489E & Fab1 in complex with rhodopsin, 4.10 Å: 7MTA GRK1-S5E/S488E/T489E in complex with rhodopsin and Fab6, 4.00 Å: 7MTB |
Chen et al. (2021).
Chen Q, Plasencia M, Li Z, Mukherjee S, Patra D, Chen CL, Klose T, Yao XQ, Kossiakoff AA, Chang L, Andrews PC, & Tesmer JJG (2021). Structures of rhodopsin in complex with G-protein-coupled receptor kinase 1.
Nature 595 7868:600-605. PubMed Id: 34262173. doi:10.1038/s41586-021-03721-x. |
||
Rhodopsin, by serial femtosecond crystallography (SFX), at SACLA, dark state: Bos taurus E Eukaryota, 1.80 Å
SFX data at SwissFEL, 1.80 Å: 7ZBE 1 ps photoactivation, TR-SFX data at SwissFEL, 1.80 Å: 8A6C 10 ps photoactivation, TR-SFX data at SwissFEL, 1.80 Å: 8A6D 100 ps photoactivation, TR-SFX data at SACLA, 1.80 Å: 8A6E |
Gruhl et al. (2023).
Gruhl T, Weinert T, Rodrigues MJ, Milne CJ, Ortolani G, Nass K, Nango E, Sen S, Johnson PJM, Cirelli C, Furrer A, Mous S, Skopintsev P, James D, Dworkowski F, Båth P, Kekilli D, Ozerov D, Tanaka R, Glover H, Bacellar C, Brünle S, Casadei CM, Diethelm AD, Gashi D, Gotthard G, Guixà-González R, Joti Y, Kabanova V, Knopp G, Lesca E, Ma P, Martiel I, Mühle J, Owada S, Pamula F, Sarabi D, Tejero O, Tsai CJ, Varma N, Wach A, Boutet S, Tono K, Nogly P, Deupi X, Iwata S, Neutze R, Standfuss J, Schertler G, & Panneels V (2023). Ultrafast structural changes direct the first molecular events of vision.
Nature 615 7954:939-944. PubMed Id: 36949205. doi:10.1038/s41586-023-05863-6. |
||
Wu et al. (2023).
Wu A, Salom D, Hong JD, Tworak A, Watanabe K, Pardon E, Steyaert J, Kandori H, Katayama K, Kiser PD, & Palczewski K (2023). Structural basis for the allosteric modulation of rhodopsin by nanobody binding to its extracellular domain.
Nat Commun 14 1:5209. PubMed Id: 37626045. doi:10.1038/s41467-023-40911-9. |
|||
Rhodopsin, Squid: Todarodes pacificus E Eukaryota, 2.50 Å
|
Murakami & Kouyama (2008).
Murakami M & Kouyama T (2008). Crystal structure of squid rhodopsin.
Nature 453 :363-367. PubMed Id: 18480818. |
||
Rhodopsin, Squid: Todarodes pacificus E Eukaryota, 3.7 Å
Shows intracellularly extended cytoplasmic region. |
Shimamura et al. (2008).
Shimamura T, Hiraki K, Takahashi N, Hori T, Ago H, Masuda K, Takio K, Ishiguro M, & Miyano M. (2008). Crystal structure of squid rhodopsin with intracellularly extended cytoplasmic region.
J Biol Chem 283 :17753-17756. PubMed Id: 18463093. |
||
Rhodopsin, Squid; 9-cis isorhodopsin (Iso): Todarodes pacificus E Eukaryota, 2.70 Å
Batho intermediate state, 2.80 Å: 3AYM |
Murakami & Kouyama (2011).
Murakami M & Kouyama T (2011). Crystallographic analysis of the primary photochemical reaction of squid rhodopsin.
J Mol Biol 413 :615-627. PubMed Id: 21906602. doi:10.1016/j.jmb.2011.08.044. |
||
Human rhodopsin with bound mouse visual arrestin: Homo sapiens E Eukaryota (expressed in HEK293S cells), 3.30 Å
Engineered protein. T4 lysozyme (Cys-free) fused to N-terminus of rhodopsin and arrestin fused to C-terminus with a 15-residue linker. Structure determined by fS x-ray laser. |
Kang et al. (2015).
Kang Y, Zhou XE, Gao X, He Y, Liu W, Ishchenko A, Barty A, White TA, Yefanov O, Han GW, Xu Q, de Waal PW, Ke J, Tan MH, Zhang C, Moeller A, West GM, Pascal BD, Van Eps N, Caro LN, Vishnivetskiy SA, Lee RJ, Suino-Powell KM, Gu X, Pal K, Ma J, Zhi X, Boutet S, Williams GJ, Messerschmidt M, Gati C, Zatsepin NA, Wang D, James D, Basu S, Roy-Chowdhury S, Conrad CE, Coe J, Liu H, Lisova S, Kupitz C, Grotjohann I, Fromme R, Jiang Y, Tan M, Yang H, Li J, Wang M, Zheng Z, Li D, Howe N, Zhao Y, Standfuss J, Diederichs K, Dong Y, Potter CS, Carragher B, Caffrey M, Jiang H, Chapman HN, Spence JC, Fromme P, Weierstall U, Ernst OP, Katritch V, Gurevich VV, Griffin PR, Hubbell WL, Stevens RC, Cherezov V, Melcher K, & Xu HE (2015). Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser.
Nature 523 :561-567. PubMed Id: 26200343. doi:10.1038/nature14656. |
||
Human rhodopsin with bound inhibitory G protein (Gi): Homo sapiens E Eukaryota (expressed in Sf9 cells), 4.5 Å
cryo-EM structure |
Kang et al. (2018).
Kang Y, Kuybeda O, de Waal PW, Mukherjee S, Van Eps N, Dutka P, Zhou XE, Bartesaghi A, Erramilli S, Morizumi T, Gu X, Yin Y, Liu P, Jiang Y, Meng X, Zhao G, Melcher K, Ernst OP, Kossiakoff AA, Subramaniam S, & Xu HE (2018). Cryo-EM structure of human rhodopsin bound to an inhibitory G protein.
Nature 558 7711:553-558. PubMed Id: 29899450. doi:10.1038/s41586-018-0215-y. |
||
Jumping spider rhodopsin-1: Hasarius adansoni E Eukaryota (expressed in HEK293 cells), 2.14 Å
|
Varma et al. (2019).
Varma N, Mutt E, Mühle J, Panneels V, Terakita A, Deupi X, Nogly P, Schertler GFX, & Lesca E (2019). Crystal structure of jumping spider rhodopsin-1 as a light sensitive GPCR.
Proc Natl Acad Sci USA 116 29:14547-14556. PubMed Id: 31249143. doi:10.1073/pnas.1902192116. |
||
Orphan GPR17 class A receptor - Gi complex: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.02 Å
cryo-EM structure |
Ye et al. (2022).
Ye F, Wong TS, Chen G, Zhang Z, Zhang B, Gan S, Gao W, Li J, Wu Z, Pan X, & Du Y (2022). Cryo-EM structure of G-protein-coupled receptor GPR17 in complex with inhibitory G protein.
MedComm (2020) 3 4:e159. PubMed Id: 36105372. doi:10.1002/mco2.159. |
||
Lin et al. (2023).
Lin X, Jiang S, Wu Y, Wei X, Han GW, Wu L, Liu J, Chen B, Zhang Z, Zhao S, Cherezov V, & Xu F (2023). The activation mechanism and antibody binding mode for orphan GPR20.
Cell Discov 9 1:23. PubMed Id: 36849514. doi:10.1038/s41421-023-00520-8. |
|||
Orphan GPR21 class A receptor - Gs complex, apo form: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.91 Å
cryo-EM structure |
Wong et al. (2023).
Wong TS, Gao W, Chen G, Qiu C, He G, Ye F, Wu Z, Zeng Z, & Du Y (2023). Cryo-EM structure of orphan G protein-coupled receptor GPR21.
MedComm (2020) 4 1:e205. PubMed Id: 36721851. doi:10.1002/mco2.205. |
||
Lin et al. (2023).
Lin X, Chen B, Wu Y, Han Y, Qi A, Wang J, Yang Z, Wei X, Zhao T, Wu L, Xie X, Sun J, Zheng J, Zhao S, & Xu F (2023). Cryo-EM structures of orphan GPR21 signaling complexes.
Nat Commun 14 1:216. PubMed Id: 36639690. doi:10.1038/s41467-023-35882-w. |
|||
Orphan GPR34 class A receptor with bound antagonist YL-365: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.34 Å
cryo-EM structure Gi complex with bound LysoPS (18:1), 3.27 Å: 8SAI |
Xia et al. (2023).
Xia A, Yong X, Zhang C, Lin G, Jia G, Zhao C, Wang X, Hao Y, Wang Y, Zhou P, Yang X, Deng Y, Wu C, Chen Y, Zhu J, Tang X, Liu J, Zhang S, Zhang J, Xu Z, Hu Q, Zhao J, Yue Y, Yan W, Su Z, Wei Y, Zhou R, Dong H, Shao Z, & Yang S (2023). Cryo-EM structures of human GPR34 enable the identification of selective antagonists.
Proc Natl Acad Sci U S A 120 39:e2308435120. PubMed Id: 37733739. doi:10.1073/pnas.2308435120. |
||
Orphan GPR35 class A receptor - G13 complex with bound lodoxamide: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.20 Å
cryo-EM structure |
Duan et al. (2022).
Duan J, Liu Q, Yuan Q, Ji Y, Zhu S, Tan Y, He X, Xu Y, Shi J, Cheng X, Jiang H, Eric Xu H, & Jiang Y (2022). Insights into divalent cation regulation and G13-coupling of orphan receptor GPR35.
Cell Discov 8 1:135. PubMed Id: 36543774. doi:10.1038/s41421-022-00499-8. |
||
Lin et al. (2020).
Lin X, Li M, Wang N, Wu Y, Luo Z, Guo S, Han GW, Li S, Yue Y, Wei X, Xie X, Chen Y, Zhao S, Wu J, Lei M, & Xu F (2020). Structural basis of ligand recognition and self-activation of orphan GPR52.
Nature 579 7797:152-157. PubMed Id: 32076264. doi:10.1038/s41586-020-2019-0. |
|||
Orphan GPR61 class A receptor - Gs complex: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.16 Å
cryo-EM structure |
Nie et al. (2023).
Nie Y, Qiu Z, Chen S, Chen Z, Song X, Ma Y, Huang N, Cyster JG, & Zheng S (2023). Specific binding of GPR174 by endogenous lysophosphatidylserine leads to high constitutive Gs signaling.
Nat Commun 14 1:5901. PubMed Id: 37737235. doi:10.1038/s41467-023-41654-3. |
||
Liu et al. (2023).
Liu H, Zhang Q, He X, Jiang M, Wang S, Yan X, Cheng X, Liu Y, Nan FJ, Xu HE, Xie X, & Yin W (2023). Structural insights into ligand recognition and activation of the medium-chain fatty acid-sensing receptor GPR84.
Nat Commun 14 1:3271. PubMed Id: 37277332. doi:10.1038/s41467-023-38985-6. |
|||
Orphan GPR84 class A receptor - Gi complex with bound agonist 6-OAU: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.00 Å
cryo-EM structure |
Zhang et al. (2023).
Zhang X, Wang Y, Supekar S, Cao X, Zhou J, Dang J, Chen S, Jenkins L, Marsango S, Li X, Liu G, Milligan G, Feng M, Fan H, Gong W, & Zhang C (2023). Pro-phagocytic function and structural basis of GPR84 signaling.
Nat Commun 14 1:5706. PubMed Id: 37709767. doi:10.1038/s41467-023-41201-0. |
||
Orphan GPR88 class A receptor - Gi1 complex, apo form: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.00 Å
cryo-EM structure with bound synthetic ligand 2PCCA, 2.40 Å: 7EJX |
Chen et al. (2022).
Chen G, Xu J, Inoue A, Schmidt MF, Bai C, Lu Q, Gmeiner P, Liu Z, & Du Y (2022). Activation and allosteric regulation of the orphan GPR88-Gi1 signaling complex.
Nat Commun 13 1:2375. PubMed Id: 35501348. doi:10.1038/s41467-022-30081-5. |
||
Yang et al. (2023).
Yang Z, Wang JY, Yang F, Zhu KK, Wang GP, Guan Y, Ning SL, Lu Y, Li Y, Zhang C, Zheng Y, Zhou SH, Wang XW, Wang MW, Xiao P, Yi F, Zhang C, Zhang PJ, Xu F, Liu BH, Zhang H, Yu X, Gao N, & Sun JP (2023). Structure of GPR101-Gs enables identification of ligands with rejuvenating potential.
Nat Chem Biol . PubMed Id: 37945893. doi:10.1038/s41589-023-01456-6. |
|||
Orphan GPR119 class A receptor - Gs complex with bound LPC: Homo sapiens E Eukaryota (expressed in Trichoplusia ni), 3.10 Å
cryo-EM structure with bound APD668, 2.80 Å: 7XZ6 |
Xu et al. (2022).
Xu P, Huang S, Guo S, Yun Y, Cheng X, He X, Cai P, Lan Y, Zhou H, Jiang H, Jiang Y, Xie X, & Xu HE (2022). Structural identification of lysophosphatidylcholines as activating ligands for orphan receptor GPR119.
Nat Struct Mol Biol 29 9:863-870. PubMed Id: 35970999. doi:10.1038/s41594-022-00816-5. |
||
Orphan GPR119 class A receptor - Gs complex with bound AR231453: Homo sapiens E Eukaryota (expressed in Trichoplusia ni), 2.87 Å
cryo-EM structure with bound MBX-2982, 2.33 Å:7WCM |
Qian et al. (2022).
Qian Y, Wang J, Yang L, Liu Y, Wang L, Liu W, Lin Y, Yang H, Ma L, Ye S, Wu S, & Qiao A (2022). Activation and signaling mechanism revealed by GPR119-Gs complex structures.
Nat Commun 13 1:7033. PubMed Id: 36396650. doi:10.1038/s41467-022-34696-6. |
||
Zhou et al. (2021).
Zhou Y, Daver H, Trapkov B, Wu L, Wu M, Harpsøe K, Gentry PR, Liu K, Larionova M, Liu J, Chen N, Bräuner-Osborne H, Gloriam DE, Hua T, & Liu ZJ (2021). Molecular insights into ligand recognition and G protein coupling of the neuromodulatory orphan receptor GPR139.
Cell Res . PubMed Id: 34916631. doi:10.1038/s41422-021-00591-w. |
|||
Orphan GPR161 class A receptor - Gs complex: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.10 Å
cryo-EM structure |
Nie et al. (2023).
Nie Y, Qiu Z, Chen S, Chen Z, Song X, Ma Y, Huang N, Cyster JG, & Zheng S (2023). Specific binding of GPR174 by endogenous lysophosphatidylserine leads to high constitutive Gs signaling.
Nat Commun 14 1:5901. PubMed Id: 37737235. doi:10.1038/s41467-023-41654-3. |
||
Orphan GPR161 class A receptor - Gs complex: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.74 Å
cryo-EM structure |
Hoppe et al. (2024).
Hoppe N, Harrison S, Hwang SH, Chen Z, Karelina M, Deshpande I, Suomivuori CM, Palicharla VR, Berry SP, Tschaikner P, Regele D, Covey DF, Stefan E, Marks DS, Reiter JF, Dror RO, Evers AS, Mukhopadhyay S, & Manglik A (2024). GPR161 structure uncovers the redundant role of sterol-regulated ciliary cAMP signaling in the Hedgehog pathway.
Nat Struct Mol Biol . PubMed Id: 38326651. doi:10.1038/s41594-024-01223-8. |
||
Orphan GPR174 receptor - Gs complex with bound LPS: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.76 Å
cryo-EM structure |
Liang et al. (2023).
Liang J, Inoue A, Ikuta T, Xia R, Wang N, Kawakami K, Xu Z, Qian Y, Zhu X, Zhang A, Guo C, Huang Z, & He Y (2023). Structural basis of lysophosphatidylserine receptor GPR174 ligand recognition and activation.
Nat Commun 14 1:1012. PubMed Id: 36823105. doi:10.1038/s41467-023-36575-0. |
||
Orphan GPR174 class A receptor - Gs complex with bound endogenous lysoPS: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.83 Å
cryo-EM structure |
Nie et al. (2023).
Nie Y, Qiu Z, Chen S, Chen Z, Song X, Ma Y, Huang N, Cyster JG, & Zheng S (2023). Specific binding of GPR174 by endogenous lysophosphatidylserine leads to high constitutive Gs signaling.
Nat Commun 14 1:5901. PubMed Id: 37737235. doi:10.1038/s41467-023-41654-3. |
||
Orphan GPR183 (EBI2) receptor with bound GSK682753A: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 2.98 Å
cryo-EM structure Gi complex with bound 7α,25-OHC, 3.12 Å, 7TUZ |
Chen et al. (2022).
Chen H, Huang W, & Li X (2022). Structures of oxysterol sensor EBI2/GPR183, a key regulator of the immune response.
Structure 30 7:1016-1024.e5. PubMed Id: 35537452. doi:10.1016/j.str.2022.04.006. |
||
OX1 orexin receptor with bound suvorexant: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.75 Å
with bound SB-674042, 2.83 Å: 4ZJC |
Yin et al. (2016).
Yin J, Babaoglu K, Brautigam CA, Clark L, Shao Z, Scheuermann TH, Harrell CM, Gotter AL, Roecker AJ, Winrow CJ, Renger JJ, Coleman PJ, & Rosenbaum DM (2016). Structure and ligand-binding mechanism of the human OX1 and OX2 orexin receptors.
Nat Struct Mol Biol 23 :293-299. PubMed Id: 26950369. doi:10.1038/nsmb.3183. |
||
OX1 orexin receptor in complex with suvorexant: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 2.29 Å
in complex with filorexant, 2.34 Å: 6TP6 in complex with lemborexant, 2.22 Å: 6TOT in complex with daridorexant, 3.04 Å: 6TP3 in complex with EMPA, 2.11 Å: 6TOD in complex with GSK1059865, 2.13 Å: 6TOS in complex with SB-334867, 2.66 Å: 6TQ7 in complex with SB-408124, 2.66 Å: 6TQ9 in complex with Compound 14, 2.55 Å: 6TQ6 in complex with ACT-462206, 3.04 Å: 6TP4 in complex with Compound 16, 2.30 Å: 6TQ4 |
Rappas et al. (2020).
Rappas M, Ali AAE, Bennett KA, Brown JD, Bucknell SJ, Congreve M, Cooke RM, Cseke G, de Graaf C, Doré AS, Errey JC, Jazayeri A, Marshall FH, Mason JS, Mould R, Patel JC, Tehan BG, Weir M, & Christopher JA (2020). Comparison of Orexin 1 and Orexin 2 Ligand Binding Modes Using X-ray Crystallography and Computational Analysis.
J Med Chem 63 4:1528-1543. PubMed Id: 31860301. doi:10.1021/acs.jmedchem.9b01787. |
||
OX1 orexin receptor with bound subtype-selective antagonist: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.50 Å
|
Hellmann et al. (2020).
Hellmann J, Drabek M, Yin J, Gunera J, Pröll T, Kraus F, Langmead CJ, Hübner H, Weikert D, Kolb P, Rosenbaum DM, & Gmeiner P (2020). Structure-based development of a subtype-selective orexin 1 receptor antagonist.
Proc Natl Acad Sci USA 117 30:18059-18067. PubMed Id: 32669442. doi:10.1073/pnas.2002704117. |
||
OX2 orexin receptor with bound suvorexant: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.50 Å
4S0V supersedes 4RNB. Engineered protein: Pyrococcus abysii glycogen synthase replaced 39 residues of the 3rd intracellular loop. |
Yin et al. (2015).
Yin J, Mobarec JC, Kolb P, & Rosenbaum DM (2015). Crystal structure of the human OX2 orexin receptor bound to the insomnia drug suvorexant.
Nature 519 7542:247-250. PubMed Id: 25533960. doi:10.1038/nature14035. |
||
OX2 orexin receptor with bound antagonist EMPA: Homo sapiens E Eukaryota (expressed in sf9 cells), 1.96 Å
Engineered protein: Pyrococcus abysii glycogen synthase replaced 39 residues of the 3rd intracellular loop. XFEL structure, 2.3 Å: 5WS3 |
Suno et al. (2018).
Suno R, Kimura KT, Nakane T, Yamashita K, Wang J, Fujiwara T, Yamanaka Y, Im D, Horita S, Tsujimoto H, Tawaramoto MS, Hirokawa T, Nango E, Tono K, Kameshima T, Hatsui T, Joti Y, Yabashi M, Shimamoto K, Yamamoto M, Rosenbaum DM, Iwata S, Shimamura T, & Kobayashi T (2018). Crystal Structures of Human Orexin 2 Receptor Bound to the Subtype-Selective Antagonist EMPA.
Structure 26 :7-19.e5. PubMed Id: 29225076. doi:10.1016/j.str.2017.11.005. |
||
Rappas et al. (2020).
Rappas M, Ali AAE, Bennett KA, Brown JD, Bucknell SJ, Congreve M, Cooke RM, Cseke G, de Graaf C, Doré AS, Errey JC, Jazayeri A, Marshall FH, Mason JS, Mould R, Patel JC, Tehan BG, Weir M, & Christopher JA (2020). Comparison of Orexin 1 and Orexin 2 Ligand Binding Modes Using X-ray Crystallography and Computational Analysis.
J Med Chem 63 4:1528-1543. PubMed Id: 31860301. doi:10.1021/acs.jmedchem.9b01787. |
|||
OX2 orexin receptor in complex with G protein and natural peptide-agonist Orexin B (OxB): Homo sapiens E Eukaryota (expressed in Trichoplusia ni), 3.20 Å
cryo-EM structure Complex with G Protein and Small-Molecule Agonist Compound 1, 3.00 Å: 7L1V |
Hong et al. (2021).
Hong C, Byrne NJ, Zamlynny B, Tummala S, Xiao L, Shipman JM, Partridge AT, Minnick C, Breslin MJ, Rudd MT, Stachel SJ, Rada VL, Kern JC, Armacost KA, Hollingsworth SA, O'Brien JA, Hall DL, McDonald TP, Strickland C, Brooun A, Soisson SM, & Hollenstein K (2021). Structures of active-state orexin receptor 2 rationalize peptide and small-molecule agonist recognition and receptor activation.
Nat Commun 12 1:815. PubMed Id: 33547286. doi:10.1038/s41467-021-21087-6. |
||
OX2 orexin receptor in complex with Gi protein and TAK-925: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.17 Å
cryo-EM structure in complex with Gq protein and TAK-925, 3.30 Å: 7SR8 |
Yin et al. (2022).
Yin J, Kang Y, McGrath AP, Chapman K, Sjodt M, Kimura E, Okabe A, Koike T, Miyanohana Y, Shimizu Y, Rallabandi R, Lian P, Bai X, Flinspach M, De Brabander JK, & Rosenbaum DM (2022). Molecular mechanism of the wake-promoting agent TAK-925.
Nat Commun 13 1:2902. PubMed Id: 35614071. doi:10.1038/s41467-022-30601-3. |
||
OX2 orexin receptor with bound lemborexant: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.89 Å
|
Asada et al. (2022).
Asada H, Im D, Hotta Y, Yasuda S, Murata T, Suno R, & Iwata S (2022). Molecular basis for anti-insomnia drug design from structure of lemborexant-bound orexin 2 receptor.
Structure 30 12:1582-1589.e4. PubMed Id: 36417909. doi:10.1016/j.str.2022.11.001. |
||
C3a anaphylatoxin chemotactic receptor (C3aR) - Go complex, apo form; 200kV Glacios: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.19 Å
cryo-EM structure 300 kV Titan Krios, 3.26 Å: 8I9S with bound C3a (composite map), 3.18 Å: 8I9L with bound decapeptide EP54, 2.88 Å: 8I95 with bound pentadecameric peptide EP141, 3.10 Å: 8J6D Gq complex with bound decapeptide EP54, 3.57 Å: 8I9A |
Yadav et al. (2023).
Yadav MK, Maharana J, Yadav R, Saha S, Sarma P, Soni C, Singh V, Saha S, Ganguly M, Li XX, Mohapatra S, Mishra S, Khant HA, Chami M, Woodruff TM, Banerjee R, Shukla AK, & Gati C (2023). Molecular basis of anaphylatoxin binding, activation, and signaling bias at complement receptors.
Cell 186 22:4956-4973.e21. PubMed Id: 37852260. doi:10.1016/j.cell.2023.09.020. |
||
C5a anaphylatoxin chemotactic receptor 1 (C5aR) in complex with NDT9513727: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.7 Å
Thermostabilized protein. |
Robertson et al. (2018).
Robertson N, Rappas M, Doré AS, Brown J, Bottegoni G, Koglin M, Cansfield J, Jazayeri A, Cooke RM, & Marshall FH (2018). Structure of the complement C5a receptor bound to the extra-helical antagonist NDT9513727.
Nature 553 :111-114. PubMed Id: 29300009. doi:10.1038/nature25025. |
||
C5a anaphylatoxin chemotactic receptor 1 (C5aR) in complex with orthosteric antagonist PMX53 and allosteric antagonist NDT9513727: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 2.90 Å
in complex with orthosteric antagonist PMX53 and allosteric antagonist avacopan, 2.20 Å: 6C1R Engineered protein. N-terminal BRIL fusion. |
Liu et al. (2018).
Liu H, Kim HR, Deepak RNVK, Wang L, Chung KY, Fan H, Wei Z, & Zhang C (2018). Orthosteric and allosteric action of the C5a receptor antagonists.
Nat Struct Mol Biol 25 6:472-481. PubMed Id: 29867214. doi:10.1038/s41594-018-0067-z. |
||
Feng et al. (2023).
Feng Y, Zhao C, Deng Y, Wang H, Ma L, Liu S, Tian X, Wang B, Bin Y, Chen P, Yan W, Fu P, & Shao Z (2023). Mechanism of activation and biased signaling in complement receptor C5aR1.
Cell Res 33 4:312-324. PubMed Id: 36806352. doi:10.1038/s41422-023-00779-2. |
|||
C5a anaphylatoxin chemotactic receptor 1 (C5aR1) - Go complex with bound C5a (composite map): Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.21 Å
cryo-EM structure with bound C5a (desArg form), 3.31 Å: 8JZZ |
Yadav et al. (2023).
Yadav MK, Maharana J, Yadav R, Saha S, Sarma P, Soni C, Singh V, Saha S, Ganguly M, Li XX, Mohapatra S, Mishra S, Khant HA, Chami M, Woodruff TM, Banerjee R, Shukla AK, & Gati C (2023). Molecular basis of anaphylatoxin binding, activation, and signaling bias at complement receptors.
Cell 186 22:4956-4973.e21. PubMed Id: 37852260. doi:10.1016/j.cell.2023.09.020. |
||
C5a anaphylatoxin chemotactic receptor 1 (C5aR1) - Go complex with bound C5a: Mus musculus E Eukaryota (expressed in S. frugiperda), 3.89 Å
cryo-EM structure with bound C5a-pep, 3.39 Å: 8HPT |
Yadav et al. (2023).
Yadav MK, Maharana J, Yadav R, Saha S, Sarma P, Soni C, Singh V, Saha S, Ganguly M, Li XX, Mohapatra S, Mishra S, Khant HA, Chami M, Woodruff TM, Banerjee R, Shukla AK, & Gati C (2023). Molecular basis of anaphylatoxin binding, activation, and signaling bias at complement receptors.
Cell 186 22:4956-4973.e21. PubMed Id: 37852260. doi:10.1016/j.cell.2023.09.020. |
||
Toyoda et al. (2023).
Toyoda Y, Zhu A, Kong F, Shan S, Zhao J, Wang N, Sun X, Zhang L, Yan C, Kobilka BK, & Liu X (2023). Structural basis of α1A-adrenergic receptor activation and recognition by an extracellular nanobody.
Nat Commun 14 1:3655. PubMed Id: 37339967. doi:10.1038/s41467-023-39310-x. |
|||
α1B-adrenergic receptor in complex with inverse agonist (+)-cyclazosin: Homo sapiens E Eukaryota (expressed in E. coli), 2.87 Å
|
Deluigi et al. (2022).
Deluigi M, Morstein L, Schuster M, Klenk C, Merklinger L, Cridge RR, de Zhang LA, Klipp A, Vacca S, Vaid TM, Mittl PRE, Egloff P, Eberle SA, Zerbe O, Chalmers DK, Scott DJ, & Plückthun A (2022). Crystal structure of the α1B-adrenergic receptor reveals molecular determinants of selective ligand recognition.
Nat Commun 13 1:382. PubMed Id: 35046410. doi:10.1038/s41467-021-27911-3. |
||
α2A adrenergic receptor in complex with an antagonist RSC: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.7 Å
Engineered protein. b562RIL inserted in 3rd intracellular loop in complex with a partial agonist, 3.2 Å: 6KUY |
Qu et al. (2019).
Qu L, Zhou Q, Xu Y, Guo Y, Chen X, Yao D, Han GW, Liu ZJ, Stevens RC, Zhong G, Wu D, & Zhao S (2019). Structural Basis of the Diversity of Adrenergic Receptors.
Cell Rep 29 10:2929-2935.e4. PubMed Id: 31801060. doi:10.1016/j.celrep.2019.10.088. |
||
α2A adrenergic receptor - GoA complex with bound biased agonist 9087: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.47 Å
cryo-EM structure with bound biased agonist 4622, 3.40 Å: 7W7E |
Fink et al. (2022).
Fink EA, Xu J, Hübner H, Braz JM, Seemann P, Avet C, Craik V, Weikert D, Schmidt MF, Webb CM, Tolmachova NA, Moroz YS, Huang XP, Kalyanaraman C, Gahbauer S, Chen G, Liu Z, Jacobson MP, Irwin JJ, Bouvier M, Du Y, Shoichet BK, Basbaum AI, & Gmeiner P (2022). Structure-based discovery of nonopioid analgesics acting through the α2A-adrenergic receptor.
Science 377 6614:abn7065. PubMed Id: 36173843. doi:10.1126/science.abn7065. |
||
α2A adrenergic receptor - Gi complex with bound epinephrine: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.80 Å
cryo-EM structure with bound dexmedetomidine, 3.20 Å: 9CBM |
Lou et al. (2024).
Lou JS, Su M, Wang J, Do HN, Miao Y, & Huang XY (2024). Distinct binding conformations of epinephrine with α- and β-adrenergic receptors.
Exp Mol Med 56 9:1952-1966. PubMed Id: 39218975. doi:10.1038/s12276-024-01296-x. |
||
α2B adrenergic receptor in complex with GoA: Homo sapiens E Eukaryota (expressed in Sf9 cells), 2.90 Å
cryo-EM structure in complex with Gi1, 4.1 Å: 6K42 |
Yuan et al. (2020).
Yuan D, Liu Z, Kaindl J, Maeda S, Zhao J, Sun X, Xu J, Gmeiner P, Wang HW, & Kobilka BK (2020). Activation of the α2B adrenoceptor by the sedative sympatholytic dexmedetomidine.
Nat Chem Biol 16 5:507-512. PubMed Id: 32152538. doi:10.1038/s41589-020-0492-2. |
||
α2C adrenergic receptor: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.8 Å
Engineered protein. Intracellular loop 3 residues 242-371 were replaced by a PGS fusion protein |
Chen et al. (2019).
Chen X, Xu Y, Qu L, Wu L, Han GW, Guo Y, Wu Y, Zhou Q, Sun Q, Chu C, Yang J, Yang L, Wang Q, Yuan S, Wang L, Hu T, Tao H, Sun Y, Song Y, Hu L, Liu ZJ, Stevens RC, Zhao S, Wu D, & Zhong G (2019). Molecular Mechanism for Ligand Recognition and Subtype Selectivity of ?2C Adrenergic Receptor.
Cell Rep 29 10:2936-2943.e4. PubMed Id: 31801061. doi:10.1016/j.celrep.2019.10.112. |
||
β1 adrenergic receptor (engineered): Meleagris gallopavo (turkey) E Eukaryota (expressed in Trichoplusia ni), 2.7 Å
|
Warne et al. (2008).
Warne T, Serrano-Vega MJ, Baker JG, Moukhametzianov R, Edwards PC, Henderson R, Leslie AG, Tate CG, & Schertler GF (2008). Structure of a β1-adrenergic G-protein-coupled receptor.
Nature 454 :486-491. PubMed Id: 18594507. |
||
Warne et al. (2011).
Warne T, Moukhametzianov R, Baker JG, Nehmé R, Edwards PC, Leslie AG, Schertler GF, & Tate CG (2011). The structural basis for agonist and partial agonist action on a β1-adrenergic G-protein-coupled receptor.
Nature 469 :241-244. PubMed Id: 21228877. |
|||
Moukhametzianov et al. (2011).
Moukhametzianov R, Warne T, Edwards PC, Serrano-Vega MJ, Leslie AG, Tate CG, & Schertler GF (2011). Two distinct conformations of helix 6 observed in antagonist-bound structures of a β1-adrenergic receptor
Proc Natl Acad Sci USA 108 :8228-8232. PubMed Id: 21540331. doi:10.1073/pnas.1100185108. |
|||
β1 adrenergic receptor (engineered) with bound carvedilol: Meleagris gallopavo (turkey) E Eukaryota (expressed in Trichoplusia ni), 2.30 Å
With bound bucindolol, 3.20 Å:4AMI |
Warne et al. (2012).
Warne T, Edwards PC, Leslie AG, & Tate CG (2012). Crystal Structures of a Stabilized ?1-Adrenoceptor Bound to the Biased Agonists Bucindolol and Carvedilol.
Structure 20 :841-849. PubMed Id: 22579251. doi:10.1016/j.str.2012.03.014. |
||
β1 adrenergic receptor oligomer, basal state: Meleagris gallopavo E Eukaryota (expressed in Trichoplusia ni), 3.50 Å
|
Huang et al. (2013).
Huang J, Chen S, Zhang JJ, & Huang XY (2013). Crystal structure of oligomeric β1-adrenergic G protein-coupled receptors in ligand-free basal state.
Nature Struc Mol Biol 20 :419-425. PubMed Id: 23435379. doi:10.1038/nsmb.2504. |
||
Warne et al. (2019).
Warne T, Edwards PC, Doré AS, Leslie AGW, & Tate CG (2019). Molecular basis for high-affinity agonist binding in GPCRs.
Science 364 6442:775-778. PubMed Id: 31072904. doi:10.1126/science.aau5595. |
|||
β1 adrenoceptor with bound agonist formoterol coupled to arrestin-2 in lipid nanodisc: Meleagris gallopavo E Eukaryota (expressed in Trichoplusia ni), 3.30 Å
cryo-EM structure Fomoterol-bound trx-β1 (x-ray), 2.70 Å: 6IBL |
Lee et al. (2020).
Lee Y, Warne T, Nehmé R, Pandey S, Dwivedi-Agnihotri H, Chaturvedi M, Edwards PC, García-Nafría J, Leslie AGW, Shukla AK, & Tate CG (2020). Molecular basis of β-arrestin coupling to formoterol-bound β1-adrenoceptor.
Nature 583 7818:862-866. PubMed Id: 32555462. doi:10.1038/s41586-020-2419-1. |
||
β1 adrenergic receptor-Gs-isoproterenol complex: Meleagris gallopavo E Eukaryota (expressed in Spodoptera frugiperda), 2.60 Å
cryo-EM structure engineered protein. T4 lysozyme fused to N terminus. |
Su et al. (2020).
Su M, Zhu L, Zhang Y, Paknejad N, Dey R, Huang J, Lee MY, Williams D, Jordan KD, Eng ET, Ernst OP, Meyerson JR, Hite RK, Walz T, Liu W, & Huang XY (2020). Structural Basis of the Activation of Heterotrimeric Gs-Protein by Isoproterenol-Bound β1-Adrenergic Receptor.
Mol Cell 80 1:59-71.e4. PubMed Id: 32818430. doi:10.1016/j.molcel.2020.08.001. |
||
β1 adrenergic receptor with bound isoproterenol in complex with heterotrimeric Gi protein: Meleagris gallopavo E Eukaryota (expressed in Spodoptera frugiperda), 2.96 Å
cryo-EM structure in complex with heterotrimeric Gi/s protein, 3.86 Å 7S0G |
Alegre et al. (2021).
Alegre KO, Paknejad N, Su M, Lou JS, Huang J, Jordan KD, Eng ET, Meyerson JR, Hite RK, & Huang XY (2021). Structural basis and mechanism of activation of two different families of G proteins by the same GPCR.
Nat Struct Mol Biol 28 11:936-944. PubMed Id: 34759376. doi:10.1038/s41594-021-00679-2. |
||
Xu et al. (2020).
Xu X, Kaindl J, Clark MJ, Hübner H, Hirata K, Sunahara RK, Gmeiner P, Kobilka BK, & Liu X (2020). Binding pathway determines norepinephrine selectivity for the human β1AR over β2AR.
Cell Res . PubMed Id: 33093660. doi:10.1038/s41422-020-00424-2. |
|||
β2 adrenergic receptor: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.4/3.7 Å
from β2AR365-Fab5 complex. From β2AR24/365-Fab5 complex: 2R4S |
Rasmussen et al. (2007).
Rasmussen SG, Choi HJ, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, Burghammer M, Ratnala VR, Sanishvili R, Fischetti RF, Schertler GF, Weis WI, & Kobilka BK (2007). Crystal structure of the human β2adrenergic G-protein-coupled receptor.
Nature 450 :383-387. PubMed Id: 17952055. |
||
Methylated β2 adrenergic receptor: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.4 Å
from β2AR365-Fab5 complex. |
Bokoch et al. (2010).
Bokoch MP, Zou Y, Rasmussen SG, Liu CW, Nygaard R, Rosenbaum DM, Fung JJ, Choi HJ, Thian FS, Kobilka TS, Puglisi JD, Weis WI, Pardo L, Prosser RS, Mueller L, & Kobilka BK (2010). Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor.
Nature 463 :108-112. PubMed Id: 20054398. |
||
β2 adrenergic receptor (engineered): Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.4 Å
T4 lysozyme replaces third intracellular loop. Reveals close association with cholesterol. |
Cherezov et al. (2007).
Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, & Stevens RC (2007). High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor.
Science 318 :1258-1265. PubMed Id: 17962520. |
||
β2 adrenergic receptor (engineered): Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.8 Å
T4 lysozyme replaces third intracellular loop. Reveals specific cholesterol binding site. |
Hanson et al. (2008).
Hanson MA, Cherezov V, Griffith MT, Roth CB, Jaakola VP, Chien EY, Velasquez J, Kuhn P, & Stevens RC (2008). A Specific Cholesterol Binding Site Is Established by the 2.8 Å Structure of the Human β2-Adrenergic Receptor.
Structure 16 :897-905. PubMed Id: 18547522. |
||
Wacker et al. (2010).
Wacker D, Fenalti G, Brown MA, Katritch V, Abagyan R, Cherezov V, & Stevens RC (2010). Conserved binding mode of human β2 adrenergic receptor inverse agonists and antagonist revealed by X-ray crystallography.
J Am Chem Soc 132 :11443-11445. PubMed Id: 20669948. doi:10.1021/ja105108q. |
|||
β2 adrenergic receptor (engineered) in nanobody-stabilized active state: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.50 Å
T4 lysozyme replaces third intracellular loop. The nanobody Nb80 is an intact antigen-binding domain of a camelid heavy-chain antibody. |
Rasmussen et al. (2011).
Rasmussen SG, Choi HJ, Fung JJ, Pardon E, Casarosa P, Chae PS, Devree BT, Rosenbaum DM, Thian FS, Kobilka TS, Schnapp A, Konetzki I, Sunahara RK, Gellman SH, Pautsch A, Steyaert J, Weis WI, & Kobilka BK (2011). Crystal structure of the human β2adrenergic G-protein-coupled receptor.
Nature 469 :175-180. PubMed Id: 21228869. |
||
β2 adrenergic receptor (engineered) with irreversibly-bound agonist: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.50 Å
T4 lysozyme replaces third intracellular loop. The agonist is covalently linked to the receptor by a disulphide bond. |
Rosenbaum et al. (2011).
Rosenbaum DM, Zhang C, Lyons JA, Holl R, Aragao D, Arlow DH, Rasmussen SG, Choi HJ, Devree BT, Sunahara RK, Chae PS, Gellman SH, Dror RO, Shaw DE, Weis WI, Caffrey M, Gmeiner P, Kobilka BK (2011). Structure and function of an irreversible agonist-β2adrenoceptor complex.
Nature 469 :236-240. PubMed Id: 21228876. |
||
β2 adrenergic receptor-Gs protein complex: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.20 Å
The receptor is engineered; T4 lysozyme at the N-terminus. Nanobody-stabilized active state. |
Rasmussen et al. (2011).
Rasmussen SG, Devree BT, Zou Y, Kruse AC, Chung KY, Kobilka TS, Thian FS, Chae PS, Pardon E, Calinski D, Mathiesen JM, Shah ST, Lyons JA, Caffrey M, Gellman SH, Steyaert J, Skiniotis G, Weis WI, Sunahara RK, & Kobilka BK (2011). Crystal structure of the β2 adrenergic receptor-Gs protein complex.
Nature 477 :549-555. PubMed Id: 21772288. doi:10.1038/nature10361. |
||
β2 adrenergic receptor (engineered): Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.99 Å
T4 lysozyme fused at N-terminal. |
Zou et al. (2012).
Zou Y, Weis WI, & Kobilka BK (2012). N-terminal T4 lysozyme fusion facilitates crystallization of a G protein coupled receptor.
PLoS ONE 7 10:e46039. PubMed Id: 23056231. doi:10.1371/journal.pone.0046039. |
||
β2 adrenergic receptor with a bound positive allosteric modulator: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.2 Å
engineered protein; T4 lysozyme fused at N-terminal |
Liu et al. (2019).
Liu X, Masoudi A, Kahsai AW, Huang LY, Pani B, Staus DP, Shim PJ, Hirata K, Simhal RK, Schwalb AM, Rambarat PK, Ahn S, Lefkowitz RJ, & Kobilka B (2019). Mechanism of β2 adrenergic receptor regulation by an intracellular positive allosteric modulator.
Science 364 6447:1283-1287. PubMed Id: 31249059. doi:10.1126/science.aaw8981. |
||
β2 adrenergic receptor fused to a Gs peptide: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.7 Å
engineered protein:T4 lysozyme & Gs inserted in intracellular loop 3 GDP-bound Gs heterotrimer, 2.8 Å: 6EG8 |
Liu et al. (2019).
Liu X, Xu X, Hilger D, Aschauer P, Tiemann JKS, Du Y, Liu H, Hirata K, Sun X, Guixà-González R, Mathiesen JM, Hildebrand PW, & Kobilka BK (2019). Structural Insights into the Process of GPCR-G Protein Complex Formation.
Cell 177 5:1243-1251.e12. PubMed Id: 31080070. doi:10.1016/j.cell.2019.04.021. |
||
β2 adrenergic receptor with bound alprenolol: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.8 Å
XFEL structures using transient ligand exchange starting with timolol or alprenolol. with bound carazolol, 3.4 Å: 6PS0 with bound timolol, 3.2 Å: 6PS1 with bound alprenolol, 2.4 Å: 6SP2 with bound carvedilol, 2.5 Å: 6PS3 with bound ICI-118551, 2.6 Å: 6PS4 with bound propranolol, 2.9 Å: 6PS5 with bound timolol, 2.7 Å: 6PS6 |
Ishchenko et al. (2019).
Ishchenko A, Stauch B, Han GW, Batyuk A, Shiriaeva A, Li C, Zatsepin N, Weierstall U, Liu W, Nango E, Nakane T, Tanaka R, Tono K, Joti Y, Iwata S, Moraes I, Gati C, & Cherezov V (2019). Toward G protein-coupled receptor structure-based drug design using X-ray lasers.
IUCrJ 6 :1106-1119. PubMed Id: 31709066. doi:10.1107/S2052252519013137. |
||
β2V2R-Gs protein subcomplex of a GPCR-G protein-beta-arrestin mega-complex: Homo sapiens E Eukaryota (expressed in sf-9 cells), 3.8 Å
cryo-EM structure Stabilized beta-arrestin 1-V2T subcomplex, 4 Å: 6NI2 |
Nguyen et al. (2019).
Nguyen AH, Thomsen ARB, Cahill TJ 3rd, Huang R, Huang LY, Marcink T, Clarke OB, Heissel S, Masoudi A, Ben-Hail D, Samaan F, Dandey VP, Tan YZ, Hong C, Mahoney JP, Triest S, Little J 4th, Chen X, Sunahara R, Steyaert J, Molina H, Yu Z, des Georges A, & Lefkowitz RJ (2019). Structure of an endosomal signaling GPCR-G protein-?-arrestin megacomplex.
Nat Struct Mol Biol 26 12:1123-1131. PubMed Id: 31740855. doi:10.1038/s41594-019-0330-y. |
||
β2 adrenergic receptor with bound allosteric modulator AS408: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.10 Å
engineered protein: T4 lysozyme replaces third intracellular loop |
Liu et al. (2020).
Liu X, Kaindl J, Korczynska M, Stößel A, Dengler D, Stanek M, Hübner H, Clark MJ, Mahoney J, Matt RA, Xu X, Hirata K, Shoichet BK, Sunahara RK, Kobilka BK, & Gmeiner P (2020). An allosteric modulator binds to a conformational hub in the β2 adrenergic receptor.
Nat Chem Biol 16 7:749-755. PubMed Id: 32483378. doi:10.1038/s41589-020-0549-2. |
||
β2 adrenergic receptor with bound formoterol and Gs protein: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.82 Å
cryo-EM structure |
Zhang et al. (2020).
Zhang Y, Yang F, Ling S, Lv P, Zhou Y, Fang W, Sun W, Zhang L, Shi P, & Tian C (2020). Single-particle cryo-EM structural studies of the β2AR-Gs complex bound with a full agonist formoterol.
Cell Discov 6 . PubMed Id: 32655881. doi:10.1038/s41421-020-0176-9. |
||
β2 adrenergic receptor with bound carazolol and Cmpd-15: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.7 Å
Engineered protein. T4 lysozyme replaces most of 3rd intracellular loop. |
Liu et al. (2017).
Liu X, Ahn S, Kahsai AW, Meng KC, Latorraca NR, Pani B, Venkatakrishnan AJ, Masoudi A, Weis WI, Dror RO, Chen X, Lefkowitz RJ, & Kobilka BK (2017). Mechanism of intracellular allosteric β2AR antagonist revealed by X-ray crystal structure.
Nature 548 :480-484. PubMed Id: 28813418. doi:10.1038/nature23652. |
||
β2 adrenergic receptor in full agonist-bound state: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), NMR structure
|
Imai et al. (2020).
Imai S, Yokomizo T, Kofuku Y, Shiraishi Y, Ueda T, & Shimada I (2020). Structural equilibrium underlying ligand-dependent activation of ?2-adrenoreceptor.
Nat Chem Biol 16 4:430-439. PubMed Id: 31959965. doi:10.1038/s41589-019-0457-5. |
||
Guo et al. (2024).
Guo Q, He B, Zhong Y, Jiao H, Ren Y, Wang Q, Ge Q, Gao Y, Liu X, Du Y, Hu H, & Tao Y (2024). A method for structure determination of GPCRs in various states.
Nat Chem Biol 20 1:74-82. PubMed Id: 37580554. doi:10.1038/s41589-023-01389-0. |
|||
β2 adrenergic receptor - Gs complex with bound partial agonist salbutamol: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.26 Å
cryo-EM structure with bound full agonist isoprenaline, 3.80 Å: 7DHR |
Yang et al. (2021).
Yang F, Ling S, Zhou Y, Zhang Y, Lv P, Liu S, Fang W, Sun W, Hu LA, Zhang L, Shi P, & Tian C (2021). Different conformational responses of the β2-adrenergic receptor-Gs complex upon binding of the partial agonist salbutamol or the full agonist isoprenaline.
Natl Sci Rev 8 9:nwaa284. PubMed Id: 39040950. doi:10.1093/nsr/nwaa284. |
||
β3 adrenergic receptor: Canis lupus familiaris E Eukaryota (expressed in Spodoptera frugiperda), 3.16 Å
cryo-EM structure |
Nagiri et al. (2021).
Nagiri C, Kobayashi K, Tomita A, Kato M, Kobayashi K, Yamashita K, Nishizawa T, Inoue A, Shihoya W, & Nureki O (2021). Cryo-EM structure of the β3-adrenergic receptor reveals the molecular basis of subtype selectivity.
Mol Cell 81 15:3205-3215. PubMed Id: 34314699. doi:10.1016/j.molcel.2021.06.024. |
||
A1 adenosine receptor: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.2 Å
Engineered protein. b562 (BRIL) inserted into the third intracellular loop between residues 211 & 220. |
Glukhova et al. (2017).
Glukhova A, Thal DM, Nguyen AT, Vecchio EA, Jörg M, Scammells PJ, May LT, Sexton PM, & Christopoulos A (2017). Structure of the Adenosine A1 Receptor Reveals the Basis for Subtype Selectivity.
Cell 168 :867-877.e13. PubMed Id: 28235198. doi:10.1016/j.cell.2017.01.042. |
||
A1 adenosine receptor in complex with Gi2: Homo sapiens E Eukaryota (expressed in Trichoplusia ni), 3.6 Å
cryo-EM structure |
Draper-Joyce et al. (2018).
Draper-Joyce CJ, Khoshouei M, Thal DM, Liang YL, Nguyen ATN, Furness SGB, Venugopal H, Baltos JA, Plitzko JM, Danev R, Baumeister W, May LT, Wootten D, Sexton PM, Glukhova A, & Christopoulos A (2018). Structure of the adenosine-bound human adenosine A1 receptor-Gi complex.
Nature 558 7711:559-563. PubMed Id: 29925945. doi:10.1038/s41586-018-0236-6. |
||
A1 adenosine receptor in complex with PSB36: Homo sapiens E Eukaryota (expressed in Trichoplusia ni), 3.3 Å
Engineered protein: Apocytochrome b562 replaces loop 3 of wild-type protein |
Cheng et al. (2017).
Cheng RKY, Segala E, Robertson N, Deflorian F, Doré AS, Errey JC, Fiez-Vandal C, Marshall FH, & Cooke RM (2017). Structures of Human A1 and A2A Adenosine Receptors with Xanthines Reveal Determinants of Selectivity.
Structure 25 :1275-1285.e4. PubMed Id: 28712806. doi:10.1016/j.str.2017.06.012. |
||
A1 adenosine receptor - Gi2-protein complex with endogenous agonist and an allosteric ligand: Homo sapiens E Eukaryota (expressed in Trichoplusia ni), 3.20 Å
cryo-EM structure bound to its endogenous agonist, 3.30 Å 7LD4 |
Draper-Joyce et al. (2021).
Draper-Joyce CJ, Bhola R, Wang J, Bhattarai A, Nguyen ATN, Cowie-Kent I, O'Sullivan K, Chia LY, Venugopal H, Valant C, Thal DM, Wootten D, Panel N, Carlsson J, Christie MJ, White PJ, Scammells P, May LT, Sexton PM, Danev R, Miao Y, Glukhova A, Imlach WL, & Christopoulos A (2021). Positive allosteric mechanisms of adenosine A1 receptor-mediated analgesia.
Nature 597 7877:571-576. PubMed Id: 34497422. doi:10.1038/s41586-021-03897-2. |
||
A2A adenosine receptor: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.6 Å
In complex with a high-affinity subtype-selective antagonist ZM241385. Engineered protein: T4 lysozyme inserted between TM helices V and VI. |
Jaakola et al. (2008).
Jaakola VP, Griffith MT, Hanson MA, Cherezov V, Chien EY, Lane JR, Ijzerman AP, & Stevens RC (2008). The 2.6 Angstrom Crystal Structure of a Human A2AAdenosine Receptor Bound to an Antagonist.
Science 322 :1211-1217. PubMed Id: 18832607. |
||
A2A adenosine receptor with bound agonist (UK-432097): Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.71 Å
Reveals structural changes in helices III, V, & VI relative to inactive, antagonist-bound form. Engineered protein: T4 lysozyme inserted between TM helices V and VI. |
Xu et al. (2011).
Xu F, Wu H, Katritch V, Han GW, Jacobson KA, Gao ZG, Cherezov V, & Stevens RC (2011). Structure of an agonist-bound human A2A adenosine receptor
Science 332 :322-327. PubMed Id: 21393508. doi:10.1126/science.1202793. |
||
A2A adenosine receptor (engineered) with bound adenosine: Homo sapiens E Eukaryota (expressed in Trichoplusia ni), 3.00 Å
With synthetic agonist NECA, 2.6 Å:2YDV |
Lebon et al. (2011).
Lebon G, Warne T, Edwards PC, Bennett K, Langmead CJ, Leslie AG, & Tate CG (2011). Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation
Nature 474 :521-525. PubMed Id: 21593763. doi:10.1038/nature10136. |
||
Doré et al. (2011).
Doré AS, Robertson N, Errey JC, Ng I, Hollenstein K, Tehan B, Hurrell E, Bennett K, Congreve M, Magnani F, Tate CG, Weir M, & Marshall FH (2011). Structure of the Adenosine A2A Receptor in Complex with ZM241385 and the Xanthines XAC and Caffeine.
Structure 19 :1283-1293. PubMed Id: 21885291. doi:10.1016/j.str.2011.06.014. |
|||
A2A adenosine receptor in complex inverse-agonist antibody: Homo sapiens E Eukaryota (expressed in Pichia pastoris), 2.70 Å
The structure was determined with bound mouse Fab2838 in the presence of the antagonist ZM241385. High-occupancy ZM241385 structure, 3.10 Å: 3VGA |
Hino et al. (2012).
Hino T, Arakawa T, Iwanari H, Yurugi-Kobayashi T, Ikeda-Suno C, Nakada-Nakura Y, Kusano-Arai O, Weyand S, Shimamura T, Nomura N, Cameron AD, Kobayashi T, Hamakubo T, Iwata S, & Murata T (2012). G-protein-coupled receptor inactivation by an allosteric inverse-agonist antibody.
Nature 482 :237-240. PubMed Id: 22286059. doi:10.1038/nature10750. |
||
A2A adenosine receptor in complex with ZM241385: Homo sapiens E Eukaryota (expressed in S. frugiperda), 1.80 Å
Engineered protein: Apocytochrome b562 replaces loop 3 of wild-type protein. Structure reveals stabilizing cholesterol molecules, 23 ordered lipids, and 57 ordered waters. |
Liu et al. (2012).
Liu W, Chun E, Thompson AA, Chubukov P, Xu F, Katritch V, Han GW, Roth CB, Heitman LH, IJzerman AP, Cherezov V, & Stevens RC (2012). Structural basis for allosteric regulation of GPCRs by sodium ions.
Science 337 :232-236. PubMed Id: 22798613. doi:10.1126/science.1219218. |
||
A2A adenosine receptor (engineered) with bound CGS21680 (P21): Homo sapiens E Eukaryota (expressed in Trichoplusia ni), 2.60 Å
P212121 space group, 2.60 Å: 4UG2 |
Lebon et al. (2015).
Lebon G, Edwards PC, Leslie AG, & Tate CG (2015). Molecular Determinants of CGS21680 Binding to the Human Adenosine A2A Receptor.
Mol Pharmacol 87 :907-915. PubMed Id: 25762024. doi:10.1124/mol.114.097360. |
||
A2A adenosine receptor with bound engineered G protein: Homo sapiens E Eukaryota (expressed in Trichoplusia ni), 3.4 Å
|
Carpenter et al. (2016).
Carpenter B, Nehmé R, Warne T, Leslie AG, & Tate CG (2016). Structure of the adenosine A2A receptor bound to an engineered G protein.
Nature 536 :104-107. PubMed Id: 27462812. doi:10.1038/nature18966. |
||
Weinert et al. (2017).
Weinert T, Olieric N, Cheng R, Brünle S, James D, Ozerov D, Gashi D, Vera L, Marsh M, Jaeger K, Dworkowski F, Panepucci E, Basu S, Skopintsev P, Doré AS, Geng T, Cooke RM, Liang M, Prota AE, Panneels V, Nogly P, Ermler U, Schertler G, Hennig M, Steinmetz MO, Wang M, & Standfuss J (2017). Serial millisecond crystallography for routine room-temperature structure determination at synchrotrons.
Nat Commun 8 1:542. PubMed Id: 28912485. doi:10.1038/s41467-017-00630-4. |
|||
A2A adenosine receptor with bound miniGs heterotrimer: Homo sapiens E Eukaryota (expressed in Trichoplusia ni), 4.11 Å
cryo-EM structure |
García-Nafría et al. (2018).
García-Nafría J, Lee Y, Bai X, Carpenter B, & Tate CG (2018). Cryo-EM structure of the adenosine A2A receptor coupled to an engineered heterotrimeric G protein.
Elife 7 . PubMed Id: 29726815. doi:10.7554/eLife.35946. |
||
A2A adenosine receptor with bound ZM241385: Homo sapiens E Eukaryota (expressed in S. frugiperda), 1.85 Å
XFEL structure using transient ligand exchange starting with LUF5843. See also 6PRZ |
Ishchenko et al. (2019).
Ishchenko A, Stauch B, Han GW, Batyuk A, Shiriaeva A, Li C, Zatsepin N, Weierstall U, Liu W, Nango E, Nakane T, Tanaka R, Tono K, Joti Y, Iwata S, Moraes I, Gati C, & Cherezov V (2019). Toward G protein-coupled receptor structure-based drug design using X-ray lasers.
IUCrJ 6 :1106-1119. PubMed Id: 31709066. doi:10.1107/S2052252519013137. |
||
A2A adenosine receptor in complex with ZM241385: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.25 Å
Structure obtained from SFX experiments under atmospheric pressure. |
Shimazu et al. (2019).
Shimazu Y, Tono K, Tanaka T, Yamanaka Y, Nakane T, Mori C, Terakado Kimura K, Fujiwara T, Sugahara M, Tanaka R, Doak RB, Shimamura T, Iwata S, Nango E, & Yabashi M (2019). High-viscosity sample-injection device for serial femtosecond crystallography at atmospheric pressure.
J Appl Crystallogr 52 :1280-1288. PubMed Id: 31798359. doi:10.1107/S1600576719012846. |
||
A2A adenosine receptor with SRP2070_Fab complex: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.40 Å
Engineered protein: Apocytochrome b562 (BRIL) replaces loop 3 of wild-type protein |
Miyagi et al. (2020).
Miyagi H, Asada H, Suzuki M, Takahashi Y, Yasunaga M, Suno C, Iwata S, & Saito JI (2020). The discovery of a new antibody for BRIL-fused GPCR structure determination.
Sci Rep 10 1:11669. PubMed Id: 32669569. doi:10.1038/s41598-020-68355-x. |
||
A2A adenosine receptor with bound UK432097, D52N mutant: Homo sapiens E Eukaryota (expressed in P. pastoris), 2.60 Å
S91A mutant, 2.90 Å: 5WF6 Engineered protein: T4 lysozyme inserted between TM helices V and VI |
White et al. (2018).
White KL, Eddy MT, Gao ZG, Han GW, Lian T, Deary A, Patel N, Jacobson KA, Katritch V, & Stevens RC (2018). Structural Connection between Activation Microswitch and Allosteric Sodium Site in GPCR Signaling.
Structure 26 :259-269.e5. PubMed Id: 29395784. doi:10.1016/j.str.2017.12.013. |
||
Cheng et al. (2017).
Cheng RKY, Segala E, Robertson N, Deflorian F, Doré AS, Errey JC, Fiez-Vandal C, Marshall FH, & Cooke RM (2017). Structures of Human A1 and A2A Adenosine Receptors with Xanthines Reveal Determinants of Selectivity.
Structure 25 :1275-1285.e4. PubMed Id: 28712806. doi:10.1016/j.str.2017.06.012. |
|||
A2A adenosine receptor in complex with Chromone 4d: Homo sapiens E Eukaryota (expressed in Trichoplusia ni), 1.92 Å
engineered protein: Apocytochrome bRIL562 in intracellular loop 3. in complex with Chromone 5d, 2.13 Å: 6ZDV |
Jespers et al. (2020).
Jespers W, Verdon G, Azuaje J, Majellaro M, Keränen H, García-Mera X, Congreve M, Deflorian F, de Graaf C, Zhukov A, Doré AS, Mason JS, Åqvist J, Cooke RM, Sotelo E, & Gutiérrez-de-Terán H (2020). X-Ray Crystallography and Free Energy Calculations Reveal the Binding Mechanism of A2A Adenosine Receptor Antagonists.
Angew Chem Int Ed Engl 59 :16536-16543. PubMed Id: 32542862. doi:10.1002/anie.202003788. |
||
A2A adenosine receptor, structure using XFEL-SFX diffraction: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 2.0 Å
|
Lee et al. (2020).
Lee MY, Geiger J, Ishchenko A, Han GW, Barty A, White TA, Gati C, Batyuk A, Hunter MS, Aquila A, Boutet S, Weierstall U, Cherezov V, & Liu W (2020). Harnessing the power of an X-ray laser for serial crystallography of membrane proteins crystallized in lipidic cubic phase.
IUCrJ 7 :976-984. PubMed Id: 33209312. doi:10.1107/S2052252520012701. |
||
Ihara et al. (2020).
Ihara K, Hato M, Nakane T, Yamashita K, Kimura-Someya T, Hosaka T, Ishizuka-Katsura Y, Tanaka R, Tanaka T, Sugahara M, Hirata K, Yamamoto M, Nureki O, Tono K, Nango E, Iwata S, & Shirouzu M (2020). Isoprenoid-chained lipid EROCOC17+4: a new matrix for membrane protein crystallization and a crystal delivery medium in serial femtosecond crystallography.
Sci Rep 10 1:19305. PubMed Id: 33168855. doi:10.1038/s41598-020-76277-x. |
|||
A2A adenosine receptor with bound nonriboside partial agonist: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.12 Å
Engineered protein. Nine thermo-stabilizing mutations. Apocytochrome b562 inserted in 3rd intracellular loop. |
Amelia et al. (2021).
Amelia T, van Veldhoven JPD, Falsini M, Liu R, Heitman LH, van Westen GJP, Segala E, Verdon G, Cheng RKY, Cooke RM, van der Es D, & IJzerman AP (2021). Crystal Structure and Subsequent Ligand Design of a Nonriboside Partial Agonist Bound to the Adenosine A2A Receptor.
J Med Chem 64 7:3827-3842. PubMed Id: 33764785. doi:10.1021/acs.jmedchem.0c01856. |
||
A2A adenosine receptor with bound ZM241385: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.79 Å
microED structure |
Martynowycz et al. (2021).
Martynowycz MW, Shiriaeva A, Ge X, Hattne J, Nannenga BL, Cherezov V, & Gonen T (2021). MicroED structure of the human adenosine receptor determined from a single nanocrystal in LCP.
Proc Natl Acad Sci U S A 118 36:e2106041118. PubMed Id: 34462357. doi:10.1073/pnas.2106041118. |
||
A2A adenosine receptor (S91K mutant) in complex with preladenant conjugate PSB-2113: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 2.25 Å
in complex with preladenant conjugate PSB-2115, 2.60 Å 7PYR |
Claff et al. (2022).
Claff T, Klapschinski TA, Tiruttani Subhramanyam UK, Vaaβen VJ, Schlegel JG, Vielmuth C, Voß JH, Labahn J, & Müller CE (2022). Single Stabilizing Point Mutation Enables High-Resolution Co-Crystal Structures of the Adenosine A2A Receptor with Preladenant Conjugates.
Angew Chem Int Ed Engl :e202115545. PubMed Id: 35174942. doi:10.1002/anie.202115545. |
||
A2A adenosine receptor, I92N mutant: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.80 Å
engineered protein: Apocytochrome bRIL562 in intracellular loop 3. |
Cui et al. (2022).
Cui M, Zhou Q, Xu Y, Weng Y, Yao D, Zhao S, & Song G (2022). Crystal structure of a constitutive active mutant of adenosine A2A receptor.
IUCrJ 9 :333-341. PubMed Id: 35546802. doi:10.1107/S2052252522001907. |
||
A2A adenosine receptor with ZM241385_Fab complex: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.40 Å
cryo-EM structure |
Zhang et al. (2022).
Zhang K, Wu H, Hoppe N, Manglik A, & Cheng Y (2022). Fusion protein strategies for cryo-EM study of G protein-coupled receptors.
Nat Commun 13 1:4366. PubMed Id: 35902590. doi:10.1038/s41467-022-32125-2. |
||
A2A adenosine receptor in complex with LJ-4517, A2AAR-StaR2-S277-bRIL construct: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 2.80 Å
A2AAR-StaR2-A277-bRIL construct, 2.05 Å: 8CU7 |
Shiriaeva et al. (2022).
Shiriaeva A, Park D, Kim G, Lee Y, Hou X, Jarhad DB, Kim G, Yu J, Hyun YE, Kim W, Gao ZG, Jacobson KA, Han GW, Stevens RC, Jeong LS, Choi S, & Cherezov V (2022). GPCR Agonist-to-Antagonist Conversion: Enabling the Design of Nucleoside Functional Switches for the A2A Adenosine Receptor.
J Med Chem 65 17:11648-11657. PubMed Id: 35977382. doi:10.1021/acs.jmedchem.2c00462. |
||
A2A adenosine receptor, A2AAR-StaR2-bRIL construct, native-SAD structure determined at wavelength 2.75 Å: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.40 Å
X-Ray structure |
El Omari et al. (2023).
El Omari K, Duman R, Mykhaylyk V, Orr CM, Latimer-Smith M, Winter G, Grama V, Qu F, Bountra K, Kwong HS, Romano M, Reis RI, Vogeley L, Vecchia L, Owen CD, Wittmann S, Renner M, Senda M, Matsugaki N, Kawano Y, Bowden TA, Moraes I, Grimes JM, Mancini EJ, Walsh MA, Guzzo CR, Owens RJ, Jones EY, Brown DG, Stuart DI, Beis K, & Wagner A (2023). Experimental phasing opportunities for macromolecular crystallography at very long wavelengths.
Commun Chem 6 1:219. PubMed Id: 37828292. doi:10.1038/s42004-023-01014-0. |
||
A2A adenosine receptor in complex with KW-6356: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.30 Å
in complex with istradefylline (expressed in K. pastrois), 3.20 Å: 8GNG |
Ohno et al. (2023).
Ohno Y, Suzuki M, Asada H, Kanda T, Saki M, Miyagi H, Yasunaga M, Suno C, Iwata S, Saito JI, & Uchida S (2023). In Vitro Pharmacological Profile of KW-6356, a Novel Adenosine A2A Receptor Antagonist/Inverse Agonist.
Mol Pharmacol 103 6:311-324. PubMed Id: 36894319. doi:10.1124/molpharm.122.000633. |
||
A2A adenosine receptor in complex with photoresponsive ligand photoNECA (blue): Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.34 Å
X-ray structure |
Araya et al. (2023).
Araya T, Matsuba Y, Suzuki H, Doura T, Nuemket N, Nango E, Yamamoto M, Im D, Asada H, Kiyonaka S, & Iwata S (2023). Crystal structure reveals the binding mode and selectivity of a photoswitchable ligand for the adenosine A2A receptor.
Biochem Biophys Res Commun 695 :149393. PubMed Id: 38171234. doi:10.1016/j.bbrc.2023.149393. |
||
A2A adenosine receptor in 7.10 monoacylglycerol (MAG): Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.37 Å
X-ray structure |
Krawinski et al. (2024).
Krawinski P, Smithers L, van Dalsen L, Boland C, Ostrovitsa N, Pérez J, & Caffrey M (2024). 7.10 MAG. A Novel Host Monoacylglyceride for In Meso (Lipid Cubic Phase) Crystallization of Membrane Proteins.
Cryst Growth Des 24 7:2985-3001. PubMed Id: 38585376. doi:10.1021/acs.cgd.4c00087. |
||
A2B adenosine receptor - Gs complex with bound BAY 60-6583: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.87 Å
cryo-EM structure with bound adenosine, 3.20 Å: 8HDP |
Cai et al. (2022).
Cai H, Xu Y, Guo S, He X, Sun J, Li X, Li C, Yin W, Cheng X, Jiang H, Xu HE, Xie X, & Jiang Y (2022). Structures of adenosine receptor A2BR bound to endogenous and synthetic agonists.
Cell Discov 8 1:140. PubMed Id: 36575181. doi:10.1038/s41421-022-00503-1. |
||
A3 adenosine receptor - Gi complex with bound agonist CF101: Homo sapiens E Eukaryota (expressed in Trichoplusia ni), 3.29 Å
cryo-EM structure with bound CF102, 3.19 Å: 8X17 |
Cai et al. (2024).
Cai H, Guo S, Xu Y, Sun J, Li J, Xia Z, Jiang Y, Xie X, & Xu HE (2024). Cryo-EM structures of adenosine receptor A3AR bound to selective agonists.
Nat Commun 15 1:3252. PubMed Id: 38627384. doi:10.1038/s41467-024-47207-6. |
||
CXCR1 chemokine receptor in phospholipid bilayers: Homo sapiens E Eukaryota (expressed in E. coli), NMR Structure
|
Park et al. (2012).
Park SH, Das BB, Casagrande F, Tian Y, Nothnagel HJ, Chu M, Kiefer H, Maier K, De Angelis AA, Marassi FM, & Opella SJ (2012). Structure of the chemokine receptor CXCR1 in phospholipid bilayers.
Nature 491 :779-783. PubMed Id: 23086146. doi:10.1038/nature11580. |
||
CXCR1 chemokine receptor - Gi complex with bound CXCL8: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.41 Å
cryo-EM structure |
Ishimoto et al. (2023).
Ishimoto N, Park JH, Kawakami K, Tajiri M, Mizutani K, Akashi S, Tame JRH, Inoue A, & Park SY (2023). Structural basis of CXC chemokine receptor 1 ligand binding and activation.
Nat Commun 14 1:4107. PubMed Id: 37433790. doi:10.1038/s41467-023-39799-2. |
||
Liu et al. (2020).
Liu K, Wu L, Yuan S, Wu M, Xu Y, Sun Q, Li S, Zhao S, Hua T, & Liu ZJ (2020). Structural basis of CXC chemokine receptor 2 activation and signalling.
Nature . PubMed Id: 32610344. doi:10.1038/s41586-020-2492-5. |
|||
Shao et al. (2022).
Shao Z, Shen Q, Yao B, Mao C, Chen LN, Zhang H, Shen DD, Zhang C, Li W, Du X, Li F, Ma H, Chen ZH, Xu HE, Ying S, Zhang Y, & Shen H (2022). Identification and mechanism of G protein-biased ligands for chemokine receptor CCR1.
Nat Chem Biol 18 3:264-271. PubMed Id: 34949837. doi:10.1038/s41589-021-00918-z. |
|||
CCR2 Chemokine receptor with ortho- and allosteric antagonists: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.81 Å
Engineered protein: T4 lysozyme inserted between TM helices V and VI. |
Zheng et al. (2016).
Zheng Y, Qin L, Zacarías NV, de Vries H, Han GW, Gustavsson M, Dabros M, Zhao C, Cherney RJ, Carter P, Stamos D, Abagyan R, Cherezov V, Stevens RC, IJzerman AP, Heitman LH, Tebben A, Kufareva I, & Handel TM (2016). Structure of CC chemokine receptor 2 with orthosteric and allosteric antagonists.
Nature 540 :458-461. PubMed Id: 27926736. doi:10.1038/nature20605. |
||
CCR2 Chemokine receptor-Gi complex with bound CCL2: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.90 Å
cryo-EM structure |
Shao et al. (2022).
Shao Z, Tan Y, Shen Q, Hou L, Yao B, Qin J, Xu P, Mao C, Chen LN, Zhang H, Shen DD, Zhang C, Li W, Du X, Li F, Chen ZH, Jiang Y, Xu HE, Ying S, Ma H, Zhang Y, & Shen H (2022). Molecular insights into ligand recognition and activation of chemokine receptors CCR2 and CCR3.
Cell Discov 8 1:44. PubMed Id: 35570218. doi:10.1038/s41421-022-00403-4. |
||
CCR2A Chemokine receptor, full length in complex with MK-0812: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.3 Å
Engineered protein. N-term residues 1-28 and C-term residues 322-374 removed. Rubredoxin inserted into intracellular loop 3. ΔN.C form in complex with MK-0812, 2.7 Å: 6GPX |
Apel et al. (2019).
Apel AK, Cheng RKY, Tautermann CS, Brauchle M, Huang CY, Pautsch A, Hennig M, Nar H, & Schnapp G (2019). Crystal Structure of CC Chemokine Receptor 2A in Complex with an Orthosteric Antagonist Provides Insights for the Design of Selective Antagonists.
Structure 27 3:427-438.e5. PubMed Id: 30581043. doi:10.1016/j.str.2018.10.027. |
||
CCR3 Chemokine receptor-Gi complex: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.10 Å
cryo-EM structure |
Shao et al. (2022).
Shao Z, Tan Y, Shen Q, Hou L, Yao B, Qin J, Xu P, Mao C, Chen LN, Zhang H, Shen DD, Zhang C, Li W, Du X, Li F, Chen ZH, Jiang Y, Xu HE, Ying S, Ma H, Zhang Y, & Shen H (2022). Molecular insights into ligand recognition and activation of chemokine receptors CCR2 and CCR3.
Cell Discov 8 1:44. PubMed Id: 35570218. doi:10.1038/s41421-022-00403-4. |
||
Atypical chemokine receptor 3 (ACKR3) in complex with chemokine CXCL12, intracellular Fab, and extracellular Fab: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.80 Å
cryo-EM structure in complex with chemokine mutant CXCL12_LRHQ, intracellular Fab, and extracellular Fab, 3.30 Å: 7SK4 in complex with chemokine CXCL12 and intracellular Fab, 4.00 Å: 7SK5 in complex with chemokine mutant CXCL12_LRHQ and intracellular Fab, 4.00 Å: 7SK6 in complex with chemokine CXCL12, partial agonist CCX662, and extracellular Fab, 3.30 Å: 7SK7 in complex with chemokine CXCL12, partial agonist CCX662, intracellular Fab, and extracellular Fab, 3.30 Å: 7SK8 |
Yen et al. (2022).
Yen YC, Schafer CT, Gustavsson M, Eberle SA, Dominik PK, Deneka D, Zhang P, Schall TJ, Kossiakoff AA, Tesmer JJG, & Handel TM (2022). Structures of atypical chemokine receptor 3 reveal the basis for its promiscuity and signaling bias.
Sci Adv 8 28:eabn8063. PubMed Id: 35857509. doi:10.1126/sciadv.abn8063. |
||
CXCR4 chemokine receptor complexed with IT1t antagonist: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.5 Å
Engineered protein: T4 lysozyme inserted between TM helices V and VI. P21 space group. CXCR4 with IT1t (P1 space group), 3.10 Å: 3OE8 CXCR4 with IT1t (P1 space group), 3.10 Å: 3OE9 CXCR4 with IT1t (I222 space group), 3.20 Å: 3OE6 CXCR4 with cyclic peptide antagonist CVX15 (C2 space group), 2.90 Å: 3OE0 |
Wu et al. (2010).
Wu B, Chien EY, Mol CD, Fenalti G, Liu W, Katritch V, Abagyan R, Brooun A, Wells P, Bi FC, Hamel DJ, Kuhn P, Handel TM, Cherezov V, & Stevens RC (2010). Structures of the CXCR4 Chemokine GPCR with Small-Molecule and Cyclic Peptide Antagonists.
Science 330 :1066-1071. PubMed Id: 20929726. |
||
CXCR4 chemokine receptor complexed with viral chemokine antagonist vMIP-II: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.10 Å
Engineered protein: T4 lysozyme inserted between TM helices V and VI. |
Qin et al. (2015).
Qin L, Kufareva I, Holden LG, Wang C, Zheng Y, Zhao C, Fenalti G, Wu H, Han GW, Cherezov V, Abagyan R, Stevens RC, & Handel TM (2015). Structural biology. Crystal structure of the chemokine receptor CXCR4 in complex with a viral chemokine.
Science 347 6226:1117-1122. PubMed Id: 25612609. doi:10.1126/science.1261064. |
||
CX3CR1 chemokine receptor in complex with Gi1: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 2.80 Å
cryo-EM structure in complex with CX3CL1 & Gi1, 3.40 Å 7XBX |
Lu et al. (2022).
Lu M, Zhao W, Han S, Lin X, Xu T, Tan Q, Wang M, Yi C, Chu X, Yang W, Zhu Y, Wu B, & Zhao Q (2022). Activation of the human chemokine receptor CX3CR1 regulated by cholesterol.
Sci Adv 8 26:eabn8048. PubMed Id: 35767622. doi:10.1126/sciadv.abn8048. |
||
CCR5 chemokine receptor with bound Maraviroc: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.71 Å
Engineered protein: Met1-Glu54 of rubredoxin were inserted between Arg223 & Glu227 after deletion of Cys224-Asn226 in intracellular loop 3 (ICL3). |
Tan et al. (2013).
Tan Q, Zhu Y, Li J, Chen Z, Han GW, Kufareva I, Li T, Ma L, Fenalti G, Li J, Zhang W, Xie X, Yang H, Jiang H, Cherezov V, Liu H, Stevens RC, Zhao Q, & Wu B (2013). Structure of the CCR5 chemokine receptor-HIV entry inhibitor maraviroc complex.
Science 341 :1387-1390. PubMed Id: 24030490. doi:10.1126/science.1241475. |
||
CCR5 chemokine receptor in complex with super-agonist and Gi heterotrimer: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.15 Å
cryo-EM structure |
Isaikina et al. (2021).
Isaikina P, Tsai CJ, Dietz N, Pamula F, Grahl A, Goldie KN, Guixà-González R, Branco C, Paolini-Bertrand M, Calo N, Cerini F, Schertler GFX, Hartley O, Stahlberg H, Maier T, Deupi X, & Grzesiek S (2021). Structural basis of the activation of the CC chemokine receptor 5 by a chemokine agonist.
Sci Adv 7 25:eabg8685. PubMed Id: 34134983. doi:10.1126/sciadv.abg8685. |
||
Zhang et al. (2021).
Zhang H, Chen K, Tan Q, Shao Q, Han S, Zhang C, Yi C, Chu X, Zhu Y, Xu Y, Zhao Q, & Wu B (2021). Structural basis for chemokine recognition and receptor activation of chemokine receptor CCR5.
Nat Commun 12 1:4151. PubMed Id: 34230484. doi:10.1038/s41467-021-24438-5. |
|||
CCR6 chemokine receptor with bound CCL20 and a Go protein: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.34 Å
cryo-EM structure Engineered protein. N-terminal BRIL fusion. |
Wasilko et al. (2020).
Wasilko DJ, Johnson ZL, Ammirati M, Che Y, Griffor MC, Han S, & Wu H (2020). Structural basis for chemokine receptor CCR6 activation by the endogenous protein ligand CCL20.
Nat Commun 11 1. PubMed Id: 32541785. doi:10.1038/s41467-020-16820-6. |
||
CCR7 chemokine receptor in complex with Cmp2105: Homo sapiens E Eukaryota (expressed in Sf9 cells), 2.1 Å
|
Jaeger et al. (2019).
Jaeger K, Bruenle S, Weinert T, Guba W, Muehle J, Miyazaki T, Weber M, Furrer A, Haenggi N, Tetaz T, Huang CY, Mattle D, Vonach JM, Gast A, Kuglstatter A, Rudolph MG, Nogly P, Benz J, Dawson RJP, & Standfuss J (2019). Structural Basis for Allosteric Ligand Recognition in the Human CC Chemokine Receptor 7.
Cell 178 5:1222-1230.e10. PubMed Id: 31442409. doi:10.1016/j.cell.2019.07.028. |
||
Jiang et al. (2024).
Jiang S, Lin X, Wu L, Wang L, Wu Y, Xu Z, & Xu F (2024). Unveiling the structural mechanisms of nonpeptide ligand recognition and activation in human chemokine receptor CCR8.
Sci Adv 10 5:eadj7500. PubMed Id: 38306437. doi:10.1126/sciadv.adj7500. |
|||
CCR9 Chemokine receptor in complex with vercirnon: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.8 Å
|
Oswald et al. (2016).
Oswald C, Rappas M, Kean J, Doré AS, Errey JC, Bennett K, Deflorian F, Christopher JA, Jazayeri A, Mason JS, Congreve M, Cooke RM, & Marshall FH (2016). Intracellular allosteric antagonism of the CCR9 receptor.
Nature 540 :462-465. PubMed Id: 27926729. doi:10.1038/nature20606. |
||
Human cytomeglovirius US28 GPCR with bound human cytokine CX3CL1: Cytomeglovirus V Viruses (expressed in HEK293 cells), 2.89 Å
Additional structure, 3.80 Å: 4XT3 |
Burg et al. (2015).
Burg JS, Ingram JR, Venkatakrishnan AJ, Jude KM, Dukkipati A, Feinberg EN, Angelini A, Waghray D, Dror RO, Ploegh HL, & Garcia KC (2015). Structural biology. Structural basis for chemokine recognition and activation of a viral G protein-coupled receptor.
Science 347 6226:1113-1117. PubMed Id: 25745166. doi:10.1126/science.aaa5026. |
||
Human cytomeglovirius US28 GPCR bound to engineered chemokine CX3CL1.3: betaherpesvirus 5 V Viruses (expressed in HEK293 cells), 3.50 Å
Ligand-free US28 with stabilizing intracellular nanobody, 3.51 Å 5WB1 |
Miles et al. (2018).
Miles TF, Spiess K, Jude KM, Tsutsumi N, Burg JS, Ingram JR, Waghray D, Hjorto GM, Larsen O, Ploegh HL, Rosenkilde MM, & Garcia KC (2018). Viral GPCR US28 can signal in response to chemokine agonists of nearly unlimited structural degeneracy.
Elife 7 :e35850. PubMed Id: 29882741. doi:10.7554/eLife.35850. |
||
Tsutsumi et al. (2022).
Tsutsumi N, Maeda S, Qu Q, Vögele M, Jude KM, Suomivuori CM, Panova O, Waghray D, Kato HE, Velasco A, Dror RO, Skiniotis G, Kobilka BK, & Garcia KC (2022). Atypical structural snapshots of human cytomegalovirus GPCR interactions with host G proteins.
Sci Adv 8 3:eabl5442. PubMed Id: 35061538. doi:10.1126/sciadv.abl5442. |
|||
endothelin ETB receptor with bound endothelin-1: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.8 Å
Engineered protein: T4 lysozyme inserted between TM helices V and VI. Thermostabilized. without bound endothelin-1, 2.5 Å: 5GLI |
Shihoya et al. (2016).
Shihoya W, Nishizawa T, Okuta A, Tani K, Dohmae N, Fujiyoshi Y, Nureki O, & Doi T (2016). Activation mechanism of endothelin ETB receptor by endothelin-1.
Nature 537 :363-368. PubMed Id: 27595334. doi:10.1038/nature19319. |
||
endothelin ETB receptor with bound IRL2500: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.7 Å
|
Nagiri et al. (2019).
Nagiri C, Shihoya W, Inoue A, Kadji FMN, Aoki J, & Nureki O (2019). Crystal structure of human endothelin ETB receptor in complex with peptide inverse agonist IRL2500.
Commun Biol 2 . PubMed Id: 31263780. doi:10.1038/s42003-019-0482-7. |
||
endothelin ETB receptor in complex with sarafotoxin S6b: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.00 Å
|
Izume et al. (2020).
Izume T, Miyauchi H, Shihoya W, & Nureki O (2020). Crystal structure of human endothelin ETB receptor in complex with sarafotoxin S6b.
Biochem Biophys Res Commun 528 2:383-388. PubMed Id: 32001000. doi:10.1016/j.bbrc.2019.12.091. |
||
endothelin ETB receptor with bound K-8794: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.2 Å
with bound bosentan, 3.6 Å: 5XPR |
Shihoya et al. (2017).
Shihoya W, Nishizawa T, Yamashita K, Inoue A, Hirata K, Kadji FMN, Okuta A, Tani K, Aoki J, Fujiyoshi Y, Doi T, & Nureki O (2017). X-ray structures of endothelin ETB receptor bound to clinical antagonist bosentan and its analog.
Nat Struct Mol Biol 24 9:758-764. PubMed Id: 28805809. doi:10.1038/nsmb.3450. |
||
endothelin ETB receptor-Gi complex with bound endothelin-1: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.80 Å
cryo-EM structure endothelin ETB receptor focused refinement, 3.13 Å: 8IY6 |
Sano et al. (2023).
Sano FK, Akasaka H, Shihoya W, & Nureki O (2023). Cryo-EM structure of the endothelin-1-ETB-Gi complex.
Elife 12 :85821. PubMed Id: 37096326. doi:10.7554/eLife.85821. |
||
Formylpeptide receptor FPR1-Gi1 complex with bound fMLF: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.30 Å
cryo-EM structure |
Zhu et al. (2022).
Zhu Y, Lin X, Zong X, Han S, Wang M, Su Y, Ma L, Chu X, Yi C, Zhao Q, & Wu B (2022). Structural basis of FPR2 in recognition of Aβ42 and neuroprotection by humanin.
Nat Commun 13 1:1775. PubMed Id: 35365641. doi:10.1038/s41467-022-29361-x. |
||
Formylpeptide receptor FPR1-Gi complex with bound fMLFII peptide: Homo sapiens E Eukaryota (expressed in Spodoptera), 3.20 Å
cryo-EM structure in complex with CGEN-855A, 2.90 Å 7T6U |
Zhuang et al. (2022).
Zhuang Y, Wang L, Guo J, Sun D, Wang Y, Liu W, Xu HE, & Zhang C (2022). Molecular recognition of formylpeptides and diverse agonists by the formylpeptide receptors FPR1 and FPR2.
Nat Commun 13 1:1054. PubMed Id: 35217703. doi:10.1038/s41467-022-28586-0. |
||
Formylpeptide receptor FPR1-Gi complex with bound peptide agonist fMLF: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 2.90 Å
cryo-EM structure with bound peptide agonist fMIFL, 2.80 Å: 7VFX |
Chen et al. (2022).
Chen G, Wang X, Liao Q, Ge Y, Jiao H, Chen Q, Liu Y, Lyu W, Zhu L, van Zundert GCP, Robertson MJ, Skiniotis G, Du Y, Hu H, & Ye RD (2022). Structural basis for recognition of N-formyl peptides as pathogen-associated molecular patterns.
Nat Commun 13 1:5232. PubMed Id: 36064945. doi:10.1038/s41467-022-32822-y. |
||
Formylpeptide receptor FPR2-Gi complex: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.17 Å
cryo-EM structure |
Zhuang et al. (2020).
Zhuang Y, Liu H, Edward Zhou X, Kumar Verma R, de Waal PW, Jang W, Xu TH, Wang L, Meng X, Zhao G, Kang Y, Melcher K, Fan H, Lambert NA, Eric Xu H, & Zhang C (2020). Structure of formylpeptide receptor 2-Gi complex reveals insights into ligand recognition and signaling.
Nat Commun 11 1:885. PubMed Id: 32060286. doi:10.1038/s41467-020-14728-9. |
||
Formylpeptide receptor FPR2 with bound peptide agonist WKYMVm: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.8 Å
Engineered protein: N-terminal residues M1E2 replaced with apocytochrome b562RIL. |
Chen et al. (2020).
Chen T, Xiong M, Zong X, Ge Y, Zhang H, Wang M, Won Han G, Yi C, Ma L, Ye RD, Xu Y, Zhao Q, & Wu B (2020). Structural basis of ligand binding modes at the human formyl peptide receptor 2.
Nat Commun 11 1:1208. PubMed Id: 32139677. doi:10.1038/s41467-020-15009-1. |
||
Zhu et al. (2022).
Zhu Y, Lin X, Zong X, Han S, Wang M, Su Y, Ma L, Chu X, Yi C, Zhao Q, & Wu B (2022). Structural basis of FPR2 in recognition of Aβ42 and neuroprotection by humanin.
Nat Commun 13 1:1775. PubMed Id: 35365641. doi:10.1038/s41467-022-29361-x. |
|||
Formylpeptide receptor FPR2-Gi complex with bound fMLFII peptide: Homo sapiens E Eukaryota (expressed in Spodoptera), 2.90 Å
cryo-EM structure in complex with C43, 3.00 Å 7T6S |
Zhuang et al. (2022).
Zhuang Y, Wang L, Guo J, Sun D, Wang Y, Liu W, Xu HE, & Zhang C (2022). Molecular recognition of formylpeptides and diverse agonists by the formylpeptide receptors FPR1 and FPR2.
Nat Commun 13 1:1054. PubMed Id: 35217703. doi:10.1038/s41467-022-28586-0. |
||
Zhuang et al. (2021).
Zhuang Y, Xu P, Mao C, Wang L, Krumm B, Zhou XE, Huang S, Liu H, Cheng X, Huang XP, Shen DD, Xu T, Liu YF, Wang Y, Guo J, Jiang Y, Jiang H, Melcher K, Roth BL, Zhang Y, Zhang C, & Xu HE (2021). Structural insights into the human D1 and D2 dopamine receptor signaling complexes.
Cell 184 4:931-942.e18. PubMed Id: 33571431. doi:10.1016/j.cell.2021.01.027. |
|||
Xiao et al. (2021).
Xiao P, Yan W, Gou L, Zhong YN, Kong L, Wu C, Wen X, Yuan Y, Cao S, Qu C, Yang X, Yang CC, Xia A, Hu Z, Zhang Q, He YH, Zhang DL, Zhang C, Hou GH, Liu H, Zhu L, Fu P, Yang S, Rosenbaum DM, Sun JP, Du Y, Zhang L, Yu X, & Shao Z (2021). Ligand recognition and allosteric regulation of DRD1-Gs signaling complexes.
Cell 184 4:943-956.e18. PubMed Id: 33571432. doi:10.1016/j.cell.2021.01.028. |
|||
Dopamine D1 receptor complexed with mini Gs protein , SKF-81297-bound, with bound LY3154207: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.00 Å
cryo-EM structure LY3154207 binding to dopamine-bound receptor, 3.20 Å 7LJD |
Zhuang et al. (2021).
Zhuang Y, Krumm B, Zhang H, Zhou XE, Wang Y, Huang XP, Liu Y, Cheng X, Jiang Y, Jiang H, Zhang C, Yi W, Roth BL, Zhang Y, & Xu HE (2021). Mechanism of dopamine binding and allosteric modulation of the human D1 dopamine receptor.
Cell Res 31 5:593-596. PubMed Id: 33750903. doi:10.1038/s41422-021-00482-0. |
||
Teng et al. (2022).
Teng X, Chen S, Nie Y, Xiao P, Yu X, Shao Z, & Zheng S (2022). Ligand recognition and biased agonism of the D1 dopamine receptor.
Nat Commun 13 1:3186. PubMed Id: 35676276. doi:10.1038/s41467-022-30929-w. |
|||
Teng et al. (2022).
Teng X, Chen S, Wang Q, Chen Z, Wang X, Huang N, & Zheng S (2022). Structural insights into G protein activation by D1 dopamine receptor.
Sci Adv 8 23:eabo4158. PubMed Id: 35687690. doi:10.1126/sciadv.abo4158. |
|||
Dopamine D1 Receptor-Gs complex with bound rotigotine: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.20 Å
cryo-EM structure |
Xu et al. (2023).
Xu P, Huang S, Krumm BE, Zhuang Y, Mao C, Zhang Y, Wang Y, Huang XP, Liu YF, He X, Li H, Yin W, Jiang Y, Zhang Y, Roth BL, & Xu HE (2023). Structural genomics of the human dopamine receptor system.
Cell Res 33 8:604-616. PubMed Id: 37221270. doi:10.1038/s41422-023-00808-0. |
||
Dopamine D2 receptor complexed with risperidone: Homo sapiens E Eukaryota (expressed in sf9 cells), 2.87 Å
engineered protein. T4 lysozyme fused into intracellular loop 3. supersedes 6C38 |
Wang et al. (2018).
Wang S, Che T, Levit A, Shoichet BK, Wacker D, & Roth BL (2018). Structure of the D2 dopamine receptor bound to the atypical antipsychotic drug risperidone.
Nature 555 :269-273. PubMed Id: 29466326. doi:10.1038/nature25758. |
||
Dopamine D2 receptor complexed with haloperidol: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.1 Å
|
Fan et al. (2020).
Fan L, Tan L, Chen Z, Qi J, Nie F, Luo Z, Cheng J, & Wang S (2020). Haloperidol bound D2 dopamine receptor structure inspired the discovery of subtype selective ligands.
Nat Commun 11 1. PubMed Id: 32103023. doi:10.1038/s41467-020-14884-y. |
||
Dopamine D2 receptor-Gi protein complex in nanodiscs: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.80 Å
cryo-EM structure |
Yin et al. (2020).
Yin J, Chen KM, Clark MJ, Hijazi M, Kumari P, Bai XC, Sunahara RK, Barth P, & Rosenbaum DM (2020). Structure of a D2 dopamine receptor-G-protein complex in a lipid membrane.
Nature 584 7819:125-129. PubMed Id: 32528175. doi:10.1038/s41586-020-2379-5. |
||
Dopamine D2 receptor complexed with spiperone: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.10 Å
|
Im et al. (2020).
Im D, Inoue A, Fujiwara T, Nakane T, Yamanaka Y, Uemura T, Mori C, Shiimura Y, Kimura KT, Asada H, Nomura N, Tanaka T, Yamashita A, Nango E, Tono K, Kadji FMN, Aoki J, Iwata S, & Shimamura T (2020). Structure of the dopamine D2 receptor in complex with the antipsychotic drug spiperone.
Nat Commun 11 1. PubMed Id: 33353947. doi:10.1038/s41467-020-20221-0. |
||
Dopamine D2 receptor complexed with Gi protein with bound bromocriptine: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 2.80 Å
cryo-EM structure |
Zhuang et al. (2021).
Zhuang Y, Xu P, Mao C, Wang L, Krumm B, Zhou XE, Huang S, Liu H, Cheng X, Huang XP, Shen DD, Xu T, Liu YF, Wang Y, Guo J, Jiang Y, Jiang H, Melcher K, Roth BL, Zhang Y, Zhang C, & Xu HE (2021). Structural insights into the human D1 and D2 dopamine receptor signaling complexes.
Cell 184 4:931-942.e18. PubMed Id: 33571431. doi:10.1016/j.cell.2021.01.027. |
||
Dopamine D2 receptor-Gi complex with bound rotigotine: Homo sapiens E Eukaryota (expressed in Trichoplusia ni), 3.00 Å
cryo-EM structure |
Xu et al. (2023).
Xu P, Huang S, Krumm BE, Zhuang Y, Mao C, Zhang Y, Wang Y, Huang XP, Liu YF, He X, Li H, Yin W, Jiang Y, Zhang Y, Roth BL, & Xu HE (2023). Structural genomics of the human dopamine receptor system.
Cell Res 33 8:604-616. PubMed Id: 37221270. doi:10.1038/s41422-023-00808-0. |
||
Dopamine D2 receptor - Go (K46E mutant) complex with bound dopamine: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.28 Å
cryo-EM structure Go (K46E mutant) - scFv16 complex with bound dopamine, 3.20 Å: 8TZQ |
Knight et al. (2024).
Knight KM, Krumm BE, Kapolka NJ, Ludlam WG, Cui M, Mani S, Prytkova I, Obarow EG, Lefevre TJ, Wei W, Ma N, Huang XP, Fay JF, Vaidehi N, Smrcka AV, Slesinger PA, Logothetis DE, Martemyanov KA, Roth BL, & Dohlman HG (2024). A neurodevelopmental disorder mutation locks G proteins in the transitory pre-activated state.
Nat Commun 15 1:6643. PubMed Id: 39103320. doi:10.1038/s41467-024-50964-z. |
||
Dopamine D3 receptor complexed with D2/D3-selective antagonist: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.89 Å
Engineered protein: T4 lysozyme inserted between TM helices V and VI. |
Chien et al. (2010).
Chien EY, Liu W, Zhao Q, Katritch V, Han GW, Hanson MA, Shi L, Newman AH, Javitch JA, Cherezov V, & Stevens RC (2010). Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist.
Science 330 :1091-1095. PubMed Id: 21097933. |
||
Dopamine D3-Gi in complex with Pramipexole: Homo sapiens E Eukaryota (expressed in S. frugiperda cells), 3.00 Å
Engineered protein. cryo-EM structure in complex with PD128907, 2.70 Å: 7CMV |
Xu et al. (2021).
Xu P, Huang S, Mao C, Krumm BE, Zhou XE, Tan Y, Huang XP, Liu Y, Shen DD, Jiang Y, Yu X, Jiang H, Melcher K, Roth BL, Cheng X, Zhang Y, & Xu HE (2021). Structures of the human dopamine D3 receptor-Gi complexes.
Mol Cell 81 6:1147-1159.e4. PubMed Id: 33548201. doi:10.1016/j.molcel.2021.01.003. |
||
Dopamine D3 receptor-Gi complex with bound rotigotine: Homo sapiens E Eukaryota (expressed in Trichoplusia ni), 2.70 Å
cryo-EM structure |
Xu et al. (2023).
Xu P, Huang S, Krumm BE, Zhuang Y, Mao C, Zhang Y, Wang Y, Huang XP, Liu YF, He X, Li H, Yin W, Jiang Y, Zhang Y, Roth BL, & Xu HE (2023). Structural genomics of the human dopamine receptor system.
Cell Res 33 8:604-616. PubMed Id: 37221270. doi:10.1038/s41422-023-00808-0. |
||
Dopamine D4 receptor complexed with nemonapride: Homo sapiens E Eukaryota (expressed in sf9 cells), 1.96 Å
engineered protein: Thermostabilzed with apocytochrome b562 replacing 3rd intracellular loop. with bound Na+, 2.43 Å: 5WIV |
Wang et al. (2017).
Wang S, Wacker D, Levit A, Che T, Betz RM, McCorvy JD, Venkatakrishnan AJ, Huang XP, Dror RO, Shoichet BK, & Roth BL (2017). D4 dopamine receptor high-resolution structures enable the discovery of selective agonists.
Science 358 6361:381-386. PubMed Id: 29051383. doi:10.1126/science.aan5468. |
||
Dopamine D4 receptor with bound L745870: E Eukaryota (expressed in sf9 cells), 3.5 Å
|
Zhou et al. (2019).
Zhou Y, Cao C, He L, Wang X, & Zhang XC (2019). Crystal structure of dopamine receptor D4 bound to the subtype selective ligand, L745870.
Elife 8 :e48822. PubMed Id: 31750832. doi:10.7554/eLife.48822. |
||
Dopamine D4 receptor-Gi complex with bound rotigotine: Homo sapiens E Eukaryota (expressed in Trichoplusia ni), 3.20 Å
cryo-EM structure |
Xu et al. (2023).
Xu P, Huang S, Krumm BE, Zhuang Y, Mao C, Zhang Y, Wang Y, Huang XP, Liu YF, He X, Li H, Yin W, Jiang Y, Zhang Y, Roth BL, & Xu HE (2023). Structural genomics of the human dopamine receptor system.
Cell Res 33 8:604-616. PubMed Id: 37221270. doi:10.1038/s41422-023-00808-0. |
||
Dopamine D5 receptor-Gs complex with bound rotigotine: Homo sapiens E Eukaryota (expressed in Trichoplusia ni), 3.10 Å
cryo-EM structure |
Xu et al. (2023).
Xu P, Huang S, Krumm BE, Zhuang Y, Mao C, Zhang Y, Wang Y, Huang XP, Liu YF, He X, Li H, Yin W, Jiang Y, Zhang Y, Roth BL, & Xu HE (2023). Structural genomics of the human dopamine receptor system.
Cell Res 33 8:604-616. PubMed Id: 37221270. doi:10.1038/s41422-023-00808-0. |
||
Histamine H1 receptor, complexed with doxepin: Homo sapiens E Eukaryota (expressed in Pichia pastoris), 3.10 Å
|
Tsujimoto et al. (2011).
Shimamura T, Shiroishi M, Weyand S, Tsujimoto H, Winter G, Katritch V, Abagyan R, Cherezov V, Liu W, Han GW, Kobayashi T, Stevens RC, & Iwata S (2011). Structure of the human histamine H1 receptor complex with doxepin.
Nature 475 :65-70. PubMed Id: 21697825. doi:10.1038/nature10236. |
||
Histamine H1 receptor-Gq complex: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.30 Å
cryo-EM structure |
Xia et al. (2021).
Xia R, Wang N, Xu Z, Lu Y, Song J, Zhang A, Guo C, & He Y (2021). Cryo-EM structure of the human histamine H1 receptor/Gq complex.
Nat Commun 12 1:2086. PubMed Id: 33828102. doi:10.1038/s41467-021-22427-2. |
||
Wang et al. (2024).
Wang D, Guo Q, Wu Z, Li M, He B, Du Y, Zhang K, & Tao Y (2024). Molecular mechanism of antihistamines recognition and regulation of the histamine H1 receptor.
Nat Commun 15 1:84. PubMed Id: 38167898. doi:10.1038/s41467-023-44477-4. |
|||
Histamine H2 receptor, complexed with famotidine, a modified nanobody Nb6M, and nanobody-binding antibody fragment (NabFab): Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.00 Å
cryo-EM structure |
Robertson et al. (2022).
Robertson MJ, Papasergi-Scott MM, He F, Seven AB, Meyerowitz JG, Panova O, Peroto MC, Che T, & Skiniotis G (2022). Structure determination of inactive-state GPCRs with a universal nanobody.
Nat Struct Mol Biol 29 12:1188-1195. PubMed Id: 36396979. doi:10.1038/s41594-022-00859-8. |
||
Histamine H2 receptor - Gs complex in lipid nanodiscs with bound histidine (cell-free synthesis): Homo sapiens E Eukaryota (expressed in E. coli), 3.40 Å
cryo-EM structure |
Köck et al. (2024).
Köck Z, Schnelle K, Persechino M, Umbach S, Schihada H, Januliene D, Parey K, Pockes S, Kolb P, Dötsch V, Möller A, Hilger D, & Bernhard F (2024). Cryo-EM structure of cell-free synthesized human histamine 2 receptor/Gs complex in nanodisc environment.
Nat Commun 15 1:1831. PubMed Id: 38418462. doi:10.1038/s41467-024-46096-z. |
||
Histamine H2 receptor-Gs complex with bound amthamine: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.70 Å
cryo-EM structure |
Shen et al. (2024).
Shen Q, Tang X, Wen X, Cheng S, Xiao P, Zang SK, Shen DD, Jiang L, Zheng Y, Zhang H, Xu H, Mao C, Zhang M, Hu W, Sun JP, Zhang Y, & Chen Z (2024). Molecular Determinant Underlying Selective Coupling of Primary G-Protein by Class A GPCRs.
Adv Sci (Weinh) :e2310120. PubMed Id: 38647423. doi:10.1002/advs.202310120. |
||
Histamine H3 receptor (H3R), complexed with PF03654746: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 2.60 Å
|
Peng et al. (2022).
Peng X, Yang L, Liu Z, Lou S, Mei S, Li M, Chen Z, & Zhang H (2022). Structural basis for recognition of antihistamine drug by human histamine receptor.
Nat Commun 13 1:6105. PubMed Id: 36243875. doi:10.1038/s41467-022-33880-y. |
||
Histamine H3 receptor-Gi complex with bound histamine: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.70 Å
cryo-EM structure with bound immepip, 3.00 Å: 8YUV |
Shen et al. (2024).
Shen Q, Tang X, Wen X, Cheng S, Xiao P, Zang SK, Shen DD, Jiang L, Zheng Y, Zhang H, Xu H, Mao C, Zhang M, Hu W, Sun JP, Zhang Y, & Chen Z (2024). Molecular Determinant Underlying Selective Coupling of Primary G-Protein by Class A GPCRs.
Adv Sci (Weinh) :e2310120. PubMed Id: 38647423. doi:10.1002/advs.202310120. |
||
Histamine H4 receptor-Gq complex with bound histamine: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.00 Å
cryo-EM structure with bound imetit, 3.10 Å: 7YFD |
Im et al. (2023).
Im D, Kishikawa JI, Shiimura Y, Hisano H, Ito A, Fujita-Fujiharu Y, Sugita Y, Noda T, Kato T, Asada H, & Iwata S (2023). Structural insights into the agonists binding and receptor selectivity of human histamine H4 receptor.
Nat Commun 14 1:6538. PubMed Id: 37863901. doi:10.1038/s41467-023-42260-z. |
||
Xia et al. (2024).
Xia R, Shi S, Xu Z, Vischer HF, Windhorst AD, Qian Y, Duan Y, Liang J, Chen K, Zhang A, Guo C, Leurs R, & He Y (2024). Structural basis of ligand recognition and design of antihistamines targeting histamine H4 receptor.
Nat Commun 15 1:2493. PubMed Id: 38509098. doi:10.1038/s41467-024-46840-5. |
|||
Sphingosine-1-phosphate receptor 1 (S1PR1): Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.35 Å
Engineered protein: T4 lysozyme inserted between TM helices V and VI. Structure determined using microdiffraction data assembly, 2.80 Å: 3V2Y |
Hanson et al. (2012).
Hanson MA, Roth CB, Jo E, Griffith MT, Scott FL, Reinhart G, Desale H, Clemons B, Cahalan SM, Schuerer SC, Sanna MG, Han GW, Kuhn P, Rosen H, & Stevens RC (2012). Crystal structure of a lipid G protein-coupled receptor.
Science 335 :851-855. PubMed Id: 22344443. doi:10.1126/science.1215904. |
||
Yuan et al. (2021).
Yuan Y, Jia G, Wu C, Wang W, Cheng L, Li Q, Li Z, Luo K, Yang S, Yan W, Su Z, & Shao Z (2021). Structures of signaling complexes of lipid receptors S1PR1 and S1PR5 reveal mechanisms of activation and drug recognition.
Cell Res 31 12:1263-1274. PubMed Id: 34526663. doi:10.1038/s41422-021-00566-x. |
|||
Sphingosine-1-phosphate receptor 1 - Gi complex bound to S1P: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.00 Å
cryo-EM structure bound to Siponimod, 2.60 Å 7TD4 |
Liu et al. (2022).
Liu S, Paknejad N, Zhu L, Kihara Y, Ray M, Chun J, Liu W, Hite RK, & Huang XY (2022). Differential activation mechanisms of lipid GPCRs by lysophosphatidic acid and sphingosine 1-phosphate.
Nat Commun 13 1:731. PubMed Id: 35136060. doi:10.1038/s41467-022-28417-2. |
||
Xu et al. (2022).
Xu Z, Ikuta T, Kawakami K, Kise R, Qian Y, Xia R, Sun MX, Zhang A, Guo C, Cai XH, Huang Z, Inoue A, & He Y (2022). Structural basis of sphingosine-1-phosphate receptor 1 activation and biased agonism.
Nat Chem Biol 18 3:281-288. PubMed Id: 34937912. doi:10.1038/s41589-021-00930-3. |
|||
Sphingosine-1-phosphate receptor 2 (S1PR2)- heterotrimeric G13 complex with bound S1P: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.19 Å
cryo-EM structure |
Chen et al. (2022).
Chen H, Chen K, Huang W, Staudt LM, Cyster JG, & Li X (2022). Structure of S1PR2-heterotrimeric G13 signaling complex.
Sci Adv 8 13:eabn0067. PubMed Id: 35353559. doi:10.1126/sciadv.abn0067. |
||
Sphingosine-1-phosphate receptor 3 (S1PR3) in complex with natural ligand: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.20 Å
|
Maeda et al. (2021).
Maeda S, Shiimura Y, Asada H, Hirata K, Luo F, Nango E, Tanaka N, Toyomoto M, Inoue A, Aoki J, Iwata S, & Hagiwara M (2021). Endogenous agonist-bound S1PR3 structure reveals determinants of G protein-subtype bias.
Sci Adv 7 24:eabf5325. PubMed Id: 34108205. doi:10.1126/sciadv.abf5325. |
||
Zhao et al. (2022).
Zhao C, Cheng L, Wang W, Wang H, Luo Y, Feng Y, Wang X, Fu H, Cai Y, Yang S, Fu P, Yan W, & Shao Z (2022). Structural insights into sphingosine-1-phosphate recognition and ligand selectivity of S1PR3-Gi signaling complexes.
Cell Res 32 2:218-221. PubMed Id: 34545189. doi:10.1038/s41422-021-00567-w. |
|||
Sphingosine-1-phosphate receptor 5 (S1PR5)-Gi complex with bound siponimod: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.40 Å
cryo-EM structure |
Yuan et al. (2021).
Yuan Y, Jia G, Wu C, Wang W, Cheng L, Li Q, Li Z, Luo K, Yang S, Yan W, Su Z, & Shao Z (2021). Structures of signaling complexes of lipid receptors S1PR1 and S1PR5 reveal mechanisms of activation and drug recognition.
Cell Res 31 12:1263-1274. PubMed Id: 34526663. doi:10.1038/s41422-021-00566-x. |
||
Sphingosine-1-phosphate receptor 5 (S1PR5) in complex with ONO-5430608: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 2.20 Å
XFEL structure |
Lyapina et al. (2022).
Lyapina E, Marin E, Gusach A, Orekhov P, Gerasimov A, Luginina A, Vakhrameev D, Ergasheva M, Kovaleva M, Khusainov G, Khorn P, Shevtsov M, Kovalev K, Bukhdruker S, Okhrimenko I, Popov P, Hu H, Weierstall U, Liu W, Cho Y, Gushchin I, Rogachev A, Bourenkov G, Park S, Park G, Hyun HJ, Park J, Gordeliy V, Borshchevskiy V, Mishin A, & Cherezov V (2022). Structural basis for receptor selectivity and inverse agonism in S1P5 receptors.
Nat Commun 13 1:4736. PubMed Id: 35961984. doi:10.1038/s41467-022-32447-1. |
||
M1 muscarinic acetylcholine receptor with bound tiotropium: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.7 Å
Engineered protein: T4 lysozyme inserted between TM helices V and VI |
Thal et al. (2016).
Thal DM, Sun B, Feng D, Nawaratne V, Leach K, Felder CC, Bures MG, Evans DA, Weis WI, Bachhawat P, Kobilka TS, Sexton PM, Kobilka BK, & Christopoulos A (2016). Crystal structures of the M1 and M4 muscarinic acetylcholine receptors.
Nature 531 :335-340. PubMed Id: 26958838. doi:10.1038/nature17188. |
||
M1 muscarinic acetylcholine receptor in complex with G11 protein: Homo sapiens E Eukaryota (expressed in S. frugiperda & Trichoplusia ni), 3.3 Å
cryo-EM |
Maeda et al. (2019).
Maeda S, Qu Q, Robertson MJ, Skiniotis G, & Kobilka BK (2019). Structures of the M1 and M2 muscarinic acetylcholine receptor/G-protein complexes.
Science 364 6440:552-557. PubMed Id: 31073061. doi:10.1126/science.aaw5188. |
||
M1 muscarinic acetylcholine receptor in complex with muscarinic toxin 7 (MT7): Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 2.55 Å
|
Maeda et al. (2020).
Maeda S, Xu J, N Kadji FM, Clark MJ, Zhao J, Tsutsumi N, Aoki J, Sunahara RK, Inoue A, Garcia KC, & Kobilka BK (2020). Structure and selectivity engineering of the M1 muscarinic receptor toxin complex.
Science 369 6500:161-167. PubMed Id: 32646996. doi:10.1126/science.aax2517. |
||
M1 muscarinic acetylcholine receptor in complex with 77-LH-28-1: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 2.17 Å
Engineered protein: T4 lysozyme inserted between TM helices V and VI in complex with HTL0009936, 2.33 Å 6ZG4 in complex with GSK1034702, 2.50 Å |
Brown et al. (2021).
Brown AJH, Bradley SJ, Marshall FH, Brown GA, Bennett KA, Brown J, Cansfield JE, Cross DM, de Graaf C, Hudson BD, Dwomoh L, Dias JM, Errey JC, Hurrell E, Liptrot J, Mattedi G, Molloy C, Nathan PJ, Okrasa K, Osborne G, Patel JC, Pickworth M, Robertson N, Shahabi S, Bundgaard C, Phillips K, Broad LM, Goonawardena AV, Morairty SR, Browning M, Perini F, Dawson GR, Deakin JFW, Smith RT, Sexton PM, Warneck J, Vinson M, Tasker T, Tehan BG, Teobald B, Christopoulos A, Langmead CJ, Jazayeri A, Cooke RM, Rucktooa P, Congreve MS, Weir M, & Tobin AB (2021). From structure to clinic: Design of a muscarinic M1 receptor agonist with potential to treatment of Alzheimer's disease.
Cell 184 24:5886-5901.e22. PubMed Id: 34822784. doi:10.1016/j.cell.2021.11.001. |
||
M2 muscarinic acetylcholine receptor bound to an antagonist: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.00 Å
Engineered protein: T4 lysozyme inserted between TM helices V and VI. |
Haga et al. (2012).
Haga K, Kruse AC, Asada H, Yurugi-Kobayashi T, Shiroishi M, Zhang C, Weis WI, Okada T, Kobilka BK, Haga T, & Kobayashi T (2012). Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist.
Nature 482 :547-551. PubMed Id: 22278061. doi:10.1038/nature10753. |
||
M2 muscarinic acetylcholine receptor bound to the agonist iperoxo: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.50 Å
Stabilized by camelid antibody fragment. with bound iperoxo and allosteric modulator LY2119620, 3.70 Å: 4MQT |
Kruse et al. (2013).
Kruse AC, Ring AM, Manglik A, Hu J, Hu K, Eitel K, Hübner H, Pardon E, Valant C, Sexton PM, Christopoulos A, Felder CC, Gmeiner P, Steyaert J, Weis WI, Garcia KC, Wess J, & Kobilka BK (2013). Activation and allosteric modulation of a muscarinic acetylcholine receptor.
Nature 504 :101-106. PubMed Id: 24256733. doi:10.1038/nature12735. |
||
M2 muscarinic acetylcholine receptor in complex with Go: Homo sapiens E Eukaryota (expressed in S. frugiperda & Trichoplusia ni), 3.6 Å
cryo-EM structure |
Maeda et al. (2019).
Maeda S, Qu Q, Robertson MJ, Skiniotis G, & Kobilka BK (2019). Structures of the M1 and M2 muscarinic acetylcholine receptor/G-protein complexes.
Science 364 6440:552-557. PubMed Id: 31073061. doi:10.1126/science.aaw5188. |
||
M2 muscarinic acetylcholine receptor-β-arrestin complex in a nanodisc: Homo sapiens & Rattus norvegicus (arrestin) E Eukaryota (expressed in HEK293 cells), 4 Å
cryo-EM structure |
Staus et al. (2020).
Staus DP, Hu H, Robertson MJ, Kleinhenz ALW, Wingler LM, Capel WD, Latorraca NR, Lefkowitz RJ, & Skiniotis G (2020). Structure of the M2 muscarinic receptor-β-arrestin complex in a lipid nanodisc.
Nature 579 7798:297-302. PubMed Id: 31945772. doi:10.1038/s41586-020-1954-0. |
||
M3 muscarinic acetylcholine receptor: Rattus norvegicus E Eukaryota (expressed in S. frugiperda), 3.40 Å
Engineered protein: T4 lysozyme inserted between TM helices V and VI. |
Kruse et al. (2012).
Kruse AC, Hu J, Pan AC, Arlow DH, Rosenbaum DM, Rosemond E, Green HF, Liu T, Chae PS, Dror RO, Shaw DE, Weis WI, Wess J, & Kobilka BK (2012). Structure and dynamics of the M3 muscarinic acetylcholine receptor.
Nature 482 :552-556. PubMed Id: 22358844. doi:10.1038/nature10867. |
||
Thorsen et al. (2014).
Thorsen TS, Matt R, Weis WI, & Kobilka BK (2014). Modified T4 Lysozyme Fusion Proteins Facilitate G Protein-Coupled Receptor Crystallogenesis.
Structure 22 11:1657-1664. PubMed Id: 25450769. doi:10.1016/j.str.2014.08.022. |
|||
Zhang et al. (2022).
Zhang S, Gumpper RH, Huang XP, Liu Y, Krumm BE, Cao C, Fay JF, & Roth BL (2022). Molecular basis for selective activation of DREADD-based chemogenetics.
Nature 612 7939:354-362. PubMed Id: 36450989. doi:10.1038/s41586-022-05489-0. |
|||
M4 muscarinic acetylcholine receptor with bound tiotropium: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.6 Å
Engineered protein: T4 lysozyme inserted between TM helices V and VI. |
Thal et al. (2016).
Thal DM, Sun B, Feng D, Nawaratne V, Leach K, Felder CC, Bures MG, Evans DA, Weis WI, Bachhawat P, Kobilka TS, Sexton PM, Kobilka BK, & Christopoulos A (2016). Crystal structures of the M1 and M4 muscarinic acetylcholine receptors.
Nature 531 :335-340. PubMed Id: 26958838. doi:10.1038/nature17188. |
||
M4 muscarinic acetylcholine receptor, inactive N4497.49R mutant: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3 Å
|
Wang et al. (2020).
Wang J, Wu M, Wu L, Xu Y, Li F, Wu Y, Popov P, Wang L, Bai F, Zhao S, Liu ZJ, & Hua T (2020). The structural study of mutation-induced inactivation of human muscarinic receptor M4.
IUCrJ 7 :294-305. PubMed Id: 32148857. doi:10.1107/S2052252520000597. |
||
Wang et al. (2022).
Wang J, Wu M, Chen Z, Wu L, Wang T, Cao D, Wang H, Liu S, Xu Y, Li F, Liu J, Chen N, Zhao S, Cheng J, Wang S, & Hua T (2022). The unconventional activation of the muscarinic acetylcholine receptor M4R by diverse ligands.
Nat Commun 13 1:2855. PubMed Id: 35606397. doi:10.1038/s41467-022-30595-y. |
|||
M4 muscarinic acetylcholine receptor-miniGo protein complex with bound DCZ: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.70 Å
DREADD-based receptor cryo-EM structure |
Zhang et al. (2022).
Zhang S, Gumpper RH, Huang XP, Liu Y, Krumm BE, Cao C, Fay JF, & Roth BL (2022). Molecular basis for selective activation of DREADD-based chemogenetics.
Nature 612 7939:354-362. PubMed Id: 36450989. doi:10.1038/s41586-022-05489-0. |
||
M4 muscarinic acetylcholine receptor (M4 mAChR) - Gi1 complex with bound xanomeline: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.45 Å
cryo-EM structure |
Burger et al. (2023).
Burger WAC, Pham V, Vuckovic Z, Powers AS, Mobbs JI, Laloudakis Y, Glukhova A, Wootten D, Tobin AB, Sexton PM, Paul SM, Felder CC, Danev R, Dror RO, Christopoulos A, Valant C, & Thal DM (2023). Xanomeline displays concomitant orthosteric and allosteric binding modes at the M4 mAChR.
Nat Commun 14 1:5440. PubMed Id: 37673901. doi:10.1038/s41467-023-41199-5. |
||
M5 muscarinic acetylcholine receptor with bound tiotropium: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.54 Å
Engineered protein: T4 lysozyme inserted between TM helices V and VI |
Vuckovic et al. (2019).
Vuckovic Z, Gentry PR, Berizzi AE, Hirata K, Varghese S, Thompson G, van der Westhuizen ET, Burger WAC, Rahmani R, Valant C, Langmead CJ, Lindsley CW, Baell JB, Tobin AB, Sexton PM, Christopoulos A, & Thal DM (2019). Crystal structure of the M5 muscarinic acetylcholine receptor.
Proc Natl Acad Sci USA 116 51:26001-26007. PubMed Id: 31772027. doi:10.1073/pnas.1914446116. |
||
κ-opioid receptor in complex with JDTic: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.90 Å
Engineered protein: T4 lysozyme inserted between TM helices V and VI. |
Wu et al. (2012).
Wu H, Wacker D, Mileni M, Katritch V, Han GW, Vardy E, Liu W, Thompson AA, Huang XP, Carroll FI, Mascarella SW, Westkaemper RB, Mosier PD, Roth BL, Cherezov V, & Stevens RC (2012). Structure of the human κ-opioid receptor in complex with JDTic.
Nature 485 :327-332. PubMed Id: 22437504. doi:10.1038/nature10939. |
||
κ-opioid receptor in complex with JDTic and nanobody Nb6: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.3 Å
|
Che et al. (2020).
Che T, English J, Krumm BE, Kim K, Pardon E, Olsen RHJ, Wang S, Zhang S, Diberto JF, Sciaky N, Carroll FI, Steyaert J, Wacker D, & Roth BL (2020). Nanobody-enabled monitoring of kappa opioid receptor states.
Nat Commun 11 1. PubMed Id: 32123179. doi:10.1038/s41467-020-14889-7. |
||
κ-opioid receptor, nanobody-stabilized active state: Homo sapiens E Eukaryota (expressed in sf9 cells), 3.1 Å
engineered protein: Lacks N-terminal residues 1-53 and C-terminal residues 259-380. Thermostabilzed with apocytochrome b562 in place of N-terminus residues. |
Che et al. (2018).
Che T, Majumdar S, Zaidi SA, Ondachi P, McCorvy JD, Wang S, Mosier PD, Uprety R, Vardy E, Krumm BE, Han GW, Lee MY, Pardon E, Steyaert J, Huang XP, Strachan RT, Tribo AR, Pasternak GW, Carroll FI, Stevens RC, Cherezov V, Katritch V, Wacker D, & Roth BL (2018). Structure of the Nanobody-Stabilized Active State of the Kappa Opioid Receptor.
Cell 172 :55-67.e15. PubMed Id: 29307491. doi:10.1016/j.cell.2017.12.011. |
||
κ-opioid receptor-Gi complex with bound dynorphin: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.19 Å
cryo-EM structure |
Wang et al. (2023).
Wang Y, Zhuang Y, DiBerto JF, Zhou XE, Schmitz GP, Yuan Q, Jain MK, Liu W, Melcher K, Jiang Y, Roth BL, & Xu HE (2023). Structures of the entire human opioid receptor family.
Cell 186 2:413-427.e17. PubMed Id: 36638794. doi:10.1016/j.cell.2022.12.026. |
||
κ-opioid receptor in complex with nalfurafine and nanobody Nb39: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.30 Å
|
El Daibani et al. (2023).
El Daibani A, Paggi JM, Kim K, Laloudakis YD, Popov P, Bernhard SM, Krumm BE, Olsen RHJ, Diberto J, Carroll FI, Katritch V, Wünsch B, Dror RO, & Che T (2023). Molecular mechanism of biased signaling at the kappa opioid receptor.
Nat Commun 14 1:1338. PubMed Id: 36906681. doi:10.1038/s41467-023-37041-7. |
||
Han et al. (2023).
Han J, Zhang J, Nazarova AL, Bernhard SM, Krumm BE, Zhao L, Lam JH, Rangari VA, Majumdar S, Nichols DE, Katritch V, Yuan P, Fay JF, & Che T (2023). Ligand and G-protein selectivity in the κ-opioid receptor.
Nature 617 7960:417-425. PubMed Id: 37138078. doi:10.1038/s41586-023-06030-7. |
|||
μ-opioid receptor bound to a morphinan antagonist: Mus musculus E Eukaryota (expressed in S. frugiperda), 2.80 Å
Engineered protein: T4 lysozyme inserted between TM helices V and VI. |
Manglik et al. (2012).
Manglik A, Kruse AC, Kobilka TS, Thian FS, Mathiesen JM, Sunahara RK, Pardo L, Weis WI, Kobilka BK, & Granier S (2012). Crystal structure of the μ-opioid receptor bound to a morphinan antagonist.
Nature 485 :321-326. PubMed Id: 22437502. doi:10.1038/nature10954. |
||
μ-opioid receptor bound to a morphinan antagonist BU72: Mus musculus E Eukaryota (expressed in S. frugiperda), 2.10 Å
|
Huang et al. (2015).
Huang W, Manglik A, Venkatakrishnan AJ, Laeremans T, Feinberg EN, Sanborn AL, Kato HE, Livingston KE, Thorsen TS, Kling RC, Granier S, Gmeiner P, Husbands SM, Traynor JR, Weis WI, Steyaert J, Dror RO, & Kobilka BK (2015). Structural insights into µ-opioid receptor activation.
Nature 524 :315-321. PubMed Id: 26245379. doi:10.1038/nature14886. |
||
μ-opioid receptor bound to a morphinan antagonist BU72, re-refined structure: Mus musculus E Eukaryota (expressed in S. frugiperda), 2.10 Å
X-Ray Structure This is an alternative structure of the original PDB code, 5C1M |
Munro (2023).
Munro TA (2023). Reanalysis of a μ opioid receptor crystal structure reveals a covalent adduct with BU72.
BMC Biol 21 1:213. PubMed Id: 37817141. doi:10.1186/s12915-023-01689-w. |
||
μ-opioid receptor-Gi protein complex with scFv-16: Mus musculus E Eukaryota (expressed in S. frugiperda), 3.5 Å
cryo-EM structure without scFv-16, 3.5 Å: 6DDF |
Koehl et al. (2018).
Koehl A, Hu H, Maeda S, Zhang Y, Qu Q, Paggi JM, Latorraca NR, Hilger D, Dawson R, Matile H, Schertler GFX, Granier S, Weis WI, Dror RO, Manglik A, Skiniotis G, & Kobilka BK (2018). Structure of the μ-opioid receptor-Gi protein complex.
Nature 558 7711:547-552. PubMed Id: 29899455. doi:10.1038/s41586-018-0219-7. |
||
μ-opioid receptor-Gi protein complex with bound PZM21: Mus musculus E Eukaryota (expressed in Spodoptera frugiperda), 2.90 Å
cryo-EM structure with bound FH210, 3.00 Å: 7SCG |
Wang et al. (2022).
Wang H, Hetzer F, Huang W, Qu Q, Meyerowitz J, Kaindl J, Hübner H, Skiniotis G, Kobilka BK, & Gmeiner P (2022). Structure-Based Evolution of G Protein-Biased μ-Opioid Receptor Agonists.
Angew Chem Int Ed Engl 61 26:e202200269. PubMed Id: 35385593. doi:10.1002/anie.202200269. |
||
μ-opioid receptor-Gi1 protein complex with bound MP: Mus musculus E Eukaryota (expressed in Spodoptera frugiperda), 2.50 Å
cryo-EM structure with bound LET, 3.20 Å: 7T2H |
Qu et al. (2022).
Qu Q, Huang W, Aydin D, Paggi JM, Seven AB, Wang H, Chakraborty S, Che T, DiBerto JF, Robertson MJ, Inoue A, Suomivuori CM, Roth BL, Majumdar S, Dror RO, Kobilka BK, & Skiniotis G (2022). Insights into distinct signaling profiles of the µOR activated by diverse agonists.
Nat Chem Biol . PubMed Id: 36411392. doi:10.1038/s41589-022-01208-y. |
||
μ-opioid receptor bound to an alvimopan and megabody Mb6: Mus musculus E Eukaryota (expressed in S. frugiperda), 2.80 Å
cryo-EM structure |
Robertson et al. (2022).
Robertson MJ, Papasergi-Scott MM, He F, Seven AB, Meyerowitz JG, Panova O, Peroto MC, Che T, & Skiniotis G (2022). Structure determination of inactive-state GPCRs with a universal nanobody.
Nat Struct Mol Biol 29 12:1188-1195. PubMed Id: 36396979. doi:10.1038/s41594-022-00859-8. |
||
μ-opioid receptor-Gi protein complex with bound C5 guano and scFv16: Mus musculus E Eukaryota (expressed in S. frugiperda), 3.20 Å
cryo-EM structure with bound C6 guano, 3.30 Å: 7U2K |
Faouzi et al. (2023).
Faouzi A, Wang H, Zaidi SA, DiBerto JF, Che T, Qu Q, Robertson MJ, Madasu MK, El Daibani A, Varga BR, Zhang T, Ruiz C, Liu S, Xu J, Appourchaux K, Slocum ST, Eans SO, Cameron MD, Al-Hasani R, Pan YX, Roth BL, McLaughlin JP, Skiniotis G, Katritch V, Kobilka BK, & Majumdar S (2023). Structure-based design of bitopic ligands for the µ-opioid receptor.
Nature 613 7945:767-774. PubMed Id: 36450356. doi:10.1038/s41586-022-05588-y. |
||
μ-opioid receptor with bound to Nb6, naloxone and NAM 368: Mus musculus E Eukaryota (expressed in S. frugiperda), 3.26 Å
cryo-EM structure |
O'Brien et al. (2024).
O'Brien ES, Rangari VA, El Daibani A, Eans SO, Hammond HR, White E, Wang H, Shiimura Y, Krishna Kumar K, Jiang Q, Appourchaux K, Huang W, Zhang C, Kennedy BJ, Mathiesen JM, Che T, McLaughlin JP, Majumdar S, & Kobilka BK (2024). A µ-opioid receptor modulator that works cooperatively with naloxone.
Nature 631 8021:686-693. PubMed Id: 38961287. doi:10.1038/s41586-024-07587-7. |
||
μ-opioid receptor-Gi1 protein complex with bound RO76: Mus musculus E Eukaryota (expressed in S. frugiperda), 3.30 Å
cryo-EM structure |
Ople et al. (2024).
Ople RS, Ramos-Gonzalez N, Li Q, Sobecks BL, Aydin D, Powers AS, Faouzi A, Polacco BJ, Bernhard SM, Appourchaux K, Sribhashyam S, Eans SO, Tsai BA, Dror RO, Varga BR, Wang H, Hüttenhain R, McLaughlin JP, & Majumdar S (2024). Signaling Modulation Mediated by Ligand Water Interactions with the Sodium Site at μOR.
ACS Cent Sci 10 8:1490-1503. PubMed Id: 39220695. doi:10.1021/acscentsci.4c00525. |
||
μ-opioid receptor-Gi complex with bound fentanyl: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.30 Å
cryo-EM structure with bound morphine, 3.20 Å: 8EF6 with bound DAMGO, 3.30 Å: 8EFQ with bound SR17018, 3.20 Å: 8EFL with bound PZM21, 2.80 Å: 8EFO with bound TRV130 (oliceridine), 3.20 Å: 8EFB |
Zhuang et al. (2022).
Zhuang Y, Wang Y, He B, He X, Zhou XE, Guo S, Rao Q, Yang J, Liu J, Zhou Q, Wang X, Liu M, Liu W, Jiang X, Yang D, Jiang H, Shen J, Melcher K, Chen H, Jiang Y, Cheng X, Wang MW, Xie X, & Xu HE (2022). Molecular recognition of morphine and fentanyl by the human μ-opioid receptor.
Cell 185 23:4361-4375.e19. PubMed Id: 36368306. doi:10.1016/j.cell.2022.09.041. |
||
μ-opioid receptor-Gi complex with bound β-endorphin: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.22 Å
cryo-EM structure with bound endomorphin, 3.28 Å: 8F7R |
Wang et al. (2023).
Wang Y, Zhuang Y, DiBerto JF, Zhou XE, Schmitz GP, Yuan Q, Jain MK, Liu W, Melcher K, Jiang Y, Roth BL, & Xu HE (2023). Structures of the entire human opioid receptor family.
Cell 186 2:413-427.e17. PubMed Id: 36638794. doi:10.1016/j.cell.2022.12.026. |
||
δ-opioid receptor in complex with naltrindol: Mus musculus E Eukaryota (expressed in S. frugiperda), 3.40 Å
Engineered protein: T4 lysozyme inserted between TM helices V and VI. |
Granier et al. (2012).
Granier S, Manglik A, Kruse AC, Kobilka TS, Thian FS, Weis WI, & Kobilka BK (2012). Structure of the δ-opioid receptor bound to naltrindole.
Nature 485 :400-404. PubMed Id: 22596164. doi:10.1038/nature11111. |
||
δ-opioid receptor in complex with naltrindol: Homo sapiens E Eukaryota (expressed in S. frugiperda), 1.80 Å
Engineered Protein: apocytochrome b562 RIL (BRIL) fused at amino terminal of truncated receptor (residues 36-338). |
Fenalti et al. (2014).
Fenalti G, Giguere PM, Katritch V, Huang XP, Thompson AA, Cherezov V, Roth BL, & Stevens RC (2014). Molecular control of δ-opioid receptor signalling.
Nature 506 :191-196. PubMed Id: 24413399. doi:10.1038/nature12944. |
||
δ-opioid receptor with bound antagonist/agonist tetrapeptide DIPP-NH2: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.70 Å
Free electron laser (XFEL) structure. Engineered Protein: apocytochrome b562 RIL (BRIL) fused at amino terminal of truncated receptor (residues 39-338). Synchrotron structure, 3.28 Å: 4RWA |
Fenalti et al. (2015).
Fenalti G, Zatsepin NA, Betti C, Giguere P, Han GW, Ishchenko A, Liu W, Guillemyn K, Zhang H, James D, Wang D, Weierstall U, Spence JC, Boutet S, Messerschmidt M, Williams GJ, Gati C, Yefanov OM, White TA, Oberthuer D, Metz M, Yoon CH, Barty A, Chapman HN, Basu S, Coe J, Conrad CE, Fromme R, Fromme P, Tourwé D, Schiller PW, Roth BL, Ballet S, Katritch V, Stevens RC, & Cherezov V (2015). Structural basis for bifunctional peptide recognition at human ?-opioid receptor.
Nat Struct Mol Biol 22 3:265-268. PubMed Id: 25686086. doi:10.1038/nsmb.2965. |
||
δ-opioid receptor in complex with the peptide agonist KGCHM07: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.8 Å
Engineered protein: apocytochrome b562 RIL (BRIL) fused at amino terminal of truncated receptor. In complex with the small molecule agonist DPI-287, 3.3 Å: 6PT3 |
Claff et al. (2019).
Claff T, Yu J, Blais V, Patel N, Martin C, Wu L, Han GW, Holleran BJ, Van der Poorten O, White KL, Hanson MA, Sarret P, Gendron L, Cherezov V, Katritch V, Ballet S, Liu ZJ, Müller CE, & Stevens RC (2019). Elucidating the active ?-opioid receptor crystal structure with peptide and small-molecule agonists.
Sci Adv 5 11. PubMed Id: 31807708. doi:10.1126/sciadv.aax9115. |
||
δ-opioid receptor-Gi complex with bound deltorphin: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.00 Å
cryo-EM structure |
Wang et al. (2023).
Wang Y, Zhuang Y, DiBerto JF, Zhou XE, Schmitz GP, Yuan Q, Jain MK, Liu W, Melcher K, Jiang Y, Roth BL, & Xu HE (2023). Structures of the entire human opioid receptor family.
Cell 186 2:413-427.e17. PubMed Id: 36638794. doi:10.1016/j.cell.2022.12.026. |
||
CB1 cannabinoid receptor complexed with stabilizing antagonist AM6538: Homo sapiens E Eukaryota (expressed in HEK293F cells), 2.80 Å
Engineered protein: Y98W Flavodoxin fused to third intracellular loop. |
Hua et al. (2016).
Hua T, Vemuri K, Pu M, Qu L, Han GW, Wu Y, Zhao S, Shui W, Li S, Korde A, Laprairie RB, Stahl EL, Ho JH, Zvonok N, Zhou H, Kufareva I, Wu B, Zhao Q, Hanson MA, Bohn LM, Makriyannis A, Stevens RC, & Liu ZJ (2016). Crystal Structure of the Human Cannabinoid Receptor CB1.
Cell 167 :750-762.e14. PubMed Id: 27768894. doi:10.1016/j.cell.2016.10.004. |
||
CB1 cannabinoid receptor with bound ORG27569 (NAM) and CP55940 agonist: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.24 Å
Engineered protein. NAM = negative allosteric modulator |
Shao et al. (2019).
Shao Z, Yan W, Chapman K, Ramesh K, Ferrell AJ, Yin J, Wang X, Xu Q, & Rosenbaum DM (2019). Structure of an allosteric modulator bound to the CB1 cannabinoid receptor.
Nat Chem Biol 15 12:1199-1205. PubMed Id: 31659318. doi:10.1038/s41589-019-0387-2. |
||
CB1 cannabinoid receptor with bound inhibitor taranabant: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.6 Å
Engineered protein: Pyrococcus abysii glycogen synthase replaced the 3rd intracellular loop. N-terminal 89 residues deleted. T210A point mutation. |
Shao et al. (2016).
Shao Z, Yin J, Chapman K, Grzemska M, Clark L, Wang J, & Rosenbaum DM (2016). High-resolution crystal structure of the human CB1 cannabinoid receptor.
Nature 540 :602-606. PubMed Id: 27851727. doi:10.1038/nature20613. |
||
CB1 cannabinoid receptor with bound MDMB-Fubinaca: Homo sapiens E Eukaryota (expressed in Trichoplusia ni), 3 Å
cryo-EM structure |
Krishna Kumar et al. (2019).
Krishna Kumar K, Shalev-Benami M, Robertson MJ, Hu H, Banister SD, Hollingsworth SA, Latorraca NR, Kato HE, Hilger D, Maeda S, Weis WI, Farrens DL, Dror RO, Malhotra SV, Kobilka BK, & Skiniotis G (2019). Structure of a Signaling Cannabinoid Receptor 1-G Protein Complex.
Cell 176 3:448-458.e12. PubMed Id: 30639101. doi:10.1016/j.cell.2018.11.040. |
||
CB1 cannabinoid receptor complexed with G protein and AM841: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3 Å
cryo-EM structure |
Hua et al. (2020).
Hua T, Li X, Wu L, Iliopoulos-Tsoutsouvas C, Wang Y, Wu M, Shen L, Johnston CA, Nikas SP, Song F, Song X, Yuan S, Sun Q, Wu Y, Jiang S, Grim TW, Benchama O, Stahl EL, Zvonok N, Zhao S, Bohn LM, Makriyannis A, & Liu ZJ (2020). Activation and Signaling Mechanism Revealed by Cannabinoid Receptor-Gi Complex Structures.
Cell 180 4:655-665.e18. PubMed Id: 32004463. doi:10.1016/j.cell.2020.01.008. |
||
CB1 cannabinoid receptor complexed wih AM11542: Homo sapiens E Eukaryota (expressed in HEK293F cells), 2.8 Å
Engineered protein: Y98W Flavodoxin fused to third intracellular loop. Truncated residues 1-98, 303-331, & 415-472 in complex with AM841 agonist, 2.95 Å: 5XR8 |
Hua et al. (2017).
Hua T, Vemuri K, Nikas SP, Laprairie RB, Wu Y, Qu L, Pu M, Korde A, Jiang S, Ho JH, Han GW, Ding K, Li X, Liu H, Hanson MA, Zhao S, Bohn LM, Makriyannis A, Stevens RC, & Liu ZJ (2017). Crystal structures of agonist-bound human cannabinoid receptor CB1.
Nature 547 :468-471. PubMed Id: 28678776. doi:10.1038/nature23272. |
||
CB1 cannabinoid receptor complexed wih CP55940 and ZCZ011: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.70 Å
with bound Gi protein, cryo-EM structure, 3.36 Å: 7WV9 |
Yang et al. (2022).
Yang X, Wang X, Xu Z, Wu C, Zhou Y, Wang Y, Lin G, Li K, Wu M, Xia A, Liu J, Cheng L, Zou J, Yan W, Shao Z, & Yang S (2022). Molecular mechanism of allosteric modulation for the cannabinoid receptor CB1.
Nat Chem Biol 18 8:831-840. PubMed Id: 35637350. doi:10.1038/s41589-022-01038-y. |
||
CB1-Gi cannabinoid receptor complex with bound AMG315: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.80 Å
cryo-EM structure |
Krishna Kumar et al. (2023).
Krishna Kumar K, Robertson MJ, Thadhani E, Wang H, Suomivuori CM, Powers AS, Ji L, Nikas SP, Dror RO, Inoue A, Makriyannis A, Skiniotis G, & Kobilka B (2023). Structural basis for activation of CB1 by an endocannabinoid analog.
Nat Commun 14 1:2672. PubMed Id: 37160876. doi:10.1038/s41467-023-37864-4. |
||
CB2 cannabinoid receptor complexed with antagonist AM10257: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.8 Å
|
Li et al. (2019).
Li X, Hua T, Vemuri K, Ho JH, Wu Y, Wu L, Popov P, Benchama O, Zvonok N, Locke K, Qu L, Han GW, Iyer MR, Cinar R, Coffey NJ, Wang J, Wu M, Katritch V, Zhao S, Kunos G, Bohn LM, Makriyannis A, Stevens RC, & Liu ZJ (2019). Crystal Structure of the Human Cannabinoid Receptor CB2.
Cell 176 3:459-467.e13. PubMed Id: 30639103. doi:10.1016/j.cell.2018.12.011. |
||
CB2 cannabinoid receptor complexed with antagonist AM12033: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.2 Å
complexed with G-protein (cryo-EM structure), 2.9 Å: 6KPF |
Hua et al. (2020).
Hua T, Li X, Wu L, Iliopoulos-Tsoutsouvas C, Wang Y, Wu M, Shen L, Johnston CA, Nikas SP, Song F, Song X, Yuan S, Sun Q, Wu Y, Jiang S, Grim TW, Benchama O, Stahl EL, Zvonok N, Zhao S, Bohn LM, Makriyannis A, & Liu ZJ (2020). Activation and Signaling Mechanism Revealed by Cannabinoid Receptor-Gi Complex Structures.
Cell 180 4:655-665.e18. PubMed Id: 32004463. doi:10.1016/j.cell.2020.01.008. |
||
CB2-Gi cannabinoid receptor complex: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.2 Å
cryo-EM structure |
Xing et al. (2020).
Xing C, Zhuang Y, Xu TH, Feng Z, Zhou XE, Chen M, Wang L, Meng X, Xue Y, Wang J, Liu H, McGuire TF, Zhao G, Melcher K, Zhang C, Xu HE, & Xie XQ (2020). Cryo-EM Structure of the Human Cannabinoid Receptor CB2-Gi Signaling Complex.
Cell 180 4:645-654.e13. PubMed Id: 32004460. doi:10.1016/j.cell.2020.01.007. |
||
Li et al. (2023).
Li X, Chang H, Bouma J, de Paus LV, Mukhopadhyay P, Paloczi J, Mustafa M, van der Horst C, Kumar SS, Wu L, Yu Y, van den Berg RJBHN, Janssen APA, Lichtman A, Liu ZJ, Pacher P, van der Stelt M, Heitman LH, & Hua T (2023). Structural basis of selective cannabinoid CB2 receptor activation.
Nat Commun 14 1:1447. PubMed Id: 36922494. doi:10.1038/s41467-023-37112-9. |
|||
Nociceptin/orphanin FQ (N/OFQ) receptor with bound peptide: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.01 Å
Engineered protein: T4 lysozyme inserted between TM helices V and VI. |
Thompson et al. (2012).
Thompson AA, Liu W, Chun E, Katritch V, Wu H, Vardy E, Huang XP, Trapella C, Guerrini R, Calo G, Roth BL, Cherezov V, & Stevens RC (2012). Structure of the nociceptin/orphanin FQ receptor in complex with a peptide mimetic.
Nature 485 :395-399. PubMed Id: 22596163. doi:10.1038/nature11085. |
||
Nociceptin/orphanin FQ (N/OFQ) receptor with bound C-35: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.0 Å
Engineered protein: T4 lysozyme inserted between TM helices V and VI. with bound SB-612111, 3.0 Å: 5DHH |
Miller et al. (2015).
Miller RL, Thompson AA, Trapella C, Guerrini R, Malfacini D, Patel N, Han GW, Cherezov V, Caló G, Katritch V, & Stevens RC (2015). The Importance of Ligand-Receptor Conformational Pairs in Stabilization: Spotlight on the N/OFQ G Protein-Coupled Receptor.
Structure 23 :2291-2299. PubMed Id: 26526853. doi:10.1016/j.str.2015.07.024. |
||
Nociceptin/orphanin FQ (N/OFQ) receptor-Gi complex with bound nociceptin peptide: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.28 Å
cryo-EM structure |
Wang et al. (2023).
Wang Y, Zhuang Y, DiBerto JF, Zhou XE, Schmitz GP, Yuan Q, Jain MK, Liu W, Melcher K, Jiang Y, Roth BL, & Xu HE (2023). Structures of the entire human opioid receptor family.
Cell 186 2:413-427.e17. PubMed Id: 36638794. doi:10.1016/j.cell.2022.12.026. |
||
NTSR1 neurotensin receptor in complex with neurotensin: Rattus norvegicus E Eukaryota (expressed in Trichoplusia ni), 2.80 Å
Engineered protein: T4 lysozyme inserted between TM helices V and VI. |
White et al. (2012).
White JF, Noinaj N, Shibata Y, Love J, Kloss B, Xu F, Gvozdenovic-Jeremic J, Shah P, Shiloach J, Tate CG, & Grisshammer R (2012). Structure of the agonist-bound neurotensin receptor.
Nature 490 :508-513. PubMed Id: 23051748. doi:10.1038/nature11558. |
||
NTSR1 neurotensin receptor produced by direct evolution, agonist bound (TM86V-ΔIC3B mutant): Rattus norvegicus E Eukaryota (expressed in E. coli), 2.75 Å
These proteins are not stabilized by a T4 lysozyme insertion. TM86V-ΔIC3A mutant, 3.00 Å: 3ZEV OGG7-ΔIC3A mutant, 3.10 Å: 4BV0 HTHGH4-ΔIC3 mutant, 3.57 Å: 4BWB |
Egloff et al. (2014).
Egloff P, Hillenbrand M, Klenk C, Batyuk A, Heine P, Balada S, Schlinkmann KM, Scott DJ, Schütz M, & Plückthun A (2014). Structure of signaling-competent neurotensin receptor 1 obtained by directed evolution in Escherichia coli.
Proc Natl Acad Sci USA 111 :E655–E662. PubMed Id: 24453215. doi:10.1073/pnas.1317903111. |
||
NTSR1 neurotensin receptor in active-like state: Rattus norvegicus E Eukaryota (expressed in Trichoplusia ni), 2.90 Å
Engineered protein: T4 lysozyme inserted between TM helices V and VI, 2.60 Å: 4XES |
Krumm et al. (2015).
Krumm BE, White JF, Shah P, & Grisshammer R (2015). Structural prerequisites for G-protein activation by the neurotensin receptor.
Nat Commun 6 :7895. PubMed Id: 26205105. doi:10.1038/ncomms8895. |
||
NTSR1 neurotensin receptor, NTSR1-EL constitutively active mutant: Rattus norvegicus E Eukaryota (expressed in Trichoplusia ni), 3.3 Å
Engineered protein: T4 lysozyme inserted between TM helices V and VI plus six thermostabilizing mutations. |
Krumm et al. (2016).
Krumm BE, Lee S, Bhattacharya S, Botos I, White CF, Du H, Vaidehi N, & Grisshammer R (2016). Structure and dynamics of a constitutively active neurotensin receptor.
Sci Rep 6 :38564. PubMed Id: 27924846. doi:10.1038/srep38564. |
||
NTSR1 neurotensin receptor in complex with the peptide full agonist NTS8-13: Rattus norvegicus E Eukaryota (expressed in E. coli), 2.46 Å
Engineered protein. See publication. in complex with the small-molecule full agonist SRI-9829, 2.80 Å: 6Z8N in complex with the small-molecule partial agonist RTI-3a, 2.72 Å: 6ZA8 in complex with the small molecule inverse agonist SR48692, 2.64 Å: 6ZIN in complex with the small-molecule inverse agonist SR142948A, 2.92 Å: 6Z4Q NTSR1-H4bmx construct in complex with NTS8-13, 2.60 Å: 6Z4V |
Deluigi et al. (2021).
Deluigi M, Klipp A, Klenk C, Merklinger L, Eberle SA, Morstein L, Heine P, Mittl PRE, Ernst P, Kamenecka TM, He Y, Vacca S, Egloff P, Honegger A, & Plückthun A (2021). Complexes of the neurotensin receptor 1 with small-molecule ligands reveal structural determinants of full, partial, and inverse agonism.
Sci Adv 7 5:eabe5504. PubMed Id: 33571132. doi:10.1126/sciadv.abe5504. |
||
NTSR1 neurotensin receptor Gi complex in lipid nanodisc (canonical state, no AHD): Rattus norvegicus E Eukaryota (expressed in Spodoptera frugiperda), 4.10 Å
cryo-EM structure canonical state, with AHD, 4.30 Å: 7L0Q noncanonical state, without AHD, 4.20 Å: 7L0R noncanonical state, with AHD, 4.50 Å: 7L0S |
Zhang et al. (2021).
Zhang M, Gui M, Wang ZF, Gorgulla C, Yu JJ, Wu H, Sun ZJ, Klenk C, Merklinger L, Morstein L, Hagn F, Plückthun A, Brown A, Nasr ML, & Wagner G (2021). Cryo-EM structure of an activated GPCR-G protein complex in lipid nanodiscs.
Nat Struct Mol Biol 28 3:258-267. PubMed Id: 33633398. doi:10.1038/s41594-020-00554-6. |
||
Krumm et al. (2023).
Krumm BE, DiBerto JF, Olsen RHJ, Kang HJ, Slocum ST, Zhang S, Strachan RT, Huang XP, Slosky LM, Pinkerton AB, Barak LS, Caron MG, Kenakin T, Fay JF, & Roth BL (2023). Neurotensin Receptor Allosterism Revealed in Complex with a Biased Allosteric Modulator.
Biochemistry 62 7:1233-1248. PubMed Id: 36917754. doi:10.1021/acs.biochem.3c00029. |
|||
NTSR1 neurotensin receptor in complex with Gi1 hetero trimer, canonical conformation (C state): Homo sapiens E Eukaryota (expressed in S. frugiperda (NTSR1) and Trichoplusia ni (Gi1)), 3 Å
cryo-EM structure non-canonical (NC) state, 3 Å: 6OSA |
Kato et al. (2019).
Kato HE, Zhang Y, Hu H, Suomivuori CM, Kadji FMN, Aoki J, Krishna Kumar K, Fonseca R, Hilger D, Huang W, Latorraca NR, Inoue A, Dror RO, Kobilka BK, & Skiniotis G (2019). Conformational transitions of a neurotensin receptor 1-Gi1 complex.
Nature 572 7767:80-85. PubMed Id: 31243364. doi:10.1038/s41586-019-1337-6. |
||
NTSR1 neurotensin receptor in complex with Arrestin-2: Homo sapiens E Eukaryota (expressed in S. frugiperda), 4.9 Å
cryo-EM structure |
Yin et al. (2019).
Yin W, Li Z, Jin M, Yin YL, de Waal PW, Pal K, Yin Y, Gao X, He Y, Gao J, Wang X, Zhang Y, Zhou H, Melcher K, Jiang Y, Cong Y, Edward Zhou X, Yu X, & Eric Xu H (2019). A complex structure of arrestin-2 bound to a G protein-coupled receptor.
Cell Res 29 12:971-983. PubMed Id: 31776446. doi:10.1038/s41422-019-0256-2. |
||
NTSR1 neurotensin receptor in complex with β-arrestin1: Homo sapiens E Eukaryota (expressed in S. frugiperda), 4.2 Å
Cryo-EM structure |
Huang et al. (2020).
Huang W, Masureel M, Qu Q, Janetzko J, Inoue A, Kato HE, Robertson MJ, Nguyen KC, Glenn JS, Skiniotis G, & Kobilka BK (2020). Structure of the neurotensin receptor 1 in complex with β-arrestin 1.
Nature 579 7798:303-308. PubMed Id: 31945771. doi:10.1038/s41586-020-1953-1. |
||
NTSR1 neurotensin receptor in complex with SR48692 and nanobody Nb6: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.40 Å
cryo-EM structure |
Robertson et al. (2022).
Robertson MJ, Papasergi-Scott MM, He F, Seven AB, Meyerowitz JG, Panova O, Peroto MC, Che T, & Skiniotis G (2022). Structure determination of inactive-state GPCRs with a universal nanobody.
Nat Struct Mol Biol 29 12:1188-1195. PubMed Id: 36396979. doi:10.1038/s41594-022-00859-8. |
||
Neuropeptide Y Y1 receptor with bound UR-MK299: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.7 Å
with bound BMS-193885, 3 Å: 5ZBH |
Yang et al. (2018).
Yang Z, Han S, Keller M, Kaiser A, Bender BJ, Bosse M, Burkert K, Kögler LM, Wifling D, Bernhardt G, Plank N, Littmann T, Schmidt P, Yi C, Li B, Ye S, Zhang R, Xu B, Larhammar D, Stevens RC, Huster D, Meiler J, Zhao Q, Beck-Sickinger AG, Buschauer A, & Wu B (2018). Structural basis of ligand binding modes at the neuropeptide Y Y1 receptor.
Nature 556 7702:520-524. PubMed Id: 29670288. doi:10.1038/s41586-018-0046-x. |
||
Neuropeptide Y Y1 - G Protein complex with bound peptide-agonist Neuropeptide Y (NPY): Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.20 Å
cryo-EM structure |
Park et al. (2022).
Park C, Kim J, Ko SB, Choi YK, Jeong H, Woo H, Kang H, Bang I, Kim SA, Yoon TY, Seok C, Im W, & Choi HJ (2022). Structural basis of neuropeptide Y signaling through Y1 receptor.
Nat Commun 13 1:853. PubMed Id: 35165283. doi:10.1038/s41467-022-28510-6. |
||
Neuropeptide Y Y1 - Gi Protein complex with bound NPY: homo sapiens E Eukaryota (expressed in Trichoplusia ni), 3.20 Å
cryo-EM structure |
Tang et al. (2022).
Tang T, Tan Q, Han S, Diemar A, Löbner K, Wang H, Schüß C, Behr V, Mörl K, Wang M, Chu X, Yi C, Keller M, Kofoed J, Reedtz-Runge S, Kaiser A, Beck-Sickinger AG, Zhao Q, & Wu B (2022). Receptor-specific recognition of NPY peptides revealed by structures of NPY receptors.
Sci Adv 8 18:eabm1232. PubMed Id: 35507650. doi:10.1126/sciadv.abm1232. |
||
Neuropeptide Y Y2 receptor with bound selective antagonist JNJ-31020028: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.80 Å
Engineered protein: 28 AAs (S354-V381) removed at C-terminus. T4 lysozyme fused at N-terminus. Residues S251-N256 in 3rd intracellular loop replaced with flavodoxin. |
Tang et al. (2021).
Tang T, Hartig C, Chen Q, Zhao W, Kaiser A, Zhang X, Zhang H, Qu H, Yi C, Ma L, Han S, Zhao Q, Beck-Sickinger AG, & Wu B (2021). Structural basis for ligand recognition of the neuropeptide Y Y2 receptor.
Nat Commun 12 1:737. PubMed Id: 33531491. doi:10.1038/s41467-021-21030-9. |
||
Neuropeptide Y Y2 - Gi Protein complex with bound NPY: Homo sapiens E Eukaryota (expressed in Trichoplusia ni), 3.40 Å
cryo-EM structure |
Tang et al. (2022).
Tang T, Tan Q, Han S, Diemar A, Löbner K, Wang H, Schüß C, Behr V, Mörl K, Wang M, Chu X, Yi C, Keller M, Kofoed J, Reedtz-Runge S, Kaiser A, Beck-Sickinger AG, Zhao Q, & Wu B (2022). Receptor-specific recognition of NPY peptides revealed by structures of NPY receptors.
Sci Adv 8 18:eabm1232. PubMed Id: 35507650. doi:10.1126/sciadv.abm1232. |
||
Neuropeptide Y Y2 - Gi Protein complex with bound PYY (3-36): Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.95 Å
cryo-EM structure with bound NPY, 3.11 Å: 7YOO |
Kang et al. (2023).
Kang H, Park C, Choi YK, Bae J, Kwon S, Kim J, Choi C, Seok C, Im W, & Choi HJ (2023). Structural basis for Y2 receptor-mediated neuropeptide Y and peptide YY signaling.
Structure 31 1:44-57.e6. PubMed Id: 36525977. doi:10.1016/j.str.2022.11.010. |
||
Neuropeptide Y Y4 - Gi Protein complex with bound PP: Homo sapiens E Eukaryota (expressed in Trichoplusia ni), 3.00 Å
cryo-EM structure |
Tang et al. (2022).
Tang T, Tan Q, Han S, Diemar A, Löbner K, Wang H, Schüß C, Behr V, Mörl K, Wang M, Chu X, Yi C, Keller M, Kofoed J, Reedtz-Runge S, Kaiser A, Beck-Sickinger AG, Zhao Q, & Wu B (2022). Receptor-specific recognition of NPY peptides revealed by structures of NPY receptors.
Sci Adv 8 18:eabm1232. PubMed Id: 35507650. doi:10.1126/sciadv.abm1232. |
||
Protease-activated receptor 1 (PAR1) bound with antagonist vorapaxar: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.20 Å
Engineered protein: T4 lysozyme inserted between TM helices V and VI. |
Zhang et al. (2012).
Zhang C, Srinivasan Y, Arlow DH, Fung JJ, Palmer D, Zheng Y, Green HF, Pandey A, Dror RO, Shaw DE, Weis WI, Coughlin SR, & Kobilka BK (2012). High-resolution crystal structure of human protease-activated receptor 1.
Nature 492 :387-392. PubMed Id: 23222541. doi:10.1038/nature11701. |
||
Cheng et al. (2017).
Cheng RKY, Fiez-Vandal C, Schlenker O, Edman K, Aggeler B, Brown DG, Brown GA, Cooke RM, Dumelin CE, Doré AS, Geschwindner S, Grebner C, Hermansson NO, Jazayeri A, Johansson P, Leong L, Prihandoko R, Rappas M, Soutter H, Snijder A, Sundström L, Tehan B, Thornton P, Troast D, Wiggin G, Zhukov A, Marshall FH, & Dekker N (2017). Structural insight into allosteric modulation of protease-activated receptor 2.
Nature 545 7652:112-115. PubMed Id: 28445455. doi:10.1038/nature22309. |
|||
Langelaan et al. (2013).
Langelaan DN, Reddy T, Banks AW, Dellaire G, Dupré DJ, & Rainey JK (2013). Structural features of the apelin receptor N-terminal tail and first transmembrane segment implicated in ligand binding and receptor trafficking.
Biochim Biophys Acta 1828 :1471-1483. PubMed Id: 23438363. doi:10.1016/j.bbamem.2013.02.005. |
|||
Apelin receptor (angiotensin II protein J receptor [APJR]) in complex with apelin-17 mimetic peptide: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.6 Å
|
Ma et al. (2017).
Ma Y, Yue Y, Ma Y, Zhang Q, Zhou Q, Song Y, Shen Y, Li X, Ma X, Li C, Hanson MA, Han GW, Sickmier EA, Swaminath G, Zhao S, Stevens RC, Hu LA, Zhong W, Zhang M, & Xu F (2017). Structural Basis for Apelin Control of the Human Apelin Receptor.
Structure 25 :858-866.e4. PubMed Id: 28528775. doi:10.1016/j.str.2017.04.008. |
||
Apelin receptor (angiotensin II protein J receptor [APJR]) - Gi complex, dimeric APJR, with bound compound 644: Homo sapiens E Eukaryota (expressed in Trichoplusia ni), 3.57 Å
cryo-EM structure monomeric APJR, with bound compound 644, 3.71 Å: 7W0M dimeric APJR, with bound peptide ELA, 4.21 Å 7W0N monomeric APJR, with bound compound 644, 3.78 Å: 7W0O monomeric APJR, F101A mutant, with bound peptide ELA, 3.16 Å, 7W0P x-ray, APJR in complex with compound 644, 2.70 Å: 7SUS |
Yue et al. (2022).
Yue Y, Liu L, Wu LJ, Wu Y, Wang L, Li F, Liu J, Han GW, Chen B, Lin X, Brouillette RL, Breault É:, Longpré: JM, Shi S, Lei H, Sarret P, Stevens RC, Hanson MA, & Xu F (2022). Structural insight into apelin receptor-G protein stoichiometry.
Nat Struct Mol Biol 29 7:688-697. PubMed Id: 35817871. doi:10.1038/s41594-022-00797-5. |
||
Apelin receptor (angiotensin II protein J receptor [APJR])- Gi complex with bound apelin: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.20 Å
cryo-EM structure with bound agonist WN561, 3.00 Å: 8XZF with bound agonist WN353, 3.00 Å: 8XZJ with bound agonist MM07, 2.60 Å: 8XZH with bound agonist CMF-019, 2.70 Å: 8XZI |
Wang et al. (2024).
Wang WW, Ji SY, Zhang W, Zhang J, Cai C, Hu R, Zang SK, Miao L, Xu H, Chen LN, Yang Z, Guo J, Qin J, Shen DD, Liang P, Zhang Y, & Zhang Y (2024). Structure-based design of non-hypertrophic apelin receptor modulator.
Cell 187 6:1460-1475.e20. PubMed Id: 38428423. doi:10.1016/j.cell.2024.02.004. |
||
Xu et al. (2021).
Xu P, Huang S, Zhang H, Mao C, Zhou XE, Cheng X, Simon IA, Shen DD, Yen HY, Robinson CV, Harpsøe K, Svensson B, Guo J, Jiang H, Gloriam DE, Melcher K, Jiang Y, Zhang Y, & Xu HE (2021). Structural insights into the lipid and ligand regulation of serotonin receptors.
Nature 592 7854:469-473. PubMed Id: 33762731. doi:10.1038/s41586-021-03376-8. |
|||
5-HT1A-Gi serotonin receptor complex with bound Ulotaront(SEP-363856): Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.65 Å
cryo-EM structure |
Xu et al. (2023).
Xu Z, Guo L, Yu J, Shen S, Wu C, Zhang W, Zhao C, Deng Y, Tian X, Feng Y, Hou H, Su L, Wang H, Guo S, Wang H, Wang K, Chen P, Zhao J, Zhang X, Yong X, Cheng L, Liu L, Yang S, Yang F, Wang X, Yu X, Xu Y, Sun JP, Yan W, & Shao Z (2023). Ligand recognition and G-protein coupling of trace amine receptor TAAR1.
Nature . PubMed Id: 37935376. doi:10.1038/s41586-023-06804-z. |
||
5-HT1A-Gi serotonin receptor complex, with bound SEP-363856: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.00 Å
cryo-EM structure |
Liu et al. (2023).
Liu H, Zheng Y, Wang Y, Wang Y, He X, Xu P, Huang S, Yuan Q, Zhang X, Wang L, Jiang K, Chen H, Li Z, Liu W, Wang S, Xu HE, & Xu F (2023). Recognition of methamphetamine and other amines by trace amine receptor TAAR1.
Nature 624 7992:663-671. PubMed Id: 37935377. doi:10.1038/s41586-023-06775-1. |
||
5-HT1B serotonin receptor with bound ergotamine: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.70 Å
Engineered Protein: apocytochrome b562 RIL (BRIL) replaces cytoplasmic loop 3 (L240-M305). With bound dihydroergotamine, 2.80 Å: 4IAQ |
Wang et al. (2013).
Wang C, Jiang Y, Ma J, Wu H, Wacker D, Katritch V, Han GW, Liu W, Huang XP, Vardy E, McCorvy JD, Gao X, Zhou XE, Melcher K, Zhang C, Bai F, Yang H, Yang L, Jiang H, Roth BL, Cherezov V, Stevens RC, & Xu HE (2013). Structural basis for molecular recognition at serotonin receptors.
Science 340 :610-614. PubMed Id: 23519210. doi:10.1126/science.1232807. |
||
5-HT1B serotonin receptor with bound donitriptan coupled to heterotrimeric Go: Homo sapiens E Eukaryota (expressed in Trichoplusia ni), 3.78 Å
cryo-EM structure |
García-Nafría et al. (2018).
García-Nafría J, Nehmé R, Edwards PC, & Tate CG (2018). Cryo-EM structure of the serotonin 5-HT1B receptor coupled to heterotrimeric Go.
Nature 558 7711:620-623. PubMed Id: 29925951. doi:10.1038/s41586-018-0241-9. |
||
5-HT1B serotonin receptor with SRP2070_Fab complex: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.00 Å
Engineered Protein: apocytochrome b562 RIL (BRIL) replaces cytoplasmic loop 3 (L240-M305). |
Miyagi et al. (2020).
Miyagi H, Asada H, Suzuki M, Takahashi Y, Yasunaga M, Suno C, Iwata S, & Saito JI (2020). The discovery of a new antibody for BRIL-fused GPCR structure determination.
Sci Rep 10 1:11669. PubMed Id: 32669569. doi:10.1038/s41598-020-68355-x. |
||
5-HT1D-Gi serotonin receptor complex: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 2.90 Å
cryo-EM structure |
Xu et al. (2021).
Xu P, Huang S, Zhang H, Mao C, Zhou XE, Cheng X, Simon IA, Shen DD, Yen HY, Robinson CV, Harpsøe K, Svensson B, Guo J, Jiang H, Gloriam DE, Melcher K, Jiang Y, Zhang Y, & Xu HE (2021). Structural insights into the lipid and ligand regulation of serotonin receptors.
Nature 592 7854:469-473. PubMed Id: 33762731. doi:10.1038/s41586-021-03376-8. |
||
5-HT1E-Gi serotonin receptor complex: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 2.90 Å
cryo-EM structure |
Xu et al. (2021).
Xu P, Huang S, Zhang H, Mao C, Zhou XE, Cheng X, Simon IA, Shen DD, Yen HY, Robinson CV, Harpsøe K, Svensson B, Guo J, Jiang H, Gloriam DE, Melcher K, Jiang Y, Zhang Y, & Xu HE (2021). Structural insights into the lipid and ligand regulation of serotonin receptors.
Nature 592 7854:469-473. PubMed Id: 33762731. doi:10.1038/s41586-021-03376-8. |
||
5-HT1E-Gi1 serotonin receptor complex with bound agonist mianserin: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.31 Å
cryo-EM structure with bound agonist setiptiline, 3.31 Å: 8UH3 |
Zilberg et al. (2023).
Zilberg G, Parpounas AK, Warren AL, Fiorillo B, Provasi D, Filizola M, & Wacker D (2023). Structural Insights into the Unexpected Agonism of Tetracyclic Antidepressants at Serotonin Receptors 5-HT1eR and 5-HT1FR.
bioRxiv . PubMed Id: 37986777. doi:10.1101/2023.10.05.561100. |
||
5-HT1F-Gi serotonin receptor complex: Homo sapiens E Eukaryota (expressed in Trichoplusia ni), 3.40 Å
cryo-EM structure |
Huang et al. (2021).
Huang S, Xu P, Tan Y, You C, Zhang Y, Jiang Y, & Xu HE (2021). Structural basis for recognition of anti-migraine drug lasmiditan by the serotonin receptor 5-HT1F-G protein complex.
Cell Res . PubMed Id: 34239069. doi:10.1038/s41422-021-00527-4. |
||
5-HT2A serotonin receptor with bound risperidone: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3 Å
with bound zotepine, 2.9 Å: 6A94 |
Kimura et al. (2019).
Kimura KT, Asada H, Inoue A, Kadji FMN, Im D, Mori C, Arakawa T, Hirata K, Nomura Y, Nomura N, Aoki J, Iwata S, & Shimamura T (2019). Structures of the 5-HT2A receptor in complex with the antipsychotics risperidone and zotepine.
Nat Struct Mol Biol 26 2:121-128. PubMed Id: 30723326. doi:10.1038/s41594-018-0180-z. |
||
Kim et al. (2020).
Kim K, Che T, Panova O, DiBerto JF, Lyu J, Krumm BE, Wacker D, Robertson MJ, Seven AB, Nichols DE, Shoichet BK, Skiniotis G, & Roth BL (2020). Structure of a Hallucinogen-Activated Gq-Coupled 5-HT2A Serotonin Receptor.
Cell 182 6:1574-1588.e19. PubMed Id: 32946782. doi:10.1016/j.cell.2020.08.024. |
|||
5-HT2A serotonin receptor with bound cariprazine: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.30 Å
with bound aripiprazole, 2.90 Å 7VOE |
Chen et al. (2022).
Chen Z, Fan L, Wang H, Yu J, Lu D, Qi J, Nie F, Luo Z, Liu Z, Cheng J, & Wang S (2022). Structure-based design of a novel third-generation antipsychotic drug lead with potential antidepressant properties.
Nat Neurosci 25 1:39-49. PubMed Id: 34887590. doi:10.1038/s41593-021-00971-w. |
||
5-HT2A serotonin receptor in complex with serotonin: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.20 Å
in complex with psilocin, 3.20 Å 7WC5 in complex with LSD, 2.60 Å 7WC6 in complex with lisuride, 2.60 Å 7WC7 in complex with lumateperone, 2.45 Å 7WC8 in complex with non-hallucinogenic psychedelic analog, 2.50 Å 7WC9 |
Cao et al. (2022).
Cao D, Yu J, Wang H, Luo Z, Liu X, He L, Qi J, Fan L, Tang L, Chen Z, Li J, Cheng J, & Wang S (2022). Structure-based discovery of nonhallucinogenic psychedelic analogs.
Science 375 6579:403-411. PubMed Id: 35084960. doi:10.1126/science.abl8615. |
||
5-HT2A serotonin receptor complexed with miniGq and agonist (R)-69: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.45 Å
cryo-EM structure |
Kaplan et al. (2022).
Kaplan AL, Confair DN, Kim K, Barros-Álvarez X, Rodriguiz RM, Yang Y, Kweon OS, Che T, McCorvy JD, Kamber DN, Phelan JP, Martins LC, Pogorelov VM, DiBerto JF, Slocum ST, Huang XP, Kumar JM, Robertson MJ, Panova O, Seven AB, Wetsel AQ, Wetsel WC, Irwin JJ, Skiniotis G, Shoichet BK, Roth BL, & Ellman JA (2022). Bespoke library docking for 5-HT2A receptor agonists with antidepressant activity.
Nature 610 7932:582-591. PubMed Id: 36171289. doi:10.1038/s41586-022-05258-z. |
||
5-HT2A serotonin receptor - Gi complex: Homo sapiens E Eukaryota (expressed in Trichoplusia ni), 3.10 Å
cryo-EM structure |
Tan et al. (2022).
Tan Y, Xu P, Huang S, Yang G, Zhou F, He X, Ma H, Xu HE, & Jiang Y (2022). Structural insights into the ligand binding and Gi coupling of serotonin receptor 5-HT5A.
Cell Discov 8 1:50. PubMed Id: 35610220. doi:10.1038/s41421-022-00412-3. |
||
5-HT2B serotonin receptor with bound ergotamine: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.70 Å
Engineered Protein: apocytochrome b562 RIL (BRIL) replaces cytoplasmic loop 3 (Y249-V313). |
Wacker et al. (2013).
Wacker D, Wang C, Katritch V, Han GW, Huang XP, Vardy E, McCorvy JD, Jiang Y, Chu M, Siu FY, Liu W, Xu HE, Cherezov V, Roth BL, & Stevens RC (2013). Structural features for functional selectivity at serotonin receptors.
Science 340 :615-619. PubMed Id: 23519215. doi:10.1126/science.1232808. |
||
5-HT2B serotonin receptor: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.80 Å
Structure determined by serial femtosecond crystallography. Engineered Protein: apocytochrome b562 RIL (BRIL) replaces cytoplasmic loop 3 (Y249-V313). |
Liu et al. (2013).
Liu W, Wacker D, Gati C, Han GW, James D et al. (2013). Serial femtosecond crystallography of G protein-coupled receptors.
Science 342 :1521-1524. PubMed Id: 24357322. doi:10.1126/science.1244142. |
||
5-HT2B serotonin receptor with bound LSD: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.9 Å
Engineered Protein: apocytochrome b562 RIL (BRIL) replaces cytoplasmic loop 3 (Y249-V312) |
Wacker et al. (2017).
Wacker D, Wang S, McCorvy JD, Betz RM, Venkatakrishnan AJ, Levit A, Lansu K, Schools ZL, Che T, Nichols DE, Shoichet BK, Dror RO, & Roth BL (2017). Crystal Structure of an LSD-Bound Human Serotonin Receptor.
Cell 168 :377-389. PubMed Id: 28129538. doi:10.1016/j.cell.2016.12.033. |
||
5-HT2B serotonin receptor with bound methylergonovine: Homo Sapiens B Bacteria (expressed in Spodoptera frugiperda), 2.92 Å
engineered protein: apocytochrome b562 RIL (BRIL) replaces cytoplasmic loop 3 (Y249-V313) Ala225Gly5,46 mutant with bound methylsergide, 3.10 Å: 6DRZ with bound lisuride, 3.1 Å: 6DRX with bound LY266097, 3.19 Å: 6DS0 |
McCorvy et al. (2018).
McCorvy JD, Wacker D, Wang S, Agegnehu B, Liu J, Lansu K, Tribo AR, Olsen RHJ, Che T, Jin J, & Roth BL (2018). Structural determinants of 5-HT2B receptor activation and biased agonism.
Nat Struct Mol Biol 25 9:787-796. PubMed Id: 30127358. doi:10.1038/s41594-018-0116-7. |
||
Cao et al. (2022).
Cao C, Barros-Álvarez X, Zhang S, Kim K, Dämgen MA, Panova O, Suomivuori CM, Fay JF, Zhong X, Krumm BE, Gumpper RH, Seven AB, Robertson MJ, Krogan NJ, Hüttenhain R, Nichols DE, Dror RO, Skiniotis G, & Roth BL (2022). Signaling snapshots of a serotonin receptor activated by the prototypical psychedelic LSD.
Neuron 110 19:3154-3167.e7. PubMed Id: 36087581. doi:10.1016/j.neuron.2022.08.006. |
|||
5-HT2C serotonin receptor with bound ergotamine: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.00 Å
with bound ritanserin, 2.70 Å: 6BQH |
Peng et al. (2018).
Peng Y, McCorvy JD, Harpsøe K, Lansu K, Yuan S, Popov P, Qu L, Pu M, Che T, Nikolajsen LF, Huang XP, Wu Y, Shen L, Bjørn-Yoshimoto WE, Ding K, Wacker D, Han GW, Cheng J, Katritch V, Jensen AA, Hanson MA, Zhao S, Gloriam DE, Roth BL, Stevens RC, & Liu ZJ (2018). 5-HT2C Receptor Structures Reveal the Structural Basis of GPCR Polypharmacology.
Cell 172 4:719-730.e14. PubMed Id: 29398112. doi:10.1016/j.cell.2018.01.001. |
||
5-HT2C serotonin receptor (INI isoform) - Gαq complex, with bound lorcaserin: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 2.84 Å
cryo-EM structure INI isoform, with bound psilocin, 3.60 Å: 8DPG VGV isoform, with bound lorcaserin, 3.20 Å: 8DPH VSV isoform, with bound lorcaserin, 3.40 Å: 8DPI |
Gumpper et al. (2022).
Gumpper RH, Fay JF, & Roth BL (2022). Molecular insights into the regulation of constitutive activity by RNA editing of 5HT2C serotonin receptors.
Cell Rep 40 7:111211. PubMed Id: 35977511. doi:10.1016/j.celrep.2022.111211. |
||
Huang et al. (2022).
Huang S, Xu P, Shen DD, Simon IA, Mao C, Tan Y, Zhang H, Harpsøe K, Li H, Zhang Y, You C, Yu X, Jiang Y, Zhang Y, Gloriam DE, & Xu HE (2022). GPCRs steer Gi and Gs selectivity via TM5-TM6 switches as revealed by structures of serotonin receptors.
Mol Cell 82 14:2681-2695.e6. PubMed Id: 35714614. doi:10.1016/j.molcel.2022.05.031. |
|||
5-HT5A serotonin receptor in complex with AS2674723: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 2.80 Å
in complex with Go and 5-CT, cryo-EM structure, 2.73 Å: 7UM5 in complex with Go and lisuride, cryo-EM structure, 2.79 Å: 7UM6 in complex with Go and methylergometrine, cryo-EM structure, 2.75 Å: 7UM7 |
Zhang et al. (2022).
Zhang S, Chen H, Zhang C, Yang Y, Popov P, Liu J, Krumm BE, Cao C, Kim K, Xiong Y, Katritch V, Shoichet BK, Jin J, Fay JF, & Roth BL (2022). Inactive and active state structures template selective tools for the human 5-HT5A receptor.
Nat Struct Mol Biol 29 7:677-687. PubMed Id: 35835867. doi:10.1038/s41594-022-00796-6. |
||
5-HT6 serotonin receptor Gs-Nb35 complex: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.30 Å
cryo-EM structure |
Huang et al. (2022).
Huang S, Xu P, Shen DD, Simon IA, Mao C, Tan Y, Zhang H, Harpsøe K, Li H, Zhang Y, You C, Yu X, Jiang Y, Zhang Y, Gloriam DE, & Xu HE (2022). GPCRs steer Gi and Gs selectivity via TM5-TM6 switches as revealed by structures of serotonin receptors.
Mol Cell 82 14:2681-2695.e6. PubMed Id: 35714614. doi:10.1016/j.molcel.2022.05.031. |
||
5-HT6 serotonin receptor Gs-scFv16 complex: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.00 Å
cryo-EM structure |
He et al. (2023).
He L, Zhao Q, Qi J, Wang Y, Han W, Chen Z, Cong Y, & Wang S (2023). Structural insights into constitutive activity of 5-HT6 receptor.
Proc Natl Acad Sci U S A 120 14:e2209917120. PubMed Id: 36989299. doi:10.1073/pnas.2209917120. |
||
5-HT7 serotonin receptor Gs-Nb35 complex:: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.20 Å
cryo-EM structure |
Huang et al. (2022).
Huang S, Xu P, Shen DD, Simon IA, Mao C, Tan Y, Zhang H, Harpsøe K, Li H, Zhang Y, You C, Yu X, Jiang Y, Zhang Y, Gloriam DE, & Xu HE (2022). GPCRs steer Gi and Gs selectivity via TM5-TM6 switches as revealed by structures of serotonin receptors.
Mol Cell 82 14:2681-2695.e6. PubMed Id: 35714614. doi:10.1016/j.molcel.2022.05.031. |
||
Stauch et al. (2019).
Stauch B, Johansson LC, McCorvy JD, Patel N, Han GW, Huang XP, Gati C, Batyuk A, Slocum ST, Ishchenko A, Brehm W, White TA, Michaelian N, Madsen C, Zhu L, Grant TD, Grandner JM, Shiriaeva A, Olsen RHJ, Tribo AR, Yous S, Stevens RC, Weierstall U, Katritch V, Roth BL, Liu W, & Cherezov V (2019). Structural basis of ligand recognition at the human MT1 melatonin receptor.
Nature 569 7755:284-288. PubMed Id: 31019306. doi:10.1038/s41586-019-1141-3. see DOI 10.1038/s41586-019-1209-0 for corrections |
|||
MT1 melatonin receptor with bound 2-phenylmelatonin: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.3 Å
XFEL structure using transient ligand exchange starting with agomelatine. See also 6PRZ. |
Ishchenko et al. (2019).
Ishchenko A, Stauch B, Han GW, Batyuk A, Shiriaeva A, Li C, Zatsepin N, Weierstall U, Liu W, Nango E, Nakane T, Tanaka R, Tono K, Joti Y, Iwata S, Moraes I, Gati C, & Cherezov V (2019). Toward G protein-coupled receptor structure-based drug design using X-ray lasers.
IUCrJ 6 :1106-1119. PubMed Id: 31709066. doi:10.1107/S2052252519013137. |
||
MT1-Gi melatonin receptor complex: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.30 Å
cryo-EM structure |
Okamoto et al. (2021).
Okamoto HH, Miyauchi H, Inoue A, Raimondi F, Tsujimoto H, Kusakizako T, Shihoya W, Yamashita K, Suno R, Nomura N, Kobayashi T, Iwata S, Nishizawa T, & Nureki O (2021). Cryo-EM structure of the human MT1-Gi signaling complex.
Nat Struct Mol Biol 28 8:694-701. PubMed Id: 34354246. doi:10.1038/s41594-021-00634-1. |
||
MT1 melatonin receptor-Gi complex with bound 2-iodomelatonin: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.10 Å
cryo-EM structure with bound remalteon, 3.30 Å 7VGZ |
Wang et al. (2022).
Wang Q, Lu Q, Guo Q, Teng M, Gong Q, Li X, Du Y, Liu Z, & Tao Y (2022). Structural basis of the ligand binding and signaling mechanism of melatonin receptors.
Nat Commun 13 1:454. PubMed Id: 35075127. doi:10.1038/s41467-022-28111-3. |
||
Johansson et al. (2019).
Johansson LC, Stauch B, McCorvy JD, Han GW, Patel N, Huang XP, Batyuk A, Gati C, Slocum ST, Li C, Grandner JM, Hao S, Olsen RHJ, Tribo AR, Zaare S, Zhu L, Zatsepin NA, Weierstall U, Yous S, Stevens RC, Liu W, Roth BL, Katritch V, & Cherezov V (2019). XFEL structures of the human MT2 melatonin receptor reveal the basis of subtype selectivity.
Nature 569 7755:289-292. PubMed Id: 31019305. doi:10.1038/s41586-019-1144-0. |
|||
MT2 melatonin receptor-Gi complex with bound remalteon: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.46 Å
cryo-EM structure |
Wang et al. (2022).
Wang Q, Lu Q, Guo Q, Teng M, Gong Q, Li X, Du Y, Liu Z, & Tao Y (2022). Structural basis of the ligand binding and signaling mechanism of melatonin receptors.
Nat Commun 13 1:454. PubMed Id: 35075127. doi:10.1038/s41467-022-28111-3. |
||
P2Y12 receptor in complex with an antithrombotic drug: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.62 Å
Engineered Protein: apocytochrome b562 RIL (BRIL) replaces cytoplasmic loop 3 |
Zhang et al. (2014).
Zhang K, Zhang J, Gao ZG, Zhang D, Zhu L, Han GW, Moss SM, Paoletta S, Kiselev E, Lu W, Fenalti G, Zhang W, Müller CE, Yang H, Jiang H, Cherezov V, Katritch V, Jacobson KA, Stevens RC, Wu B, & Zhao Q (2014). Structure of the human P2Y12 receptor in complex with an antithrombotic drug.
Nature 509 :115-118. PubMed Id: 24670650. doi:10.1038/nature13083. |
||
P2Y12 receptor with bound agonist 2MeSADP: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.50 Å
Engineered Protein: apocytochrome b562 RIL (BRIL) replaces cytoplasmic loop 3 with bound 2MeSATP, 3.10 Å: 4PY0 |
Zhang et al. (2014).
Zhang J, Zhang K, Gao ZG, Paoletta S, Zhang D, Han GW, Li T, Ma L, Zhang W, Müller CE, Yang H, Jiang H, Cherezov V, Katritch V, Jacobson KA, Stevens RC, Wu B, & Zhao Q (2014). Agonist-bound structure of the human P2Y12 receptor.
Nature 509 :119-122. PubMed Id: 24784220. doi:10.1038/nature13288. |
||
P2Y12 receptor with bound inverse agonist selatogrel: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 2.78 Å
|
Pons et al. (2022).
Pons V, Garcia C, Tidten-Luksch N, Mac Sweeney A, Caroff E, Galés C, & Riederer MA (2022). Inverse agonist efficacy of selatogrel blunts constitutive P2Y12 receptor signaling by inducing the inactive receptor conformation.
Biochem Pharmacol 206 :115291. PubMed Id: 36306820. doi:10.1016/j.bcp.2022.115291. |
||
P2Y1 receptor in complex with BPTU: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.20 Å
Engineered protein. Rubredoxin inserted into the ICL3 domain between residues 247K and 253P, replacing residues 248N to 252S. in complex with MRS2500, 2.70 Å: 4XNW |
Zhang et al. (2015).
Zhang D, Gao ZG, Zhang K, Kiselev E, Crane S, Wang J, Paoletta S, Yi C, Ma L, Zhang W, Han GW, Liu H, Cherezov V, Katritch V, Jiang H, Stevens RC, Jacobson KA, Zhao Q, & Wu B (2015). Two disparate ligand-binding sites in the human P2Y1 receptor.
Nature 520 7547:317-321. PubMed Id: 25822790. doi:10.1038/nature14287. |
||
P2Y10 receptor - Gα13 complex with bound LysoPS: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.06 Å
cryo-EM structure |
Yin et al. (2024).
Yin H, Kamakura N, Qian Y, Tatsumi M, Ikuta T, Liang J, Xu Z, Xia R, Zhang A, Guo C, Inoue A, & He Y (2024). Insights into lysophosphatidylserine recognition and Gα12/13-coupling specificity of P2Y10.
Cell Chem Biol . PubMed Id: 39265572. doi:10.1016/j.chembiol.2024.08.005. |
||
Leukotriene B4 receptor BLT1 with bound antagonist BIIL260, inactive state: Cavia porcellus E Eukaryota (expressed in HEK293 cells), 3.7 Å
|
Hori et al. (2018).
Hori T, Okuno T, Hirata K, Yamashita K, Kawano Y, Yamamoto M, Hato M, Nakamura M, Shimizu T, Yokomizo T, Miyano M, & Yokoyama S (2018). Na+-mimicking ligands stabilize the inactive state of leukotriene B4receptor BLT1.
Nat Chem Biol 14 :262-269. PubMed Id: 29309055. doi:10.1038/nchembio.2547. |
||
Leukotriene B4 receptor BLT1 in Complex with Selective Antagonist MK-D-046: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 2.88 Å
|
Michaelian et al. (2021).
Michaelian N, Sadybekov A, Besserer-Offroy É, Han GW, Krishnamurthy H, Zamlynny BA, Fradera X, Siliphaivanh P, Presland J, Spencer KB, Soisson SM, Popov P, Sarret P, Katritch V, & Cherezov V (2021). Structural insights on ligand recognition at the human leukotriene B4 receptor 1.
Nat Commun 12 1:2971. PubMed Id: 34016973. doi:10.1038/s41467-021-23149-1. |
||
Leukotriene B4 receptor BLT1-Gi complex: Homo sapiens E Eukaryota (expressed in SF9 cells), 2.90 Å
cryo-EM structure |
Wang et al. (2022).
Wang N, He X, Zhao J, Jiang H, Cheng X, Xia Y, Eric Xu H, & He Y (2022). Structural basis of leukotriene B4 receptor 1 activation.
Nat Commun 13 1:1156. PubMed Id: 35241677. doi:10.1038/s41467-022-28820-9. |
||
cysteinyl leukotriene receptor 1 (CysLT1) in complex with pranlukast: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.7 Å
in complex with zafirlukast using XFEL, 2.53 Å: 6RZ5 |
Luginina et al. (2019).
Luginina A, Gusach A, Marin E, Mishin A, Brouillette R, Popov P, Shiriaeva A, Besserer-Offroy É, Longpré JM, Lyapina E, Ishchenko A, Patel N, Polovinkin V, Safronova N, Bogorodskiy A, Edelweiss E, Hu H, Weierstall U, Liu W, Batyuk A, Gordeliy V, Han GW, Sarret P, Katritch V, Borshchevskiy V, & Cherezov V (2019). Structure-based mechanism of cysteinyl leukotriene receptor inhibition by antiasthmatic drugs.
Sci Adv 5 10. PubMed Id: 31633023. doi:10.1126/sciadv.aax2518. |
||
cysteinyl leukotriene receptor 2 (CysLT2) in complex with ONO-2570366 (C2221) space group: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.43 Å
Engineered protein: b562RIL (mutant M7W, H102I, R106L) inserted in ICL3 between E232 and V240 F222 space group, 2.43 Å: 6R7Z in complex with ONO-2080365, 2.7 Å: 6RZ8 in complex with ONO-2770372, 2.73 Å: 6RZ9 |
Gusach et al. (2019).
Gusach A, Luginina A, Marin E, Brouillette RL, Besserer-Offroy É, Longpré JM, Ishchenko A, Popov P, Patel N, Fujimoto T, Maruyama T, Stauch B, Ergasheva M, Romanovskaia D, Stepko A, Kovalev K, Shevtsov M, Gordeliy V, Han GW, Katritch V, Borshchevskiy V, Sarret P, Mishin A, & Cherezov V (2019). Structural basis of ligand selectivity and disease mutations in cysteinyl leukotriene receptors.
Nat Commun 10 1:5573. PubMed Id: 31811124. doi:10.1038/s41467-019-13348-2. |
||
oxytocin receptor: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.20 Å
Engineered protein. Intracellular loop 3 replaced with Pyrococcus abysii glycogen synthase (PGS). |
Waltenspühl et al. (2020).
Waltenspühl Y, Schöppe J, Ehrenmann J, Kummer L, & Plückthun A (2020). Crystal structure of the human oxytocin receptor.
Sci Adv 6 29. PubMed Id: 32832646. doi:10.1126/sciadv.abb5419. |
||
GPR40 free fatty-acid receptor 1 (FFAR1) bound to TAK-875: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.33 Å
Engineered protein: Four point mutations to improve thermostability and T4 lysozyme inserted between TM helices V and VI (intracellular loop 3). |
Srivastava et al. (2014).
Srivastava A, Yano J, Hirozane Y, Kefala G, Gruswitz F, Snell G, Lane W, Ivetac A, Aertgeerts K, Nguyen J, Jennings A, & Okada K (2014). High-resolution structure of the human GPR40 receptor bound to allosteric agonist TAK-875.
Nature 513 7516:124-127. PubMed Id: 25043059. doi:10.1038/nature13494. |
||
GPR40 free fatty-acid receptor 1 (FFAR1) - Gq complex with bound DHA: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.39 Å
cryo-EM structure |
Zhang et al. (2024).
Zhang X, Guseinov AA, Jenkins L, Li K, Tikhonova IG, Milligan G, & Zhang C (2024). Structural basis for the ligand recognition and signaling of free fatty acid receptors.
Sci Adv 10 2:eadj2384. PubMed Id: 38198545. doi:10.1126/sciadv.adj2384. |
||
GPR43 free fatty-acid receptor 2 (FFAR2) - Gq complex with bound butyrate: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.07 Å
cryo-EM structure |
Zhang et al. (2024).
Zhang X, Guseinov AA, Jenkins L, Li K, Tikhonova IG, Milligan G, & Zhang C (2024). Structural basis for the ligand recognition and signaling of free fatty acid receptors.
Sci Adv 10 2:eadj2384. PubMed Id: 38198545. doi:10.1126/sciadv.adj2384. |
||
GPR120 free fatty-acid receptor 4 (FFAR4) - Giq complex, with bound TUG891: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.64 Å
cryo-EM structure Gi complex, with bound eicosapentaenoic acid, 3.00 Å: 8ID9 Gi complex, with bound 9-hydroxystearic acid, 3.10 Å: 8ID3 Gi complex, with bound linoleic acid, 3.10 Å: 8ID4 Gi complex, with bound TUG891, 3.00 Å: 8ID8 Gi complex, with bound oleic acid, 2.80 Å: 8ID6 |
Mao et al. (2023).
Mao C, Xiao P, Tao XN, Qin J, He QT, Zhang C, Guo SC, Du YQ, Chen LN, Shen DD, Yang ZS, Zhang HQ, Huang SM, He YH, Cheng J, Zhong YN, Shang P, Chen J, Zhang DL, Wang QL, Liu MX, Li GY, Guo Y, Xu HE, Wang C, Zhang C, Feng S, Yu X, Zhang Y, & Sun JP (2023). Unsaturated bond recognition leads to biased signal in a fatty acid receptor.
Science 380 6640:eadd6220. PubMed Id: 36862765. doi:10.1126/science.add6220. |
||
GPR120 free fatty-acid receptor 4 (FFAR4) - Gq complex with bound TUG891: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.06 Å
cryo-EM structure with bound DHA, 3.14 Å: 8T3Q |
Zhang et al. (2024).
Zhang X, Guseinov AA, Jenkins L, Li K, Tikhonova IG, Milligan G, & Zhang C (2024). Structural basis for the ligand recognition and signaling of free fatty acid receptors.
Sci Adv 10 2:eadj2384. PubMed Id: 38198545. doi:10.1126/sciadv.adj2384. |
||
Chrencik et al. (2015).
Chrencik JE, Roth CB, Terakado M, Kurata H, Omi R, Kihara Y, Warshaviak D, Nakade S, Asmar-Rovira G, Mileni M, Mizuno H, Griffith MT, Rodgers C, Han GW, Velasquez J, Chun J, Stevens RC, & Hanson MA (2015). Crystal Structure of Antagonist Bound Human Lysophosphatidic Acid Receptor 1.
Cell 161 :1633-1643. PubMed Id: 26091040. doi:10.1016/j.cell.2015.06.002. |
|||
Liu et al. (2022).
Liu S, Paknejad N, Zhu L, Kihara Y, Ray M, Chun J, Liu W, Hite RK, & Huang XY (2022). Differential activation mechanisms of lipid GPCRs by lysophosphatidic acid and sphingosine 1-phosphate.
Nat Commun 13 1:731. PubMed Id: 35136060. doi:10.1038/s41467-022-28417-2. |
|||
Akasaka et al. (2022).
Akasaka H, Tanaka T, Sano FK, Matsuzaki Y, Shihoya W, & Nureki O (2022). Structure of the active Gi-coupled human lysophosphatidic acid receptor 1 complexed with a potent agonist.
Nat Commun 13 1:5417. PubMed Id: 36109516. doi:10.1038/s41467-022-33121-2. |
|||
LPA6 Lysophosphatidic Acid Receptor: Danio rerio E Eukaryota (expressed in S. frugiperda), 3.2 Å
Engineered protein: T4 lysozyme within extracellular loop 3. |
Taniguchi et al. (2017).
Taniguchi R, Inoue A, Sayama M, Uwamizu A, Yamashita K, Hirata K, Yoshida M, Tanaka Y, Kato HE, Nakada-Nakura Y, Otani Y, Nishizawa T, Doi T, Ohwada T, Ishitani R, Aoki J, & Nureki O (2017). Structural insights into ligand recognition by the lysophosphatidic acid receptor LPA6.
Nature 548 :356-360. PubMed Id: 28792932. doi:10.1038/nature23448. |
||
Angiotensin II type 1 receptor: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.9 Å
Structure determined using serial femtosecond crystallography (XFEL) Engineered protein: apocytochrome b562 RIL (BRIL) fused at amino terminal. |
Zhang et al. (2015).
Zhang H, Unal H, Gati C, Han GW, Liu W, Zatsepin NA, James D, Wang D, Nelson G, Weierstall U, Sawaya MR, Xu Q, Messerschmidt M, Williams GJ, Boutet S, Yefanov OM, White TA, Wang C, Ishchenko A, Tirupula KC, Desnoyer R, Coe J, Conrad CE, Fromme P, Stevens RC, Katritch V, Karnik SS, & Cherezov V (2015). Structure of the Angiotensin receptor revealed by serial femtosecond crystallography.
Cell 161 :833-844. PubMed Id: 25913193. doi:10.1016/j.cell.2015.04.011. |
||
Angiotensin II type 1 receptor with bound olmesartan: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.8 Å
Engineered protein: apocytochrome b562 RIL (BRIL) fused at amino terminal. |
Zhang et al. (2015).
Zhang H, Unal H, Desnoyer R, Han GW, Patel N, Katritch V, Karnik SS, Cherezov V, & Stevens RC (2015). Structural Basis for Ligand Recognition and Functional Selectivity at Angiotensin Receptor.
J Biol Chem 290 :29127-29139. PubMed Id: 26420482. doi:10.1074/jbc.M115.689000. |
||
Angiotensin II type 1 receptor in complex with angiotensin II peptide analog: Homo sapiens E Eukaryota (expressed in Expi293F cells), 2.90 Å
Engineered protein. b562RIL inserted into 3rd intracellular loop. |
Wingler et al. (2019).
Wingler LM, McMahon C, Staus DP, Lefkowitz RJ, & Kruse AC (2019). Distinctive Activation Mechanism for Angiotensin Receptor Revealed by a Synthetic Nanobody.
Cell 176 3:479-490.e12. PubMed Id: 30639100. doi:10.1016/j.cell.2018.12.006. |
||
Angiotensin II type 1 receptor with bound angiotensin II: Homo sapiens E Eukaryota (expressed in Expi293F cells), 2.9 Å
Thermostabilized. Apocytochrome b562RIL (BRIL) inserted in the third intracellular loop between AT1R residues 226 and 227. bound to TRV023, 2.79 Å: 6OS1 bound to TRV026, 2.7 Å: 6OS2 |
Wingler et al. (2020).
Wingler LM, Skiba MA, McMahon C, Staus DP, Kleinhenz ALW, Suomivuori CM, Latorraca NR, Dror RO, Lefkowitz RJ, & Kruse AC (2020). Angiotensin and biased analogs induce structurally distinct active conformations within a GPCR.
Science 367 6480:888-892. PubMed Id: 32079768. doi:10.1126/science.aay9813. |
||
Angiotensin II type 2 receptor in complex with compound 1 (monoclinic xtals): Homo Sapiens E Eukaryota (expressed in S. frugiperda), 2.8 Å
in complex with compound 1 (orthorhombic xtals), 2.8 Å: 5UNG in complex with compound 2, 2.9 Å: 5UNH Engineered protein. N-term residues 1-34 truncated; C-terminal residues 336-363 truncated. b562RIL fused to N-term. |
Zhang et al. (2017).
Zhang H, Han GW, Batyuk A, Ishchenko A, White KL, Patel N, Sadybekov A, Zamlynny B, Rudd MT, Hollenstein K, Tolstikova A, White TA, Hunter MS, Weierstall U, Liu W, Babaoglu K, Moore EL, Katz RD, Shipman JM, Garcia-Calvo M, Sharma S, Sheth P, Soisson SM, Stevens RC, Katritch V, & Cherezov V (2017). Structural basis for selectivity and diversity in angiotensin II receptors.
Nature 544 :327-332. PubMed Id: 28379944. doi:10.1038/nature22035. |
||
Angiotensin II type 2 receptor in complex with s-AngII: Homo sapiens E Eukaryota, 3.2 Å
engineered protein, intracellular loop 3 contains thermostabilized apocytochrome b562 |
Asada et al. (2018).
Asada H, Horita S, Hirata K, Shiroishi M, Shiimura Y, Iwanari H, Hamakubo T, Shimamura T, Nomura N, Kusano-Arai O, Uemura T, Suno C, Kobayashi T, & Iwata S (2018). Crystal structure of the human angiotensin II type 2 receptor bound to an angiotensin II analog.
Nat Struct Mol Biol 25 7:570-576. PubMed Id: 29967536. doi:10.1038/s41594-018-0079-8. |
||
Angiotensin II type 2 receptor with bound angiotensin II: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.20 Å
Engineered protein: N-terminal glycosylation sites truncated and replaced with apocytochrome b562. |
Asada et al. (2020).
Asada H, Inoue A, Ngako Kadji FM, Hirata K, Shiimura Y, Im D, Shimamura T, Nomura N, Iwanari H, Hamakubo T, Kusano-Arai O, Hisano H, Uemura T, Suno C, Aoki J, & Iwata S (2020). The Crystal Structure of Angiotensin II Type 2 Receptor with Endogenous Peptide Hormone.
Structure 28 4:418-425.e4. PubMed Id: 31899086. doi:10.1016/j.str.2019.12.003. |
||
prostaglandin D2 receptor CRTH2 with bound fevipiprant: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.8 Å
Engineered protein: T4 lysozyme with 8 amino acid linker inserted in intracellular loop 3 with bound CAY10471, 2.74 Å: 6D27 |
Wang et al. (2018).
Wang L, Yao D, Deepak RNVK, Liu H, Xiao Q, Fan H, Gong W, Wei Z, & Zhang C (2018). Structures of the Human PGD2 Receptor CRTH2 Reveal Novel Mechanisms for Ligand Recognition.
Mol Cell 72 1:48-59.e4. PubMed Id: 30220562. doi:10.1016/j.molcel.2018.08.009. |
||
prostaglandin D2 receptor CRTH2 in complex with 15R-methyl-PGD2: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 2.61 Å
|
Liu et al. (2021).
Liu H, Deepak RNVK, Shiriaeva A, Gati C, Batyuk A, Hu H, Weierstall U, Liu W, Wang L, Cherezov V, Fan H, & Zhang C (2021). Molecular basis for lipid recognition by the prostaglandin D2 receptor CRTH2.
Proc Natl Acad Sci U S A 118 32:e2102813118. PubMed Id: 34341104. doi:10.1073/pnas.2102813118. |
||
Qu et al. (2021).
Qu C, Mao C, Xiao P, Shen Q, Zhong YN, Yang F, Shen DD, Tao X, Zhang H, Yan X, Zhao RJ, He J, Guan Y, Zhang C, Hou G, Zhang PJ, Hou G, Li Z, Yu X, Chai RJ, Guan YF, Sun JP, & Zhang Y (2021). Ligand recognition, unconventional activation, and G protein coupling of the prostaglandin E2 receptor EP2 subtype.
Sci Adv 7 14:eabf1268. PubMed Id: 33811074. doi:10.1126/sciadv.abf1268. |
|||
prostaglandin E2 receptor 3 (EP3) with bound misoprostol: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.5 Å
Engineered protein. Third intracellular loop replaced with T4-lysozyme, G286A mutation, and C-terminus truncated after L353 |
Audet et al. (2019).
Audet M, White KL, Breton B, Zarzycka B, Han GW, Lu Y, Gati C, Batyuk A, Popov P, Velasquez J, Manahan D, Hu H, Weierstall U, Liu W, Shui W, Katritch V, Cherezov V, Hanson MA, & Stevens RC (2019). Crystal structure of misoprostol bound to the labor inducer prostaglandin E2 receptor.
Nat Chem Biol 15 1:11-17. PubMed Id: 30510194. doi:10.1038/s41589-018-0160-y. |
||
prostanoid receptor EP3 with bound PGE2: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.9 Å
engineered protein. See article. |
Morimoto et al. (2019).
Morimoto K, Suno R, Hotta Y, Yamashita K, Hirata K, Yamamoto M, Narumiya S, Iwata S, & Kobayashi T (2019). Crystal structure of the endogenous agonist-bound prostanoid receptor EP3.
Nat Chem Biol 15 1:8-10. PubMed Id: 30510192. doi:10.1038/s41589-018-0171-8. |
||
prostanoid receptor EP3 - Gi complex with bound PGE2: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.50 Å
cryo-EM structure |
Huang et al. (2023).
Huang SM, Xiong MY, Liu L, Mu J, Wang MW, Jia YL, Cai K, Tie L, Zhang C, Cao S, Wen X, Wang JL, Guo SC, Li Y, Qu CX, He QT, Cai BY, Xue C, Gan S, Xie Y, Cong X, Yang Z, Kong W, Li S, Li Z, Xiao P, Yang F, Yu X, Guan YF, Zhang X, Liu Z, Yang BX, Du Y, & Sun JP (2023). Single hormone or synthetic agonist induces Gs/Gi coupling selectivity of EP receptors via distinct binding modes and propagating paths.
Proc Natl Acad Sci U S A 120 30:e2216329120. PubMed Id: 37478163. doi:10.1073/pnas.2216329120. |
||
prostaglandin EP4 receptor in complex with agonist ONO-AE3-208: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.2 Å
engineered protein with bound ONO-AE3-208-Br derivative, 4.2 Å: 5YHL |
Toyoda et al. (2019).
Toyoda Y, Morimoto K, Suno R, Horita S, Yamashita K, Hirata K, Sekiguchi Y, Yasuda S, Shiroishi M, Shimizu T, Urushibata Y, Kajiwara Y, Inazumi T, Hotta Y, Asada H, Nakane T, Shiimura Y, Nakagita T, Tsuge K, Yoshida S, Kuribara T, Hosoya T, Sugimoto Y, Nomura N, Sato M, Hirokawa T, Kinoshita M, Murata T, Takayama K, Yamamoto M, Narumiya S, Iwata S, & Kobayashi T (2019). Ligand binding to human prostaglandin E receptor EP4 at the lipid-bilayer interface.
Nat Chem Biol 15 1:18-26. PubMed Id: 30510193. doi:10.1038/s41589-018-0131-3. |
||
prostaglandin EP4-heterotrimeric Gs receptor in complex with PGE2: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.30 Å
cryo-EM structure |
Nojima et al. (2021).
Nojima S, Fujita Y, Kimura KT, Nomura N, Suno R, Morimoto K, Yamamoto M, Noda T, Iwata S, Shigematsu H, & Kobayashi T (2021). Cryo-EM Structure of the Prostaglandin E Receptor EP4 Coupled to G Protein.
Structure 29 3:252-260.e6. PubMed Id: 33264604. doi:10.1016/j.str.2020.11.007. |
||
Huang et al. (2023).
Huang SM, Xiong MY, Liu L, Mu J, Wang MW, Jia YL, Cai K, Tie L, Zhang C, Cao S, Wen X, Wang JL, Guo SC, Li Y, Qu CX, He QT, Cai BY, Xue C, Gan S, Xie Y, Cong X, Yang Z, Kong W, Li S, Li Z, Xiao P, Yang F, Yu X, Guan YF, Zhang X, Liu Z, Yang BX, Du Y, & Sun JP (2023). Single hormone or synthetic agonist induces Gs/Gi coupling selectivity of EP receptors via distinct binding modes and propagating paths.
Proc Natl Acad Sci U S A 120 30:e2216329120. PubMed Id: 37478163. doi:10.1073/pnas.2216329120. |
|||
Wu et al. (2023).
Wu C, Xu Y, He Q, Li D, Duan J, Li C, You C, Chen H, Fan W, Jiang Y, & Eric Xu H (2023). Ligand-induced activation and G protein coupling of prostaglandin F2α receptor.
Nat Commun 14 1:2668. PubMed Id: 37160891. doi:10.1038/s41467-023-38411-x. |
|||
thromboxane A2 receptor (TP) with bound ramatroban: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.50 Å
engineered protein: b562RIL and rubredoxin were fused into the N-terminus and intracellular loop 3, respectively. with bound daltroban, 3.00 Å: 6IIV |
Fan et al. (2019).
Fan H, Chen S, Yuan X, Han S, Zhang H, Xia W, Xu Y, Zhao Q, & Wu B (2019). Structural basis for ligand recognition of the human thromboxane A2 receptor.
Nat Chem Biol 15 1:27-33. PubMed Id: 30510189. doi:10.1038/s41589-018-0170-9. |
||
NK1 tachykinin (neurokinin) receptor with bound inhibitor L760735: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.4 Å
engineered protein. Residues 228-237 in intracellular loop 3 were replaced by Pyrococcus abysii glycogen synthase domain. Residues 347-407 at the C-terminus were removed. |
Yin et al. (2018).
Yin J, Chapman K, Clark LD, Shao Z, Borek D, Xu Q, Wang J, & Rosenbaum DM (2018). Crystal structure of the human NK1 tachykinin receptor.
Proc Natl Acad Sci USA 115 52:13264-13269. PubMed Id: 30538204. doi:10.1073/pnas.1812717115. |
||
Schöppe et al. (2019).
Schöppe J, Ehrenmann J, Klenk C, Rucktooa P, Schütz M, Doré AS, & Pückthun A (2019). Crystal structures of the human neurokinin 1 receptor in complex with clinically used antagonists.
Nat Commun 10 1. PubMed Id: 30604743. doi:10.1038/s41467-018-07939-8. |
|||
Harris et al. (2022).
Harris JA, Faust B, Gondin AB, Dämgen MA, Suomivuori CM, Veldhuis NA, Cheng Y, Dror RO, Thal DM, & Manglik A (2022). Selective G protein signaling driven by substance P-neurokinin receptor dynamics.
Nat Chem Biol 18 1:109-115. PubMed Id: 34711980. doi:10.1038/s41589-021-00890-8. |
|||
NK1 tachykinin (neurokinin) receptor - miniGq complex with bound substance P (SP): Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 2.71 Å
cryo-EM structure - miniGs complex with bound substance P (SP), 2.87 Å 7P02 |
Thom et al. (2021).
Thom C, Ehrenmann J, Vacca S, Waltenspühl Y, Schöppe J, Medalia O, & Plückthun A (2021). Structures of neurokinin 1 receptor in complex with Gq and Gs proteins reveal substance P binding mode and unique activation features.
Sci Adv 7 50:eabk2872. PubMed Id: 34878828. doi:10.1126/sciadv.abk2872. |
||
Sun et al. (2023).
Sun W, Yang F, Zhang H, Yuan Q, Ling S, Wang Y, Lv P, Li Z, Luo Y, Liu D, Yin W, Shi P, Xu HE, & Tian C (2023). Structural insights into neurokinin 3 receptor activation by endogenous and analogue peptide agonists.
Cell Discov 9 1:66. PubMed Id: 37391393. doi:10.1038/s41421-023-00564-w. |
|||
Platelet activating factor complex with bound antagonist SR 27417: Homo sapiens E Eukaryota (expressed in sf9 cells), 2.81 Å
engineered protein. T4 lysozyme in 3rd intracellular loop with bound inverse agonist ABT-491, 2.9 Å: 5ZKQ |
Cao et al. (2018).
Cao C, Tan Q, Xu C, He L, Yang L, Zhou Y, Zhou Y, Qiao A, Lu M, Yi C, Han GW, Wang X, Li X, Yang H, Rao Z, Jiang H, Zhao Y, Liu J, Stevens RC, Zhao Q, Zhang XC, & Wu B (2018). Structural basis for signal recognition and transduction by platelet-activating-factor receptor.
Nat Struct Mol Biol 25 6:488-495. PubMed Id: 29808000. doi:10.1038/s41594-018-0068-y. |
||
succinate receptor SUCNR1 (GPR91): Rattus norvegicus E Eukaryota (expressed in S. frugiperda), 2.12 Å
humanized form (K18E, K269N), 1.94 Å: 6RNK |
Haffke et al. (2019).
Haffke M, Fehlmann D, Rummel G, Boivineau J, Duckely M, Gommermann N, Cotesta S, Sirockin F, Freuler F, Littlewood-Evans A, Kaupmann K, & Jaakola VP (2019). Structural basis of species-selective antagonist binding to the succinate receptor.
Nature 574 7779:581-585. PubMed Id: 31645725. doi:10.1038/s41586-019-1663-8. |
||
succinate receptor SUCNR1 (GPR91). Humanized (K18E, K269N mutant) in complex with a Nb and antagonist: Rattus norvegicus E Eukaryota (expressed in Spodoptera frugiperda), 2.27 Å
|
Velcicky et al. (2020).
Velcicky J, Wilcken R, Cotesta S, Janser P, Schlapbach A, Wagner T, Piechon P, Villard F, Bouhelal R, Piller F, Harlfinger S, Stringer R, Fehlmann D, Kaupmann K, Littlewood-Evans A, Haffke M, & Gommermann N (2020). Discovery and Optimization of Novel SUCNR1 Inhibitors: Design of Zwitterionic Derivatives with a Salt Bridge for the Improvement of Oral Exposure.
J Med Chem 63 17:9856-9875. PubMed Id: 32856916. doi:10.1021/acs.jmedchem.0c01020. |
||
Ma et al. (2021).
Ma S, Chen Y, Dai A, Yin W, Guo J, Yang D, Zhou F, Jiang Y, Wang MW, & Xu HE (2021). Structural mechanism of calcium-mediated hormone recognition and Gβ interaction by the human melanocortin-1 receptor.
Cell Res 31 10:1061-1071. PubMed Id: 34453129. doi:10.1038/s41422-021-00557-y. |
|||
Melanocortin-3 Receptor (MC3R) - Gs complex with bound γ-MSH: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.86 Å
cryo-EM structure |
Feng et al. (2023).
Feng W, Zhou Q, Chen X, Dai A, Cai X, Liu X, Zhao F, Chen Y, Ye C, Xu Y, Cong Z, Li H, Lin S, Yang D, & Wang MW (2023). Structural insights into ligand recognition and subtype selectivity of the human melanocortin-3 and melanocortin-5 receptors.
Cell Discov 9 1:81. PubMed Id: 37524700. doi:10.1038/s41421-023-00586-4. |
||
Melanocortin-4 Receptor (MC4R) in complex with antagonist SHU9119: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.75 Å
|
Yu et al. (2020).
Yu J, Gimenez LE, Hernandez CC, Wu Y, Wein AH, Han GW, McClary K, Mittal SR, Burdsall K, Stauch B, Wu L, Stevens SN, Peisley A, Williams SY, Chen V, Millhauser GL, Zhao S, Cone RD, & Stevens RC (2020). Determination of the melanocortin-4 receptor structure identifies Ca2+ as a cofactor for ligand binding.
Science 368 6489:428-433. PubMed Id: 32327598. doi:10.1126/science.aaz8995. |
||
Melanocortin-4 Receptor (MC4R)-Gs complex: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 2.97 Å
cryo-EM structure |
Israeli et al. (2021).
Israeli H, Degtjarik O, Fierro F, Chunilal V, Gill AK, Roth NJ, Botta J, Prabahar V, Peleg Y, Chan LF, Ben-Zvi D, McCormick PJ, Niv MY, & Shalev-Benami M (2021). Structure reveals the activation mechanism of the MC4 receptor to initiate satiation signaling.
Science 372 6544:808-814. PubMed Id: 33858992. doi:10.1126/science.abf7958. |
||
Melanocortin-4 Receptor (MC4R) - Gs complex bound to agonist NDP-alpha-MSH: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 2.86 Å
cryo-EM structure with bound agonist setmelanotide, 2.58 Å 7PIU |
Heyder et al. (2021).
Heyder NA, Kleinau G, Speck D, Schmidt A, Paisdzior S, Szczepek M, Bauer B, Koch A, Gallandi M, Kwiatkowski D, Bürger J, Mielke T, Beck-Sickinger AG, Hildebrand PW, Spahn CMT, Hilger D, Schacherl M, Biebermann H, Hilal T, Kühnen P, Kobilka BK, & Scheerer P (2021). Structures of active melanocortin-4 receptor-Gs-protein complexes with NDP-α-MSH and setmelanotide.
Cell Res 31 11:1176-1189. PubMed Id: 34561620. doi:10.1038/s41422-021-00569-8. |
||
Zhang et al. (2021).
Zhang H, Chen LN, Yang D, Mao C, Shen Q, Feng W, Shen DD, Dai A, Xie S, Zhou Y, Qin J, Sun JP, Scharf DH, Hou T, Zhou T, Wang MW, & Zhang Y (2021). Structural insights into ligand recognition and activation of the melanocortin-4 receptor.
Cell Res 31 11:1163-1175. PubMed Id: 34433901. doi:10.1038/s41422-021-00552-3. |
|||
Melanocortin-4 Receptor (MC4R) in complex with antagonist PG-934: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.90 Å
X-ray structure in complex with antagonist SBL-MC-31, 3.30 Å: 8WKZ |
Gimenez et al. (2024).
Gimenez LE, Martin C, Yu J, Hollanders C, Hernandez CC, Wu Y, Yao D, Han GW, Dahir NS, Wu L, Van der Poorten O, Lamouroux A, Mannes M, Zhao S, Tourwé D, Stevens RC, Cone RD, & Ballet S (2024). Novel Cocrystal Structures of Peptide Antagonists Bound to the Human Melanocortin Receptor 4 Unveil Unexplored Grounds for Structure-Based Drug Design.
J Med Chem 67 4:2690-2711. PubMed Id: 38345933. doi:10.1021/acs.jmedchem.3c01822. |
||
Melanocortin-5 Receptor (MC5R) - Gs complex with bound α-MSH: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.73 Å
cryo-EM structure with bound PG-901, 2.59 Å: 8IOD |
Feng et al. (2023).
Feng W, Zhou Q, Chen X, Dai A, Cai X, Liu X, Zhao F, Chen Y, Ye C, Xu Y, Cong Z, Li H, Lin S, Yang D, & Wang MW (2023). Structural insights into ligand recognition and subtype selectivity of the human melanocortin-3 and melanocortin-5 receptors.
Cell Discov 9 1:81. PubMed Id: 37524700. doi:10.1038/s41421-023-00586-4. |
||
Ghrelin receptor with Fab: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.30 Å
Engineered protein. Residues 1-28 replaced with b562RIL. anti-Ghrelin receptor antibody, 1.75 Å: 6KS2 |
Shiimura et al. (2020).
Shiimura Y, Horita S, Hamamoto A, Asada H, Hirata K, Tanaka M, Mori K, Uemura T, Kobayashi T, Iwata S, & Kojima M (2020). Structure of an antagonist-bound ghrelin receptor reveals possible ghrelin recognition mode.
Nat Commun 11 1:4160. PubMed Id: 32814772. doi:10.1038/s41467-020-17554-1. |
||
Ghrelin receptor in complex with Gq: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 2.90 Å
cryo-EM structure with bound GHRP-6, 3.20 Å 7F9Z |
Wang et al. (2021).
Wang Y, Guo S, Zhuang Y, Yun Y, Xu P, He X, Guo J, Yin W, Xu HE, Xie X, & Jiang Y (2021). Molecular recognition of an acyl-peptide hormone and activation of ghrelin receptor.
Nat Commun 12 1:5064. PubMed Id: 34417468. doi:10.1038/s41467-021-25364-2. |
||
Ghrelin receptor - Gi complex with bound synthetic agonist: Homo sapiens E Eukaryota (expressed in Sf9 cells), 2.70 Å
cryo-EM structure with ghrelin and synthetic agonist, 2.70 Å 7NA8 |
Liu et al. (2021).
Liu H, Sun D, Myasnikov A, Damian M, Baneres JL, Sun J, & Zhang C (2021). Structural basis of human ghrelin receptor signaling by ghrelin and the synthetic agonist ibutamoren.
Nat Commun 12 1:6410. PubMed Id: 34737341. doi:10.1038/s41467-021-26735-5. |
||
Ghrelin receptor - Go complex with bound ghrelin: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 2.80 Å
cryo-EM structure x-ray: with inverse agonist, 2.94 Å 7F83 |
Qin et al. (2022).
Qin J, Cai Y, Xu Z, Ming Q, Ji SY, Wu C, Zhang H, Mao C, Shen DD, Hirata K, Ma Y, Yan W, Zhang Y, & Shao Z (2022). Molecular mechanism of agonism and inverse agonism in ghrelin receptor.
Nat Commun 13 1:300. PubMed Id: 35027551. doi:10.1038/s41467-022-27975-9. |
||
bile acids receptor TGR5 in complex with a synthetic agonist 23H: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.90 Å
cryo-EM structure |
Chen et al. (2020).
Chen G, Wang X, Ge Y, Ma L, Chen Q, Liu H, Du Y, Ye RD, Hu H, & Ren R (2020). Cryo-EM structure of activated bile acids receptor TGR5 in complex with stimulatory G protein.
Signal Transduct Target Ther 5 1:142. PubMed Id: 32747649. doi:10.1038/s41392-020-00262-z. |
||
bile acids receptor-Gs complex, P395-bound: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.00 Å
cryo-EM structure INT-777-bound, 3.00 Å: 7CFN |
Yang et al. (2020).
Yang F, Mao C, Guo L, Lin J, Ming Q, Xiao P, Wu X, Shen Q, Guo S, Shen DD, Lu R, Zhang L, Huang S, Ping Y, Zhang C, Ma C, Zhang K, Liang X, Shen Y, Nan F, Yi F, Luca VC, Zhou J, Jiang C, Sun JP, Xie X, Yu X, & Zhang Y (2020). Structural basis of GPBAR activation and bile acid recognition.
Nature 587 7834:499-504. PubMed Id: 32698187. doi:10.1038/s41586-020-2569-1. |
||
gonadotropin-releasing hormone receptor GnRH1R in complex with antagonist elagolix: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 2.79 Å
Engineered protein. P. abysi glycogen synthase domain (PGS) replaces 3rd intracellular loop. |
Yan et al. (2020).
Yan W, Cheng L, Wang W, Wu C, Yang X, Du X, Ma L, Qi S, Wei Y, Lu Z, Yang S, & Shao Z (2020). Structure of the human gonadotropin-releasing hormone receptor GnRH1R reveals an unusual ligand binding mode.
Nat Commun 11 1. PubMed Id: 33082324. doi:10.1038/s41467-020-19109-w. |
||
Arginine-vasopressin (AVP) receptor 2-Gs signaling complex: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.80 Å
cryo-EM structure |
Wang et al. (2021).
Wang L, Xu J, Cao S, Sun D, Liu H, Lu Q, Liu Z, Du Y, & Zhang C (2021). Cryo-EM structure of the AVP-vasopressin receptor 2-Gs signaling complex.
Cell Res . PubMed Id: 33664408. doi:10.1038/s41422-021-00483-z. |
||
Arginine-vasopressin (AVP) receptor 2-Gs signaling complex, L state: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 4.20 Å
cryo-EM structure T state, 4.40 Å: 7BB7 |
Bous et al. (2021).
Bous J, Orcel H, Floquet N, Leyrat C, Lai-Kee-Him J, Gaibelet G, Ancelin A, Saint-Paul J, Trapani S, Louet M, Sounier R, Déméné H, Granier S, Bron P, & Mouillac B (2021). Cryo-electron microscopy structure of the antidiuretic hormone arginine-vasopressin V2 receptor signaling complex.
Sci Adv 7 21:eabg5628. PubMed Id: 34020960. doi:10.1126/sciadv.abg5628. |
||
Arginine-vasopressin (AVP) receptor 2-Gs signaling complex: Homo sapiens, Rattus norvegicus, Bos taurus, synthetic construct E Eukaryota (expressed in Spodoptera frugiperda), 2.60 Å
cryo-EM structure |
Zhou et al. (2021).
Zhou F, Ye C, Ma X, Yin W, Croll TI, Zhou Q, He X, Zhang X, Yang D, Wang P, Xu HE, Wang MW, & Jiang Y (2021). Molecular basis of ligand recognition and activation of human V2 vasopressin receptor.
Cell Res 31 8:929-931. PubMed Id: 33742150. doi:10.1038/s41422-021-00480-2. |
||
arginine-vasopressin (AVP) receptor 2 in complex with arrestin2-ScFv30: Homo sapiens E Eukaryota (expressed in S. frugiperda), 4.73 Å
cryo-EM structure C-ter-arrestin2-ScFv30 complex, 4.23 Å: 7R0J |
Bous et al. (2022).
Bous J, Fouillen A, Orcel H, Trapani S, Cong X, Fontanel S, Saint-Paul J, Lai-Kee-Him J, Urbach S, Sibille N, Sounier R, Granier S, Mouillac B, & Bron P (2022). Structure of the vasopressin hormone-V2 receptor-β-arrestin1 ternary complex.
Sci Adv 8 35:eabo7761. PubMed Id: 36054364. doi:10.1126/sciadv.abo7761. |
||
Epstein-Barr virus GPCR BILF1 in complex with human Gi: Homo sapiens & Human gammaherpesvirus 4 E Eukaryota (expressed in Trichoplusia ni), 3.20 Å
cryo-EM structure |
Tsutsumi et al. (2021).
Tsutsumi N, Qu Q, Mavri M, Baggesen MS, Maeda S, Waghray D, Berg C, Kobilka BK, Rosenkilde MM, Skiniotis G, & Garcia KC (2021). Structural basis for the constitutive activity and immunomodulatory properties of the Epstein-Barr virus-encoded G protein-coupled receptor BILF1.
Immunity 54 7:1405-1416.e7. PubMed Id: 34216564. doi:10.1016/j.immuni.2021.06.001. |
||
Liu et al. (2021).
Liu Q, Yang D, Zhuang Y, Croll TI, Cai X, Dai A, He X, Duan J, Yin W, Ye C, Zhou F, Wu B, Zhao Q, Xu HE, Wang MW, & Jiang Y (2021). Ligand recognition and G-protein coupling selectivity of cholecystokinin A receptor.
Nat Chem Biol 17 12:1238-1244. PubMed Id: 34556862. doi:10.1038/s41589-021-00841-3. |
|||
Cholecystokinin A receptor (CCKAR or CCK1R) in complex with lintitript: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 2.80 Å
in complex with devazepide, 2.50 Å 7F8Y in complex with NN9056, 3.00 Å 7F8X cryo-EM structures: in complex with gastrin-17 and Gq, 3.10 Å 7F8W in complex with gastrin-17 and Gi, 3.30 Å 7F8V |
Zhang et al. (2021).
Zhang X, He C, Wang M, Zhou Q, Yang D, Zhu Y, Feng W, Zhang H, Dai A, Chu X, Wang J, Yang Z, Jiang Y, Sensfuss U, Tan Q, Han S, Reedtz-Runge S, Xu HE, Zhao S, Wang MW, Wu B, & Zhao Q (2021). Structures of the human cholecystokinin receptors bound to agonists and antagonists.
Nat Chem Biol 17 12:1230-1237. PubMed Id: 34556863. doi:10.1038/s41589-021-00866-8. |
||
Cholecystokinin A receptor (CCKAR or CCK1R) - Gs complex: Homo sapiens E Eukaryota (expressed in Trichoplusia ni), 1.95 Å
cryo-EM structure Gq chimera (mGsqi) complex, 2.44 Å 7MBY |
Mobbs et al. (2021).
Mobbs JI, Belousoff MJ, Harikumar KG, Piper SJ, Xu X, Furness SGB, Venugopal H, Christopoulos A, Danev R, Wootten D, Thal DM, Miller LJ, & Sexton PM (2021). Structures of the human cholecystokinin 1 (CCK1) receptor bound to Gs and Gq mimetic proteins provide insight into mechanisms of G protein selectivity.
PLoS Biol 19 6:3001295. PubMed Id: 34086670. doi:10.1371/journal.pbio.3001295. |
||
Cholecystokinin A receptor (CCKAR or CCK1R) - Gs complex with bound CCK-8: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.20 Å
cryo-EM structure with bound SR146131, 3.00 Å 7XOV |
Ding et al. (2022).
Ding Y, Zhang H, Liao YY, Chen LN, Ji SY, Qin J, Mao C, Shen DD, Lin L, Wang H, Zhang Y, & Li XM (2022). Structural insights into human brain-gut peptide cholecystokinin receptors.
Cell Discov 8 1:55. PubMed Id: 35672283. doi:10.1038/s41421-022-00420-3. |
||
cholecystokinin B receptor (CCKBR or CCK2R) - Gi complex with bound gastrin-17: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.30 Å
cryo-EM structure Gq complex with bound gastrin-17, 3.10 Å 7F8W |
Zhang et al. (2021).
Zhang X, He C, Wang M, Zhou Q, Yang D, Zhu Y, Feng W, Zhang H, Dai A, Chu X, Wang J, Yang Z, Jiang Y, Sensfuss U, Tan Q, Han S, Reedtz-Runge S, Xu HE, Zhao S, Wang MW, Wu B, & Zhao Q (2021). Structures of the human cholecystokinin receptors bound to agonists and antagonists.
Nat Chem Biol 17 12:1230-1237. PubMed Id: 34556863. doi:10.1038/s41589-021-00866-8. |
||
cholecystokinin B receptor (CCKBR or CCK2R) - Gq complex with bound gastrin-17: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.10 Å
cryo-EM structure with bound CCK-8, 3.10 Å 7XOX |
Ding et al. (2022).
Ding Y, Zhang H, Liao YY, Chen LN, Ji SY, Qin J, Mao C, Shen DD, Lin L, Wang H, Zhang Y, & Li XM (2022). Structural insights into human brain-gut peptide cholecystokinin receptors.
Cell Discov 8 1:55. PubMed Id: 35672283. doi:10.1038/s41421-022-00420-3. |
||
Bradykinin Receptor, Type 1 (B1R) - Gq in complex with des-Arg10-kallidin: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.00 Å
cryo-EM structure |
Yin et al. (2021).
Yin YL, Ye C, Zhou F, Wang J, Yang D, Yin W, Wang MW, Xu HE, & Jiang Y (2021). Molecular basis for kinin selectivity and activation of the human bradykinin receptors.
Nat Struct Mol Biol 28 9:755-761. PubMed Id: 34518695. doi:10.1038/s41594-021-00645-y. |
||
Bradykinin Receptor, type 2 (B2R) - Gq complexed with bradykinin: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 2.90 Å
cryo-EM structure |
Yin et al. (2021).
Yin YL, Ye C, Zhou F, Wang J, Yang D, Yin W, Wang MW, Xu HE, & Jiang Y (2021). Molecular basis for kinin selectivity and activation of the human bradykinin receptors.
Nat Struct Mol Biol 28 9:755-761. PubMed Id: 34518695. doi:10.1038/s41594-021-00645-y. |
||
Bradykinin Receptor, type 2 (B2R) - Gq complexed with bradykinin: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 2.90 Å
cryo-EM structure in complex with kallidin, 2.80 Å 7F6I |
Shen et al. (2022).
Shen J, Zhang D, Fu Y, Chen A, Yang X, & Zhang H (2022). Cryo-EM structures of human bradykinin receptor-Gq proteins complexes.
Nat Commun 13 1:714. PubMed Id: 35132089. doi:10.1038/s41467-022-28399-1. |
||
Liu et al. (2023).
Liu Y, Cao C, Huang XP, Gumpper RH, Rachman MM, Shih SL, Krumm BE, Zhang S, Shoichet BK, Fay JF, & Roth BL (2023). Ligand recognition and allosteric modulation of the human MRGPRX1 receptor.
Nat Chem Biol 19 4:416-422. PubMed Id: 36302898. doi:10.1038/s41589-022-01173-6. |
|||
mas-related GPCR (MRGPRX) receptor, Gq-coupled MRGPRX1 with bound peptide agonist BAM 8-22: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.70 Å
cryo-EM structure MRGPRX1-Gi complex with bound peptide agonist CNF-Tx2, 2.84 Å: 8JGB MRGPRX1-Gi complex with bound peptide agonist BAM8-22, 3.00 Å: 8JGG |
Guo et al. (2023).
Guo L, Zhang Y, Fang G, Tie L, Zhuang Y, Xue C, Liu Q, Zhang M, Zhu K, You C, Xu P, Yuan Q, Zhang C, Liu L, Rong N, Peng S, Liu Y, Wang C, Luo X, Lv Z, Kang D, Yu X, Zhang C, Jiang Y, Dong X, Zhou J, Liu Z, Yang F, Eric Xu H, & Sun JP (2023). Ligand recognition and G protein coupling of the human itch receptor MRGPRX1.
Nat Commun 14 1:5004. PubMed Id: 37591889. doi:10.1038/s41467-023-40705-z. |
||
mas-related GPCR (MRGPRX) itch receptor, Gq-coupled MRGPRX2 with bound agonist cortistatin-14: Homo sapiens E Eukaryota (expressed in Trichoplusia ni), 2.45 Å
cryo-EM structure Gi-coupled MRGPRX2 with peptide agonist Cortistatin-14, 2.54 Å 7S8M Gq-coupled MRGPRX2 with bound agonist (R)-Zinc-3573, 2.90 Å 7S8N Gi-coupled MRGPRX2 with small molecule agonist (R)-Zinc-3573, 2.58 Å 7S8O Gq-coupled MRGPRX4 with small molecule agonist MS47134, 2.60 Å 7S8P |
Cao et al. (2021).
Cao C, Kang HJ, Singh I, Chen H, Zhang C, Ye W, Hayes BW, Liu J, Gumpper RH, Bender BJ, Slocum ST, Krumm BE, Lansu K, McCorvy JD, Kroeze WK, English JG, DiBerto JF, Olsen RHJ, Huang XP, Zhang S, Liu Y, Kim K, Karpiak J, Jan LY, Abraham SN, Jin J, Shoichet BK, Fay JF, & Roth BL (2021). Structure, function and pharmacology of human itch GPCRs.
Nature 600 7887:170-175. PubMed Id: 34789874. doi:10.1038/s41586-021-04126-6. |
||
luteinizing hormone/choriogonadotropin receptor (LHCGR): Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.80 Å
cryo-EM structure in complex with chorionic gonadotropin-Gs, 4.30 Å 7FII S277I mutant of chorionic gonadotropin-Gs complex, 3.90 Å 7FIG S277I mutant of chorionic gonadotropin-Gs complex with Org43553, 3.20 Å 7FIH |
Duan et al. (2021).
Duan J, Xu P, Cheng X, Mao C, Croll T, He X, Shi J, Luan X, Yin W, You E, Liu Q, Zhang S, Jiang H, Zhang Y, Jiang Y, & Xu HE (2021). Structures of full-length glycoprotein hormone receptor signalling complexes.
Nature 598 7882:688-692. PubMed Id: 34552239. doi:10.1038/s41586-021-03924-2. |
||
Mas-related GPCR (MRGPR) MRGPRX2 complex with PAMP-12. state1: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 2.84 Å
cryo-EM structure with PAMP-12, state2, 2.89 Å 7VUZ with PAMP-12, local, 3.50 Å 7VV0 complex with substance P, 2.98 Å 7VDM complex with circular cortistatin-14, 3.22 Å 7VDL complex with linear cortistatin-14, 2.97 Å 7VV3 complex with linear cortistatin-14, local, 2.97 Å 7VV4 complex with C48/80, state1, 2.76 Å 7VV5 complex with C48/80, state2, 2.90 Å 7VDH complex with C48/80, local, 3.30 Å 7VV6 |
Yang et al. (2021).
Yang F, Guo L, Li Y, Wang G, Wang J, Zhang C, Fang GX, Chen X, Liu L, Yan X, Liu Q, Qu C, Xu Y, Xiao P, Zhu Z, Li Z, Zhou J, Yu X, Gao N, & Sun JP (2021). Structure, function and pharmacology of human itch receptor complexes.
Nature 600 7887:164-169. PubMed Id: 34789875. doi:10.1038/s41586-021-04077-y. |
||
somatostatin receptor 2 (SSTR2) - Gi3 complex with bound somatostatin-14: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 2.50 Å
cryo-EM structure with bound Octreotide, 2.70 Å 7T11 |
Robertson et al. (2022).
Robertson MJ, Meyerowitz JG, Panova O, Borrelli K, & Skiniotis G (2022). Plasticity in ligand recognition at somatostatin receptors.
Nat Struct Mol Biol 29 3:210-217. PubMed Id: 35210615. doi:10.1038/s41594-022-00727-5. |
||
somatostatin receptor 2 (SSTR2) - Gi1 complex with bound somatostatin-14: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 2.80 Å
cryo-EM structure with bound L-054,264, 2.70 Å 7WIG |
Chen et al. (2022).
Chen LN, Wang WW, Dong YJ, Shen DD, Guo J, Yu X, Qin J, Ji SY, Zhang H, Shen Q, He Q, Yang B, Zhang Y, Li Q, & Mao C (2022). Structures of the endogenous peptide- and selective non-peptide agonist-bound SSTR2 signaling complexes.
Cell Res . PubMed Id: 35578016. doi:10.1038/s41422-022-00669-z. |
||
somatostatin receptor 2 (SSTR2) - Gi1 complex with bound somatostatin-14: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.72 Å
cryo-EM structure |
Heo et al. (2022).
Heo Y, Yoon E, Jeon YE, Yun JH, Ishimoto N, Woo H, Park SY, Song JJ, & Lee W (2022). Cryo-EM structure of the human somatostatin receptor 2 complex with its agonist somatostatin delineates the ligand-binding specificity.
Elife 11 :76823. PubMed Id: 35446253. doi:10.7554/eLife.76823. |
||
Zhao et al. (2022).
Zhao W, Han S, Qiu N, Feng W, Lu M, Zhang W, Wang M, Zhou Q, Chen S, Xu W, Du J, Chu X, Yi C, Dai A, Hu L, Shen MY, Sun Y, Zhang Q, Ma Y, Zhong W, Yang D, Wang MW, Wu B, & Zhao Q (2022). Structural insights into ligand recognition and selectivity of somatostatin receptors.
Cell Res 32 8:761-772. PubMed Id: 35739238. doi:10.1038/s41422-022-00679-x. |
|||
Bo et al. (2022).
Bo Q, Yang F, Li Y, Meng X, Zhang H, Zhou Y, Ling S, Sun D, Lv P, Liu L, Shi P, & Tian C (2022). Structural insights into the activation of somatostatin receptor 2 by cyclic SST analogues.
Cell Discov 8 1:47. PubMed Id: 35595746. doi:10.1038/s41421-022-00405-2. |
|||
somatostatin receptor 2 (SSTR2), apo receptor in complex with nanobody Nb6: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.10 Å
cryo-EM structure |
Robertson et al. (2022).
Robertson MJ, Papasergi-Scott MM, He F, Seven AB, Meyerowitz JG, Panova O, Peroto MC, Che T, & Skiniotis G (2022). Structure determination of inactive-state GPCRs with a universal nanobody.
Nat Struct Mol Biol 29 12:1188-1195. PubMed Id: 36396979. doi:10.1038/s41594-022-00859-8. |
||
Chen et al. (2023).
Chen S, Teng X, & Zheng S (2023). Molecular basis for the selective G protein signaling of somatostatin receptors.
Nat Chem Biol 19 2:133-140. PubMed Id: 36138141. doi:10.1038/s41589-022-01130-3. |
|||
somatostatin receptor 2 (SSTR2) - Gi1 complex with bound octreotide: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.37 Å
cryo-EM structure with bound paltusotine, 3.24 Å: 7YAC |
Zhao et al. (2023).
Zhao J, Fu H, Yu J, Hong W, Tian X, Qi J, Sun S, Zhao C, Wu C, Xu Z, Cheng L, Chai R, Yan W, Wei X, & Shao Z (2023). Prospect of acromegaly therapy: molecular mechanism of clinical drugs octreotide and paltusotine.
Nat Commun 14 1:962. PubMed Id: 36810324. doi:10.1038/s41467-023-36673-z. |
||
somatostatin receptor 4 (SSTR4) - Gi1 complex with bound SST-14: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 2.90 Å
cryo-EM structure Gi1 complex with bound J-2156, 2.80 Å: 7XMT |
Zhao et al. (2022).
Zhao W, Han S, Qiu N, Feng W, Lu M, Zhang W, Wang M, Zhou Q, Chen S, Xu W, Du J, Chu X, Yi C, Dai A, Hu L, Shen MY, Sun Y, Zhang Q, Ma Y, Zhong W, Yang D, Wang MW, Wu B, & Zhao Q (2022). Structural insights into ligand recognition and selectivity of somatostatin receptors.
Cell Res 32 8:761-772. PubMed Id: 35739238. doi:10.1038/s41422-022-00679-x. |
||
somatostatin receptor 5 (SSTR5) - Gi complex with bound cortistatin-17: Homo sapiens E Eukaryota (expressed in Trichoplusia ni), 2.70 Å
cryo-EM structure with bound octreotide, 2.90 Å: 8X8N |
Li et al. (2024).
Li J, You C, Li Y, Li C, Fan W, Chen Z, Hu W, Wu K, Xu HE, & Zhao LH (2024). Structural basis for activation of somatostatin receptor 5 by cyclic neuropeptide agonists.
Proc Natl Acad Sci U S A 121 26:e2321710121. PubMed Id: 38885377. doi:10.1073/pnas.2321710121. |
||
somatostatin receptor 5 (SSTR5) - Gi complex with bound pasireotide: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.09 Å
cryo-EM structure with bound octreotide, 3.24 Å: 8ZBE |
Li et al. (2024).
Li YG, Meng XY, Yang X, Ling SL, Shi P, Tian CL, & Yang F (2024). Structural insights into somatostatin receptor 5 bound with cyclic peptides.
Acta Pharmacol Sin . PubMed Id: 38926478. doi:10.1038/s41401-024-01314-8. |
||
galanin receptor 1 (GALR1) - Gi complex with bound galanin: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 2.70 Å
cryo-EM structure |
Duan et al. (2022).
Duan J, Shen DD, Zhao T, Guo S, He X, Yin W, Xu P, Ji Y, Chen LN, Liu J, Zhang H, Liu Q, Shi Y, Cheng X, Jiang H, Eric Xu H, Zhang Y, Xie X, & Jiang Y (2022). Molecular basis for allosteric agonism and G protein subtype selectivity of galanin receptors.
Nat Commun 13 1:1364. PubMed Id: 35292680. doi:10.1038/s41467-022-29072-3. |
||
galanin receptor 2 (GALR2) - Gq complex with bound galanin: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 2.60 Å
cryo-EM structure |
Duan et al. (2022).
Duan J, Shen DD, Zhao T, Guo S, He X, Yin W, Xu P, Ji Y, Chen LN, Liu J, Zhang H, Liu Q, Shi Y, Cheng X, Jiang H, Eric Xu H, Zhang Y, Xie X, & Jiang Y (2022). Molecular basis for allosteric agonism and G protein subtype selectivity of galanin receptors.
Nat Commun 13 1:1364. PubMed Id: 35292680. doi:10.1038/s41467-022-29072-3. |
||
galanin receptor 2 (GALR2) - Gq complex with bound galanin: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.11 Å
cryo-EM structure |
Heo et al. (2022).
Heo Y, Ishimoto N, Jeon YE, Yun JH, Ohki M, Anraku Y, Sasaki M, Kita S, Fukuhara H, Ikuta T, Kawakami K, Inoue A, Maenaka K, Tame JRH, Lee W, & Park SY (2022). Structure of the human galanin receptor 2 bound to galanin and Gq reveals the basis of ligand specificity and how binding affects the G-protein interface.
PLoS Biol 20 8:e3001714. PubMed Id: 35913979. doi:10.1371/journal.pbio.3001714. |
||
Duan et al. (2022).
Duan J, Xu P, Luan X, Ji Y, He X, Song N, Yuan Q, Jin Y, Cheng X, Jiang H, Zheng J, Zhang S, Jiang Y, & Xu HE (2022). Hormone- and antibody-mediated activation of the thyrotropin receptor.
Nature 609 7928:854-859. PubMed Id: 35940204. doi:10.1038/s41586-022-05173-3. |
|||
thyroid-stimulating hormone receptor (TSHR) in complex with miniGs399: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.90 Å
cryo-EM structure with thyrotropin analog TR1402 in complex with miniGs399, 2.40 Å: 7UTZ with bound M22 Agonist Autoantibody in complex with miniGs399, 2.90 Å: 7T9N bound by CS-17 Inverse Agonist Fab/Org 274179-0 Antagonist, 3.10 Å: 7TM9 |
Faust et al. (2022).
Faust B, Billesbølle CB, Suomivuori CM, Singh I, Zhang K, Hoppe N, Pinto AFM, Diedrich JK, Muftuoglu Y, Szkudlinski MW, Saghatelian A, Dror RO, Cheng Y, & Manglik A (2022). Autoantibody mimicry of hormone action at the thyrotropin receptor.
Nature 609 7928:846-853. PubMed Id: 35940205. doi:10.1038/s41586-022-05159-1. |
||
thyrotropin-releasing hormone receptor (TRHR) - Gq complex with bound TRH: Homo sapiens E Eukaryota (expressed in Trichoplusia ni), 3.01 Å
cryo-EM structure |
Xu et al. (2022).
Xu Y, Cai H, You C, He X, Yuan Q, Jiang H, Cheng X, Jiang Y, & Xu HE (2022). Structural insights into ligand binding and activation of the human thyrotropin-releasing hormone receptor.
Cell Res 32 9:855-857. PubMed Id: 35365755. doi:10.1038/s41422-022-00641-x. |
||
Peng et al. (2023).
Peng S, Zhan Y, Zhang D, Ren L, Chen A, Chen ZF, & Zhang H (2023). Structures of human gastrin-releasing peptide receptors bound to antagonist and agonist for cancer and itch therapy.
Proc Natl Acad Sci U S A 120 6:e2216230120. PubMed Id: 36724251. doi:10.1073/pnas.2216230120. |
|||
Olfactory Receptor OR51E2 - miniGs399 complex with bound propionate: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.10 Å
cryo-EM structure |
Billesbølle et al. (2023).
Billesbølle CB, de March CA, van der Velden WJC, Ma N, Tewari J, Del Torrent CL, Li L, Faust B, Vaidehi N, Matsunami H, & Manglik A (2023). Structural basis of odorant recognition by a human odorant receptor.
Nature 615 7953:742-749. PubMed Id: 36922591. doi:10.1038/s41586-023-05798-y. |
||
Follicle stimulating hormone repceotr (FSHR) - Gs complex with bound compound 716340: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.80 Å
cryo-EM structure inactive FSHR, 6.00 Å: 8I2H |
Duan et al. (2023).
Duan J, Xu P, Zhang H, Luan X, Yang J, He X, Mao C, Shen DD, Ji Y, Cheng X, Jiang H, Jiang Y, Zhang S, Zhang Y, & Xu HE (2023). Mechanism of hormone and allosteric agonist mediated activation of follicle stimulating hormone receptor.
Nat Commun 14 1:519. PubMed Id: 36720854. doi:10.1038/s41467-023-36170-3. |
||
Relaxin family peptide receptor 1 (RXFP1) - Gs complex: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.20 Å
cryo-EM structure |
Erlandson et al. (2023).
Erlandson SC, Rawson S, Osei-Owusu J, Brock KP, Liu X, Paulo JA, Mintseris J, Gygi SP, Marks DS, Cong X, & Kruse AC (2023). The relaxin receptor RXFP1 signals through a mechanism of autoinhibition.
Nat Chem Biol 19 8:1013-1021. PubMed Id: 37081311. doi:10.1038/s41589-023-01321-6. |
||
Chen et al. (2023).
Chen Y, Zhou Q, Wang J, Xu Y, Wang Y, Yan J, Wang Y, Zhu Q, Zhao F, Li C, Chen CW, Cai X, Bathgate RAD, Shen C, Eric Xu H, Yang D, Liu H, & Wang MW (2023). Ligand recognition mechanism of the human relaxin family peptide receptor 4 (RXFP4).
Nat Commun 14 1:492. PubMed Id: 36717591. doi:10.1038/s41467-023-36182-z. |
|||
endothelin ETA receptor - Gq complex, with bound endothelin-1: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.01 Å
cryo-EM structure |
Ji et al. (2023).
Ji Y, Duan J, Yuan Q, He X, Yang G, Zhu S, Wu K, Hu W, Gao T, Cheng X, Jiang H, Eric Xu H, & Jiang Y (2023). Structural basis of peptide recognition and activation of endothelin receptors.
Nat Commun 14 1:1268. PubMed Id: 36882417. doi:10.1038/s41467-023-36998-9. |
||
endothelin ETB receptor - Gi complex, with bound IRL1620: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.99 Å
cryo-EM structure with bound endothelin-1, 3.50 Å: 8HCX |
Ji et al. (2023).
Ji Y, Duan J, Yuan Q, He X, Yang G, Zhu S, Wu K, Hu W, Gao T, Cheng X, Jiang H, Eric Xu H, & Jiang Y (2023). Structural basis of peptide recognition and activation of endothelin receptors.
Nat Commun 14 1:1268. PubMed Id: 36882417. doi:10.1038/s41467-023-36998-9. |
||
Yang et al. (2023).
Yang Y, Kang HJ, Gao R, Wang J, Han GW, DiBerto JF, Wu L, Tong J, Qu L, Wu Y, Pileski R, Li X, Zhang XC, Zhao S, Kenakin T, Wang Q, Stevens RC, Peng W, Roth BL, Rao Z, & Liu ZJ (2023). Structural insights into the human niacin receptor HCA2-Gi signalling complex.
Nat Commun 14 1:1692. PubMed Id: 36973264. doi:10.1038/s41467-023-37177-6. |
|||
Suzuki et al. (2023).
Suzuki S, Tanaka K, Nishikawa K, Suzuki H, Oshima A, & Fujiyoshi Y (2023). Structural basis of hydroxycarboxylic acid receptor signaling mechanisms through ligand binding.
Nat Commun 14 1:5899. PubMed Id: 37736747. doi:10.1038/s41467-023-41650-7. |
|||
Pan et al. (2023).
Pan X, Ye F, Ning P, Zhang Z, Li X, Zhang B, Wang Q, Chen G, Gao W, Qiu C, Wu Z, Li J, Zhu L, Xia J, Gong K, & Du Y (2023). Structural insights into ligand recognition and selectivity of the human hydroxycarboxylic acid receptor HCAR2.
Cell Discov 9 1:118. PubMed Id: 38012147. doi:10.1038/s41421-023-00610-7. |
|||
HCA2 hydroxycarboxylic acid receptor 2 (GPR109A, niacin receptor) - Gi complex with bound niacin: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.01 Å
cryo-EM structure local refinement, 3.43 Å: 8K5B with bound acipimox, 2.77 Å: 8I7V with bound acipimox, local refinement, 3.13 Å: 8K5C with bound GSK256073, 3.39 Å: 8I7W with bound GSK256073, local refinement, 3.74 Å: 8K5D |
Park et al. (2023).
Park JH, Kawakami K, Ishimoto N, Ikuta T, Ohki M, Ekimoto T, Ikeguchi M, Lee DS, Lee YH, Tame JRH, Inoue A, & Park SY (2023). Structural basis for ligand recognition and signaling of hydroxy-carboxylic acid receptor 2.
Nat Commun 14 1:7150. PubMed Id: 37932263. doi:10.1038/s41467-023-42764-8. |
||
Zhu et al. (2023).
Zhu S, Yuan Q, Li X, He X, Shen S, Wang D, Li J, Cheng X, Duan X, Xu HE, & Duan J (2023). Molecular recognition of niacin and lipid-lowering drugs by the human hydroxycarboxylic acid receptor 2.
Cell Rep 42 11:113406. PubMed Id: 37952153. doi:10.1016/j.celrep.2023.113406. |
|||
HCA3 hydroxycarboxylic acid receptor 3 (GPR109B, niacin receptor) - Gi complex with bound acifran: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.07 Å
cryo-EM structure local refinement, 3.21 Å: 8IHK |
Suzuki et al. (2023).
Suzuki S, Tanaka K, Nishikawa K, Suzuki H, Oshima A, & Fujiyoshi Y (2023). Structural basis of hydroxycarboxylic acid receptor signaling mechanisms through ligand binding.
Nat Commun 14 1:5899. PubMed Id: 37736747. doi:10.1038/s41467-023-41650-7. |
||
HCA3 hydroxycarboxylic acid receptor 3 - Gi complex with bound compuond 5c: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 2.73 Å
cryo-EM structure |
Ye et al. (2024).
Ye F, Pan X, Zhang Z, Xiang X, Li X, Zhang B, Ning P, Liu A, Wang Q, Gong K, Li J, Zhu L, Qian C, Chen G, & Du Y (2024). Structural basis for ligand recognition of the human hydroxycarboxylic acid receptor HCAR3.
Cell Rep 43 11:114895. PubMed Id: 39427321. doi:10.1016/j.celrep.2024.114895. |
||
TAAR1 Trace-amine-associated receptor - Gs protein complex with bound T1AM: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.24 Å
cryo-EM structure with bound Ulotaront (SEP-363856), 3.52 Å: 8JLO with bound Ralmitaront (RO-6889450), 3.23 Å: 8JLP with bound Fenoldopam, 2.84 Å: 8JLQ with bound A77636, 3.00 Å: 8JLR with bound AMPH, 3.40 Å: 8JSO |
Xu et al. (2023).
Xu Z, Guo L, Yu J, Shen S, Wu C, Zhang W, Zhao C, Deng Y, Tian X, Feng Y, Hou H, Su L, Wang H, Guo S, Wang H, Wang K, Chen P, Zhao J, Zhang X, Yong X, Cheng L, Liu L, Yang S, Yang F, Wang X, Yu X, Xu Y, Sun JP, Yan W, & Shao Z (2023). Ligand recognition and G-protein coupling of trace amine receptor TAAR1.
Nature . PubMed Id: 37935376. doi:10.1038/s41586-023-06804-z. |
||
Liu et al. (2023).
Liu H, Zheng Y, Wang Y, Wang Y, He X, Xu P, Huang S, Yuan Q, Zhang X, Wang L, Jiang K, Chen H, Li Z, Liu W, Wang S, Xu HE, & Xu F (2023). Recognition of methamphetamine and other amines by trace amine receptor TAAR1.
Nature 624 7992:663-671. PubMed Id: 37935377. doi:10.1038/s41586-023-06775-1. |
|||
Shang et al. (2023).
Shang P, Rong N, Jiang JJ, Cheng J, Zhang MH, Kang D, Qi L, Guo L, Yang GM, Liu Q, Zhou Z, Li XB, Zhu KK, Meng QB, Han X, Yan W, Kong Y, Yang L, Wang X, Lei D, Feng X, Liu X, Yu X, Wang Y, Li Q, Shao ZH, Yang F, & Sun JP (2023). Structural and signaling mechanisms of TAAR1 enabled preferential agonist design.
Cell 186 24:5347-5362.e24. PubMed Id: 37963465. doi:10.1016/j.cell.2023.10.014. |
|||
Jiang et al. (2024).
Jiang K, Zheng Y, Zeng L, Wang L, Li F, Pu J, Lu Y, Zhao S, & Xu F (2024). The versatile binding landscape of the TAAR1 pocket for LSD and other antipsychotic drug molecules.
Cell Rep 43 7:114505. PubMed Id: 39002128. doi:10.1016/j.celrep.2024.114505. |
|||
TAAR1 Trace-amine-associated receptor - Gs protein complex with bound T1AM: Mus musculus E Eukaryota (expressed in S. frugiperda), 3.10 Å
cryo-EM structure with bound Ulotaront(SEP-363856), 3.22 Å, 8JLK |
Xu et al. (2023).
Xu Z, Guo L, Yu J, Shen S, Wu C, Zhang W, Zhao C, Deng Y, Tian X, Feng Y, Hou H, Su L, Wang H, Guo S, Wang H, Wang K, Chen P, Zhao J, Zhang X, Yong X, Cheng L, Liu L, Yang S, Yang F, Wang X, Yu X, Xu Y, Sun JP, Yan W, & Shao Z (2023). Ligand recognition and G-protein coupling of trace amine receptor TAAR1.
Nature . PubMed Id: 37935376. doi:10.1038/s41586-023-06804-z. |
||
TAAR1 Trace-amine-associated receptor - Gs complex with bound SEP363856: Mus musculus E Eukaryota (expressed in S. frugiperda), 3.00 Å
cryo-EM structure with bound ZH8651, 3.10 Å: 8WC4 with bound trimethylamine (TMA), 3.30 Å: 8WC5 with bound beta-phenylethylamine (PEA), 3.20 Å: 8WC6 with bound ZH8667, 3.10 Å: 8WC7 Gq complex with bound ZH8651, 3.20 Å: 8WC9 |
Shang et al. (2023).
Shang P, Rong N, Jiang JJ, Cheng J, Zhang MH, Kang D, Qi L, Guo L, Yang GM, Liu Q, Zhou Z, Li XB, Zhu KK, Meng QB, Han X, Yan W, Kong Y, Yang L, Wang X, Lei D, Feng X, Liu X, Yu X, Wang Y, Li Q, Shao ZH, Yang F, & Sun JP (2023). Structural and signaling mechanisms of TAAR1 enabled preferential agonist design.
Cell 186 24:5347-5362.e24. PubMed Id: 37963465. doi:10.1016/j.cell.2023.10.014. |
||
TAAR1 Trace-amine-associated receptor - Gs protein complex with bound RO5263397: Mus musculus E Eukaryota (expressed in S. frugiperda), 2.96 Å
cryo-EM structure |
Jiang et al. (2024).
Jiang K, Zheng Y, Zeng L, Wang L, Li F, Pu J, Lu Y, Zhao S, & Xu F (2024). The versatile binding landscape of the TAAR1 pocket for LSD and other antipsychotic drug molecules.
Cell Rep 43 7:114505. PubMed Id: 39002128. doi:10.1016/j.celrep.2024.114505. |
||
Suzuki et al. (2022).
Suzuki S, Iida M, Hiroaki Y, Tanaka K, Kawamoto A, Kato T, & Oshima A (2022). Structural insight into the activation mechanism of MrgD with heterotrimeric Gi-protein revealed by cryo-EM.
Commun Biol 5 1:707. PubMed Id: 35840655. doi:10.1038/s42003-022-03668-3. |
|||
Wu et al. (2024).
Wu Z, Chen G, Qiu C, Yan X, Xu L, Jiang S, Xu J, Han R, Shi T, Liu Y, Gao W, Wang Q, Li J, Ye F, Pan X, Zhang Z, Ning P, Zhang B, Chen J, & Du Y (2024). Structural basis for the ligand recognition and G protein subtype selectivity of kisspeptin receptor.
Sci Adv 10 33:eadn7771. PubMed Id: 39151001. doi:10.1126/sciadv.adn7771. |
|||
G Protein-Coupled Receptors: Class B1
|
|||
Corticotropin-releasing factor receptor 1 (CRF1R) in complex with CP-376395 small-molecule antagonist: Homo sapiens E Eukaryota, 2.98 Å
Engineered protein: T4 lysozyme inserted between TM helices III and IV. Lacks the N-terminal extracellular domain. |
Hollenstein et al. (2013).
Hollenstein K, Kean J, Bortolato A, Cheng RK, Doré AS, Jazayeri A, Cooke RM, Weir M, & Marshall FH (2013). Structure of class B GPCR corticotropin-releasing factor receptor 1.
Nature 499 7459:438-443. PubMed Id: 23863939. doi:10.1038/nature12357. |
||
Corticotropin-releasing factor 1 (CRF1) receptor in complex with Gs protein and bound Urocortin 1: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3 Å
cryo-EM structure |
Ma et al. (2020).
Ma S, Shen Q, Zhao LH, Mao C, Zhou XE, Shen DD, de Waal PW, Bi P, Li C, Jiang Y, Wang MW, Sexton PM, Wootten D, Melcher K, Zhang Y, & Xu HE (2020). Molecular Basis for Hormone Recognition and Activation of Corticotropin-Releasing Factor Receptors.
Mol Cell 77 3:669-680.e4. PubMed Id: 32004470. doi:10.1016/j.molcel.2020.01.013. |
||
corticotropin-releasing factor receptor 1 (CRF1), Gs GPCR protein complex with CRF1 peptide: Homo sapien E Eukaryota (expressed in Trichoplusia ni), 2.91 Å
cryo-EM structure |
Liang et al. (2020).
Liang YL, Belousoff MJ, Zhao P, Koole C, Fletcher MM, Truong TT, Julita V, Christopoulos G, Xu HE, Zhang Y, Khoshouei M, Christopoulos A, Danev R, Sexton PM, & Wootten D (2020). Toward a Structural Understanding of Class B GPCR Peptide Binding and Activation.
Mol Cell 77 3:656-668.e5. PubMed Id: 32004469. doi:10.1016/j.molcel.2020.01.012. |
||
Corticotropin-releasing factor 2 (CRF2) receptor in complex with Gs protein with bound Urocortin 1: Homo sapiens E Eukaryota, 2.8 Å
cryo-EM structure |
Ma et al. (2020).
Ma S, Shen Q, Zhao LH, Mao C, Zhou XE, Shen DD, de Waal PW, Bi P, Li C, Jiang Y, Wang MW, Sexton PM, Wootten D, Melcher K, Zhang Y, & Xu HE (2020). Molecular Basis for Hormone Recognition and Activation of Corticotropin-Releasing Factor Receptors.
Mol Cell 77 3:669-680.e4. PubMed Id: 32004470. doi:10.1016/j.molcel.2020.01.013. |
||
Corticotropin-releasing factor 2 (CRF2) receptor in complex with Gs protein with bound Urocortin 1: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.70 Å
cryo-EM structure bound to Urocortin 1 and coupled with heterotrimeric Go protein, 2.80 Å: 7TS0 |
Zhao et al. (2022).
Zhao LH, Lin J, Ji SY, Zhou XE, Mao C, Shen DD, He X, Xiao P, Sun J, Melcher K, Zhang Y, Yu X, & Xu HE (2022). Structure insights into selective coupling of G protein subtypes by a class B G protein-coupled receptor.
Nat Commun 13 1:6670. PubMed Id: 36335102. doi:10.1038/s41467-022-33851-3. |
||
Pituitary adenylate cyclase-activating peptide (PAC1) receptor GPCR complex: Homo sapiens E Eukaryota, 3.01 Å
cryo-EM structure |
Liang et al. (2020).
Liang YL, Belousoff MJ, Zhao P, Koole C, Fletcher MM, Truong TT, Julita V, Christopoulos G, Xu HE, Zhang Y, Khoshouei M, Christopoulos A, Danev R, Sexton PM, & Wootten D (2020). Toward a Structural Understanding of Class B GPCR Peptide Binding and Activation.
Mol Cell 77 3:656-668.e5. PubMed Id: 32004469. doi:10.1016/j.molcel.2020.01.012. |
||
PAC1 receptor coupled to engineered heterotrimeric G protein: Homo sapiens E Eukaryota, 3.9 Å
cryo-EM structure |
Kobayashi et al. (2020).
Kobayashi K, Shihoya W, Nishizawa T, Kadji FMN, Aoki J, Inoue A, & Nureki O (2020). Cryo-EM structure of the human PAC1 receptor coupled to an engineered heterotrimeric G protein.
Nat Struct Mol Biol 27 3:274-280. PubMed Id: 32157248. doi:10.1038/s41594-020-0386-8. |
||
PAC1-Gs receptor in complex with PACAP38: Homo sapiens E Eukaryota (expressed in Insect BA phytoplasma), 3.50 Å
cryo-EM structure in complex with maxadilan, 3.60 Å: 6M1H |
Wang et al. (2020).
Wang J, Song X, Zhang D, Chen X, Li X, Sun Y, Li C, Song Y, Ding Y, Ren R, Harrington EH, Hu LA, Zhong W, Xu C, Huang X, Wang HW, & Ma Y (2020). Cryo-EM structures of PAC1 receptor reveal ligand binding mechanism.
Cell Res 30 5:436-445. PubMed Id: 32047270. doi:10.1038/s41422-020-0280-2. |
||
glucagon receptor (GCGR): Homo sapiens E Eukaryota, 3.30 Å
Engineered Protein: E. coli apocytochrome b562 RIL (BRIL) fused at residue 123. C-terminus truncated at residue 432. |
Siu et al. (2013).
Siu FY, He M, de Graaf C, Han GW, Yang D, Zhang Z, Zhou C, Xu Q, Wacker D, Joseph JS, Liu W, Lau J, Cherezov V, Katritch V, Wang MW, & Stevens RC (2013). Structure of the human glucagon class B G-protein-coupled receptor.
Nature 499 7459:444-449. PubMed Id: 23863937. doi:10.1038/nature12393. |
||
Full-length glucagon receptor (GCGR) in complex with antagonist MK-0893: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 2.50 Å
|
Jazayeri et al. (2016).
Jazayeri A, Doré AS, Lamb D, Krishnamurthy H, Southall SM, Baig AH, Bortolato A, Koglin M, Robertson NJ, Errey JC, Andrews SP, Teobald I, Brown AJ, Cooke RM, Weir M, & Marshall FH (2016). Extra-helical binding site of a glucagon receptor antagonist.
Nature 533 7602:274-277. PubMed Id: 27111510. doi:10.1038/nature17414. |
||
Full-length glucagon receptor (GCGR) in complex with a truncated peptide: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.7 Å
|
Jazayeri et al. (2017).
Jazayeri A, Rappas M, Brown AJH, Kean J, Errey JC, Robertson NJ, Fiez-Vandal C, Andrews SP, Congreve M, Bortolato A, Mason JS, Baig AH, Teobald I, Doré AS, Weir M, Cooke RM, & Marshall FH (2017). Crystal structure of the GLP-1 receptor bound to a peptide agonist.
Nature 546 :254-258. PubMed Id: 28562585. doi:10.1038/nature22800. |
||
glucagon receptor (GCGR), full length. XFEL structure: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.0 Å
synchrotron structure, 3.19 Å: 5XF1 |
Zhang et al. (2017).
Zhang H, Qiao A, Yang D, Yang L, Dai A, de Graaf C, Reedtz-Runge S, Dharmarajan V, Zhang H, Han GW, Grant TD, Sierra RG, Weierstall U, Nelson G, Liu W, Wu Y, Ma L, Cai X, Lin G, Wu X, Geng Z, Dong Y, Song G, Griffin PR, Lau J, Cherezov V, Yang H, Hanson MA, Stevens RC, Zhao Q, Jiang H, Wang MW, & Wu B (2017). Structure of the full-length glucagon class B G-protein-coupled receptor.
Nature 546 :259-264. PubMed Id: 28514451. doi:10.1038/nature22363. |
||
Full-length glucagon receptor (GCGR) in complex with heterotrimeric GS protein: Homo sapiens E Eukaryota (expressed in Trichoplusia ni), 3.3 Å
cryo-EM structure |
Liang et al. (2018).
Liang YL, Khoshouei M, Glukhova A, Furness SGB, Zhao P, Clydesdale L, Koole C, Truong TT, Thal DM, Lei S, Radjainia M, Danev R, Baumeister W, Wang MW, Miller LJ, Christopoulos A, Sexton PM, & Wootten D (2018). Phase-plate cryo-EM structure of a biased agonist-bound human GLP-1 receptor-Gs complex.
Nature 555 :121-125. PubMed Id: 29466332. doi:10.1038/nature25773. |
||
glucagon receptor (GCGR), full length in complex with glucagon analog NNC1702: Homo sapiens E Eukaryota (expressed in Sf9 cells), 3.0 Å
Engineered protein. T4 lysozyme fused into 2nd intracellular loop (ICL2). 45 residues were truncated at the C-terminus. |
Zhang et al. (2018).
Zhang H, Qiao A, Yang L, Van Eps N, Frederiksen KS, Yang D, Dai A, Cai X, Zhang H, Yi C, Cao C, He L, Yang H, Lau J, Ernst OP, Hanson MA, Stevens RC, Wang MW, Reedtz-Runge S, Jiang H, Zhao Q, & Wu B (2018). Structure of the glucagon receptor in complex with a glucagon analogue.
Nature 553 :106-110. PubMed Id: 29300013. doi:10.1038/nature25153. |
||
glucagon receptor (GCGR) in complex with Gs: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.7 Å
cryo-EM structure in complex with Gi1, 3.9 Å: 6LML |
Qiao et al. (2020).
Qiao A, Han S, Li X, Li Z, Zhao P, Dai A, Chang R, Tai L, Tan Q, Chu X, Ma L, Thorsen TS, Reedtz-Runge S, Yang D, Wang MW, Sexton PM, Wootten D, Sun F, Zhao Q, & Wu B (2020). Structural basis of Gs and Gi recognition by the human glucagon receptor.
Science 367 6484:1346-1352. PubMed Id: 32193322. doi:10.1126/science.aaz5346. |
||
Full-length glucagon receptor (GCGR) in complex with P15-GCGR-Gs: Homo sapiens E Eukaryota (expressed in Trichoplusia ni), 3.40 Å
cryo-EM structure |
Chang et al. (2020).
Chang R, Zhang X, Qiao A, Dai A, Belousoff MJ, Tan Q, Shao L, Zhong L, Lin G, Liang YL, Ma L, Han S, Yang D, Danev R, Wang MW, Wootten D, Wu B, & Sexton PM (2020). Cryo-electron microscopy structure of the glucagon receptor with a dual-agonist peptide.
J Biol Chem 295 28:9313-9325. PubMed Id: 32371397. doi:10.1074/jbc.RA120.013793. |
||
Glucagon receptor-Gs complex bound to a designed glucagon derivative: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.10 Å
cryo-EM structure |
Hilger et al. (2020).
Hilger D, Kumar KK, Hu H, Pedersen MF, O'Brien ES, Giehm L, Jennings C, Eskici G, Inoue A, Lerch M, Mathiesen JM, Skiniotis G, & Kobilka BK (2020). Structural insights into differences in G protein activation by family A and family B GPCRs.
Science 369 6503:523. PubMed Id: 32732395. doi:10.1126/science.aba3373. |
||
Glucagon receptor (GCGR)-Gs complex with bound GIPR/GLP-1R/GCGR triagonist peptide 20: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.50 Å
cryo-EM structure |
Zhao et al. (2022).
Zhao F, Zhou Q, Cong Z, Hang K, Zou X, Zhang C, Chen Y, Dai A, Liang A, Ming Q, Wang M, Chen LN, Xu P, Chang R, Feng W, Xia T, Zhang Y, Wu B, Yang D, Zhao L, Xu HE, & Wang MW (2022). Structural insights into multiplexed pharmacological actions of tirzepatide and peptide 20 at the GIP, GLP-1 or glucagon receptors.
Nat Commun 13 1:1057. PubMed Id: 35217653. doi:10.1038/s41467-022-28683-0. |
||
glucagon receptor (GCGR) - β-arrestin 1 complex, ligand-free state: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.50 Å
cryo-EM structure with bound glucagon, 3.30 Å: 8JRV |
Chen et al. (2023).
Chen K, Zhang C, Lin S, Yan X, Cai H, Yi C, Ma L, Chu X, Liu Y, Zhu Y, Han S, Zhao Q, & Wu B (2023). Tail engagement of arrestin at the glucagon receptor.
Nature 620 7975:904-910. PubMed Id: 37558880. doi:10.1038/s41586-023-06420-x. |
||
glucagon receptor (GCGR)- Gs complex, apo form: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.71 Å
cryo-EM structure |
Cong et al. (2024).
Cong Z, Zhao F, Li Y, Luo G, Mai Y, Chen X, Chen Y, Lin S, Cai X, Zhou Q, Yang D, & Wang MW (2024). Molecular features of the ligand-free GLP-1R, GCGR and GIPR in complex with Gs proteins.
Cell Discov 10 1:18. PubMed Id: 38346960. doi:10.1038/s41421-024-00649-0. |
||
glucagon receptor (GCGR)- Gs complex with bound retatrutide (LY3437943): Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.84 Å
cryo-EM structure |
Li et al. (2024).
Li W, Zhou Q, Cong Z, Yuan Q, Li W, Zhao F, Xu HE, Zhao LH, Yang D, & Wang MW (2024). Structural insights into the triple agonism at GLP-1R, GIPR and GCGR manifested by retatrutide.
Cell Discov 10 1:77. PubMed Id: 39019866. doi:10.1038/s41421-024-00700-0. |
||
Activated glucagon-like receptor (GLP-1) in complex with a G protein: Oryctolagus cuniculus E Eukaryota, 4.1 Å
cryo-EM structure |
Zhang et al. (2017).
Zhang Y, Sun B, Feng D, Hu H, Chu M, Qu Q, Tarrasch JT, Li S, Sun Kobilka T, Kobilka BK, & Skiniotis G (2017). Cryo-EM structure of the activated GLP-1 receptor in complex with a G protein.
Nature 546 :248-253. PubMed Id: 28538729. doi:10.1038/nature22394. |
||
Glucagon-like peptide-1 receptor (GLP-1R) in complex with PF-06372222: Homo sapiens E Eukaryota, 2.7 Å
in complex with NNC0640, 3.0 Å: 5VEX |
Song et al. (2017).
Song G, Yang D, Wang Y, de Graaf C, Zhou Q, Jiang S, Liu K, Cai X, Dai A, Lin G, Liu D, Wu F, Wu Y, Zhao S, Ye L, Han GW, Lau J, Wu B, Hanson MA, Liu ZJ, Wang MW, & Stevens RC (2017). Human GLP-1 receptor transmembrane domain structure in complex with allosteric modulators.
Nature 546 :312-315. PubMed Id: 28514449. doi:10.1038/nature22378. |
||
Xu et al. (2019).
Xu Y, Wang Y, Wang Y, Liu K, Peng Y, Yao D, Tao H, Liu H, & Song G (2019). Mutagenesis facilitated crystallization of GLP-1R.
IUCrJ 6 :996-1006. PubMed Id: 31709055. doi:10.1107/S2052252519013496. |
|||
GLP-1 receptor in complex with TT-OAD2 non-peptide agonist: Homo sapiens E Eukaryota (expressed in Trichoplusia ni), 3 Å
cryo-EM structure |
Zhao et al. (2020).
Zhao P, Liang YL, Belousoff MJ, Deganutti G, Fletcher MM, Willard FS, Bell MG, Christe ME, Sloop KW, Inoue A, Truong TT, Clydesdale L, Furness SGB, Christopoulos A, Wang MW, Miller LJ, Reynolds CA, Danev R, Sexton PM, & Wootten D (2020). Activation of the GLP-1 receptor by a non-peptidic agonist.
Nature 577 7790:432-436. PubMed Id: 31915381. doi:10.1038/s41586-019-1902-z. |
||
Full-length GLP-1 receptor (GLP-1R) without orthosteric ligands: Homo sapiens E Eukaryota (expressed in CHO-S cells), 3.2 Å
engineered protein, rubredoxin inserted into intracellular loop 2 |
Wu et al. (2020).
Wu F, Yang L, Hang K, Laursen M, Wu L, Han GW, Ren Q, Roed NK, Lin G, Hanson MA, Jiang H, Wang MW, Reedtz-Runge S, Song G, & Stevens RC (2020). Full-length human GLP-1 receptor structure without orthosteric ligands.
Nat Commun 11 1:1272. PubMed Id: 32152292. doi:10.1038/s41467-020-14934-5. |
||
GLP-1R-Gs complex with bound small-molecule agonist: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 4.20 Å
cryo-EM structure |
Ma et al. (2020).
Ma H, Huang W, Wang X, Zhao L, Jiang Y, Liu F, Guo W, Sun X, Zhong W, Yuan D, & Xu HE (2020). Structural insights into the activation of GLP-1R by a small molecule agonist.
Cell Res . PubMed Id: 32724086. doi:10.1038/s41422-020-0384-8. |
||
GLP-1R-Gs complex with GLP-1 peptide and a positive allosteric modulator: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.30 Å
cryo-EM structure |
Bueno et al. (2020).
Bueno AB, Sun B, Willard FS, Feng D, Ho JD, Wainscott DB, Showalter AD, Vieth M, Chen Q, Stutsman C, Chau B, Ficorilli J, Agejas FJ, Cumming GR, Jiménez A, Rojo I, Kobilka TS, Kobilka BK, & Sloop KW (2020). Structural insights into probe-dependent positive allosterism of the GLP-1 receptor.
Nat Chem Biol 16 10:1105-1110. PubMed Id: 32690941. doi:10.1038/s41589-020-0589-7. |
||
Zhang et al. (2020).
Zhang X, Belousoff MJ, Zhao P, Kooistra AJ, Truong TT, Ang SY, Underwood CR, Egebjerg T, Šenel P, Stewart GD, Liang YL, Glukhova A, Venugopal H, Christopoulos A, Furness SGB, Miller LJ, Reedtz-Runge S, Langmead CJ, Gloriam DE, Danev R, Sexton PM, & Wootten D (2020). Differential GLP-1R Binding and Activation by Peptide and Non-peptide Agonists.
Mol Cell 80 3:485-500.e7. PubMed Id: 33027691. doi:10.1016/j.molcel.2020.09.020. |
|||
GLP-1 receptor in complex with LY3502970 nonpeptide agonist: Hom sapiens E Eukaryota (expressed in Trichoplusia ni), 3.10 Å
cryo-EM structure |
Kawai et al. (2020).
Kawai T, Sun B, Yoshino H, Feng D, Suzuki Y, Fukazawa M, Nagao S, Wainscott DB, Showalter AD, Droz BA, Kobilka TS, Coghlan MP, Willard FS, Kawabe Y, Kobilka BK, & Sloop KW (2020). Structural basis for GLP-1 receptor activation by LY3502970, an orally active nonpeptide agonist.
Proc Natl Acad Sci U S A 117 47:29959-29967. PubMed Id: 33177239. doi:10.1073/pnas.2014879117. |
||
GLP-1 receptor-Gs complex with bound Semaglutide: Homo sapiens E Eukaryota (expressed in Trichoplusia ni), 2.50 Å
cryo-EM structure with bound Taspoglutide, 2.50 Å: 7KI1 |
Zhang et al. (2021).
Zhang X, Belousoff MJ, Liang YL, Danev R, Sexton PM, & Wootten D (2021). Structure and dynamics of semaglutide- and taspoglutide-bound GLP-1R-Gs complexes.
Cell Rep 36 2. PubMed Id: 34260945. doi:10.1016/j.celrep.2021.109374. |
||
glucagon-like receptor (GLP-1)-Gs with bound PF 06882961; 200kV Glacios: Homo sapiens E Eukaryota (expressed in Trichoplusia ni), 3.24 Å
cryo-EM structure 300 kV Titan Krios, 3.82 Å 7LCJ |
Zhang et al. (2021).
Zhang X, Johnson RM, Drulyte I, Yu L, Kotecha A, Danev R, Wootten D, Sexton PM, & Belousoff MJ (2021). Evolving cryo-EM structural approaches for GPCR drug discovery.
Structure 29 9:963-974.e6. PubMed Id: 33957078. doi:10.1016/j.str.2021.04.008. |
||
Cong et al. (2021).
Cong Z, Chen LN, Ma H, Zhou Q, Zou X, Ye C, Dai A, Liu Q, Huang W, Sun X, Wang X, Xu P, Zhao L, Xia T, Zhong W, Yang D, Eric Xu H, Zhang Y, & Wang MW (2021). Molecular insights into ago-allosteric modulation of the human glucagon-like peptide-1 receptor.
Nat Commun 12 1:3763. PubMed Id: 34145245. doi:10.1038/s41467-021-24058-z. |
|||
GLP-1 receptor (GLP-1R) - Gs complex with bound Peptide-19: Homo sapiens E Eukaryota (expressed in Trichoplusia ni), 2.14 Å
cryo-EM structure |
Johnson et al. (2021).
Johnson RM, Zhang X, Piper SJ, Nettleton TJ, Vandekolk TH, Langmead CJ, Danev R, Sexton PM, & Wootten D (2021). Cryo-EM structure of the dual incretin receptor agonist, peptide-19, in complex with the glucagon-like peptide-1 receptor.
Biochem Biophys Res Commun 578 :84-90. PubMed Id: 34547628. doi:10.1016/j.bbrc.2021.09.016. |
||
GLP-1R-Gs protein complex with bound oxyntomodulin: Homo sapiens E Eukaryota (expressed in Trichoplusia ni), 3.30 Å
cryo-EM structure with bound exendin-4, 3.70 Å 7LLL |
Deganutti et al. (2022).
Deganutti G, Liang YL, Zhang X, Khoshouei M, Clydesdale L, Belousoff MJ, Venugopal H, Truong TT, Glukhova A, Keller AN, Gregory KJ, Leach K, Christopoulos A, Danev R, Reynolds CA, Zhao P, Sexton PM, & Wootten D (2022). Dynamics of GLP-1R peptide agonist engagement are correlated with kinetics of G protein activation.
Nat Commun 13 1:92. PubMed Id: 35013280. doi:10.1038/s41467-021-27760-0. |
||
Glucagon-like peptide-1 receptor (GLP-1R)-G protein complex with bound Ex4-D-Ala, conformer 1: Homo sapiens E Eukaryota (expressed in Trichoplusia ni), 2.41 Å
cryo-EM structure conformer 2, 2.51 Å 7S3I |
Cary et al. (2022).
Cary BP, Deganutti G, Zhao P, Truong TT, Piper SJ, Liu X, Belousoff MJ, Danev R, Sexton PM, Wootten D, & Gellman SH (2022). Structural and functional diversity among agonist-bound states of the GLP-1 receptor.
Nat Chem Biol 18 3:256-263. PubMed Id: 34937906. doi:10.1038/s41589-021-00945-w. |
||
Glucagon-like peptide-1 receptor (GLP-1R)-Gs complex with bound tirzepatide (LY3298176): Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.40 Å
cryo-EM structure with bound non-acylated tirzepatide (LY3298176), 3.00 Å 7VBI with bound GIPR/GLP-1R/GCGR triagonist peptide 20, 3.00 Å 7VBH |
Zhao et al. (2022).
Zhao F, Zhou Q, Cong Z, Hang K, Zou X, Zhang C, Chen Y, Dai A, Liang A, Ming Q, Wang M, Chen LN, Xu P, Chang R, Feng W, Xia T, Zhang Y, Wu B, Yang D, Zhao L, Xu HE, & Wang MW (2022). Structural insights into multiplexed pharmacological actions of tirzepatide and peptide 20 at the GIP, GLP-1 or glucagon receptors.
Nat Commun 13 1:1057. PubMed Id: 35217653. doi:10.1038/s41467-022-28683-0. |
||
Glucagon-like peptide-1 receptor (GLP-1R)-Gs complex with bound Boc5: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 2.61 Å
cryo-EM structure with bound WB4-24, 3.09 Å 7X8S |
Cong et al. (2022).
Cong Z, Zhou Q, Li Y, Chen LN, Zhang ZC, Liang A, Liu Q, Wu X, Dai A, Xia T, Wu W, Zhang Y, Yang D, & Wang MW (2022). Structural basis of peptidomimetic agonism revealed by small- molecule GLP-1R agonists Boc5 and WB4-24.
Proc Natl Acad Sci U S A 119 20:e2200155119. PubMed Id: 35561211. doi:10.1073/pnas.2200155119. |
||
Glucagon-like peptide-1 receptor (GLP-1R) in complex with PF-06882961: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.80 Å
cryo-EM structure |
Griffith et al. (2022).
Griffith DA, Edmonds DJ, Fortin JP, Kalgutkar AS, Kuzmiski JB, Loria PM, Saxena AR, Bagley SW, Buckeridge C, Curto JM, Derksen DR, Dias JM, Griffor MC, Han S, Jackson VM, Landis MS, Lettiere D, Limberakis C, Liu Y, Mathiowetz AM, Patel JC, Piotrowski DW, Price DA, Ruggeri RB, & Tess DA (2022). A Small-Molecule Oral Agonist of the Human Glucagon-like Peptide-1 Receptor.
J Med Chem 65 12:8208-8226. PubMed Id: 35647711. doi:10.1021/acs.jmedchem.1c01856. |
||
Glucagon-like peptide-1 receptor (GLP-1R)-Gs complex, apo form: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.54 Å
cryo-EM structure |
Cong et al. (2024).
Cong Z, Zhao F, Li Y, Luo G, Mai Y, Chen X, Chen Y, Lin S, Cai X, Zhou Q, Yang D, & Wang MW (2024). Molecular features of the ligand-free GLP-1R, GCGR and GIPR in complex with Gs proteins.
Cell Discov 10 1:18. PubMed Id: 38346960. doi:10.1038/s41421-024-00649-0. |
||
Glucagon-like peptide-1 receptor (GLP-1R)-Gs complex with bound retatrutide (LY3437943): Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.68 Å
cryo-EM structure |
Li et al. (2024).
Li W, Zhou Q, Cong Z, Yuan Q, Li W, Zhao F, Xu HE, Zhao LH, Yang D, & Wang MW (2024). Structural insights into the triple agonism at GLP-1R, GIPR and GCGR manifested by retatrutide.
Cell Discov 10 1:77. PubMed Id: 39019866. doi:10.1038/s41421-024-00700-0. |
||
GLP-2R-Gs complex with GLP-2 peptide: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.00 Å
cryo-EM structure |
Sun et al. (2020).
Sun W, Chen LN, Zhou Q, Zhao LH, Yang D, Zhang H, Cong Z, Shen DD, Zhao F, Zhou F, Cai X, Chen Y, Zhou Y, Gadgaard S, van der Velden WJC, Zhao S, Jiang Y, Rosenkilde MM, Xu HE, Zhang Y, & Wang MW (2020). A unique hormonal recognition feature of the human glucagon-like peptide-2 receptor.
Cell Res 30 12:1098-1108. PubMed Id: 33239759. doi:10.1038/s41422-020-00442-0. |
||
GIPR glucose-dependent insulinotropic polypeptide receptor: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 2.98 Å
Cryo-EM structure |
Zhao et al. (2021).
Zhao F, Zhang C, Zhou Q, Hang K, Zou X, Chen Y, Wu F, Rao Q, Dai A, Yin W, Shen DD, Zhang Y, Xia T, Stevens RC, Xu HE, Yang D, Zhao L, & Wang MW (2021). Structural insights into hormone recognition by the human glucose-dependent insulinotropic polypeptide receptor.
Elife 10 :e68719. PubMed Id: 34254582. doi:10.7554/eLife.68719. |
||
GIPR glucose-dependent insulinotropic polypeptide receptor-Gs complex with bound tirzepatide: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.40 Å
cryo-EM structure with bound non-acylated tirzepatide (LY3298176), 3.20 Å 7VAB with bound GIPR/GLP-1R/GCGR triagonist peptide 20, 3.10 Å 7FIN |
Zhao et al. (2022).
Zhao F, Zhou Q, Cong Z, Hang K, Zou X, Zhang C, Chen Y, Dai A, Liang A, Ming Q, Wang M, Chen LN, Xu P, Chang R, Feng W, Xia T, Zhang Y, Wu B, Yang D, Zhao L, Xu HE, & Wang MW (2022). Structural insights into multiplexed pharmacological actions of tirzepatide and peptide 20 at the GIP, GLP-1 or glucagon receptors.
Nat Commun 13 1:1057. PubMed Id: 35217653. doi:10.1038/s41467-022-28683-0. |
||
GIPR glucose-dependent insulinotropic polypeptide receptor - Gs complex, splice variant 1 (SV1): Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.23 Å
cryo-EM structure splice variant 2 (SV2), 3.13 Å: 8ITM |
Zhao et al. (2023).
Zhao F, Hang K, Zhou Q, Shao L, Li H, Li W, Lin S, Dai A, Cai X, Liu Y, Xu Y, Feng W, Yang D, & Wang MW (2023). Molecular basis of signal transduction mediated by the human GIPR splice variants.
Proc Natl Acad Sci U S A 120 41:e2306145120. PubMed Id: 37792509. doi:10.1073/pnas.2306145120. |
||
GIPR glucose-dependent insulinotropic polypeptide receptor-Gs complex, apo form: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.86 Å
cryo-EM structure |
Cong et al. (2024).
Cong Z, Zhao F, Li Y, Luo G, Mai Y, Chen X, Chen Y, Lin S, Cai X, Zhou Q, Yang D, & Wang MW (2024). Molecular features of the ligand-free GLP-1R, GCGR and GIPR in complex with Gs proteins.
Cell Discov 10 1:18. PubMed Id: 38346960. doi:10.1038/s41421-024-00649-0. |
||
GIPR glucose-dependent insulinotropic polypeptide receptor-Gs complex with bound retatrutide (LY3437943): Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.26 Å
cryo-EM structure |
Li et al. (2024).
Li W, Zhou Q, Cong Z, Yuan Q, Li W, Zhao F, Xu HE, Zhao LH, Yang D, & Wang MW (2024). Structural insights into the triple agonism at GLP-1R, GIPR and GCGR manifested by retatrutide.
Cell Discov 10 1:77. PubMed Id: 39019866. doi:10.1038/s41421-024-00700-0. |
||
Calcitonin receptor-heterotrimeric Gs protein complex: Homo sapiens E Eukaryota, 4.1 Å
Phase-plate cryo-EM structure. |
Liang et al. (2017).
Liang YL, Khoshouei M, Radjainia M, Zhang Y, Glukhova A, Tarrasch J, Thal DM, Furness SGB, Christopoulos G, Coudrat T, Danev R, Baumeister W, Miller LJ, Christopoulos A, Kobilka BK, Wootten D, Skiniotis G, & Sexton PM (2017). Phase-plate cryo-EM structure of a class B GPCR-G-protein complex.
Nature 546 7656:118-123. PubMed Id: 28437792. doi:10.1038/nature22327. |
||
Calcitonin receptor-heterotrimeric Gs bound to endogenous peptide and canonical transducer: Homo sapiens E Eukaryota (expressed in Trichoplusia ni), 3.3 Å
Volta phase-plate cryo-EM structure |
Liang et al. (2018).
Liang YL, Khoshouei M, Deganutti G, Glukhova A, Koole C, Peat TS, Radjainia M, Plitzko JM, Baumeister W, Miller LJ, Hay DL, Christopoulos A, Reynolds CA, Wootten D, & Sexton PM (2018). Cryo-EM structure of the active, Gs-protein complexed, human CGRP receptor.
Nature 561 7724:492-497. PubMed Id: 30209400. doi:10.1038/s41586-018-0535-y. |
||
Calcitonin receptor-heterotrimeric Gs protein complex: Homo sapiens E Eukaryota (expressed in Trichoplusia ni), 3.34 Å
cryo-EM structure |
Dal Maso et al. (2019).
Dal Maso E, Glukhova A, Zhu Y, Garcia-Nafria J, Tate CG, Atanasio S, Reynolds CA, Ramírez-Aportela E, Carazo JM, Hick CA, Furness SGB, Hay DL, Liang YL, Miller LJ, Christopoulos A, Wang MW, Wootten D, & Sexton PM (2019). The Molecular Control of Calcitonin Receptor Signaling.
ACS Pharmacol Transl Sci 2 1:31-51. PubMed Id: 32219215. doi:10.1021/acsptsci.8b00056. |
||
Calcitonin gene-related peptide receptor (GPCR), apo form: Homo sapiens E Eukaryota (expressed in Trichoplusia ni), 3.15 Å
cryo-EM structure with bound CGRP peptide, 3.49 Å: 7KNU |
Josephs et al. (2021).
Josephs TM, Belousoff MJ, Liang YL, Piper SJ, Cao J, Garama DJ, Leach K, Gregory KJ, Christopoulos A, Hay DL, Danev R, Wootten D, & Sexton PM (2021). Structure and dynamics of the CGRP receptor in apo and peptide-bound forms.
Science 372 6538:eabf7258. PubMed Id: 33602864. doi:10.1126/science.abf7258. |
||
Amylin1 Receptor in complex with Gs and rat amylin peptide: Homo sapiens E Eukaryota (expressed in Trichoplusia ni), 2.20 Å
cryo-EM structure Amylin2 Receptor in complex with Gsand human calcitonin peptide, 3.30 Å: 7TYH Calcitonin Receptor in complex with Gs and rat amylin peptide, CT-like state, 3.30 Å: 7TYI Calcitonin Receptor in complex with Gs and rat amylin peptide, bypass motif, 3.30 Å: 7TYL Calcitonin Receptor in complex with Gs and salmon calcitonin peptide, 2.60 Å: 7TYN Calcitonin receptor in complex with Gs and human calcitonin peptide, 2.70 Å: 7TYO Amylin1 Receptor in complex with Gs and salmon calcitonin peptide, 3.00 Å: 7TYW Amylin2 Receptor in complex with Gs and rat amylin peptide, 2.55 Å: 7TYX Human Amylin2 Receptor in complex with Gs and salmon calcitonin peptide, 3.00 Å: 7TYY Human Amylin3 Receptor in complex with Gs and rat amylin peptide, 2.40 Å: 7TZF |
Cao et al. (2022).
Cao J, Belousoff MJ, Liang YL, Johnson RM, Josephs TM, Fletcher MM, Christopoulos A, Hay DL, Danev R, Wootten D, & Sexton PM (2022). A structural basis for amylin receptor phenotype.
Science 375 6587:eabm9609. PubMed Id: 35324283. doi:10.1126/science.abm9609. |
||
Zhao et al. (2019).
Zhao LH, Ma S, Sutkeviciute I, Shen DD, Zhou XE, de Waal PW, Li CY, Kang Y, Clark LJ, Jean-Alphonse FG, White AD, Yang D, Dai A, Cai X, Chen J, Li C, Jiang Y, Watanabe T, Gardella TJ, Melcher K, Wang MW, Vilardaga JP, Xu HE, & Zhang Y (2019). Structure and dynamics of the active human parathyroid hormone receptor-1.
Science 364 6436:148-153. PubMed Id: 30975883. doi:10.1126/science.aav7942. |
|||
parathyroid hormone receptor-1 (PTH1R) in complex with a peptide agonist: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 2.50 Å
|
Ehrenmann et al. (2018).
Ehrenmann J, Schöppe J, Klenk C, Rappas M, Kummer L, Doré AS, & Plückthun A (2018). High-resolution crystal structure of parathyroid hormone 1 receptor in complex with a peptide agonist.
Nat Struct Mol Biol 25 12:1086-1092. PubMed Id: 30455434. doi:10.1038/s41594-018-0151-4. |
||
parathyroid hormone receptor-1 (PTH1R) - Gs complex with bound intracellular biased agonist PCO371: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.90 Å
cryo-EM structure |
Kobayashi et al. (2023).
Kobayashi K, Kawakami K, Kusakizako T, Tomita A, Nishimura M, Sawada K, Okamoto HH, Hiratsuka S, Nakamura G, Kuwabara R, Noda H, Muramatsu H, Shimizu M, Taguchi T, Inoue A, Murata T, & Nureki O (2023). Class B1 GPCR activation by an intracellular agonist.
Nature 618 7967:1085-1093. PubMed Id: 37286611. doi:10.1038/s41586-023-06169-3. |
||
parathyroid hormone receptor-1 (PTH1R)—Gs complex with bound Abaloparatide: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 2.90 Å
cryo-EM structure with bound teriparatide, 2.80 Å: 7Y36 |
Zhai et al. (2022).
Zhai X, Mao C, Shen Q, Zang S, Shen DD, Zhang H, Chen Z, Wang G, Zhang C, Zhang Y, & Liu Z (2022). Molecular insights into the distinct signaling duration for the peptide-induced PTH1R activation.
Nat Commun 13 1:6276. PubMed Id: 36271004. doi:10.1038/s41467-022-34009-x. |
||
parathyroid hormone receptor-2 (PTH2R) in complex with a tuberoinfundibular peptide of 39 residues and G protein: Homo sapiens E Eukaryota (expressed in richoplusia ni), 2.80 Å
cryo-EM structure |
Wang et al. (2021).
Wang X, Cheng X, Zhao L, Wang Y, Ye C, Zou X, Dai A, Cong Z, Chen J, Zhou Q, Xia T, Jiang H, Xu HE, Yang D, & Wang MW (2021). Molecular insights into differentiated ligand recognition of the human parathyroid hormone receptor 2.
Proc Natl Acad Sci U S A 118 32:e2101279118. PubMed Id: 34353904. doi:10.1073/pnas.2101279118. |
||
Adrenomedullin 1 (AM1) receptor G protein complex with adrenomedullin peptide: Homo sapiens E Eukaryota, 3.00 Å
cryo-EM structure |
Liang et al. (2020).
Liang YL, Belousoff MJ, Fletcher MM, Zhang X, Khoshouei M, Deganutti G, Koole C, Furness SGB, Miller LJ, Hay DL, Christopoulos A, Reynolds CA, Danev R, Wootten D, & Sexton PM (2020). Structure and Dynamics of Adrenomedullin Receptors AM1 and AM2 Reveal Key Mechanisms in the Control of Receptor Phenotype by Receptor Activity-Modifying Proteins.
ACS Pharmacol Transl Sci 3 2:263-284. PubMed Id: 32296767. doi:10.1021/acsptsci.9b00080. |
||
Adrenomedullin 2 (AM2) receptor G protein complex with adrenomedullin peptide: Homo sapiens E Eukaryota, 2.40 Å
cryo-EM structure active Adrenomedullin 2 receptor G protein complex with adrenomedullin 2 peptide, 6UVA |
Liang et al. (2020).
Liang YL, Belousoff MJ, Fletcher MM, Zhang X, Khoshouei M, Deganutti G, Koole C, Furness SGB, Miller LJ, Hay DL, Christopoulos A, Reynolds CA, Danev R, Wootten D, & Sexton PM (2020). Structure and Dynamics of Adrenomedullin Receptors AM1 and AM2 Reveal Key Mechanisms in the Control of Receptor Phenotype by Receptor Activity-Modifying Proteins.
ACS Pharmacol Transl Sci 3 2:263-284. PubMed Id: 32296767. doi:10.1021/acsptsci.9b00080. |
||
secretin receptor (SecR) in complex with Gs: Homo Sapiens E Eukaryota (expressed in Trichoplusia ni), 2.30 Å
cryo-EM structure low resolution structure, 4.30 Å: 6WI9 |
Dong et al. (2020).
Dong M, Deganutti G, Piper SJ, Liang YL, Khoshouei M, Belousoff MJ, Harikumar KG, Reynolds CA, Glukhova A, Furness SGB, Christopoulos A, Danev R, Wootten D, Sexton PM, & Miller LJ (2020). Structure and dynamics of the active Gs-coupled human secretin receptor.
Nat Commun 11 1:4137. PubMed Id: 32811827. doi:10.1038/s41467-020-17791-4. |
||
secretin receptor (SecR) in complex with engineered Gs: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 2.90 Å
cryo-EM structure |
Fukuhara et al. (2020).
Fukuhara S, Kobayashi K, Kusakizako T, Iida W, Kato M, Shihoya W, & Nureki O (2020). Structure of the human secretin receptor coupled to an engineered heterotrimeric G protein.
Biochem Biophys Res Commun 533 4:861-866. PubMed Id: 33008599. doi:10.1016/j.bbrc.2020.08.042. |
||
Vasoactive intestinal polypeptide 1 (VIP1) receptor-G protein complex (activated): Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.20 Å
cryo-EM structure |
Duan et al. (2020).
Duan J, Shen DD, Zhou XE, Bi P, Liu QF, Tan YX, Zhuang YW, Zhang HB, Xu PY, Huang SJ, Ma SS, He XH, Melcher K, Zhang Y, Xu HE, & Jiang Y (2020). Cryo-EM structure of an activated VIP1 receptor-G protein complex revealed by a NanoBiT tethering strategy.
Nat Commun 11 1:4121. PubMed Id: 32807782. doi:10.1038/s41467-020-17933-8. |
||
Piper et al. (2022).
Piper SJ, Deganutti G, Lu J, Zhao P, Liang YL, Lu Y, Fletcher MM, Hossain MA, Christopoulos A, Reynolds CA, Danev R, Sexton PM, & Wootten D (2022). Understanding VPAC receptor family peptide binding and selectivity.
Nat Commun 13 1:7013. PubMed Id: 36385145. doi:10.1038/s41467-022-34629-3. |
|||
Vasoactive intestinal polypeptide 2 (VIP2) receptor-Gs complex with bound PACAP27: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 2.74 Å
cryo-EM structure 23 residues were truncated at the N-terminus of the VIP2 receptor. 3.42 Å 7WBJ |
Xu et al. (2022).
Xu Y, Feng W, Zhou Q, Liang A, Li J, Dai A, Zhao F, Yan J, Chen CW, Li H, Zhao LH, Xia T, Jiang Y, Xu HE, Yang D, & Wang MW (2022). A distinctive ligand recognition mechanism by the human vasoactive intestinal polypeptide receptor 2.
Nat Commun 13 1:2272. PubMed Id: 35477937. doi:10.1038/s41467-022-30041-z. |
||
growth hormone-releasing hormone receptor-Gs protein complex: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 2.60 Å
cryo-EM structure |
Zhou et al. (2020).
Zhou F, Zhang H, Cong Z, Zhao LH, Zhou Q, Mao C, Cheng X, Shen DD, Cai X, Ma C, Wang Y, Dai A, Zhou Y, Sun W, Zhao F, Zhao S, Jiang H, Jiang Y, Yang D, Eric Xu H, Zhang Y, & Wang MW (2020). Structural basis for activation of the growth hormone-releasing hormone receptor.
Nat Commun 11 1:5205. PubMed Id: 33060564. doi:10.1038/s41467-020-18945-0. |
||
G Protein-Coupled Receptors: Class B2
|
|||
Adhesion receptor GPR133 (ADGRD1)-miniGs complex: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 2.80 Å
cryo-EM structure |
Qu et al. (2022).
Qu X, Qiu N, Wang M, Zhang B, Du J, Zhong Z, Xu W, Chu X, Ma L, Yi C, Han S, Shui W, Zhao Q, & Wu B (2022). Structural basis of tethered agonism of the adhesion GPCRs ADGRD1 and ADGRF1.
Nature 604 7907:779-785. PubMed Id: 35418679. doi:10.1038/s41586-022-04580-w. |
||
Qu et al. (2022).
Qu X, Qiu N, Wang M, Zhang B, Du J, Zhong Z, Xu W, Chu X, Ma L, Yi C, Han S, Shui W, Zhao Q, & Wu B (2022). Structural basis of tethered agonism of the adhesion GPCRs ADGRD1 and ADGRF1.
Nature 604 7907:779-785. PubMed Id: 35418679. doi:10.1038/s41586-022-04580-w. |
|||
Zhu et al. (2022).
Zhu X, Qian Y, Li X, Xu Z, Xia R, Wang N, Liang J, Yin H, Zhang A, Guo C, Wang G, & He Y (2022). Structural basis of adhesion GPCR GPR110 activation by stalk peptide and G-proteins coupling.
Nat Commun 13 1:5513. PubMed Id: 36127364. doi:10.1038/s41467-022-33173-4. |
|||
Adhesion receptor GPR56 (ADGRG1)-miniG13 complex with bound tethered agonist: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 2.70 Å
cryo-EM structure |
Barros-Álvarez et al. (2022).
Barros-Álvarez X, Nwokonko RM, Vizurraga A, Matzov D, He F, Papasergi-Scott MM, Robertson MJ, Panova O, Yardeni EH, Seven AB, Kwarcinski FE, Su H, Peroto MC, Meyerowitz JG, Shalev-Benami M, Tall GG, & Skiniotis G (2022). The tethered peptide activation mechanism of adhesion GPCRs.
Nature 604 7907:757-762. PubMed Id: 35418682. doi:10.1038/s41586-022-04575-7. |
||
Adhesion receptor GPR97 (ADGRG3)-Go complex with bound beclomethasone: Homo sapiens E Eukaryota, 3.10 Å
cryo-EM structure with bound cortisol, 2.90 Å: 7D77 |
Ping et al. (2021).
Ping YQ, Mao C, Xiao P, Zhao RJ, Jiang Y, Yang Z, An WT, Shen DD, Yang F, Zhang H, Qu C, Shen Q, Tian C, Li ZJ, Li S, Wang GY, Tao X, Wen X, Zhong YN, Yang J, Yi F, Yu X, Xu HE, Zhang Y, & Sun JP (2021). Structures of the glucocorticoid-bound adhesion receptor GPR97-Go complex.
Nature 589 7843:620-626. PubMed Id: 33408414. doi:10.1038/s41586-020-03083-w. |
||
Adhesion receptor LPHN3 (ADGRL3)-miniG13 complex with bound tethered agonist: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 2.90 Å
cryo-EM structure |
Barros-Álvarez et al. (2022).
Barros-Álvarez X, Nwokonko RM, Vizurraga A, Matzov D, He F, Papasergi-Scott MM, Robertson MJ, Panova O, Yardeni EH, Seven AB, Kwarcinski FE, Su H, Peroto MC, Meyerowitz JG, Shalev-Benami M, Tall GG, & Skiniotis G (2022). The tethered peptide activation mechanism of adhesion GPCRs.
Nature 604 7907:757-762. PubMed Id: 35418682. doi:10.1038/s41586-022-04575-7. |
||
Qian et al. (2022).
Qian Y, Ma Z, Liu C, Li X, Zhu X, Wang N, Xu Z, Xia R, Liang J, Duan Y, Yin H, Xiong Y, Zhang A, Guo C, Chen Z, Huang Z, & He Y (2022). Structural insights into adhesion GPCR ADGRL3 activation and Gq, Gs, Gi, and G12 coupling.
Mol Cell 82 22:4340-4352.e6. PubMed Id: 36309016. doi:10.1016/j.molcel.2022.10.009. |
|||
Adhesion receptor LPHN3 (ADGRL3) - modified BRIL (mBRIL) construct: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.30 Å
cryo-EM structure |
Guo et al. (2024).
Guo Q, He B, Zhong Y, Jiao H, Ren Y, Wang Q, Ge Q, Gao Y, Liu X, Du Y, Hu H, & Tao Y (2024). A method for structure determination of GPCRs in various states.
Nat Chem Biol 20 1:74-82. PubMed Id: 37580554. doi:10.1038/s41589-023-01389-0. |
||
G Protein-Coupled Receptors: Class C
|
|||
GABAB receptor ectodomain GBR1-GBR2 heterodimer, apo form: Homo sapiens E Eukaryota, 2.35 Å
with bound antagonist 2-hydroxysaclofen, 2.22 Å: 4MQF with bound antagonist CGP54626, 2.15 Å: 4MR7 with bound antagonist CGP35348, 2.15 Å: 4MR8 with bound antagonist SCH50911, 2.35 Å:4MR9 with bound antagonist phaclofen, 2.86 Å: 4MRM with bound antagonist CGP46381, 2.25 Å: 4MS1 with bound endogenous agonist GABA, 2.50 Å: 4MS3 with bound agonist baclofen, 1.90 Å: 4MS4 |
Geng et al. (2013).
Geng Y, Bush M, Mosyak L, Wang F, & Fan QR (2013). Structural mechanism of ligand activation in human GABAB receptor.
Nature 504 :254-259. PubMed Id: 24305054. doi:10.1038/nature12725. |
||
Zuo et al. (2019).
Zuo H, Glaaser I, Zhao Y, Kurinov I, Mosyak L, Wang H, Liu J, Park J, Frangaj A, Sturchler E, Zhou M, McDonald P, Geng Y, Slesinger PA, & Fan QR (2019). Structural basis for auxiliary subunit KCTD16 regulation of the GABAB receptor.
Proc Natl Acad Sci USA 116 17:8370-8379. PubMed Id: 30971491. doi:10.1073/pnas.1903024116. |
|||
GABAB receptor, baclofen/BHFF-bound in the active state: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.00 Å
cryo-EM structure CGP54626-bound in inactive state, 2.90 Å: 7C7S |
Mao et al. (2020).
Mao C, Shen C, Li C, Shen DD, Xu C, Zhang S, Zhou R, Shen Q, Chen LN, Jiang Z, Liu J, & Zhang Y (2020). Cryo-EM structures of inactive and active GABAB receptor.
Cell Res 30 7:564-573. PubMed Id: 32494023. doi:10.1038/s41422-020-0350-5. |
||
GABAB heterodimeric receptor in an inactive state: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.30 Å
cryo-EM structure |
Park et al. (2020).
Park J, Fu Z, Frangaj A, Liu J, Mosyak L, Shen T, Slavkovich VN, Ray KM, Taura J, Cao B, Geng Y, Zuo H, Kou Y, Grassucci R, Chen S, Liu Z, Lin X, Williams JP, Rice WJ, Eng ET, Huang RK, Soni RK, Kloss B, Yu Z, Javitch JA, Hendrickson WA, Slesinger PA, Quick M, Graziano J, Yu H, Fiehn O, Clarke OB, Frank J, & Fan QR (2020). Structure of human GABAB receptor in an inactive state.
Nature 584 7820:304-309. PubMed Id: 32581365. doi:10.1038/s41586-020-2452-0. |
||
GABAB1 homodimeric receptor in an inactive state: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.20 Å
cryo-EM structure inactive GABAB heterodimer, 3.60 Å: 6W2X |
Papasergi-Scott et al. (2020).
Papasergi-Scott MM, Robertson MJ, Seven AB, Panova O, Mathiesen JM, & Skiniotis G (2020). Structures of metabotropic GABAB receptor.
Nature 584 7820:310-314. PubMed Id: 32580208. doi:10.1038/s41586-020-2469-4. |
||
GABAB heterodimeric receptor with bound agonist SKF97541 and positive allosteric modulator GS39783: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.63 Å
cryo-EM structure bound to agonist SKF97541 in its intermediate state 2, 4.80 Å: 6UO9 intermediate state 1, 6.30 Å: 6UOA apo state, 3.97 Å: 6JVM |
Shaye et al. (2020).
Shaye H, Ishchenko A, Lam JH, Han GW, Xue L, Rondard P, Pin JP, Katritch V, Gati C, & Cherezov V (2020). Structural basis of the activation of a metabotropic GABA receptor.
Nature 584 7820:298-303. PubMed Id: 32555460. doi:10.1038/s41586-020-2408-4. |
||
Kim et al. (2020).
Kim Y, Jeong E, Jeong JH, Kim Y, & Cho Y (2020). Structural Basis for Activation of the Heterodimeric GABAB Receptor.
J Mol Biol 432 22:5966-5984. PubMed Id: 33058878. doi:10.1016/j.jmb.2020.09.023. |
|||
GABAB receptor-Gi complex: Homo sapiens E Eukaryota (expressed in Trichoplusia ni), 3.50 Å
cryo-EM structure |
Shen et al. (2021).
Shen C, Mao C, Xu C, Jin N, Zhang H, Shen DD, Shen Q, Wang X, Hou T, Chen Z, Rondard P, Pin JP, Zhang Y, & Liu J (2021). Structural basis of GABAB receptor-Gi protein coupling.
Nature 594 7864:594-598. PubMed Id: 33911284. doi:10.1038/s41586-021-03507-1. |
||
Metabotropic Glutamate Receptor 1 (mGlu1) with bound allosteric modulator: Homo sapiens E Eukaryota, 2.80 Å
Engineered Protein: E. coli apocytochrome b562 RIL (BRIL) fused at N-terminal at I581. C-terminus truncated at residue V860. |
Wu et al. (2014).
Wu H, Wang C, Gregory KJ, Han GW, Cho HP, Xia Y, Niswender CM, Katritch V, Meiler J, Cherezov V, Conn PJ, & Stevens RC (2014). Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator.
Science 344 :58-64. PubMed Id: 24603153. doi:10.1126/science.1249489. |
||
Metabotropic Glutamate Receptor 1 (mGlu1), apo state: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.96 Å
cryo-EM structure intermediate state, 3.65 Å, 7DGE |
Zhang et al. (2021).
Zhang J, Qu L, Wu L, Tang X, Luo F, Xu W, Xu Y, Liu ZJ, & Hua T (2021). Structural insights into the activation initiation of full-length mGlu1.
Protein Cell 12 8:662-667. PubMed Id: 33278019. doi:10.1007/s13238-020-00808-5. |
||
Metabotropic Glutamate Receptor 2 (mGlu2) with bound Gi: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.50 Å
cryo-EM structure |
Lin et al. (2021).
Lin S, Han S, Cai X, Tan Q, Zhou K, Wang D, Wang X, Du J, Yi C, Chu X, Dai A, Zhou Y, Chen Y, Zhou Y, Liu H, Liu J, Yang D, Wang MW, Zhao Q, & Wu B (2021). Structures of Gi-bound metabotropic glutamate receptors mGlu2 and mGlu4.
Nature 594 :583-588. PubMed Id: 34135510. doi:10.1038/s41586-021-03495-2. |
||
Seven et al. (2021).
Seven AB, Barros-Álvarez X, de Lapeyrièe M, Papasergi-Scott MM, Robertson MJ, Zhang C, Nwokonko RM, Gao Y, Meyerowitz JG, Rocher JP, Schelshorn D, Kobilka BK, Mathiesen JM, & Skiniotis G (2021). G-protein activation by a metabotropic glutamate receptor.
Nature 595 7867:450-454. PubMed Id: 34194039. doi:10.1038/s41586-021-03680-3. |
|||
Metabotropic Glutamate Receptor 2 (mGlu2) homodimer: Homo sapiens E Eukaryota (expressed in mammal environmental sample), 3.60 Å
cryo-EM structure mGlu2 homodimer with bound LY354740, 3.10 Å: 7EPB mGlu2-mGlu7 heterodimer (inactive), 3.90 Å: 7EPD mGlu2 bound to NAM597, 2.50 Å: 7EPE mGlu2 bound to NAM597, 2.70 Å: 7EPF |
Du et al. (2021).
Du J, Wang D, Fan H, Xu C, Tai L, Lin S, Han S, Tan Q, Wang X, Xu T, Zhang H, Chu X, Yi C, Liu P, Wang X, Zhou Y, Pin JP, Rondard P, Liu H, Liu J, Sun F, Wu B, & Zhao Q (2021). Structures of human mGlu2 and mGlu7 homo- and heterodimers.
Nature 594 7864:589-593. PubMed Id: 34135509. doi:10.1038/s41586-021-03641-w. |
||
mGlu2 - mGlu3 heterodimer with bound LY341495, dimerization mode I: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.80 Å
cryo-EM structure dimerization mode II, 3.40 Å: 8JCV in presence of LY341495 and NAM563, 3.00 Å: 8JCW in presence of LY341495 and NAM563, dimerization mode II, 3.00 Å: 8JCX in presence of LY341495, NAM563, and LY2389575, 2.90 Å: 8JCY in presence of LY341495, NAM563, and LY2389575, dimerization mode III, 3.00 Å: 8JCZ in presence of NAM563, 3.30 Å: 8JD0 Rco state, 3.70 Å: 8JD1 with bound Gi1, 3.30 Å: 8JD3 G protein-free, Acc state, 2.80 Å: 8JD2 |
Wang et al. (2023).
Wang X, Wang M, Xu T, Feng Y, Shao Q, Han S, Chu X, Xu Y, Lin S, Zhao Q, & Wu B (2023). Structural insights into dimerization and activation of the mGlu2-mGlu3 and mGlu2-mGlu4 heterodimers.
Cell Res 33 10:762-774. PubMed Id: 37286794. doi:10.1038/s41422-023-00830-2. |
||
mGlu2 - mGlu4 heterodimer, G-protein free: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.90 Å
cryo-EM structure with bound Gi1 3.60 Å: 8JD5 |
Wang et al. (2023).
Wang X, Wang M, Xu T, Feng Y, Shao Q, Han S, Chu X, Xu Y, Lin S, Zhao Q, & Wu B (2023). Structural insights into dimerization and activation of the mGlu2-mGlu3 and mGlu2-mGlu4 heterodimers.
Cell Res 33 10:762-774. PubMed Id: 37286794. doi:10.1038/s41422-023-00830-2. |
||
Fang et al. (2022).
Fang W, Yang F, Xu C, Ling S, Lin L, Zhou Y, Sun W, Wang X, Liu P, Rondard P, Shi P, Pin JP, Tian C, & Liu J (2022). Structural basis of the activation of metabotropic glutamate receptor 3.
Cell Res 32 7:695-698. PubMed Id: 35236939. doi:10.1038/s41422-022-00623-z. |
|||
Metabotropic Glutamate Receptor 3 (mGlu3) with bound LY379268: Rattus norvegicus E Eukaryota (expressed in HEK293 cells), 3.50 Å
cryo-EM structure with bound LY379268/VU6023326, 3.30 Å: 8TQB with bound LY341495, class 1, 3.40 Å: 8TRD with bound LY341495, class 3, 3.20 Å: 8TR0 with bound LY341495/VU6023326, class 2, 3.30 Å:8TRC |
Strauss et al. (2024).
Strauss A, Gonzalez-Hernandez AJ, Lee J, Abreu N, Selvakumar P, Salas-Estrada L, Kristt M, Arefin A, Huynh K, Marx DC, Gilliland K, Melancon BJ, Filizola M, Meyerson J, & Levitz J (2024). Structural basis of positive allosteric modulation of metabotropic glutamate receptor activation and internalization.
Nat Commun 15 1:6498. PubMed Id: 39090128. doi:10.1038/s41467-024-50548-x. |
||
Metabotropic Glutamate Receptor 4 (mGlu4) with bound Gi: Homo Sapiens E Eukaryota (expressed in S. frugiperda), 4.00 Å
cryo-EM structure |
Lin et al. (2021).
Lin S, Han S, Cai X, Tan Q, Zhou K, Wang D, Wang X, Du J, Yi C, Chu X, Dai A, Zhou Y, Chen Y, Zhou Y, Liu H, Liu J, Yang D, Wang MW, Zhao Q, & Wu B (2021). Structures of Gi-bound metabotropic glutamate receptors mGlu2 and mGlu4.
Nature 594 :583-588. PubMed Id: 34135510. doi:10.1038/s41586-021-03495-2. |
||
Metabotropic Glutamate Receptor 4 (mGlu4) with bound Gi1: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.40 Å
cryo-EM structure |
Wang et al. (2023).
Wang X, Wang M, Xu T, Feng Y, Shao Q, Han S, Chu X, Xu Y, Lin S, Zhao Q, & Wu B (2023). Structural insights into dimerization and activation of the mGlu2-mGlu3 and mGlu2-mGlu4 heterodimers.
Cell Res 33 10:762-774. PubMed Id: 37286794. doi:10.1038/s41422-023-00830-2. |
||
Metabotropic Glutamate Receptor 5 (mGlu5) with bound negative allosteric modulator: Homo sapiens E Eukaryota, 2.60 Å
Engineered protein. T4 lysozyme inserted between TM helices V and VI; thermostabilized by five collective mutations in TM3 and TM5. |
Doré et al. (2014).
Doré AS, Okrasa K, Patel JC, Serrano-Vega M, Bennett K, Cooke RM, Errey JC, Jazayeri A, Khan S, Tehan B, Weir M, Wiggin GR, & Marshall FH (2014). Structure of class C GPCR metabotropic glutamate receptor 5 transmembrane domain.
Nature 511 :557-562. PubMed Id: 25042998. doi:10.1038/nature13396. |
||
Metabotropic Glutamate Receptor 5 (mGlu5) with bound compound 14: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.10 Å
with bound compound 25 (HTL14242), 2.60 Å: 5CGD Engineered protein. T4 lysozyme inserted between TM helices V and VI; thermostabilized by six collective mutations in TM3 and TM5. |
Christopher et al. (2015).
Christopher JA, Aves SJ, Bennett KA, Doré AS, Errey JC, Jazayeri A, Marshall FH, Okrasa K, Serrano-Vega MJ, Tehan BG, Wiggin GR, & Congreve M (2015). Fragment and Structure-Based Drug Discovery for a Class C GPCR: Discovery of the mGlu5 Negative Allosteric Modulator HTL14242 (3-Chloro-5-[6-(5-fluoropyridin-2-yl)pyrimidin-4-yl]benzonitrile).
J Med Chem 58 :6653-6664. PubMed Id: 26225459. doi:10.1021/acs.jmedchem.5b00892. |
||
Metabotropic Glutamate Receptor 5 (mGlu5) apo form: Homo sapiens E Eukaryota (expressed in S. frugiperda), 4 Å
cryo-EM structure bound to L-quisqualate, 4 Å: 6N51 by x-ray diffraction: apo Form Ligand Binding Domain, 4 Å: 6N4X Extracellular Domain with Nb43, 3.26 Å: 6N4Y Extracellular Domain in Complex with Nb43 and L-quisqualic acid, 3.75 Å: 6N50 |
Koehl et al. (2019).
Koehl A, Hu H, Feng D, Sun B, Zhang Y, Robertson MJ, Chu M, Kobilka TS, Laermans T, Steyaert J, Tarrasch J, Dutta S, Fonseca R, Weis WI, Mathiesen JM, Skiniotis G, & Kobilka BK (2019). Structural insights into the activation of metabotropic glutamate receptors.
Nature 566 7742:79-84. PubMed Id: 30675062. doi:10.1038/s41586-019-0881-4. |
||
Metabotropic Glutamate Receptor 5 (mGlu5) with bound MMPEP: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 2.20 Å
with bound Fenobam, 2.65 Å: 6FFH |
Christopher et al. (2019).
Christopher JA, Orgován Z, Congreve M, Doré AS, Errey JC, Marshall FH, Mason JS, Okrasa K, Rucktooa P, Serrano-Vega MJ, Ferenczy GG, & Keserű GM (2019). Structure-Based Optimization Strategies for G Protein-Coupled Receptor (GPCR) Allosteric Modulators: A Case Study from Analyses of New Metabotropic Glutamate Receptor 5 (mGlu5) X-ray Structures.
J Med Chem 62 1:207-222. PubMed Id: 29455526. doi:10.1021/acs.jmedchem.7b01722. |
||
Nasrallah et al. (2021).
Nasrallah C, Cannone G, Briot J, Rottier K, Berizzi AE, Huang CY, Quast RB, Hoh F, Banères JL, Malhaire F, Berto L, Dumazer A, Font-Ingles J, Gómez-Santacana X, Catena J, Kniazeff J, Goudet C, Llebaria A, Pin JP, Vinothkumar KR, & Lebon G (2021). Agonists and allosteric modulators promote signaling from different metabotropic glutamate receptor 5 conformations.
Cell Rep 36 9:109648. PubMed Id: 34469715. doi:10.1016/j.celrep.2021.109648. |
|||
Metabotropic Glutamate Receptor 5 (mGlu5) with bound agonist L-quisqualic acid (Quis), intermediate state 1: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.30 Å
cryo-EM structure intermediate state 2, 3.00 Å: 8T8M with bound agonists Quis and CDPPB, active state, 2.90 Å: 8TAO with bound agonist CDPPB, inactive state, 3.50 Å: 8T6J |
Kumar et al. (2023).
Kumar KK, Wang H, Habrian C, Latorraca NR, Xu J, O'Brien ES, Zhang C, Montabana E, Koehl A, Marqusee S, Isacoff EY, & Kobilka BK (2023). Step-wise activation of a Family C GPCR.
bioRxiv . PubMed Id: 37693614. doi:10.1101/2023.08.29.555158. |
||
Metabotropic Glutamate Receptor 7 (mGlu7) inactive homodimer: Homo sapiens E Eukaryota (expressed in mammal environmental sample), 4.00 Å
cryo-EM structure |
Du et al. (2021).
Du J, Wang D, Fan H, Xu C, Tai L, Lin S, Han S, Tan Q, Wang X, Xu T, Zhang H, Chu X, Yi C, Liu P, Wang X, Zhou Y, Pin JP, Rondard P, Liu H, Liu J, Sun F, Wu B, & Zhao Q (2021). Structures of human mGlu2 and mGlu7 homo- and heterodimers.
Nature 594 7864:589-593. PubMed Id: 34135509. doi:10.1038/s41586-021-03641-w. |
||
Ling et al. (2021).
Ling S, Shi P, Liu S, Meng X, Zhou Y, Sun W, Chang S, Zhang X, Zhang L, Shi C, Sun D, Liu L, & Tian C (2021). Structural mechanism of cooperative activation of the human calcium-sensing receptor by Ca2+ ions and L-tryptophan.
Cell Res 31 4:383-394. PubMed Id: 33603117. doi:10.1038/s41422-021-00474-0. |
|||
Calcium-Sensing Receptor (CaSR) with bound cinacalcet in detergent: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.70 Å
cryo-EM structure in complex with Gq, 3.10 Å: 8WPU |
Ling et al. (2023).
Ling S, Meng X, Zhang Y, Xia Z, Zhou Y, Yang F, Shi P, Shi C, & Tian C (2023). Structural insights into asymmetric activation of the calcium-sensing receptor-Gq complex.
Cell Res . PubMed Id: 37919470. doi:10.1038/s41422-023-00892-2. |
||
Zuo et al. (2024).
Zuo H, Park J, Frangaj A, Ye J, Lu G, Manning JJ, Asher WB, Lu Z, Hu GB, Wang L, Mendez J, Eng E, Zhang Z, Lin X, Grassucci R, Hendrickson WA, Clarke OB, Javitch JA, Conigrave AD, & Fan QR (2024). Promiscuous G-protein activation by the calcium-sensing receptor.
Nature . PubMed Id: 38632411. doi:10.1038/s41586-024-07331-1. |
|||
Wen et al. (2021).
Wen T, Wang Z, Chen X, Ren Y, Lu X, Xing Y, Lu J, Chang S, Zhang X, Shen Y, & Yang X (2021). Structural basis for activation and allosteric modulation of full-length calcium-sensing receptor.
Sci Adv 7 23:eabf5325. PubMed Id: 34088669. doi:10.1126/sciadv.abg1483. |
|||
Calcium-Sensing Receptor (CaSR) homodimer, active state-cinacalcet: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 2.80 Å
cryo-EM structure homodimer, active state-etelcalcetide-evocalset, 2.50 Å: 7M3G inactive state with NPS2143, 4.10 Å: 7M3J inactive state with NPS2143, Ca2+ & Trp, 3.20 Å: 7M3E |
Gao et al. (2021).
Gao Y, Robertson MJ, Rahman SN, Seven AB, Zhang C, Meyerowitz JG, Panova O, Hannan FM, Thakker RV, Bräuner-Osborne H, Mathiesen JM, & Skiniotis G (2021). Asymmetric activation of the calcium-sensing receptor homodimer.
Nature 595 7867:455-459. PubMed Id: 34194040. doi:10.1038/s41586-021-03691-0. |
||
Calcium-Sensing Receptor (CaSR) homodimer in complex with NB2D11, inactive: Homo sapiens E Eukaryota (expressed in HEK293 cells), 6.00 Å
cryo-EM structure TNCA-bound, 3.00 Å 7E6T |
Chen et al. (2021).
Chen X, Wang L, Cui Q, Ding Z, Han L, Kou Y, Zhang W, Wang H, Jia X, Dai M, Shi Z, Li Y, Li X, & Geng Y (2021). Structural insights into the activation of human calcium-sensing receptor.
Elife 10 :e68578. PubMed Id: 34467854. doi:10.7554/eLife.68578. |
||
Park et al. (2021).
Park J, Zuo H, Frangaj A, Fu Z, Yen LY, Zhang Z, Mosyak L, Slavkovich VN, Liu J, Ray KM, Cao B, Vallese F, Geng Y, Chen S, Grassucci R, Dandey VP, Tan YZ, Eng E, Lee Y, Kloss B, Liu Z, Hendrickson WA, Potter CS, Carragher B, Graziano J, Conigrave AD, Frank J, Clarke OB, & Fan QR (2021). Symmetric activation and modulation of the human calcium-sensing receptor.
Proc Natl Acad Sci U S A 118 51:e2115849118. PubMed Id: 34916296. doi:10.1073/pnas.2115849118. |
|||
Jeong et al. (2021).
Jeong E, Kim Y, Jeong J, & Cho Y (2021). Structure of the class C orphan GPCR GPR158 in complex with RGS7-Gβ5.
Nat Commun 12 1:6805. PubMed Id: 34815401. doi:10.1038/s41467-021-27147-1. |
|||
Orphan GPR158 receptor: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.40 Å
cryo-EM structure GPR158 coupled to the RGS7-Gβ5 complex, 3.40 Å |
Patil et al. (2022).
Patil DN, Singh S, Laboute T, Strutzenberg TS, Qiu X, Wu D, Novick SJ, Robinson CV, Griffin PR, Hunt JF, Izard T, Singh AK, & Martemyanov KA (2022). Cryo-EM structure of human GPR158 receptor coupled to the RGS7-Gβ5 signaling complex.
Science 375 6576:86-91. PubMed Id: 34793198. doi:10.1126/science.abl4732. |
||
G Protein-Coupled Receptors: Class D
These are found exclusively in fungi |
|||
Ste2 pheromone receptor, active state: Saccharomyces cerevisiae E Eukaryota (expressed in Trichoplusia ni), 3.50 Å
cryo-EM structure |
Velazhahan et al. (2021).
Velazhahan V, Ma N, Pándy-Szekeres G, Kooistra AJ, Lee Y, Gloriam DE, Vaidehi N, & Tate CG (2021). Structure of the class D GPCR Ste2 dimer coupled to two G proteins.
Nature 589 7840:148-153. PubMed Id: 33268889. doi:10.1038/s41586-020-2994-1. |
||
Velazhahan et al. (2022).
Velazhahan V, Ma N, Vaidehi N, & Tate CG (2022). Activation mechanism of the class D fungal GPCR dimer Ste2.
Nature 603 7902:743-748. PubMed Id: 35296853. doi:10.1038/s41586-022-04498-3. |
|||
G Protein-Coupled Receptors: Class F
|
|||
Smoothened (SMO) receptor with bound antagonist, LY2940680: Homo sapiens E Eukaryota, 2.45 Å
Engineered Protein: apocytochrome b562 RIL (BRIL) fused to truncated N-terminus at S190. C-terminus truncated at Q555. |
Wang et al. (2013).
Wang C, Wu H, Katritch V, Han GW, Huang XP, Liu W, Siu FY, Roth BL, Cherezov V, & Stevens RC (2013). Structure of the human smoothened receptor bound to an antitumour agent.
Nature 497 :338-343. PubMed Id: 23636324. doi:10.1038/nature12167. |
||
Wang et al. (2014).
Wang C, Wu H, Evron T, Vardy E, Han GW, Huang XP, Hufeisen SJ, Mangano TJ, Urban DJ, Katritch V, Cherezov V, Caron MG, Roth BL, & Stevens RC (2014). Structural basis for Smoothened receptor modulation and chemoresistance to anticancer drugs.
Nat Commun 5 . PubMed Id: 25008467. doi:10.1038/ncomms5355. |
|||
Smoothened (SMO) receptor in complex with cyclopamine: Homo Sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.20 Å
XFEL structure |
Weierstall et al. (2014).
Weierstall U, James D, Wang C, White TA, Wang D, Liu W, Spence JC, Bruce Doak R, Nelson G, Fromme P, Fromme R, Grotjohann I, Kupitz C, Zatsepin NA, Liu H, Basu S, Wacker D, Han GW, Katritch V, Boutet S, Messerschmidt M, Williams GJ, Koglin JE, Marvin Seibert M, Klinker M, Gati C, Shoeman RL, Barty A, Chapman HN, Kirian RA, Beyerlein KR, Stevens RC, Li D, Shah ST, Howe N, Caffrey M, & Cherezov V (2014). Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography.
Nat Commun 5 :3309. PubMed Id: 24525480. doi:10.1038/ncomms4309. |
||
Smoothened (SMO) receptor in complex with cholesterol (apo-SMOΔC): Homo sapiens E Eukaryota (expressed in HEK-293S-GnTI-), 3.2 Å
Engineered protein: N- and C-termini truncated; apocytochrome b562 RIL (BRIL) replaces intracellular loop 3. with bound vismodegib (vismo-SMOΔC), 3.3 Å: 5L7I |
Byrne et al. (2016).
Byrne EF, Sircar R, Miller PS, Hedger G, Luchetti G, Nachtergaele S, Tully MD, Mydock-McGrane L, Covey DF, Rambo RP, Sansom MS, Newstead S, Rohatgi R, & Siebold,C. (2016). Structural basis of Smoothened regulation by its extracellular domains.
Nature 535 :517-522. PubMed Id: 27437577. |
||
Smoothened (SMO) receptor (multi-domain) in complex with TC114: Homo sapiens E Eukaryota (expressed in sf9 cells), 3.00 Å
engineered protein: Flavodoxin fused to ICL3 XFEL structure E194M, 2.90 Å: 5V56 |
Zhang et al. (2017).
Zhang X, Zhao F, Wu Y, Yang J, Han GW, Zhao S, Ishchenko A, Ye L, Lin X, Ding K, Dharmarajan V, Griffin PR, Gati C, Nelson G, Hunter MS, Hanson MA, Cherezov V, Stevens RC, Tan W, Tao H, & Xu F (2017). Crystal structure of a multi-domain human smoothened receptor in complex with a super stabilizing ligand.
Nat Commun 8 :15383. PubMed Id: 28513578. doi:10.1038/ncomms15383. |
||
Smoothened (SMO) receptor with bound oxysterol coupled to a heterotrimeric Gi: Homo sapiens E Eukaryota (expressed in HEK293s cells), 3.84 Å
cryo-EM structure |
Qi et al. (2019).
Qi X, Liu H, Thompson B, McDonald J, Zhang C, & Li X (2019). Cryo-EM structure of oxysterol-bound human Smoothened coupled to a heterotrimeric Gi.
Nature 571 7764:279-283. PubMed Id: 31168089. doi:10.1038/s41586-019-1286-0. |
||
Qi et al. (2020).
Qi X, Friedberg L, De Bose-Boyd R, Long T, & Li X (2020). Sterols in an intramolecular channel of Smoothened mediate Hedgehog signaling.
Nat Chem Biol 16 12:1368-1375. PubMed Id: 32929279. doi:10.1038/s41589-020-0646-2. |
|||
Smoothened (SMO) receptor bound to SAG21k, cholesterol, and NbSmo8: Mus musculus E Eukaryota, 2.8 Å
|
Deshpande et al. (2019).
Deshpande I, Liang J, Hedeen D, Roberts KJ, Zhang Y, Ha B, Latorraca NR, Faust B, Dror RO, Beachy PA, Myers BR, & Manglik A (2019). Smoothened stimulation by membrane sterols drives Hedgehog pathway activity.
Nature 571 7764:284-288. PubMed Id: 31263273. doi:10.1038/s41586-019-1355-4. |
||
Smoothened (SMO) receptor-PGS2 in a lipidic environment, unliganded: Mus musculus E Eukaryota (expressed in HEK293 cells), 3.70 Å
cryo-EM structure |
Zhang et al. (2022).
Zhang K, Wu H, Hoppe N, Manglik A, & Cheng Y (2022). Fusion protein strategies for cryo-EM study of G protein-coupled receptors.
Nat Commun 13 1:4366. PubMed Id: 35902590. doi:10.1038/s41467-022-32125-2. |
||
Frizzled 1 (FZD1) receptor - Gq complex, apo state: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.50 Å
cryo-EM structure FZD1-Fab-VHH complex, inactive state, 3.40 Å: 8J9O |
Zhang et al. (2024).
Zhang Z, Lin X, Wei L, Wu Y, Xu L, Wu L, Wei X, Zhao S, Zhu X, & Xu F (2024). A framework for Frizzled-G protein coupling and implications to the PCP signaling pathways.
Cell Discov 10 1:3. PubMed Id: 38182578. doi:10.1038/s41421-023-00627-y. |
||
Frizzled 3 (FZD3) receptor - Gs complex, apo state: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.20 Å
cryo-EM structure FZD3-Fab-VHH complex, inactive state, 3.30 Å: 8JHC |
Zhang et al. (2024).
Zhang Z, Lin X, Wei L, Wu Y, Xu L, Wu L, Wei X, Zhao S, Zhu X, & Xu F (2024). A framework for Frizzled-G protein coupling and implications to the PCP signaling pathways.
Cell Discov 10 1:3. PubMed Id: 38182578. doi:10.1038/s41421-023-00627-y. |
||
Frizzled 4 (FZD4) receptor in the ligand-free state: Homo sapiens E Eukaryota, 2.4 Å
Engineered protein: ΔCRD contains residues 178-517. Residues of third intracellular loop (ICL3) replaced by rubredoxin. Member of class F receptor. |
Yang et al. (2018).
Yang S, Wu Y, Xu TH, de Waal PW, He Y, Pu M, Chen Y, DeBruine ZJ, Zhang B, Zaidi SA, Popov P, Guo Y, Han GW, Lu Y, Suino-Powell K, Dong S, Harikumar KG, Miller LJ, Katritch V, Xu HE, Shui W, Stevens RC, Melcher K, Zhao S, & Xu F (2018). Crystal structure of the Frizzled 4 receptor in a ligand-free state.
Nature 560 7720:666-670. PubMed Id: 30135577. doi:10.1038/s41586-018-0447-x. |
||
Frizzled 4 (FZD4) receptor in complex with DEP domain of Dishevelled 2 (DVL2), dimer: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.53 Å
cryo-EM structure monomer - locally refined, 3.47 Å: 8WMA |
Qian et al. (2024).
Qian Y, Ma Z, Xu Z, Duan Y, Xiong Y, Xia R, Zhu X, Zhang Z, Tian X, Yin H, Liu J, Song J, Lu Y, Zhang A, Guo C, Jin L, Kim WJ, Ke J, Xu F, Huang Z, & He Y (2024). Structural basis of Frizzled 4 in recognition of Dishevelled 2 unveils mechanism of WNT signaling activation.
Nat Commun 15 1:7644. PubMed Id: 39223191. doi:10.1038/s41467-024-52174-z. |
||
Frizzled 5 (FZD5) receptor in the ligand-free state: Homo sapiens E Eukaryota, 3.70 Å
cryo-EM structure Engineered protein: cytochrome b562 inserted into intracellular loop 3. Structure includes anti-BRIL Fab and anti-Fab nanobody. |
Tsutsumi et al. (2020).
Tsutsumi N, Mukherjee S, Waghray D, Janda CY, Jude KM, Miao Y, Burg JS, Aduri NG, Kossiakoff AA, Gati C, & Garcia KC (2020). Structure of human Frizzled5 by fiducial-assisted cryo-EM supports a heterodimeric mechanism of canonical Wnt signaling.
Elife 9 :e58464. PubMed Id: 32762848. doi:10.7554/eLife.58464. |
||
Frizzled 6 (FZD6) receptor - Gs complex, apo state: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.30 Å
cryo-EM structure FZD6-Fab-VHH complex, inactive state, 3.20 Å: 8JH7 |
Zhang et al. (2024).
Zhang Z, Lin X, Wei L, Wu Y, Xu L, Wu L, Wei X, Zhao S, Zhu X, & Xu F (2024). A framework for Frizzled-G protein coupling and implications to the PCP signaling pathways.
Cell Discov 10 1:3. PubMed Id: 38182578. doi:10.1038/s41421-023-00627-y. |
||
Frizzled 7 (FZD7) receptor in complex with heterotrimeric Gs: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.22 Å
cryo-EM structure |
Xu et al. (2021).
Xu L, Chen B, Schihada H, Wright SC, Turku A, Wu Y, Han GW, Kowalski-Jahn M, Kozielewicz P, Bowin CF, Zhang X, Li C, Bouvier M, Schulte G, & Xu F (2021). Cryo-EM structure of constitutively active human Frizzled 7 in complex with heterotrimeric Gs.
Cell Res . PubMed Id: 34239071. doi:10.1038/s41422-021-00525-6. |
||
G Protein-Coupled Receptors: Class T
|
|||
Xu et al. (2022).
Xu W, Wu L, Liu S, Liu X, Cao X, Zhou C, Zhang J, Fu Y, Guo Y, Wu Y, Tan Q, Wang L, Liu J, Jiang L, Fan Z, Pei Y, Yu J, Cheng J, Zhao S, Hao X, Liu ZJ, & Hua T (2022). Structural basis for strychnine activation of human bitter taste receptor TAS2R46.
Science 377 6612:1298-1304. PubMed Id: 36108005. doi:10.1126/science.abo1633. |
|||
Bitter taste receptor TAS2R14 - Gi complex with bound cholesterol and intracellular tastant cmpd28.1: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.68 Å
cryo-EM structure TAS2R14-Ggust complex, 2.88 Å: 8VY9 |
Kim et al. (2024).
Kim Y, Gumpper RH, Liu Y, Kocak DD, Xiong Y, Cao C, Deng Z, Krumm BE, Jain MK, Zhang S, Jin J, & Roth BL (2024). Bitter taste receptor activation by cholesterol and an intracellular tastant.
Nature 628 8008:664-671. PubMed Id: 38600377. doi:10.1038/s41586-024-07253-y. |
||
Bitter taste receptor TAS2R14 - miniGs/gust complex with bound aristolochic acid: homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 2.94 Å
cryo-EM structure Gi complex with bound aristolochic acid, 3.05 Å: 8XQN Gi complex with bound aristolochic acid, 2.77 Å: 8XQO miniGs/gust complex with bound flufenamic acid, 3.20 Å: 8XQR Gi complex with bound flufenamic acid, 3.30 Å:8XQS Ggcomplex with bound aristolochic acid, 3.29 Å : 8XQP Gg complex with bound compound 28.1, 2.99 Å: 8YKY Gi complex, 2.94 Å: 8XQT |
Hu et al. (2024).
Hu X, Ao W, Gao M, Wu L, Pei Y, Liu S, Wu Y, Zhao F, Sun Q, Liu J, Jiang L, Wang X, Li Y, Tan Q, Cheng J, Yang F, Yang C, Sun J, Hua T, & Liu ZJ (2024). Bitter taste TAS2R14 activation by intracellular tastants and cholesterol.
Nature 631 8020:459-466. PubMed Id: 38776963. doi:10.1038/s41586-024-07569-9. |
||
Tao et al. (2024).
Tao L, Wang D, Yuan Q, Zhao F, Zhang Y, Du T, Shen S, Xu HE, Li Y, Yang D, & Duan J (2024). Bitter taste receptor TAS2R14 activation and G protein assembly by an intracellular agonist.
Cell Res . PubMed Id: 38969802. doi:10.1038/s41422-024-00995-4. |
|||
Wntless (WLS) Transporters
Also called Evi and GPR177 transporters. |
|||
Wntless (WLS) transporter in complex with WNT8A: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.19 Å
cryo-EM structure |
Nygaard et al. (2021).
Nygaard R, Yu J, Kim J, Ross DR, Parisi G, Clarke OB, Virshup DM, & Mancia F (2021). Structural Basis of WLS/Evi-Mediated Wnt Transport and Secretion.
Cell 184 1:194-206.e14. PubMed Id: 33357447. doi:10.1016/j.cell.2020.11.038. |
||
Wntless (WLS) transporter in complex with Wnt3A: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.20 Å
cryo-EM structure |
Zhong et al. (2021).
Zhong Q, Zhao Y, Ye F, Xiao Z, Huang G, Xu M, Zhang Y, Zhan X, Sun K, Wang Z, Cheng S, Feng S, Zhao X, Zhang J, Lu P, Xu W, Zhou Q, & Ma D (2021). Cryo-EM structure of human Wntless in complex with Wnt3a.
Nat Commun 12 1:4541. PubMed Id: 34315898. doi:10.1038/s41467-021-24731-3. |
||
Host-Defense Proteins
|
|||
STING (aka TMEM173, MITA, ERIS, or MPHYS), full-length apo state: Homo sapiens E Eukaryota (expressed in HEK293 cells), 4.1 Å
cryo-EM structure |
Shang et al. (2019).
Shang G, Zhang C, Chen ZJ, Bai XC, & Zhang X (2019). Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP-AMP.
Nature 567 7748:389-393. PubMed Id: 30842659. doi:10.1038/s41586-019-0998-5. |
||
STING (aka TMEM173, MITA, ERIS, or MPHYS) bound to both cGAMP and Compound 53: homo sapiens E Eukaryota (expressed in HEK293 cells), 3.45 Å
cryo-EM structure |
Lu et al. (2022).
Lu D, Shang G, Li J, Lu Y, Bai XC, & Zhang X (2022). Activation of STING by targeting a pocket in the transmembrane domain.
Nature 604 7906:557-562. PubMed Id: 35388221. doi:10.1038/s41586-022-04559-7. |
||
STING (aka TMEM173, MITA, ERIS, or MPHYS) bound to HB3089: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.47 Å
cryo-EM structure V147L mutant, 3.65 Å: 8GSZ |
Xie et al. (2022).
Xie Z, Wang Z, Fan F, Zhou J, Hu Z, Wang Q, Wang X, Zeng Q, Zhang Y, Qiu J, Zhou X, Xu H, Bai H, Zhan Z, Ding J, Zhang H, Duan W, Yu X, & Geng M (2022). Structural insights into a shared mechanism of human STING activation by a potent agonist and an autoimmune disease-associated mutation.
Cell Discov 8 1:133. PubMed Id: 36513640. doi:10.1038/s41421-022-00481-4. |
||
adapter protein AP-1 in complex with STING (phosphorylated): Homo sapiens E Eukaryota (expressed in E. coli), 2.34 Å
cryo-EM structure |
Liu et al. (2022).
Liu Y, Xu P, Rivara S, Liu C, Ricci J, Ren X, Hurley JH, & Ablasser A (2022). Clathrin-associated AP-1 controls termination of STING signalling.
Nature 610 7933:761-767. PubMed Id: 36261523. doi:10.1038/s41586-022-05354-0. |
||
Shang et al. (2019).
Shang G, Zhang C, Chen ZJ, Bai XC, & Zhang X (2019). Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP-AMP.
Nature 567 7748:389-393. PubMed Id: 30842659. doi:10.1038/s41586-019-0998-5. |
|||
chicken STING in complex with human TBK1: Gallus gallus & Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.3 Å
cryo-EM structure |
Zhang et al. (2019).
Zhang C, Shang G, Gui X, Zhang X, Bai XC, & Chen ZJ (2019). Structural basis of STING binding with and phosphorylation by TBK1.
Nature 567 7748:394-398. PubMed Id: 30842653. doi:10.1038/s41586-019-1000-2. |
||
H+/Cl- or F- Exchange Transporters
|
|||
H+/Cl- Exchange Transporter: Salmonella typhimurium B Bacteria (expressed in E. coli), 3.0 Å
Formerly ClC Chloride Channel. Escherichia coli protein, 3.5 Å: 1KPK |
Dutzler et al. (2002).
Dutzler R, Campbell EB, Cadene M, Chait BT, & MacKinnon R (2002). X-ray structure of a ClC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity.
Nature 415 :287-294. PubMed Id: 11796999. |
||
Dutzler et al. (2003).
Dutzler R, Campbell EB, & MacKinnon R (2003). Gating the selectivity filter in ClC chloride channels.
Science 300 :108-112. PubMed Id: 12649487. |
|||
Lobet & Dutzler (2006).
Lobet S & Dutzler R (2006). Ion-binding properties of the ClC chloride selectivity filter.
EMBO J 25 :24-33. PubMed Id: 16341087. |
|||
H+/Cl- Exchange Transporter (truncated): Escherichia coli B Bacteria, 2.50 Å
Truncation: Residues 2-16 at N-terminal and 461-464 at C-terminal. E202Y mutant, 3.20 Å: 4FTP |
Lim et al. (2012).
Lim HH, Shane T, & Miller C (2012). Intracellular proton access in a Cl-/H+ antiporter.
PLoS Biol 10 :e1001441. PubMed Id: 23239938. doi:10.1371/journal.pbio.1001441. |
||
Monomeric H+/Cl- Exchange Transporter (CLC-ec1): Escherichia coli B Bacteria, 3.10 Å
ClC transporter was engineered to place tryptophan residues (I201W; I422W) at the momomer-monomer interface to prevent dimerization. |
Robertson et al. (2010).
Robertson JL, Kolmakova-Partensky L, & Miller C (2010). Design, function and structure of a monomeric ClC transporter.
Nature 468 :844-847. PubMed Id: 21048711. |
||
H+/Cl- Exchange Transporter CLC-ec1 in Glutamate: Escherichia coli B Bacteria, 3.02 Å
E148A mutant |
Feng et al. (2012).
Feng L, Campbell EB, & Mackinnon R (2012). Molecular mechanism of proton transport in CLC Cl-/H+ exchange transporters.
Proc Natl Acad Sci USA 109 :11699-11704. PubMed Id: 22753511. doi:10.1073/pnas.1205764109. |
||
H+/Cl- Exchange Transporter CLC-ec1, Cysless A399C-A432C mutant: Escherichia coli B Bacteria, 3.52 Å
Fab complex. |
Basilio et al. (2014).
Basilio D, Noack K, Picollo A, & Accardi A (2014). Conformational changes required for H+/Cl- exchange mediated by a CLC transporter.
Nat Struct Mol Biol 21 :456-463. PubMed Id: 24747941. doi:10.1038/nsmb.2814. |
||
H+/Cl- Exchange Transporter CLC-ec1, E148D mutant in 20 mM bromide: Escherichia coli B Bacteria, 2.95 Å
E148D mutant in 50 mM bromide, 3.3 Å: 6AD8 E148D mutant in 200 mM bromide, 3.15 Å: 6ADA E148N mutant in 20 mM bromide, 2.69 Å: 6ADB E148N mutant in 200 mM bromide, 3.20 Å: 6K5D ΔNC construct in presence of 200 mM bromide, 3.20 Å: 6K5F E148D/R147A/F317A mutant in presence of 20 mM bromide, 3.02 Å: 6K5I E148D/R147A/F317A mutant in presence 200 mM bromide, 3.16 Å: 6K5A E148A mutant in presence of 50 mM bromoacetate, 3.06 Å: 6ADC |
Park et al. (2019).
Park K, Lee BC, & Lim HH (2019). Mutation of external glutamate residue reveals a new intermediate transport state and anion binding site in a CLC Cl-/H+ antiporter.
Proc Natl Acad Sci USA 116 35:17345-17354. PubMed Id: 31409705. doi:10.1073/pnas.1901822116. |
||
H+/Cl- Exchange Transporter CLC-ec1, "QQQ" mutant (E148Q/E203Q/E113Q): Escherichia coli B Bacteria, 2.62 Å
|
Chavan et al. (2020).
Chavan TS, Cheng RC, Jiang T, Mathews II, Stein RA, Koehl A, Mchaourab HS, Tajkhorshid E, & Maduke M (2020). A CLC-ec1 mutant reveals global conformational change and suggests a unifying mechanism for the CLC Cl-/H+ transport cycle.
Elife 9 :e53479. PubMed Id: 32310757. doi:10.7554/eLife.53479. |
||
H+/Cl- Eukaryotic Exchange Transporter: Cyanidioschyzon merolae E Eukaryota (expressed in Trichoplusia ni), 3.50 Å
|
Feng et al. (2010).
Feng L, Campbell EB, Hsiung Y, & MacKinnon R (2010). Structure of a eukaryotic CLC transporter defines an intermediate state in the transport cycle.
Science 330 :635-641. PubMed Id: 20929736. |
||
H+/Cl- Eukaryotic Exchange Transporter: Synechocystis sp. pcc 6803 B Bacteria (expressed in E. coli), 3.20 Å
In the presence of Br-, 3.60 Å: 3Q17 |
Jayaram et al. (2011).
Jayaram H, Robertson JL, Wu F, Williams C, & Miller C (2011). Structure of a Slow CLC Cl?/H+Antiporter from a Cyanobacterium.
Biochemistry 50 :788-794. PubMed Id: 21174448. |
||
Last et al. (2018).
Last NB, Stockbridge RB, Wilson AE, Shane T, Kolmakova-Partensky L, Koide A, Koide S, & Miller C (2018). A CLC-type F-/H+ antiporter in ion-swapped conformations.
Nat Struct Mol Biol 25 7:601-606. PubMed Id: 29941917. doi:10.1038/s41594-018-0082-0. |
|||
CLC-7 Cl-/H+ exchanger: Gallus gallus E Eukaryota (expressed in HEK293 cells), 2.92 Å
cryo-EM structure |
Schrecker et al. (2020).
Schrecker M, Korobenko J, & Hite RK (2020). Cryo-EM structure of the lysosomal chloride-proton exchanger CLC-7 in complex with OSTM1.
Elife 9 . PubMed Id: 32749217. doi:10.7554/eLife.59555. |
||
CLC-7 Cl-/H+ exchanger in complex with OSTM1: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.82 Å
cryo-EM structure |
Schrecker et al. (2020).
Schrecker M, Korobenko J, & Hite RK (2020). Cryo-EM structure of the lysosomal chloride-proton exchanger CLC-7 in complex with OSTM1.
Elife 9 . PubMed Id: 32749217. doi:10.7554/eLife.59555. |
||
CLC-7 Cl-/H+ exchanger in complex with OSTM1: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.70 Å
cryo-EM structure |
Zhang et al. (2020).
Zhang S, Liu Y, Zhang B, Zhou J, Li T, Liu Z, Li Y, & Yang M (2020). Molecular insights into the human CLC-7/Ostm1 transporter.
Sci Adv 6 33. PubMed Id: 32851177. doi:10.1126/sciadv.abb4747. |
||
CLCa-type 2NO3−/1H+ antiporter: Arabidopsis thaliana E Eukaryota (expressed in HEK293 cells), 2.84 Å
cryo-EM structure |
He et al. (2023).
He J, Wang M, Li S, Chen L, Zhang K, & She J (2023). Cryo-EM structure of the plant nitrate transporter AtCLCa reveals characteristics of the anion-binding site and the ATP-binding pocket.
J Biol Chem 299 2:102833. PubMed Id: 36581207. doi:10.1016/j.jbc.2022.102833. |
||
CLCa-type 2NO3−/1H+ antiporter, with bound Cl-, ATP, and PIP2: Arabidopsis thaliana E Eukaryota (expressed in Komagataella pastoris), 2.96 Å
cryo-EM structure with bound nitrate, ATP, and PIP2, 3.16 Å: 8IAD |
Yang et al. (2023).
Yang Z, Zhang X, Ye S, Zheng J, Huang X, Yu F, Chen Z, Cai S, & Zhang P (2023). Molecular mechanism underlying regulation of Arabidopsis CLCa transporter by nucleotides and phospholipids.
Nat Commun 14 1:4879. PubMed Id: 37573431. doi:10.1038/s41467-023-40624-z. |
||
AAA-ATPAse Membrane Translocators
AAA: ATPases associated with various cellular activities |
|||
Kater et al. (2020).
Kater L, Wagener N, Berninghausen O, Becker T, Neupert W, & Beckmann R (2020). Structure of the Bcs1 AAA-ATPase suggests an airlock-like translocation mechanism for folded proteins.
Nat Struct Mol Biol 27 2:142-149. PubMed Id: 31988523. doi:10.1038/s41594-019-0364-1. |
|||
heptameric Bcs1 AAA-ATPase that facilitates translocation of the Rieske iron-sulfur protein (ISP), full-length: Mus musculus E Eukaryota (expressed in Komagataella pastoris), 4.40 Å
cryo-EM structure bcs1 AAA domain by x-ray diffraction, 2.17 Å: 6U1Y Apo Bcs1, 3.81 Å: 6UKP ATPgammaS bound Bcs1, 3.20 Å: 6UKS |
Tang et al. (2020).
Tang WK, Borgnia MJ, Hsu AL, Esser L, Fox T, de Val N, & Xia D (2020). Structures of AAA protein translocase Bcs1 suggest translocation mechanism of a folded protein.
Nat Struct Mol Biol 27 2:202-209. PubMed Id: 32042153. doi:10.1038/s41594-020-0373-0. |
||
hexameric AAA protein Msp1 mislocalized protein extractor (E214Q)-substrate complex: Chaetomium thermophilum E Eukaryota (expressed in E. coli), 3.50 Å
cryo-EM structure. Not a transmembrane protein. Each subunit is anchored to the membrane by a single TM helix (not seen in structure) Msp1-substrate complex in closed conformation, 3.10 Å: 6PDW Msp1-substrate complex in open conformation, 3.70 Å: 6PDY |
Wang et al. (2020).
Wang L, Myasnikov A, Pan X, & Walter P (2020). Structure of the AAA protein Msp1 reveals mechanism of mislocalized membrane protein extraction.
Elife 9 . PubMed Id: 31999255. doi:10.7554/eLife.54031. |
||
AAA protein ATAD1 (with a catalytic dead mutation) in complex with a peptide substrate, closed conformation: Homo sapiens E Eukaryota (expressed in E. coli), 3.20 Å
cryo-EM structure open conformation, 3.50 Å: 7UPT |
Wang et al. (2022).
Wang L, Toutkoushian H, Belyy V, Kokontis CY, & Walter P (2022). Conserved structural elements specialize ATAD1 as a membrane protein extraction machine.
Elife 11 :e73941. PubMed Id: 35550246. doi:10.7554/eLife.73941. |
||
Stomatin, Prohibitin, Flotillin, and HflK/C (SPFH) Family Proteins
These proteins seem to play a scaffolding role microdomain formation. |
|||
Supramolecular complex comprised of HflK, HflC, & FtsH: Escherichia coli B Bacteria, 3.27 Å
cryo-EM structure Map of one quarter of the complex for symmetry expansion, 3.27 Å 7VHQ |
Ma et al. (2022).
Ma C, Wang C, Luo D, Yan L, Yang W, Li N, & Gao N (2022). Structural insights into the membrane microdomain organization by SPFH family proteins.
Cell Res 32 2:176-189. PubMed Id: 34975153. doi:10.1038/s41422-021-00598-3. |
||
FtsH-HflkC AAA protease complex: Escherichia coli B Bacteria, 4.00 Å
cryo-EM structure FtsH protease cytosolic domains, 3.40 Å: 7W14 |
Qiao et al. (2022).
Qiao Z, Yokoyama T, Yan XF, Beh IT, Shi J, Basak S, Akiyama Y, & Gao YG (2022). Cryo-EM structure of the entire FtsH-HflKC AAA protease complex.
Cell Rep 39 9:110890. PubMed Id: 35649372. doi:10.1016/j.celrep.2022.110890. |
||
Celluose Synthases
Membrane Imbedded Glycosyltransferases These use UDP-activated glucose to elongate nascent polysaccharides processively across membranes. |
|||
BcsA-BcsB cellulose synthase/cellulose translocation intermediate.: Rhodobacter sphaeroides B Bacteria (expressed in E. coli), 3.25 Å
Shows a translocating glucan |
Morgan et al. (2013).
Morgan JL, Strumillo J, & Zimmer J (2013). Crystallographic snapshot of cellulose synthesis and membrane translocation.
Nature 493 :181-186. PubMed Id: 23222542. doi:10.1038/nature11744. |
||
BcsB cellulose synthase hexamer: Escherichia coli B Bacteria, 3.40 Å
cryo-EM structure BcsB with polyalanine BcsA model, 4.20 Å: 7LBY |
Acheson et al. (2021).
Acheson JF, Ho R, Goularte NF, Cegelski L, & Zimmer J (2021). Molecular organization of the E. coli cellulose synthase macrocomplex.
Nat Struct Mol Biol 28 3:310-318. PubMed Id: 33712813. doi:10.1038/s41594-021-00569-7. |
||
CesA homotrimer involved in cellulose microfibril formation: Populus tremula E Eukaryota (expressed in Spodoptera frugiperda), 3.50 Å
cryo-EM structure |
Purushotham et al. (2020).
Purushotham P, Ho R, & Zimmer J (2020). Architecture of a catalytically active homotrimeric plant cellulose synthase complex.
Science 369 6507:1089-1094. PubMed Id: 32646917. doi:10.1126/science.abb2978. |
||
CesA7 cotton cellulose synthase isoform 7: Gossypium hirsutum E Eukaryota (expressed in HEK293 cells), 3.50 Å
cryo-EM structure |
Zhang et al. (2021).
Zhang X, Xue Y, Guan Z, Zhou C, Nie Y, Men S, Wang Q, Shen C, Zhang D, Jin S, Tu L, Yin P, & Zhang X (2021). Structural insights into homotrimeric assembly of cellulose synthase CesA7 from Gossypium hirsutum.
Plant Biotechnol J 19 8:1579-1587. PubMed Id: 33638282. doi:10.1111/pbi.13571. |
||
Maloney et al. (2022).
Maloney FP, Kuklewicz J, Corey RA, Bi Y, Ho R, Mateusiak L, Pardon E, Steyaert J, Stansfeld PJ, & Zimmer J (2022). Structure, substrate recognition and initiation of hyaluronan synthase.
Nature 604 7904:195-201. PubMed Id: 35355017. doi:10.1038/s41586-022-04534-2. |
|||
PNPT Superfamily
PNPT: polyprenylphosphate N-acetyl hexosamine 1-phosphate transferase Proteins in this superfamily are responsible for the synthesis of cell envelope polymers |
|||
MraY phospho-MurNAc-pentapeptide translocase: Aquifex aeolicus B Bacteria (expressed in E. coli), 3.30 Å
|
Chung et al. (2013).
Chung BC, Zhao J, Gillespie RA, Kwon DY, Guan Z, Hong J, Zhou P, & Lee SY (2013). Crystal Structure of MraY, an Essential Membrane Enzyme for Bacterial Cell Wall Synthesis.
Science 341 :1012-1016. PubMed Id: 23990562. doi:10.1126/science.1236501. |
||
MraY translocase in complex with Muraymycin D2: Aquifex aeolicus B Bacteria (expressed in E. coli), 2.95 Å
|
Chung et al. (2016).
Chung BC, Mashalidis EH, Tanino T, Kim M, Matsuda A, Hong J, Ichikawa S, & Lee SY (2016). Structural insights into inhibition of lipid I production in bacterial cell wall synthesis.
Nature 533 :557-560. PubMed Id: 27088606. doi:10.1038/nature17636. |
||
Mashalidis et al. (2019).
Mashalidis EH, Kaeser B, Terasawa Y, Katsuyama A, Kwon DY, Lee K, Hong J, Ichikawa S, & Lee SY (2019). Chemical logic of MraY inhibition by antibacterial nucleoside natural products.
Nat Commun 10 1. PubMed Id: 31266949. doi:10.1038/s41467-019-10957-9. |
|||
MraY phospho-MurNAc-pentapeptide translocase in complex with tunicamycin: Clostridium bolteae B Bacteria (expressed in E. coli), 2.60 Å
|
Hakulinen et al. (2017).
Hakulinen JK, Hering J, Brändén G, Chen H, Snijder A, Ek M, & Johansson P (2017). MraY-antibiotic complex reveals details of tunicamycin mode of action.
Nat Chem Biol 13 3:265-267. PubMed Id: 28068312. doi:10.1038/nchembio.2270. |
||
MraY-Protein EID21-SlyD "YESID21" complex: E. coli B Bacteria, 3.40 Å
cryo-EM structure MraY-Protein EΦX174-SlyD "YESΦX174" complex, 3.50 Å: 8G02 |
Orta et al. (2023).
Orta AK, Riera N, Li YE, Tanaka S, Yun HG, Klaic L, & Clemons WM Jr (2023). The mechanism of the phage-encoded protein antibiotic from ΦX174.
Science 381 6654:eadg9091. PubMed Id: 37440661. doi:10.1126/science.adg9091. |
||
Shape, Elongation, Division, and Sporulation (SEDS) Proteins
|
|||
RodA peptidoglycan polymerase: Thermus thermophilus B Bacteria (expressed in E. coli), 2.91 Å
D255A mutant, 3.19 Å: 6BAS |
Sjodt et al. (2018).
Sjodt M, Brock K, Dobihal G, Rohs PDA, Green AG, Hopf TA, Meeske AJ, Srisuknimit V, Kahne D, Walker S, Marks DS, Bernhardt TG, Rudner DZ, & Kruse AC (2018). Structure of the peptidoglycan polymerase RodA resolved by evolutionary coupling analysis.
Nature 556 7699:118-121. PubMed Id: 29590088. doi:10.1038/nature25985. |
||
Oligosaccharyltransferases (OST)
Catalyses Asparagine-linked (N-linked) Glycosylation |
|||
PglB OST in complex with acceptor peptide: Campylobacter lari B Bacteria (expressed in E. coli), 3.40 Å
|
Lizak et al. (2011).
Lizak C, Gerber S, Numao S, Aebi M, & Locher KP (2011). X-ray structure of a bacterial oligosaccharyltransferase.
Nature 474 :350-355. PubMed Id: 21677752. doi:10.1038/nature10151. |
||
PglB OST in complex trapped in an intermediate state: Campylobacter lari B Bacteria (expressed in E. coli), 2.7 Å
bound to acceptor peptide and a synthetic lipid-linked oligosaccharide (LLO) |
Napiórkowska et al. (2017).
Napiórkowska M, Boilevin J, Sovdat T, Darbre T, Reymond JL, Aebi M, & Locher KP (2017). Molecular basis of lipid-linked oligosaccharide recognition and processing by bacterial oligosaccharyltransferase.
Nat Struct Mol Biol 24 12:1100-1106. PubMed Id: 29058712. doi:10.1038/nsmb.3491. |
||
PglB OST in complex with an inhibitory peptide and a reactive lipid-linked oligosaccharide analog: Campylobacter lari B Bacteria (expressed in E. coli), 3.40 Å
|
Napiórkowska et al. (2018).
Napiórkowska M, Boilevin J, Darbre T, Reymond JL, & Locher KP (2018). Structure of bacterial oligosaccharyltransferase PglB bound to a reactive LLO and an inhibitory peptide.
Sci Rep 8 1:16297. PubMed Id: 30389987. doi:10.1038/s41598-018-34534-0. |
||
AglB OST with bound zinc & sulfate (C2 space group): Archaeoglobus fulgidus A Archaea (expressed in E. coli), 2.50 Å
P43212 space group, 3.41 Å: 3WAK |
Matsumoto et al. (2013).
Matsumoto S, Shimada A, Nyirenda J, Igura M, Kawano Y, & Kohda D (2013). Crystal structures of an archaeal oligosaccharyltransferase provide insights into the catalytic cycle of N-linked protein glycosylation.
Proc Natl Acad Sci USA 110 :17868-17873. PubMed Id: 24127570. doi:10.1073/pnas.1309777110 . |
||
AglB OST with bound acceptor peptide: Archaeoglobus fulgidus A Archaea (expressed in E. coli), 3.50 Å
|
Matsumoto et al. (2017).
Matsumoto S, Taguchi Y, Shimada A, Igura M, & Kohda D (2017). Tethering an N-Glycosylation Sequon-Containing Peptide Creates a Catalytically Competent Oligosaccharyltransferase Complex.
Biochemistry 56 4:602-611. PubMed Id: 27997792. doi:10.1021/acs.biochem.6b01089. |
||
AglB OST with bound acceptor peptide and a dolichol-phosphate: Archaeoglobus fulgidus A Archaea (expressed in E. coli), 2.70 Å
|
Taguchi et al. (2021).
Taguchi Y, Yamasaki T, Ishikawa M, Kawasaki Y, Yukimura R, Mitani M, Hirata K, & Kohda D (2021). The structure of an archaeal oligosaccharyltransferase provides insight into the strict exclusion of proline from the N-glycosylation sequon.
Commun Biol 4 1:941. PubMed Id: 34354228. doi:10.1038/s42003-021-02473-8. |
||
Eukaryotic oligosaccharyltransferase Complex: Saccharomyces cerevisiae E Eukaryota, 3.3 Å
cryo-EM structure This is the first eukaryotic OST complex structure. |
Wild et al. (2018).
Wild R, Kowal J, Eyring J, Ngwa EM, Aebi M, & Locher KP (2018). Structure of the yeast oligosaccharyltransferase complex gives insight into eukaryotic N-glycosylation.
Science 359 6375:545-550. PubMed Id: 29301962. doi:10.1126/science.aar5140. |
||
Eukaryotic oligosaccharyltransferase Complex: Saccharomyces cerevisiae E Eukaryota, 3.5 Å
cryo-EM structure |
Bai et al. (2018).
Bai L, Wang T, Zhao G, Kovach A, & Li H (2018). The atomic structure of a eukaryotic oligosaccharyltransferase complex.
Nature 555 7696:328-333. PubMed Id: 29466327. doi:10.1038/nature25755. |
||
Oligosaccharyltransferase Complex containing Ost6p: Saccharomyces cerevisiae E Eukaryota, 3.46 Å
cryo-EM structure |
Neuhaus et al. (2021).
Neuhaus JD, Wild R, Eyring J, Irobalieva RN, Kowal J, Lin CW, Locher KP, & Aebi M (2021). Functional analysis of Ost3p and Ost6p containing yeast oligosaccharyltransferases.
Glycobiology 31 12:1604-1615. PubMed Id: 34974622. doi:10.1093/glycob/cwab084. |
||
Oligosaccharyltransferase A (OST-A): Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.5 Å
cryo-EM structure Oligosaccharyltransferase B (OST-B), 3.5 Å: 6S7T |
Ramírez et al. (2019).
Ramírez AS, Kowal J, & Locher KP (2019). Cryo-electron microscopy structures of human oligosaccharyltransferase complexes OST-A and OST-B.
Science 366 6471:1372-1375. PubMed Id: 31831667. doi:10.1126/science.aaz3505. |
||
Protein O-mannosyltransferases (POMT/PMT)
POMT in mammals or PMT in yeast |
|||
Bai et al. (2019).
Bai L, Kovach A, You Q, Kenny A, & Li H (2019). Structure of the eukaryotic protein O-mannosyltransferase Pmt1-Pmt2 complex.
Nat Struct Mol Biol 26 8:704-711. PubMed Id: 31285605. doi:10.1038/s41594-019-0262-6. |
|||
O-mannosyltransferase Pmt2 MIR domain with bound ligands: Saccharomyces cerevisiae E Eukaryota (expressed in E. coli), 1.60 Å
Pmt3 MIR domain with bound ligands, 1.90 Å: 6ZQQ |
Chiapparino et al. (2020).
Chiapparino A, Grbavac A, Jonker HR, Hackmann Y, Mortensen S, Zatorska E, Schott A, Stier G, Saxena K, Wild K, Schwalbe H, Strahl S, & Sinning I (2020). Functional implications of MIR domains in protein O-mannosylation.
Elife 9 :e61189. PubMed Id: 33357379. doi:10.7554/eLife.61189. |
||
Glycosyltransfereases
|
|||
GtrB polyisoprenyl-glycosyltransferase (PI-GT): Synechocystis sp. PCC6803 B Bacteria (expressed in E. coli), 3.19 Å
F215A mutant, 3.0 Å: 5EKE |
Ardiccioni et al. (2016).
Ardiccioni C, Clarke OB, Tomasek D, Issa HA, von Alpen DC, Pond HL, Banerjee S, Rajashankar KR, Liu Q, Guan Z, Li C, Kloss B, Bruni R, Kloppmann E, Rost B, Manzini MC, Shapiro L, & Mancia F (2016). Structure of the polyisoprenyl-phosphate glycosyltransferase GtrB and insights into the mechanism of catalysis.
Nat Commun 7 :10175. PubMed Id: 26729507. doi:10.1038/ncomms10175. |
||
ArnT glycosyltransferase, apo form: Cupriavidus metallidurans B Bacteria (expressed in E. coli), 2.7 Å
This is a lipid-to-lipid glycosyltransferase. with bound lipid carrier undecaprenyl phosphate, 3.2 Å: 5F15 |
Petrou et al. (2016).
Petrou VI, Herrera CM, Schultz KM, Clarke OB, Vendome J, Tomasek D, Banerjee S, Rajashankar KR, Belcher Dufrisne M, Kloss B, Kloppmann E, Rost B, Klug CS, Trent MS, Shapiro L, & Mancia F (2016). Structures of aminoarabinose transferase ArnT suggest a molecular basis for lipid A glycosylation.
Science 351 :608-612. PubMed Id: 26912703. doi:10.1126/science.aad1172. |
||
RodA-PBP2 peptidoglycan synthase complex: Thermus thermophilus B Bacteria, 3.50 Å
RodA (D255A)-PBP2 variant complex, 3.30 Å: 6PL6 |
Sjodt et al. (2020).
Sjodt M, Rohs PDA, Gilman MSA, Erlandson SC, Zheng S, Green AG, Brock KP, Taguchi A, Kahne D, Walker S, Marks DS, Rudner DZ, Bernhardt TG, & Kruse AC (2020). Structural coordination of polymerization and crosslinking by a SEDS-bPBP peptidoglycan synthase complex.
Nat Microbiol 5 6:813-820. PubMed Id: 32152588. doi:10.1038/s41564-020-0687-z. |
||
RodA-PBP2 peptidoglycan synthase complex: Escherichia coli B Bacteria (expressed in E. coli), 3.20 Å
cryo-EM structure |
Nygaard et al. (2023).
Nygaard R, Graham CLB, Belcher Dufrisne M, Colburn JD, Pepe J, Hydorn MA, Corradi S, Brown CM, Ashraf KU, Vickery ON, Briggs NS, Deering JJ, Kloss B, Botta B, Clarke OB, Columbus L, Dworkin J, Stansfeld PJ, Roper DI, & Mancia F (2023). Structural basis of peptidoglycan synthesis by E. coli RodA-PBP2 complex.
Nat Commun 14 1:5151. PubMed Id: 37620344. doi:10.1038/s41467-023-40483-8. |
||
Zhang et al. (2020).
Zhang L, Zhao Y, Gao Y, Wu L, Gao R, Zhang Q, Wang Y, Wu C, Wu F, Gurcha SS, Veerapen N, Batt SM, Zhao W, Qin L, Yang X, Wang M, Zhu Y, Zhang B, Bi L, Zhang X, Yang H, Guddat LW, Xu W, Wang Q, Li J, Besra GS, & Rao Z (2020). Structures of cell wall arabinosyltransferases with the anti-tuberculosis drug ethambutol.
Science 368 6496:1211-1219. PubMed Id: 32327601. doi:10.1126/science.aba9102. |
|||
EmbB Arabinosyltransferase: Mycobacterium smegmatis B Bacteria (expressed in E. coli), 3.30 Å
cryo-EM structure |
Tan et al. (2020).
Tan YZ, Rodrigues J, Keener JE, Zheng RB, Brunton R, Kloss B, Giacometti SI, Rosário AL, Zhang L, Niederweis M, Clarke OB, Lowary TL, Marty MT, Archer M, Potter CS, Carragher B, & Mancia F (2020). Cryo-EM structure of arabinosyltransferase EmbB from Mycobacterium smegmatis.
Nat Commun 11 1:3396. PubMed Id: 32636380. doi:10.1038/s41467-020-17202-8. |
||
Arabinosyltransferase EmbA-EmbB-AcpM2 in complex with ethambutol: Mycobacterium tuberculosis B Bacteria (expressed in Mycolicibacterium smegmatis), 2.97 Å
cryo-EM structure |
Zhang et al. (2020).
Zhang L, Zhao Y, Gao Y, Wu L, Gao R, Zhang Q, Wang Y, Wu C, Wu F, Gurcha SS, Veerapen N, Batt SM, Zhao W, Qin L, Yang X, Wang M, Zhu Y, Zhang B, Bi L, Zhang X, Yang H, Guddat LW, Xu W, Wang Q, Li J, Besra GS, & Rao Z (2020). Structures of cell wall arabinosyltransferases with the anti-tuberculosis drug ethambutol.
Science 368 6496:1211-1219. PubMed Id: 32327601. doi:10.1126/science.aba9102. |
||
Gandini et al. (2020).
Gandini R, Reichenbach T, Spadiut O, Tan TC, Kalyani DC, & Divne C (2020). A Transmembrane Crenarchaeal Mannosyltransferase Is Involved in N-Glycan Biosynthesis and Displays an Unexpected Minimal Cellulose-Synthase-like Fold.
J Mol Biol 432 :4658-4672. PubMed Id: 32569746. doi:10.1016/j.jmb.2020.06.016. |
|||
WaaL O-antigen ligase, ligand-bound state: Cupriavidus metallidurans B Bacteria (expressed in E. coli), 3.23 Å
cryo-EM structure apo state, 3.46 Å 7TPJ |
Ashraf et al. (2022).
Ashraf KU, Nygaard R, Vickery ON, Erramilli SK, Herrera CM, McConville TH, Petrou VI, Giacometti SI, Dufrisne MB, Nosol K, Zinkle AP, Graham CLB, Loukeris M, Kloss B, Skorupinska-Tudek K, Swiezewska E, Roper DI, Clarke OB, Uhlemann AC, Kossiakoff AA, Trent MS, Stansfeld PJ, & Mancia F (2022). Structural basis of lipopolysaccharide maturation by the O-antigen ligase.
Nature 604 7905:371-376. PubMed Id: 35388216. doi:10.1038/s41586-022-04555-x. |
||
Chen et al. (2022).
Chen W, Cao P, Liu Y, Yu A, Wang D, Chen L, Sundarraj R, Yuchi Z, Gong Y, Merzendorfer H, & Yang Q (2022). Structural basis for directional chitin biosynthesis.
Nature 610 7931:402-408. PubMed Id: 36131020. doi:10.1038/s41586-022-05244-5. |
|||
Glucosyltransferases
|
|||
ALG6 glucosyltransferase in nanodiscs: Saccharomyces cerevisiae E Eukaryota (expressed in S. frugiperda), 3 Å
cryo-EM structure in complex with Dol25-P-Glc, 3.9 Å: 6SNH |
Bloch et al. (2020).
Bloch JS, Pesciullesi G, Boilevin J, Nosol K, Irobalieva RN, Darbre T, Aebi M, Kossiakoff AA, Reymond JL, & Locher KP (2020). Structure and mechanism of the ER-based glucosyltransferase ALG6.
Nature 579 7799:443-447. PubMed Id: 32103179. doi:10.1038/s41586-020-2044-z. |
||
Chain Length Determinant and Associated Proteins
Chain-length determinant protein involved in lipopolysaccharide synthesis |
|||
Oligomeric Wzz protein: Escherichia coli B Bacteria, 9 Å
cryo-EM structure |
Collins et al. (2017).
Collins RF, Kargas V, Clarke BR, Siebert CA, Clare DK, Bond PJ, Whitfield C, & Ford RC (2017). Full-length, Oligomeric Structure of Wzz Determined by Cryoelectron Microscopy Reveals Insights into Membrane-Bound States.
Structure 25 5:806-815.e3. PubMed Id: 28434914. doi:10.1016/j.str.2017.03.017. |
||
WzzB co-polymerase component of the Wzy-dependent pathway: Escherichia coli B Bacteria, 3.00 Å
cryo-EM structure |
Wiseman et al. (2021).
Wiseman B, Nitharwal RG, Widmalm G, & Högbom M (2021). Structure of a full-length bacterial polysaccharide co-polymerase.
Nat Commun 12 1:369. PubMed Id: 33446644. doi:10.1038/s41467-020-20579-1. |
||
Yang et al. (2021).
Yang Y, Liu J, Clarke BR, Seidel L, Bolla JR, Ward PN, Zhang P, Robinson CV, Whitfield C, & Naismith JH (2021). The molecular basis of regulation of bacterial capsule assembly by Wzc.
Nat Commun 12 1:4349. PubMed Id: 34272394. doi:10.1038/s41467-021-24652-1. |
|||
Phospholipid Synthases
|
|||
Grãve et al. (2019).
Grãve K, Bennett MD, & Högbom M (2019). Structure of Mycobacterium tuberculosis phosphatidylinositol phosphate synthase reveals mechanism of substrate binding and metal catalysis.
Commun Biol 2 :175. PubMed Id: 31098408. doi:10.1038/s42003-019-0427-1. |
|||
PgsA phosphatidylinositol phosphate synthase in complex with phosphatidylglycerol phosphate: Staphylococcus aureus B Bacteria (expressed in E. coli), 2.50 Å
in complex with cytidine diphosphate-diacylglycerol, 3.00 Å 7DRK |
Yang et al. (2021).
Yang B, Yao H, Li D, & Liu Z (2021). The phosphatidylglycerol phosphate synthase PgsA utilizes a trifurcated amphipathic cavity for catalysis at the membrane-cytosol interface.
Curr Res Struct Biol 3 :312-323. PubMed Id: 34901881. doi:10.1016/j.crstbi.2021.11.005. |
||
Diacylglyceryl Transferases
|
|||
Phosphatidylglycerol:prolipoprotein diacylglyceryl transferase (Lgt) in complex with phosphatidylglycerol: Escherichia coli B Bacteria, 1.9 Å
in complex with palmitic acid inhibitor, 1.6 Å: 5AZB |
Mao et al. (2016).
Mao G, Zhao Y, Kang X, Li Z, Zhang Y, Wang X, Sun F, Sankaran K, & Zhang XC (2016). Crystal structure of E. coli lipoprotein diacylglyceryl transferase.
Nat Commun 7 . PubMed Id: 26729647. doi:10.1038/ncomms10198. |
||
Liponucleotide Synthetases
Cytidine-Diphosphate Diacylglycerol Synthetase is the prominent member of the family |
|||
CDP-DAG synthetase, S200C/S258C active mutant: Thermotoga maritima B Bacteria (expressed in E. coli), 3.4 Å
S200C/S223C inactive mutant, 3.4 Å: |
Liu et al. (2014).
Liu X, Yin Y, Wu J, & Liu Z (2014). Structure and mechanism of an intramembrane liponucleotide synthetase central for phospholipid biosynthesis.
Nat Commun 5 :4244. PubMed Id: 24968740. doi:10.1038/ncomms5244. |
||
N-acyltransferases
|
|||
Lnt apoplipoprotein N-acyltransferase: Escherichia coli B Bacteria, 2.90 Å
C387A mutant, 2.90 Å: 5N6L |
Wiktor et al. (2017).
Wiktor M, Weichert D, Howe N, Huang CY, Olieric V, Boland C, Bailey J, Vogeley L, Stansfeld PJ, Buddelmeijer N, Wang M, & Caffrey M (2017). Structural insights into the mechanism of the membrane integral N-acyltransferase step in bacterial lipoprotein synthesis.
Nat Commun 8 :15952. PubMed Id: 28675161. doi:10.1038/ncomms15952. |
||
Lnt apoplipoprotein N-acyltransferase: Escherichia coli B Bacteria, 2.59 Å
|
Lu et al. (2017).
Lu G, Xu Y, Zhang K, Xiong Y, Li H, Cui L Wang X, Lou J, Zhai Y Sun F, & Zhang XC (2017). Crystal structure of E. coli apolipoprotein N-acyl transferase
Nature Comms 18 :15948. PubMed Id: 28885614. doi:10.1038/ncomms15948. |
||
Lnt apoplipoprotein N-acyltransferase, Thioester acyl-intermediate: Escherichia coli B Bacteria, 3.5 Å
Apo form, 3.1 Å: 6Q3A |
Wiseman & Högbom (2020).
Wiseman B, & Högbom M (2020). Conformational changes in Apolipoprotein N-acyltransferase (Lnt).
Sci Rep 10 1. PubMed Id: 31959792. doi:10.1038/s41598-020-57419-7. |
||
Lnt apolipoprotein N-acyltransferase, apo: Escherichia coli B Bacteria, 3.00 Å
cryo-EM structure in complex with PE, 3.13 Å: 8B0L in complex with PE-C387S, 3.01 Å: 8B0M in complex with lyso-PE, 2.67 Å: 8B0N in complex with FP3, 3.02 Å: 8B0O in complex with Pam3, 2.86 Å: 8B0P X-ray Structures: in complex with TITC and lyso-PE, in surfo (vapor diffusion) crystallization, 2.62 Å: 8AQ4 in complex with PE, in surfo crystallization, 2.40 Å: 8AQ3 |
Smithers et al. (2023).
Smithers L, Degtjarik O, Weichert D, Huang CY, Boland C, Bowen K, Oluwole A, Lutomski C, Robinson CV, Scanlan EM, Wang M, Olieric V, Shalev-Benami M, & Caffrey M (2023). Structure snapshots reveal the mechanism of a bacterial membrane lipoprotein N-acyltransferase.
Sci Adv 9 26:eadf5799. PubMed Id: 37390210. doi:10.1126/sciadv.adf5799. |
||
Lnt apoplipoprotein N-acyltransferase in 7.10 monoacylglycerol (MAG): Escherichia coli E Eukaryota, 2.19 Å
X-ray structure |
Krawinski et al. (2024).
Krawinski P, Smithers L, van Dalsen L, Boland C, Ostrovitsa N, Pérez J, & Caffrey M (2024). 7.10 MAG. A Novel Host Monoacylglyceride for In Meso (Lipid Cubic Phase) Crystallization of Membrane Proteins.
Cryst Growth Des 24 7:2985-3001. PubMed Id: 38585376. doi:10.1021/acs.cgd.4c00087. |
||
Lnt apoplipoprotein N-acyltransferase: Pseudomonas aeruginosa B Bacteria, 3.10 Å
|
Wiktor et al. (2017).
Wiktor M, Weichert D, Howe N, Huang CY, Olieric V, Boland C, Bailey J, Vogeley L, Stansfeld PJ, Buddelmeijer N, Wang M, & Caffrey M (2017). Structural insights into the mechanism of the membrane integral N-acyltransferase step in bacterial lipoprotein synthesis.
Nat Commun 8 :15952. PubMed Id: 28675161. doi:10.1038/ncomms15952. |
||
Lnt apolipoprotein N-acyltransferase, covalently linked with TITC, in meso (LCP) crystallization: P. aeruginosa B Bacteria, 2.60 Å
|
Smithers et al. (2023).
Smithers L, Degtjarik O, Weichert D, Huang CY, Boland C, Bowen K, Oluwole A, Lutomski C, Robinson CV, Scanlan EM, Wang M, Olieric V, Shalev-Benami M, & Caffrey M (2023). Structure snapshots reveal the mechanism of a bacterial membrane lipoprotein N-acyltransferase.
Sci Adv 9 26:eadf5799. PubMed Id: 37390210. doi:10.1126/sciadv.adf5799. |
||
O-acyltransferases
Membrane-bound O-acyltransferases (MBOATS) |
|||
Ma et al. (2018).
Ma D, Wang Z, Merrikh CN, Lang KS, Lu P, Li X, Merrikh H, Rao Z, & Xu W (2018). Crystal structure of a membrane-bound O-acyltransferase.
Nature 562 7726:286-290. PubMed Id: 30283133. doi:10.1038/s41586-018-0568-2. |
|||
diacylglycerol O-acyltransferase 1 (DGAT1), oleoyl-CoA free: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.00 Å
Cryo-EM structure complexed with acyl-CoA, 3.20 Å: 6VZ1 |
Sui et al. (2020).
Sui X, Wang K, Gluchowski NL, Elliott SD, Liao M, Walther TC, & Farese RV Jr (2020). Structure and catalytic mechanism of a human triacylglycerol-synthesis enzyme.
Nature 581 7808:323-328. PubMed Id: 32433611. doi:10.1038/s41586-020-2289-6. |
||
diacylglycerol O-acyltransferase 1 (DGAT1) in complex with oleoyl-CoA: Homo sapiens E Eukaryota (expressed in Trichoplusia ni), 3.10 Å
cryo-EM structure |
Wang et al. (2020).
Wang L, Qian H, Nian Y, Han Y, Ren Z, Zhang H, Hu L, Prasad BVV, Laganowsky A, Yan N, & Zhou M (2020). Structure and mechanism of human diacylglycerol O-acyltransferase 1.
Nature 581 7808:329-332. PubMed Id: 32433610. doi:10.1038/s41586-020-2280-2. |
||
diacylglycerol O-acyltransferase 1 (DGAT1) with bound T863 inhibitor: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.20 Å
cryo-EM structure with bound DGAT1IN1 inhibitor, 3.20 Å: 8ETM |
Sui et al. (2023).
Sui X, Wang K, Song K, Xu C, Song J, Lee CW, Liao M, Farese RV Jr, & Walther TC (2023). Mechanism of action for small-molecule inhibitors of triacylglycerol synthesis.
Nat Commun 14 1:3100. PubMed Id: 37248213. doi:10.1038/s41467-023-38934-3. |
||
sterol O-acyltransferase (ACAT1), nevanimibe-bound: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.67 Å
cryo-EM structure |
Long et al. (2020).
Long T, Sun Y, Hassan A, Qi X, & Li X (2020). Structure of nevanimibe-bound tetrameric human ACAT1.
Nature 581 7808:339-343. PubMed Id: 32433613. doi:10.1038/s41586-020-2295-8. |
||
sterol O-acyltransferase (ACAT1), dimer: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.00 Å
cryo-EM structure tetramer, 3.10 Å: 6P2P |
Qian et al. (2020).
Qian H, Zhao X, Yan R, Yao X, Gao S, Sun X, Du X, Yang H, Wong CCL, & Yan N (2020). Structural basis for catalysis and substrate specificity of human ACAT1.
Nature 581 7808:333-338. PubMed Id: 32433614. doi:10.1038/s41586-020-2290-0. |
||
sterol O-acyltransferase (ACAT1, SOAT1) in complex with CI-976: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.50 Å
cryo-EM structure in resting state, 3.50 Å: 6L48 |
Guan et al. (2020).
Guan C, Niu Y, Chen SC, Kang Y, Wu JX, Nishi K, Chang CCY, Chang TY, Luo T, & Chen L (2020). Structural insights into the inhibition mechanism of human sterol O-acyltransferase 1 by a competitive inhibitor.
Nat Commun 11 1:2478. PubMed Id: 32424158. doi:10.1038/s41467-020-16288-4. |
||
sterol O-acyltransferase (ACAT2) with bound PPPA: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.87 Å
cryo-EM structure nevanimibe bound, 3.93 Å 7N6R |
Long et al. (2021).
Long T, Liu Y, & Li X (2021). Molecular structures of human ACAT2 disclose mechanism for selective inhibition.
Structure 29 12:1410-1418.e4. PubMed Id: 34520735. doi:10.1016/j.str.2021.07.009. |
||
Hedgehog acyltransferase (HHAT) in complex with palmitoyl-CoA: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.70 Å
cryo-EM structure in complex with a palmitoylated Hedgehog peptide, 3.20 Å: 7MHZ |
Jiang et al. (2021).
Jiang Y, Benz TL, & Long SB (2021). Substrate and product complexes reveal mechanisms of Hedgehog acylation by HHAT.
Science 372 6547:1215-1219. PubMed Id: 34112694. doi:10.1126/science.abg4998. |
||
Hedgehog acyltransferase (HHAT) in complex with megabody 177 bound to non-hydrolysable palmitoyl-CoA (Composite Map): Homo sapiens E Eukaryota (expressed in Homo sapiens), 2.70 Å
cryo-EM structure in complex with megabody 177 bound to IMP-1575, 3.59 Å: 7Q6Z |
Coupland et al. (2021).
Coupland CE, Andrei SA, Ansell TB, Carrique L, Kumar P, Sefer L, Schwab RA, Byrne EFX, Pardon E, Steyaert J, Magee AI, Lanyon-Hogg T, Sansom MSP, Tate EW, & Siebold C (2021). Structure, mechanism, and inhibition of Hedgehog acyltransferase.
Mol Cell 81 24:5025-5038.e10. PubMed Id: 34890564. doi:10.1016/j.molcel.2021.11.018. |
||
PORCN (Porcupine) in complex with Palmitoleoyl-CoA: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.11 Å
cryo-EM structure in complex with LGK974, 3.14 Å: 7URC in complex with LGK974 and WNT3A peptide, 2.92 Å: 7URD in complex with palmitoleoylated WNT3A peptide, 3.19 Å: 7URE HHAT H379C in complex with SHH N-terminal peptide, 2.80 Å: 7URF |
Liu et al. (2022).
Liu Y, Qi X, Donnelly L, Elghobashi-Meinhardt N, Long T, Zhou RW, Sun Y, Wang B, & Li X (2022). Mechanisms and inhibition of Porcupine-mediated Wnt acylation.
Nature 607 7920:816-822. PubMed Id: 35831507. doi:10.1038/s41586-022-04952-2. |
||
Membrane-bound O-acyltransferase 7 (MBOAT7): Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.70 Å
cryo-EM structure |
Wang et al. (2023).
Wang K, Lee CW, Sui X, Kim S, Wang S, Higgs AB, Baublis AJ, Voth GA, Liao M, Walther TC, & Farese RV Jr (2023). The structure of phosphatidylinositol remodeling MBOAT7 reveals its catalytic mechanism and enables inhibitor identification.
Nat Commun 14 1:3533. PubMed Id: 37316513. doi:10.1038/s41467-023-38932-5. |
||
O-Phosphatidyl Transferases
|
|||
Centola et al. (2021).
Centola M, van Pee K, Betz H, & Yildiz Ö (2021). Crystal structures of phosphatidyl serine synthase PSS reveal the catalytic mechanism of CDP-DAG alcohol O-phosphatidyl transferases.
Nat Commun 12 1:6982. PubMed Id: 34848707. doi:10.1038/s41467-021-27281-w. |
|||
S-acyltransferases
Eukaryotic proteins that catalyze protein palmitoylation |
|||
Rana et al. (2018).
Rana MS, Kumar P, Lee CJ, Verardi R, Rajashankar KR, & Banerjee A (2018). Fatty acyl recognition and transfer by an integral membrane S-acyltransferase.
Science 359 6372:eaao6326. PubMed Id: 29326245. doi:10.1126/science.aao6326. |
|||
Serine palmitoyltransferase (SPT) in complex with ORMDL3, dimer: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.80 Å
cryo-EM structure monomeric SPT-ORMDL3 complex, 3.40 Å: 6M4O substrate-bound SPT-ORMDL3 complex; monomer class I, 3.20 Å: 7CQI substrate-bound SPT-ORMDL3 complex; monomer class II, 3.30 Å: 7CQK |
Li et al. (2021).
Li S, Xie T, Liu P, Wang L, & Gong X (2021). Structural insights into the assembly and substrate selectivity of human SPT-ORMDL3 complex.
Nat Struct Mol Biol 28 3:249-257. PubMed Id: 33558762. doi:10.1038/s41594-020-00553-7. |
||
serine palmitoyltransferase complex SPTLC1/SPLTC2/ssSPTa: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.30 Å
cryo-EM structure SPTLC1/SPLTC2/ssSPTa protomer, 3.10 Å: 7K0J SPTLC1/SPLTC2/ssSPTa, 3KS-bound, 2.60 Å: 7K0K SPTLC1/SPLTC2/ssSPTa, myriocin-bound, 3.40 Å: 7K0L SPTLC1/SPLTC2/ssSPTa/ORMDL3, class 1, 2.90 Å: 7K0M SPTLC1/SPLTC2/ssSPTa/ORMDL3, class 2, 3.10 Å: 7K0N SPTLC1/SPLTC2/ssSPTa/ORMDL3, class 3, 3.10 Å: 7K0O SPTLC1/SPLTC2/ssSPTa/ORMDL3, class 4, 3.10 Å: 7K0P SPTLC1/SPLTC2/ssSPTa/ORMDL3, myriocin-bound, 3.30 Å: 7K0Q |
Wang et al. (2021).
Wang Y, Niu Y, Zhang Z, Gable K, Gupta SD, Somashekarappa N, Han G, Zhao H, Myasnikov AG, Kalathur RC, Dunn TM, & Lee CH (2021). Structural insights into the regulation of human serine palmitoyltransferase complexes.
Nat Struct Mol Biol 28 3:240-248. PubMed Id: 33558761. doi:10.1038/s41594-020-00551-9. |
||
Xie et al. (2023).
Xie T, Liu P, Wu X, Dong F, Zhang Z, Yue J, Mahawar U, Farooq F, Vohra H, Fang Q, Liu W, Wattenberg BW, & Gong X (2023). Ceramide sensing by human SPT-ORMDL complex for establishing sphingolipid homeostasis.
Nat Commun 14 1:3475. PubMed Id: 37308477. doi:10.1038/s41467-023-39274-y. |
|||
Liu et al. (2023).
Liu P, Xie T, Wu X, Han G, Gupta SD, Zhang Z, Yue J, Dong F, Gable K, Niranjanakumari S, Li W, Wang L, Liu W, Yao R, Cahoon EB, Dunn TM, & Gong X (2023). Mechanism of sphingolipid homeostasis revealed by structural analysis of Arabidopsis SPT-ORM1 complex.
Sci Adv 9 13:eadg0728. PubMed Id: 36989369. doi:10.1126/sciadv.adg0728. |
|||
Phospholipid Transferases
Includes phosphoethanolamine (PEA) transferases and cardiolipin transferases involved in the assembly of outer membranes |
|||
Lipid A phosphoethanolamine transferase: Neisseria meningitidis B Bacteria (expressed in E. coli), 2.75 Å
|
Anandan et al. (2017).
Anandan A, Evans GL, Condic-Jurkic K, O'Mara ML, John CM, Phillips NJ, Jarvis GA, Wills SS, Stubbs KA, Moraes I, Kahler CM, & Vrielink A (2017). Structure of a lipid A phosphoethanolamine transferase suggests how conformational changes govern substrate binding.
Proc Natl Acad Sci USA 114 :2218-2223. PubMed Id: 28193899. doi:10.1073/pnas.1612927114. |
||
PdgA inner membrane protein involved outer membrane homeostasis: Salmonella enterica B Bacteria, 2.70 Å
|
Fan et al. (2020).
Fan J, Petersen EM, Hinds TR, Zheng N, & Miller SI (2020). Structure of an Inner Membrane Protein Required for PhoPQ-Regulated Increases in Outer Membrane Cardiolipin.
mBio 11 1. PubMed Id: 32047135. doi:10.1128/mBio.03277-19. |
||
PbgA cardiolipin transport agent in complex with lipopolysaccharide: Escherichia coli B Bacteria, 2.00 Å
|
Clairfeuille et al. (2020).
Clairfeuille T, Buchholz KR, Li Q, Verschueren E, Liu P, Sangaraju D, Park S, Noland CL, Storek KM, Nickerson NN, Martin L, Dela Vega T, Miu A, Reeder J, Ruiz-Gonzalez M, Swem D, Han G, DePonte DP, Hunter MS, Gati C, Shahidi-Latham S, Xu M, Skelton N, Sellers BD, Skippington E, Sandoval W, Hanan EJ, Payandeh J, & Rutherford ST (2020). Structure of the essential inner membrane lipopolysaccharide-PbgA complex.
Nature 584 7821:479-483. PubMed Id: 32788728. doi:10.1038/s41586-020-2597-x. |
||
PbgA cardiolipin transport agent, soluble domain: Escherichia coli B Bacteria, 1.65 Å
|
Dong et al. (2016).
Dong H, Zhang Z, Tang X, Huang S, Li H, Peng B, & Dong C (2016). Structural insights into cardiolipin transfer from the Inner membrane to the outer membrane by PbgA in Gram-negative bacteria.
Sci Rep 6 :30815. PubMed Id: 27487745. doi:10.1038/srep30815. |
||
Very Long Chain Fatty Acid Elongases
|
|||
ELOVL fatty acid elongase 7 (ELOVL7): Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 2.05 Å
|
Nie et al. (2021).
Nie L, Pascoa TC, Pike ACW, Bushell SR, Quigley A, Ruda GF, Chu A, Cole V, Speedman D, Moreira T, Shrestha L, Mukhopadhyay SMM, Burgess-Brown NA, Love JD, Brennan PE, & Carpenter EP (2021). The structural basis of fatty acid elongation by the ELOVL elongases.
Nat Struct Mol Biol 28 6:512-520. PubMed Id: 34117479. doi:10.1038/s41594-021-00605-6. |
||
Methyltransferases
|
|||
Isoprenylcysteine carboxyl methyltransferase (ICMT): Methanosarcina acetivorans A Archaea (expressed in E. coli), 3.40 Å
Catalyzes the final step of CAAX processing. The protein has 5 TM helices. |
Yang et al. (2011).
Yang J, Kulkarni K, Manolaridis I, Zhang Z, Dodd RB, Mas-Droux C, & Barford D (2011). Mechanism of Isoprenylcysteine Carboxyl Methylation from the Crystal Structure of the Integral Membrane Methyltransferase ICMT
Mol Cell 44 :997-1004. PubMed Id: 22195972. doi:10.1016/j.molcel.2011.10.020. |
||
Isoprenylcysteine carboxyl methyltransferase (ICMT) with monobody inhibitor: Tribolium castaneum E Eukaryota (expressed in Pichia pastoris), 2.3 Å
ICMT without nanobody, 4 Å: 5VG9 |
Diver et al. (2018).
Diver MM, Pedi L, Koide A, Koide S, & Long SB (2018). Atomic structure of the eukaryotic intramembrane RAS methyltransferase ICMT.
Nature 553 :526-529. PubMed Id: 29342140. doi:10.1038/nature25439. |
||
Phosphotransferases
|
|||
DgkA diacylglycerol kinase (DAGK): Escherichia coli B Bacteria, NMR structure (DPC micelles)
Domain-swapped homotrimer |
van Horn et al.. (2009).
van Horn WD, Kim HJ, Ellis CD, Hadziselimovic A, Sulistijo ES, Karra MD, Tian C, Sönnichsen FD, & Sanders CR (2009). Solution nuclear magnetic resonance structure of membrane-integral diacylglycerol kinase.
Science 324 :1726-1729. PubMed Id: 19556511. |
||
Li et al. (2013).
Li D, Lyons JA, Pye VE, Vogeley L, Aragão D, Kenyon CP, Shah ST, Doherty C, Aherne M, & Caffrey M (2013). Crystal structure of the integral membrane diacylglycerol kinase.
Nature 497 :521-524. PubMed Id: 23676677. |
|||
DgkA diacylglycerol kinase (DAGK) Δ4 mutant with bound monoacylglycerol (9.9 MAG) and ACP: Escherichia coli B Bacteria, 2.70 Å
ACP = non-hydrolysable ATP analogue: adenylylmethylenediphosphonate Δ4 mutant with 9.9MAG, 3.15 Å: 4UXW Δ7 mutant with 7.9 MAG, 2.18 Å: 4UXZ Δ7 mutant with 7.9 MAG (by free-electron laser), 2.18 Å: 4UYO |
Li et al. (2015).
Li D, Stansfeld PJ, Sansom MS, Keogh A, Vogeley L, Howe N, Lyons JA, Aragao D, Fromme P, Fromme R, Basu S, Grotjohann I, Kupitz C, Rendek K, Weierstall U, Zatsepin NA, Cherezov V, Liu W, Bandaru S, English NJ, Gati C, Barty A, Yefanov O, Chapman HN, Diederichs K, Messerschmidt M, Boutet S, Williams GJ, Marvin Seibert M, & Caffrey M (2015). Ternary structure reveals mechanism of a membrane diacylglycerol kinase.
Nat Commun 6 :10140. PubMed Id: 26673816. doi:10.1038/ncomms10140. |
||
Choline/ethanolamine phosphotransferase 1 (CEPT1): Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.70 Å
cryo-EM structure complexed with CDP-choline, 3.90 Å: 8GYW |
Wang et al. (2023).
Wang Z, Yang M, Yang Y, He Y, & Qian H (2023). Structural basis for catalysis of human choline/ethanolamine phosphotransferase 1.
Nat Commun 14 1:2529. PubMed Id: 37137909. doi:10.1038/s41467-023-38290-2. |
||
Cholinephosphotransferase-1 (CEPT1) in complex with CDP-choline: Xenopus laevis E Eukaryota (expressed in Spodoptera frugiperda), 3.70 Å
cryo-EM structure in complex with CDP, 3.20 Å: 8ERO |
Wang & Zhou (2023).
Wang L, & Zhou M (2023). Structure of a eukaryotic cholinephosphotransferase-1 reveals mechanisms of substrate recognition and catalysis.
Nat Commun 14 1:2753. PubMed Id: 37179328. doi:10.1038/s41467-023-38003-9. |
||
Phosphatidic Acid Phosphatases
Membrane-integrated type II phosphatidic acid phosphatases (PAP2) |
|||
PgpB phosphatidylglycerophosphate phosphatase B: Escherichia coli B Bacteria, 3.20 Å
|
Fan et al. (2014).
Fan J, Jiang D, Zhao Y, Liu J, & Zhang XC (2014). Crystal structure of lipid phosphatase Escherichia coli phosphatidylglycerophosphate phosphatase B.
Proc Natl Acad Sci USA 111 :7636-7640. PubMed Id: 24821770. |
||
BacA (UppP) undecaprenyl-pyrophosphate phosphatase: Escherichia coli B Bacteria, 2.6 Å
|
El Ghachi et al. (2018).
El Ghachi M, Howe N, Huang CY, Olieric V, Warshamanage R, Touzé T, Weichert D, Stansfeld PJ, Wang M, Kerff F, & Caffrey M (2018). Crystal structure of undecaprenyl-pyrophosphate phosphatase and its role in peptidoglycan biosynthesis.
Nat Commun 9 1. PubMed Id: 29540682. doi:10.1038/s41467-018-03477-5. |
||
BacA (UppP) undecaprenyl-pyrophosphate phosphatase: Escherichia coli B Bacteria, 2.0 Å
|
Workman et al. (2018).
Workman SD, Worrall LJ, & Strynadka NCJ (2018). Crystal structure of an intramembranal phosphatase central to bacterial cell-wall peptidoglycan biosynthesis and lipid recycling.
Nat Commun 9 1. PubMed Id: 29559664. doi:10.1038/s41467-018-03547-8. |
||
UbiA Prenyltransferases
These enzymes are involved in the biosynthesis of a wide range molecules, including respiratory lipoquinones and archael lipids |
|||
Huang et al. (2014).
Huang H, Levin EJ, Liu S, Bai Y, Lockless SW, & Zhou M (2014). Structure of a Membrane-Embedded Prenyltransferase Homologous to UBIAD1.
PLoS Biol 12 7:e1001911. PubMed Id: 25051182. doi:10.1371/journal.pbio.1001911. |
|||
UbiA homolog with bound substrate: Aeropyrum pernix A Archaea (expressed in E. coli), 3.56 Å
apo protein, 3.3 Å: 4OD4 |
Cheng & Li (2014).
Cheng W, & Li W (2014). Structural insights into ubiquinone biosynthesis in membranes.
Science 343 6173:878-881. PubMed Id: 24558159. doi:10.1126/science.1246774. |
||
Digeranylgeranylglyceryl phosphate synthase (DGGGPase), with bound SeMet-DGGGP lipids: Methanocaldococcus jannaschii B Bacteria (expressed in E. coli), 2.30 Å
apo structure, 3.32 Å: 7BPU |
Ren et al. (2020).
Ren S, de Kok NAW, Gu Y, Yan W, Sun Q, Chen Y, He J, Tian L, Andringa RLH, Zhu X, Tang M, Qi S, Xu H, Ren H, Fu X, Minnaard AJ, Yang S, Zhang W, Li W, Wei Y, Driessen AJM, & Cheng W (2020). Structural and Functional Insights into an Archaeal Lipid Synthase.
Cell Rep 33 3:108294. PubMed Id: 33086053. doi:10.1016/j.celrep.2020.108294. |
||
Phosphoenolpyruvate-Dependent Phosphotransferases (PTSs)
|
|||
ChbC EIIC phosphorylation-coupled saccharide transporter: Bacillus cereus B Bacteria (expressed in E. coli), 3.30 Å
The protein is a homodimer in an inward-facing occluded conformation. Each protomer contains a diacetylchitobiose. |
Cao et al. (2011).
Cao Y, Jin X, Levin EJ, Huang H, Zong Y, Quick M, Weng J, Pan Y, Love J, Punta M, Rost B, Hendrickson WA, Javitch JA, Rajashankar KR, & Zhou M (2011). Crystal structure of a phosphorylation-coupled saccharide transporter
Nature 473 :50-54. PubMed Id: 21471968. doi:10.1038/nature09939. |
||
UlaA bacterial vitamin C transporter, C2 space group: Escherichia coli B Bacteria, 1.65 Å
P21 form, 2.36 Å: 4RP8 |
Luo et al. (2015).
Luo P, Yu X, Wang W, Fan S, Li X, & Wang J (2015). Crystal structure of a phosphorylation-coupled vitamin C transporter.
Nat Struct Mol Biol 22 3:238-241. PubMed Id: 25686089. doi:10.1038/nsmb.2975. |
||
UlaA bacterial vitamin C transporter, inward facing conformation: Pasteurella multocida B Bacteria (expressed in Enterobacteria phage L1), 3.33 Å
|
Luo et al. (2018).
Luo P, Dai S, Zeng J, Duan J, Shi H, & Wang J (2018). Inward-facing conformation of l-ascorbate transporter suggests an elevator mechanism.
Cell Discov 4 :35. PubMed Id: 30038796. doi:10.1038/s41421-018-0037-y. |
||
MalT EIIC phosphorylation-coupled maltose transporter: Bacillus cereus B Bacteria (expressed in E. coli), 2.55 Å
The protein is in an outward-facing conformation |
McCoy et al. (2016).
McCoy JG, Ren Z, Stanevich V, Lee J, Mitra S, Levin EJ, Poget S, Quick M, Im W, & Zhou M (2016). The Structure of a Sugar Transporter of the Glucose EIIC Superfamily Provides Insight into the Elevator Mechanism of Membrane Transport.
Structure 24 6:956-964. PubMed Id: 27161976. doi:10.1016/j.str.2016.04.003. |
||
MalT EIIC phosphorylation-coupled maltose transporter, trapped in inward-facing state: Bacillus cereus B Bacteria (expressed in E. coli), 3.2 Å
|
Ren et al. (2018).
Ren Z, Lee J, Moosa MM, Nian Y, Hu L, Xu Z, McCoy JG, Ferreon ACM, Im W, & Zhou M (2018). Structure of an EIIC sugar transporter trapped in an inward-facing conformation.
Proc Natl Acad Sci USA 115 23:5962-5967. PubMed Id: 29784777. doi:10.1073/pnas.1800647115. |
||
ManYZ mannose-phosphotransferease system (man-PTS): Escherichia coli B Bacteria, 3.52 Å
cryo-EM structure |
Liu et al. (2019).
Liu X, Zeng J, Huang K, & Wang J (2019). Structure of the mannose transporter of the bacterial phosphotransferase system.
Cell Res 29 8:680-682. PubMed Id: 31209249. doi:10.1038/s41422-019-0194-z. |
||
ManYZ mannose-phosphotransferease system (man-PTS) and Microcin E492 (MceA) complex: Escherichia coli B Bacteria, 2.28 Å
cryo-EM structure |
Huang et al. (2021).
Huang K, Zeng J, Liu X, Jiang T, & Wang J (2021). Structure of the mannose phosphotransferase system (man-PTS) complexed with microcin E492, a pore-forming bacteriocin.
Cell Discov 7 1:20. PubMed Id: 33820910. doi:10.1038/s41421-021-00253-6. |
||
Mannose-phosphotransferease system (man-PTS): Listeria monocytogenes B Bacteria (expressed in E. coli), 3.12 Å
cryo-EM structure complexed with pediocin PA-1, 2.45 Å: 7VLY |
Zhu et al. (2022).
Zhu L, Zeng J, Wang C, & Wang J (2022). Structural Basis of Pore Formation in the Mannose Phosphotransferase System by Pediocin PA-1.
Appl Environ Microbiol 88 3:e01992-21. PubMed Id: 34851716. doi:10.1128/AEM.01992-21. |
||
Intramembrane Proteases
( NSMB News & Views on three GlpG Structures) |
|||
GlpG rhomboid-family intramembrane protease: Escherichia coli B Bacteria, 2.1 Å
P32 space group. One molecule in asymmetric unit. |
Wang et al. (2006).
Wang Y, Zhang Y, & Ha Y (2006). Crystal structure of a rhomboid family intramembrane protease.
Nature 444 :179-183. PubMed Id: 17051161. |
||
GlpG rhomboid-family intramembrane protease: Escherichia coli B Bacteria, 1.90 Å
W136A mutant, 1.70 Å: 3B44 |
Wang et al. (2007).
Wang Y, Maegawa S, Akiyama Y, & Ha Y (2007). The role of L1 loop in the mechanism of rhomboid intramembrane protease GlpG.
J Mol Biol 374 :1104-1113. PubMed Id: 17976648. |
||
GlpG rhomboid-family intramembrane protease: Escherichia coli B Bacteria, 2.5 Å
Shows GlpG in a more open conformation. |
Wang & Ha (2007).
Wang Y & Ha Y (2007). Open-cap conformation of intramembrane protease GlpG.
Proc Natl Acad Sci USA 104 :2098-2102. PubMed Id: 17277078. |
||
GlpG rhomboid-family intramembrane protease: Escherichia coli B Bacteria, 2.6 Å
P31 space group. Two anti-parallel molecules in asymmetric unit. |
Wu et al. (2006).
Wu Z, Yan N, Feng L, Oberstein A, Yan H, Baker RP, Gu L, Jeffrey PD, Urban S & Shi Y (2006). Structural analysis of a rhomboid family intramembrane protease reveals a gating mechanism for substrate entry.
Nature Struc. Molec. Biol. 13 :1084-1091. PubMed Id: 17099694. |
||
GlpG rhomboid-family intramembrane protease: Escherichia coli B Bacteria, 2.3 Å
P21 space group. Two anti-parallel molecules in asymmetric unit. |
Ben-Shem et al. (2007).
Ben-Shem A, Fass D, & Bibi E (2007). Structural basis for intramembrane proteolysis by rhomboid serine proteases.
Proc Natl Acad Sci USA 104 :426-466. PubMed Id: 17190827. |
||
GlpG rhomboid-family intramembrane protease: Escherichia coli B Bacteria, 1.65 Å
Acyl GlpG: GlpG with covalently bound isocoumarin inhibitor, 2.09 Å: 2XOW |
Vinothkumar et al. (2010).
Vinothkumar KR, Strisovsky K, Andreeva A, Christova Y, Verhelst S, & Freeman M (2010). The structural basis for catalysis and substrate specificity of a rhomboid protease.
EMBO J 29 :3797-3809. PubMed Id: 20890268. |
||
GlpG rhomboid-family intramembrane protease with lipids: Escherichia coli B Bacteria, 1.70 Å
S201T active-site mutant in orthorhombic crystal form. S201T active-site mutant in trigonal crystal form, 1.85 Å: 2XTU |
Vinothkumar (2011).
Vinothkumar KR (2011). Structure of Rhomboid Protease in a Lipid Environment.
J Mol Biol 407 :232-247. PubMed Id: 21256137. |
||
GlpG rhomboid-family intramembrane protease with a mechanism-based inhibitor: Escherichia coli B Bacteria, 2.30 Å
The inhibitor is diisopropyl fluorophosphonate, which mimics the oxyanion-containing tetrahedral intermediate of the hydrolytic reaction. |
Xue & Ha (2012).
Xue Y & Ha Y (2012). Catalytic Mechanism of Rhomboid Protease GlpG Probed by 3,4-Dichloroisocoumarin and Diisopropyl Fluorophosphonate.
J Biol Chem 287 :3099-3107. PubMed Id: 22130671. doi:10.1074/jbc.M111.310482. |
||
GlpG rhomboid-family intramembrane protease in complex with phosphonofluoridate inhibitor: Escherichia coli B Bacteria, 2.60 Å
The phosphonofluoridate inhibitor is covalently bound to the catalytic serine |
Xue et al. (2012).
Xue Y, Chowdhury S, Liu X, Akiyama Y, Ellman J, & Ha Y (2012). Conformational Change in Rhomboid Protease GlpG Induced by Inhibitor Binding to Its S' Subsites.
Biochemistry 51 :3723-3731. PubMed Id: 22515733. doi:10.1021/bi300368b. |
||
GlpG N-terminal cytoplasmic domain: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), NMR Structure
|
Del Rio et al. (2007).
Del Rio A, Dutta K, Chavez J, Ubarretxena-Belandia I, & Ghose R (2007). Solution structure and dynamics of the N-terminal cytosolic domain of rhomboid intramembrane protease from Pseudomonas aeruginosa: insights into a functional role in intramembrane proteolysis.
J Mol Biol 365 :109-122. PubMed Id: 17059825. doi:10.1016/j.jmb.2006.09.047. |
||
GlpG N-terminal cytoplasmic domain: Escherichia coli B Bacteria, NMR Structure
|
Sherratt et al. (2009).
Sherratt AR, Braganza MV, Nguyen E, Ducat T, & Goto NK (2009). Insights into the effect of detergents on the full-length rhomboid protease from Pseudomonas aeruginosa and its cytosolic domain.
BBA Biomembranes 1788 :2444-2453. PubMed Id: 19761755. doi:10.1016/j.bbamem.2009.09.003. |
||
GlpG N-terminal cytoplasmic domain: Escherichia coli B Bacteria, 1.35 Å
Domain-swapped dimer. |
Lazareno-Saez et al. (2013).
Lazareno-Saez C, Arutyunova E, Coquelle N, & Lemieux MJ (2013). Domain Swapping in the Cytoplasmic Domain of the Escherichia coli Rhomboid Protease.
J Mol Biol 425 :1127-1142. PubMed Id: 23353827. doi:10.1016/j.jmb.2013.01.019. |
||
Zoll et al. (2014).
Zoll S, Stanchev S, Began J, Skerle J, Lepšík M, Peclinovská L, Majer P, & Strisovsky K (2014). Substrate binding and specificity of rhomboid intramembrane protease revealed by substrate-peptide complex structures.
EMBO J 33 :2408-2421. PubMed Id: 25216680. doi:10.15252/embj.201489367. |
|||
GlpG rhomboid-family intramembrane protease in complex with Ac-VRMA-CHO: Escherichia coli B Bacteria, 2.3 Å
Y205F mutant crystalized from bicelles, 2.5 Å: 5F5D Y205F mutant in complex with Ac-RMA-CHO (from bicelles), 2.3 Å: 5F5G Y205F mutant in complex with Ac-VRMA-CHO (from bicelles), 2.4 Å: 5F5J Y205F mutant in complex with Ac-RKVRMA-CHO (from bicelles), 2.4 Å:5F5K |
Cho et al. (2016).
Cho S, Dickey SW, & Urban S (2016). Crystal Structures and Inhibition Kinetics Reveal a Two-Stage Catalytic Mechanism with Drug Design Implications for Rhomboid Proteolysis.
Mol Cell 61 3:329-340. PubMed Id: 26805573. doi:10.1016/j.molcel.2015.12.022. |
||
GlpG rhomboid intramembrane protease snapshots, I1: Escherichia coli B Bacteria, 2.3 Å
snapshot I2, 2.4 Å: 6PJ5 snapshot I3, 2.3 Å: 6PJ7 snapshot I4, 2.4 Å: 6PJ8 snapshot S1, 2.5 Å: 6PJ9 snapshot S2, 2.6 Å: 6PJA snapshot S3, 2.45 Å: 6PJP snapshot S4, 2.50 Å: 6PJQ snapshot S5, 2.30 Å: 6PJR snapshot S6, 2.50 Å: 6PJU |
Cho et al. (2019).
Cho S, Baker RP, Ji M, & Urban S (2019). Ten catalytic snapshots of rhomboid intramembrane proteolysis from gate opening to peptide release.
Nat Struct Mol Biol 26 :910-918. PubMed Id: 31570873. doi:10.1038/s41594-019-0296-9. |
||
GlpG rhomboid-family intramembrane protease: Haemophilus influenzae B Bacteria (expressed in E. coli), 2.2 Å
Shows three bound lipid molecules. Monoclinic C2 space group. |
Lemieux et al. (2007).
Lemieux MJ, Fischer SJ, Cherney MM, Bateman KS, & James MNG (2007). The crystal structure of the rhomboid peptidase from Haemophilus influenzae provides insight into intramembrane proteolysis.
Proc Natl Acad Sci USA 104 :750-754. PubMed Id: 17210913. |
||
GlpG rhomboid-family intramembrane protease: Haemophilus influenzae B Bacteria (expressed in E. coli), 2.84 Å
Reveals disorder in loops 4 and 5 and helix 5. |
Brooks et al. (2011).
Brooks CL, Lazareno-Saez C, Lamoureux JS, Mak MW, & Lemieux MJ (2011). Insights into Substrate Gating inH. influenzaeRhomboid.
J Mol Biol 407 :687-697. PubMed Id: 21295583. |
||
Site-2 Protease (S2P). Intramembrane Metalloprotease: Methanocaldococcus jannaschii A Archaea, 3.3 Å
Structure is of the transmembrane core only. |
Feng et al. (2007).
Feng L, Yan H, Wu Z, Yan N, Wang Z, Jeffrey PD, & Shi Y (2007). Structure of a site-2 protease family intramembrane metalloprotease.
Science 318 :1608-1612. PubMed Id: 18063795. |
||
Signal Peptide Peptidase (SppA), native protein: Escherichia coli B Bacteria, 2.55 Å
SeMet protein, 2.76 Å: 3BEZ. Long thought to be a transmembrane protein, the structure reveals a peripheral homotetramer that likely is buried in the membrane interface. Each monomer has a putative N-terminal transmembrane helix for anchoring to the membrane. This anchor was removed for crystallization. Listed under TRANSMEMBRANE PROTEINS: ALPHA-HELICAL : Intramembrane Proteases, MONOTOPIC MEMBRANE PROTEINS : Peptidases. |
Kim et al. (2008).
Kim AC, Oliver DC, & Paetzel M (2008). Crystal structure of a bacterial signal Peptide peptidase.
J Mol Biol 376 :352-366. PubMed Id: 18164727. |
||
Signal Peptide Peptidase (SppA): Bacillus subtilis B Bacteria (expressed in E. coli), 2.37 Å
Each monomer of the homooctamer has a putative N-terminal transmembrane helix for anchoring to the membrane. This anchor was removed for crystallization. Listed under TRANSMEMBRANE PROTEINS: ALPHA-HELICAL : Intramembrane Proteases, MONOTOPIC MEMBRANE PROTEINS : Peptidases. |
Nam et al. (2012).
Nam SE, Kim AC, & Paetzel M (2012). Crystal Structure of Bacillus subtilis Signal Peptide Peptidase A.
J Mol Biol 419 :347-358. PubMed Id: 22472423. doi:10.1016/j.jmb.2012.03.020. |
||
Signal Peptide Peptidase (SppA) K199A mutant showing C-terminal peptide bound in eight active sites: Bacillus subtilis B Bacteria (expressed in E. coli), 2.39 Å
Each monomer of the homooctamer has a putative N-terminal transmembrane helix for anchoring to the membrane. This anchor was removed for crystallization. Listed under TRANSMEMBRANE PROTEINS: ALPHA-HELICAL : Intramembrane Proteases, MONOTOPIC MEMBRANE PROTEINS : Peptidases. |
Nam & Paetzel (2013).
Nam SE, & Paetzel M (2013). Structure of Signal Peptide Peptidase A with C-Termini Bound in the Active Sites: Insights into Specificity, Self-Processing, and Regulation.
Biochemistry 52 :8811-8822. PubMed Id: 24228759. |
||
Vogeley et al. (2016).
Vogeley L, El Arnaout T, Bailey J, Stansfeld PJ, Boland C, & Caffrey M (2016). Structural basis of lipoprotein signal peptidase II action and inhibition by the antibiotic globomycin.
Science 351 :876-880. PubMed Id: 26912896. doi:10.1126/science.aad3747. |
|||
LspA lipoprotein signal peptide peptidase II in complex with globomycin: Staphylococcus aureus B Bacteria (expressed in E. coli), 1.92 Å
in complex with myxovirescin, 2.3 Å: 6RYP |
Olatunji et al. (2020).
Olatunji S, Yu X, Bailey J, Huang CY, Zapotoczna M, Bowen K, Remškar M, Müller R, Scanlan EM, Geoghegan JA, Olieric V, & Caffrey M (2020). Structures of lipoprotein signal peptidase II from Staphylococcus aureus complexed with antibiotics globomycin and myxovirescin.
Nat Commun 11 1. PubMed Id: 31919415. doi:10.1038/s41467-019-13724-y. |
||
Li et al. (2013).
Li X, Dang S, Yan C, Gong X, Wang J, & Shi Y (2013). Structure of a presenilin family intramembrane aspartate protease.
Nature 493 :56-61. PubMed Id: 23254940. doi:10.1038/nature11801. |
|||
FlaK preflagellin aspartyl protease: Methanococcus maripaludis A Archaea (expressed in E. coli), 3.60 Å
This is a GXGD protease related to presenilln. |
Hu et al. (2011).
Hu J, Xue Y, Lee S, & Ha Y (2011). The crystal structure of GXGD membrane protease FlaK
Nature 475 :528-531. PubMed Id: 21765428. doi:10.1038/nature10218. |
||
CAAX protease Ste24p: Saccharomyces mikatae E Eukaryota (expressed in S. cerevisiae), 3.10 Å
|
Pryor et al. (2013).
Pryor EE Jr, Horanyi PS, Clark KM, Fedoriw N, Connelly SM, Koszelak-Rosenblum M, Zhu G, Malkowski MG, Wiener MC, & Dumont ME (2013). Structure of the integral membrane protein CAAX protease Ste24p.
Science 339 :1600-1604. PubMed Id: 23539602. doi:10.1126/science.1232048. |
||
CAAX protease ZMPSTE24: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.40 Å
E336A mutant in complex with C-terminus tetrapeptide from prelamin A, 3.80 Å: 2YPT |
Quigley et al. (2013).
Quigley A, Dong YY, Pike AC, Dong L, Shrestha L, Berridge G, Stansfeld PJ, Sansom MS, Edwards AM, Bountra C, von Delft F, Bullock AN, Burgess-Brown NA, & Carpenter EP (2013). The structural basis of ZMPSTE24-dependent laminopathies.
Science 339 :1604-1607. PubMed Id: 23539603. doi:doi:10.1126/science.1231513. |
||
CAAX protease ZMPSTE24 with bound phosphoramidon: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.85 Å
|
Goblirsch et al. (2018).
Goblirsch BR, Arachea BT, Councell DJ, & Wiener MC (2018). Phosphoramidon inhibits the integral membrane protein zinc metalloprotease ZMPSTE24.
Acta Crystallogr D Struct Biol 74 :739-747. PubMed Id: 30082509. doi:10.1107/S2059798318003431. |
||
CAAX protease Rce1: Methanococcus maripaludis A Archaea (expressed in E. coli), 2.50 Å
|
Manolaridis et al. (2013).
Manolaridis I, Kulkarni K, Dodd RB, Ogasawara S, Zhang Z, Bineva G, O'Reilly N, Hanrahan SJ, Thompson AJ, Cronin N, Iwata S, & Barford D (2013). Mechanism of farnesylated CAAX protein processing by the intramembrane protease Rce1.
Nature 504 :301-305. PubMed Id: 24291792. doi:10.1038/nature12754. |
||
γ-secretase: Homo sapiens E Eukaryota (expressed in HEK-293S cells), 4.32 Å
|
Sun et al. (2015).
Sun L, Zhao L, Yang G, Yan C, Zhou R, Zhou X, Xie T, Zhao Y, Wu S, Li X, & Shi Y (2015). Structural basis of human γ-secretase assembly.
Proc Natl Acad Sci USA 112 :6003-6008. PubMed Id: 25918421. doi:10.1073/pnas.1506242112. |
||
γ-secretase: Homo sapiens E Eukaryota (expressed in HEK293F cells), 3.4 Å
single-particle Cryo-EM structure |
Bai et al. (2015).
Bai XC, Yan C, Yang G, Lu P, Ma D, Sun L, Zhou R, Scheres SH, & Shi Y (2015). An atomic structure of human γ-secretase.
Nature 525 :212-217. PubMed Id: 26280335. doi:10.1038/nature14892. |
||
γ-secretase nicastrin extracellular domain: Homo sapiens E Eukaryota (expressed in HEK293F cells), 5.4 Å
Single-particle cryo-EM structure. 4.5 Å and 5.4 Å EM maps of the full protein including TM domains are available in the EMDB with accession codes EMD-2677 and EMD-2678, respectively. |
Lu et al. (2014).
Lu P, Bai XC, Ma D, Xie T, Yan C, Sun L, Yang G, Zhao Y, Zhou R, Scheres SH, & Shi Y (2014). Three-dimensional structure of human γ-secretase.
Nature 512 :166-170. PubMed Id: 25043039. doi:10.1038/nature13567. |
||
γ-secretase nicastrin-a transmembrane domain in SDS:: Homo sapiens E Eukaryota (expressed in E. coli), NMR structure
in dodecylphosphocholine micelles, 2NR7 |
Li et al. (2016).
Li Y, Liew LS, Li Q, & Kang C (2016). Structure of the transmembrane domain of human nicastrin-a component of γ-secretase.
Sci Rep 6 :19522. PubMed Id: 26776682. doi:10.1038/srep19522. |
||
γ-secretase in complex with Notch-100: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.7 Å
cryo-EM structure |
Yang et al. (2019).
Yang G, Zhou R, Zhou Q, Guo X, Yan C, Ke M, Lei J, & Shi Y (2019). Structural basis of Notch recognition by human γ-secretase.
Nature 565 7738:192-197. PubMed Id: 30598546. doi:10.1038/s41586-018-0813-8. |
||
γ-secretase cross-linked complex with APP-C83: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.6 Å
cryo-EM structure |
Zhou et al. (2019).
Zhou R, Yang G, Guo X, Zhou Q, Lei J, & Shi Y (2019). Recognition of the amyloid precursor protein by human γ-secretase.
Science 363 6428. PubMed Id: 30630874. doi:10.1126/science.aaw0930. |
||
Steiner et al. (2020).
Steiner A, Schlepckow K, Brunner B, Steiner H, Haass C, & Hagn F (2020). γ-Secretase cleavage of the Alzheimer risk factor TREM2 is determined by its intrinsic structural dynamics.
EMBO J 39 20. PubMed Id: 32830336. doi:10.15252/embj.2019104247. |
|||
Yang et al. (2021).
Yang G, Zhou R, Guo X, Yan C, Lei J, & Shi Y (2021). Structural basis of γ-secretase inhibition and modulation by small molecule drugs.
Cell 184 2:521-533.e14. PubMed Id: 33373587. doi:10.1016/j.cell.2020.11.049. |
|||
Guo et al. (2022).
Guo X, Wang Y, Zhou J, Jin C, Wang J, Jia B, Jing D, Yan C, Lei J, Zhou R, & Shi Y (2022). Molecular basis for isoform-selective inhibition of presenilin-1 by MRK-560.
Nat Commun 13 1:6299. PubMed Id: 36272978. doi:10.1038/s41467-022-33817-5. |
|||
γ-secretase with bound ganglioside GM1: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.40 Å
cryo-EM structure |
Wang et al. (2023).
Wang X, Zhou R, Sun X, Li J, Wang J, Yue W, Wang L, Liu H, Shi Y, & Zhang D (2023). Preferential Regulation of Γ-Secretase-Mediated Cleavage of APP by Ganglioside GM1 Reveals a Potential Therapeutic Target for Alzheimer's Disease.
Adv Sci (Weinh) 10 32:e2303411. PubMed Id: 37759382. doi:10.1002/advs.202303411. |
||
γ-secretase with bound substrate mimetic: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.60 Å
cryo-EM structure |
Devkota et al. (2024).
Devkota S, Zhou R, Nagarajan V, Maesako M, Do H, Noorani A, Overmeyer C, Bhattarai S, Douglas JT, Saraf A, Miao Y, Ackley BD, Shi Y, & Wolfe MS (2024). Familial Alzheimer mutations stabilize synaptotoxic γ-secretase-substrate complexes.
Cell Rep 43 2:113761. PubMed Id: 38349793. doi:10.1016/j.celrep.2024.113761. |
||
γ-secretase nicastrin extracellular domain: Dictyostelium purpureum E Eukaryota (expressed in S. frugiperda), 1.95 Å
|
Xie et al. (2014).
Xie T, Yan C, Zhou R, Zhao Y, Sun L, Yang G, Lu P, Ma D, & Shi Y (2014). Crystal structure of the γ-secretase component nicastrin.
Proc Natl Acad Sci USA 111 37:13349-13354. PubMed Id: 25197054. doi:10.1073/pnas.1414837111. |
||
Signal Peptidase Complex Paralog A (SPC-A): Homo sapiens E Eukaryota (expressed in HEK293 cells), 4.90 Å
cryo-EM structure Signal Peptidase Complex Paralog C (SPC-C), 4.90 Å: 7P2Q |
Liaci et al. (2021).
Liaci AM, Steigenberger B, Telles de Souza PC, Tamara S, Gröllers-Mulderij M, Ogrissek P, Marrink SJ, Scheltema RA, & Förster F (2021). Structure of the human signal peptidase complex reveals the determinants for signal peptide cleavage.
Mol Cell 81 19:3934-3948.e11. PubMed Id: 34388369. doi:10.1016/j.molcel.2021.07.031. |
||
Signal peptidase complex subunit 1: Gallus gallus E Eukaryota (expressed in Komagataella pastoris), 2.43 Å
The protein was stabilized for crystallization using a split superfolder green fluorescent protein (from Aequorea victoria) attached to N- and C-termini of the protein. |
Liu et al. (2020).
Liu S, Li S, Yang Y, & Li W (2020). Termini restraining of small membrane proteins enables structure determination at near-atomic resolution.
Sci Adv 6 51:eabe3717. PubMed Id: 33355146. doi:10.1126/sciadv.abe3717. |
||
Siebert et al. (2022).
Siebert V, Silber M, Heuten E, Muhle-Goll C, & Lemberg MK (2022). Cleavage of mitochondrial homeostasis regulator PGAM5 by the intramembrane protease PARL is governed by transmembrane helix dynamics and oligomeric state.
J Biol Chem 298 9:e102321. PubMed Id: 35921890. doi:10.1016/j.jbc.2022.102321. |
|||
BlaR1 β-lactam sensor/signal transducer, C2 symmetry: Staphylococcus aureus B Bacteria (expressed in Lactobacillus delbrueckii subsp. lactis), 4.20 Å
cryo-EM structure C1 symmetry, 4.90 Å: 8EXQ TM and zinc metalloprotease domain, 3.80 Å: 8EXR F284A mutant, 4.30 Å: 8EXS F284A mutant with bound ampicillin, 4.60 Å: 8EXT |
Alexander et al. (2023).
Alexander JAN, Worrall LJ, Hu J, Vuckovic M, Satishkumar N, Poon R, Sobhanifar S, Rosell FI, Jenkins J, Chiang D, Mosimann WA, Chambers HF, Paetzel M, Chatterjee SS, & Strynadka NCJ (2023). Structural basis of broad-spectrum β-lactam resistance in Staphylococcus aureus.
Nature 613 7943:375-382. PubMed Id: 36599987. doi:10.1038/s41586-022-05583-3. |
||
Cysteine Proteases
Also known as Thiol Proteases |
|||
Glycosylphosphatidylinositol (GPI) transamidase: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.10 Å
cryo-EM structure |
Zhang et al. (2022).
Zhang H, Su J, Li B, Gao Y, Liu M, He L, Xu H, Dong Y, Zhang XC, & Zhao Y (2022). Structure of human glycosylphosphatidylinositol transamidase.
Nat Struct Mol Biol 29 3:203-209. PubMed Id: 35165458. doi:10.1038/s41594-022-00726-6. |
||
Glycosylphosphatidylinositol (GPI) transamidase complex: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.53 Å
cryo-EM structure |
Xu et al. (2022).
Xu Y, Jia G, Li T, Zhou Z, Luo Y, Chao Y, Bao J, Su Z, Qu Q, & Li D (2022). Molecular insights into biogenesis of glycosylphosphatidylinositol anchor proteins.
Nat Commun 13 1:2617. PubMed Id: 35551457. doi:10.1038/s41467-022-30250-6. |
||
Membrane-Bound Metalloproteases
|
|||
apo-FtsH ATP-dependent metalloprotease: Thermotoga maritima B Bacteria (expressed in E. coli), 2.60 Å
This is a homo-hexameric AAA+ protease. Each monomer is anchored to the cytoplasmic membrane by two transmembrane segments, which are missing in the structure. The protease can degrade both soluble and membrane proteins. |
Bieniossek et al. (2009).
Bieniossek C, Niederhauser B, & Baumann UM (2009). The crystal structure of apo-FtsH reveals domain movements necessary for substrate unfolding and translocation.
Proc Natl Acad Sci USA 106 :21579-21584. PubMed Id: 19955424. |
||
FtsH ATP-dependent metalloprotease, ADP-bound state: Thermotoga maritima B Bacteria (expressed in E. coli), 3.15 Å
cryo-EM structure |
Liu et al. (2022).
Liu W, Schoonen M, Wang T, McSweeney S, & Liu Q (2022). Cryo-EM structure of transmembrane AAA+ protease FtsH in the ADP state.
Commun Biol 5 1:257. PubMed Id: 35322207. doi:10.1038/s42003-022-03213-2. |
||
apo-FtsH ATP-dependent metalloprotease: Aquifex aeolicus B Bacteria (expressed in E. coli), 2.96 Å
truncated protein, 3.25 Å: 4Z8X This is a homo-hexameric AAA+ protease. Each monomer is anchored to the cytoplasmic membrane by two transmembrane segments, which are missing in the structure. The protease can degrade both soluble and membrane proteins. |
Vostrukhina et al. (2015).
Vostrukhina M, Popov A, Brunstein E, Lanz MA, Baumgartner R, Bieniossek C, Schacherl M, & Baumann U (2015). The structure of Aquifex aeolicus FtsH in the ADP-bound state reveals a C2-symmetric hexamer.
Acta Crystallogr D Biol Crystallogr 71 :1307-1318. PubMed Id: 26057670. doi:10.1107/S1399004715005945. |
||
CorA Superfamily Ion Transporters
Channels and transporters for divalent cation homeostasis. These have a membrane domain in series with a cytoplasmic domain that together form a continuous channel. |
|||
CorA Mg2+ Transporter: Thermotoga maritima B Bacteria (expressed in E. coli), 3.9 Å
Cytoplasmic domain alone, 1.85 Å: 2BBH |
Lunin et al. (2006).
Lunin VV, Dobrovetsky E, Khutoreskaya G, Zhang R, Joachimiak A, Doyle DA, Bochkarev A, Maguire ME, Edwards AM, & Koth CM (2006). Crystal structure of the CorA Mg2+transporter.
Nature 440 :833-837. PubMed Id: 16598263. |
||
CorA Mg2+ Transporter: Thermotoga maritima B Bacteria (expressed in E. coli), 2.9 Å
|
Eshaghi et al. (2006).
Eshaghi S, Niegowski D, Kohl A, Martinez Molina D, Lesley SA, & Nordlund P (2006). Crystal structure of a divalent metal ion transporter CorA at 2.9 angstrom resolution.
Science 313 :354-357. PubMed Id: 16857941. |
||
CorA Mg2+ Transporter: Thermotoga maritima B Bacteria (expressed in E. coli), 3.7 Å
|
Payandeh & Pai (2006).
Payandeh J & Pai EF (2006). A structural basis for Mg2+ homeostasis and the CorA translocation cycle
EMBO J 25 :3762-3773. PubMed Id: 16902408. doi:10.1038/sj.emboj.7601269. |
||
CorA Mg2+ Transporter, coiled-coil mutant in the absence of Mg2+: Thermotoga maritima B Bacteria (expressed in E. coli), 3.80 Å
Coiled-coil mutant in the presence of Mg2+, 3.92 Å: 4EED |
Pfoh et al. (2012).
Pfoh R, Li A, Chakrabarti N, Payandeh J, Pomès R, & Pai EF (2012). Structural asymmetry in the magnesium channel CorA points to sequential allosteric regulation.
Proc Natl Acad Sci USA 109 :18809-18814. PubMed Id: 23112165. doi:10.1073/pnas.1209018109. |
||
Matthies et al. (2016).
Matthies D, Dalmas O, Borgnia MJ, Dominik PK, Merk A, Rao P, Reddy BG, Islam S, Bartesaghi A, Perozo E, & Subramaniam S (2016). Cryo-EM Structures of the Magnesium Channel CorA Reveal Symmetry Break upon Gating.
Cell 164 :747-756. PubMed Id: 26871634. doi:10.1016/j.cell.2015.12.055. |
|||
CorA Mg2+ Transporter: Methanocaldococcus jannaschii A Archaea (expressed in E. coli), 3.20 Å
Soluble domain, 2.50 Å: 4EGW |
Guskov et al. (2012).
Guskov A, Nordin N, Reynaud A, Engman H, Lundbäck AK, Jong AJ, Cornvik T, Phua T, & Eshaghi S (2012). Structural insights into the mechanisms of Mg2+ uptake, transport, and gating by CorA.
Proc Natl Acad Sci USA 109 :18459-18464. PubMed Id: 23091000. doi:10.1073/pnas.1210076109 . |
||
CorA Mg2+ Transporter cytoplasmic domain with bound Mg2+: Escherichia coli B Bacteria, 2.8 Å
in complex with Mg2+ & cobalt hexammine, 2.85 Å: 5N78 |
Lerche et al. (2017).
Lerche M, Sandhu H, Flöckner L, Högbom M, & Rapp M (2017). Structure and Cooperativity of the Cytosolic Domain of the CorA Mg2+ Channel from Escherichia coli.
Structure 25 :1175-1186.e4. PubMed Id: 28669631. doi:10.1016/j.str.2017.05.024. |
||
ZntB Zn+2 transporter cytoplasmic domain: Vibrio parahaemolyticus B Bacteria (expressed in E. coli), 1.90 Å
|
Tan et al. (2009).
Tan K, Sather A, Robertson JL, Moy S, Roux B, & Joachimiak A (2009). Structure and electrostatic property of cytoplasmic domain of ZntB transporter
Protein Sci 18 :2043-2052. PubMed Id: 19653298. doi:10.1002/pro.215. |
||
ZntB Zn+2 transporter cytoplasmic domain, P21 space group: Salmonella enterica B Bacteria (expressed in E. coli), 2.30 Å
C2 space group, 3.13 Å: 3NWI |
Wan et al. (2011).
Wan Q, Ahmad MF, Fairman J, Gorzelle B, de la Fuente M, Dealwis C, & Maguire ME (2011). X-Ray crystallography and isothermal titration calorimetry studies of the Salmonella zinc transporter ZntB
Structure 19 :700-710. PubMed Id: 21565704. doi:10.1016/j.str.2011.02.011. |
||
Cyclin M/CorC Family of Mg2+ Transporters
Cyclin M is generally abbreviated CNNM. Reviewed by Funato & Miki (2019) |
|||
Huang et al. (2021).
Huang Y, Jin F, Funato Y, Xu Z, Zhu W, Wang J, Sun M, Zhao Y, Yu Y, Miki H, & Hattori M (2021). Structural basis for the Mg2+ recognition and regulation of the CorC Mg2+ transporter.
Sci Adv 7 7:eabe6140. PubMed Id: 33568487. doi:10.1126/sciadv.abe6140. |
|||
Chen et al. (2021).
Chen YS, Kozlov G, Moeller BE, Rohaim A, Fakih R, Roux B, Burke JE, & Gehring K (2021). Crystal structure of an archaeal CorB magnesium transporter.
Nat Commun 12 1:4028. PubMed Id: 34188059. doi:10.1038/s41467-021-24282-7. |
|||
Bacterial Mercury Detoxification Proteins
|
|||
MerF Hg(II) transporter: Morganella morganii B Bacteria (expressed in E. coli), NMR structure
Structure of truncated protein (AAs 13-72) determined in aligned bicelles. |
De Angelis et al. (2006).
De Angelis AA, Howell SC, Nevzorov AA, & Opella SJ (2006). Structure determination of a membrane protein with two trans-membrane helices in aligned phospholipid bicelles by solid-state NMR spectroscopy.
J AM Chem Soc 128 :12256-12267. PubMed Id: 16967977. |
||
MerF Hg(II) transporter: Morganella morganii B Bacteria (expressed in E. coli), NMR structure
Structure of truncated protein (AAs 13-72) determined in SDS micelles. |
Howell et al. (2005).
Howell SC, Mesleh MF, & Opella SJ (2005). NMR structure determination of a membrane protein with two transmembrane helices in micelles: MerF of the bacterial mercury detoxification system.
Biochemistry 44 :5196-5206. PubMed Id: 15794657. |
||
MerF Hg(II) transporter: Morganella morganii B Bacteria (expressed in E. coli), NMR Structure
Structure of truncated protein (AAs 13-70) determined in proteoliposomes. |
Das et al. (2012).
Das BB, Nothnagel HJ, Lu GJ, Son WS, Tian Y, Marassi FM, & Opella SJ (2012). Structure determination of a membrane protein in proteoliposomes.
J Amer Chem Soc 134 :2047-2056. PubMed Id: 22217388. doi:10.1021/ja209464f. |
||
Rhodaneses
Thiosulfate-Cyanide sulfurtransfereases |
|||
Eichmann et al. (2014).
Eichmann C, Tzitzilonis C, Bordignon E, Maslennikov I, Choe S, & Riek R (2014). Solution NMR Structure and Functional Analysis of the Integral Membrane Protein YgaP from Escherichia coli.
J Biol Chem 289 :23482-23503. PubMed Id: 24958726. doi:10.1074/jbc.M114.571935. See also: Ling et al. (2016). Ling S, Wang W, Yu L, Peng J, Cai X, Xiong Y, Hayati Z, Zhang L, Zhang Z, Song L, & Tian C (2016). Structure of an E. coli integral membrane sulfurtransferase and its structural transition upon SCN- binding defined by EPR-based hybrid method.
Sci Rep 6 . PubMed Id: 26817826. doi:10.1038/srep20025. |
|||
Drug/Metabolite Transporter (DMT) Superfamily
|
|||
YddG aromatic amino acid exporter: Starkeya novella B Bacteria (expressed in E. coli), 2.4 Å
|
Tsuchiya et al. (2016).
Tsuchiya H, Doki S, Takemoto M, Ikuta T, Higuchi T, Fukui K, Usuda Y, Tabuchi E, Nagatoishi S, Tsumoto K, Nishizawa T, Ito K, Dohmae N, Ishitani R, & Nureki O (2016). Structural basis for amino acid export by DMT superfamily transporter YddG.
Nature 534 :417-420. PubMed Id: 27281193. doi:10.1038/nature17991. |
||
Chloroquine Resistance Transporter 7G8 Isoform: Plasmodium falciparum E Eukaryota (expressed in HEK293 cells), 3.3 Å
cryo-EM structure |
Kim et al. (2019).
Kim J, Tan YZ, Wicht KJ, Erramilli SK, Dhingra SK, Okombo J, Vendome J, Hagenah LM, Giacometti SI, Warren AL, Nosol K, Roepe PD, Potter CS, Carragher B, Kossiakoff AA, Quick M, Fidock DA, & Mancia F (2019). Structure and drug resistance of the Plasmodium falciparum transporter PfCRT.
Nature 576 7786:315-320. PubMed Id: 31776516. doi:10.1038/s41586-019-1795-x. |
||
Multiple Peptide Resistance Factors (MprFs)
These proteins use two separate domains to synthesize and translocate aminoacyl phospholipids |
|||
multiple peptide resistance factor protein (MprF) loaded with one lysyl-phosphatidylglycerol molecule: Rhizobium tropici B Bacteria (expressed in E. coli), 3.70 Å
cryo-EM structure loaded with two lysyl-phosphatidylglycerol molecules, 2.96 Å: 7DUW |
Song et al. (2021).
Song D, Jiao H, & Liu Z (2021). Phospholipid translocation captured in a bifunctional membrane protein MprF.
Nat Commun 12 1:2927. PubMed Id: 34006869. doi:10.1038/s41467-021-23248-z. |
||
Multi-Drug Efflux Transporters
Members of the multidrug/oligosaccharidyl-lipid/polysaccharide (MOP) transporter superfamily |
|||
AcrB bacterial multi-drug efflux transporter: Escherichia coli B Bacteria, 3.5 Å
AcrB is a member of the resistance nodulation and cell division (RND) superfamily, as is SecDF. |
Murakami et al. (2002).
Murakami S, Nakashima R, Yamashita E, & Yamaguchi A (2002). Crystal structure of bacterial multidrug efflux transporter AcrB.
Nature 419 :587-593. PubMed Id: 12374972. |
||
AcrA fusion protein: Escherichia coli B Bacteria, 2.70 Å
This is a soluble periplasmic protein. It bridges the AcrB multi-drug efflux transporter to the TolC outer membrane protein 1EK9 |
Mikolosko et al. (2006).
Mikolosko J, Bobyk K, Zgurskaya HI, & Ghosh P (2006). Conformational flexibility in the multidrug efflux system protein AcrA.
Structure 14 :577-587. PubMed Id: 16531241. |
||
Yu et al. (2003).
Yu EW, McDermott G, Zgurskaya HI, Nikaido H, & Koshland Jr, DE (2003). Structural basis of multiple drug-binding capacity of the AcrB multidrug efflux pump.
Science 300 :976-980. PubMed Id: 12738864. |
|||
Yu et al. (2005).
Yu EW, Aires JR, McDermott G, & Nikaido H (2005). A periplasmic drug-binding site of the AcrB multidrug efflux pump: a crystallographic and site-directed mutagenesis study.
J Bacteriol 187 :6804-6815. PubMed Id: 16166543. |
|||
Su et al. (2006).
Su CC, Li M, Gu R, Takatsuka Y, McDermott G, Nikaido H, & Yu EW (2006). Conformation of the AcrB multidrug efflux pump in mutants of the putative proton relay pathway.
J Bacteriol 188 :7290-7296. PubMed Id: 17015668. |
|||
AcrB bacterial multi-drug efflux transporter: Escherichia coli B Bacteria, 2.9 Å
Two crystal forms. C2: 2GIF. P1: 2HRT, 3.0 Å. Together, the two forms suggest a pump mechanism. |
Seeger et al. (2006).
Seeger MA, Schiefner A, Eicher T, Verrey F, Diederichs K, & Pos KM (2006). Structural asymmetry of ArcB trimer suggests a peristaltic pump mechanism.
Science 313 :1295-1298. PubMed Id: 16946072. |
||
Murakami et al. (2006).
Murakami S, Nakashima R, Yamashita E, Matsumoto T, & Yamaguchi A (2006). Crystal structures of a bacterial multidrug transporter reveal a functionally rotating mechanism.
Nature 443 :173-179. PubMed Id: 16915237. |
|||
AcrB in complex with DARPin: Escherichia coli B Bacteria, 2.54 Å
|
Sennhauser et al. (2007).
Sennhauser G, Amstutz P, Briand C, Storchenegger O, & Grütter MG (2007). Drug export pathway of multidrug exporter AcrB revealed by DARPin inhibitors.
PLoS Biol. 5 1. PubMed Id: 17194213. doi:10.1371/journal.pbio.0050007. |
||
AcrB bacterial multi-drug efflux transporter with YajC subunit: Escherichia coli B Bacteria, 3.5 Å
|
Törnroth-Horsefield et al. (2007).
Törnroth-Horsefield S, Gourdon P, Horsefield R, Brive L, Yamamoto N, Mori H, Snijder A, & Neutze R (2007). Crystal Structure of AcrB in Complex with a Single Transmembrane Subunit Reveals Another Twist.
Structure 15 :1663-1673. PubMed Id: 18073115. |
||
AcrB bacterial multi-drug efflux transporter in complex with bile acid: Escherichia coli B Bacteria, 3.85 Å
|
Drew et al. (2008).
Drew D, Klepsch MM, Newstead S, Flaig R, De Gier JW, Iwata S, & Beis K (2008). The structure of the efflux pump AcrB in complex with bile acid.
Mol Membr Biol 25 :677-682. PubMed Id: 19023693. |
||
AcrB bacterial multi-drug efflux transporter: Escherichia coli B Bacteria, 3.42 Å
|
Veesler et al. (2008).
Veesler D, Blangy S, Cambillau C, & Sciara G (2008). There is a baby in the bath water: AcrB contamination is a major problem in membrane-protein crystallization.
Acta Crystallogr Sect F Struct Biol Cryst Commun 64 :880-885. PubMed Id: 18931428. doi:10.1107/S1744309108028248. |
||
AcrB bacterial multi-drug efflux transporter with bound rifampicin: Escherichia coli B Bacteria, 3.35 Å
This and the additional structures below reveal two discrete multisite binding pockets. Unliganded AcrB, 3.35 Å: 3AOA With bound erythromycin, 3.34 Aring;: 3AOC With bound rifampicin & minocyline, 3.30 Å: 3AOD |
Nakashima et al. (2011).
Nakashima R, Sakurai K, Yamasaki S, Nishino K, & Yamaguchi A (2011). Structures of the multidrug exporter AcrB reveal a proximal multisite drug-binding pocket.
Nature 480 :565-569. PubMed Id: 22121023. doi:10.1038/nature10641. |
||
AcrB bacterial multi-drug efflux transporter with bound designed ankyrin repeat protein (DARPin): Escherichia coli B Bacteria, 2.70 Å
3.34 Å: 3NOG |
Monroe et al. (2011).
Monroe N, Sennhauser G, Seeger MA, Briand C, & Grütter MG (2011). Designed ankyrin repeat protein binders for the crystallization of AcrB: plasticity of the dominant interface.
J Struct Biol 174 2:269-281. PubMed Id: 21296164. doi:10.1016/j.jsb.2011.01.014. |
||
Eicher et al. (2012).
Eicher T, Cha HJ, Seeger MA, Brandstätter L, El-Delik J, Bohnert JA, Kern WV, Verrey F, Grütter MG, Diederichs K, & Pos KM (2012). Transport of drugs by the multidrug transporter AcrB involves an access and a deep binding pocket that are separated by a switch-loop.
Proc Natl Acad Sci USA 109 :5687-5692. PubMed Id: 22451937. doi:10.1073/pnas.1114944109. |
|||
AcrB bacterial multi-drug efflux transporter with bound ABI-PP inhibitor: Escherichia coli B Bacteria, 3.05 Å
|
Nakashima et al. (2013).
Nakashima R, Sakurai K, Yamasaki S, Hayashi K, Nagata C, Hoshino K, Onodera Y, Nishino K, & Yamaguchi A (2013). Structural basis for the inhibition of bacterial multidrug exporters.
Nature 500 :102-106. PubMed Id: 23812586. doi:10.1038/nature12300. |
||
AcrB bacterial multi-drug efflux transporter in complex with Linezolid: Escherichia coli B Bacteria, 3.50 Å
|
Hung et al. (2013).
Hung LW, Kim HB, Murakami S, Gupta G, Kim CY, & Terwilliger TC (2013). Crystal structure of AcrB complexed with linezolid at 3.5 Å resolution.
J Struct Funct Genomics 14 2:71-75. PubMed Id: 23673416. doi:10.1007/s10969-013-9154-x. |
||
AcrB-AcrZ bacterial multi-drug efflux transporter complex: Escherichia coli B Bacteria, 3.30 Å
AcrB-AcrZ-DARPin complex, 3.70 Å: 4CDI |
Du et al. (2014).
Du D, Wang Z, James NR, Voss JE, Klimont E, Ohene-Agyei T, Venter H, Chiu W, & Luisi BF (2014). Structure of the AcrAB-TolC multidrug efflux pump.
Nature 509 :512-515. PubMed Id: 24747401. doi:10.1038/nature13205. |
||
Eicher et al. (2014).
Eicher T, Seeger MA, Anselmi C, Zhou W, Brandstätter L, Verrey F, Diederichs K, Faraldo-Gómez JD, & Pos KM (2014). Coupling of remote alternating-access transport mechanisms for protons and substrates in the multidrug efflux pump AcrB.
Elife 3 :e03145. PubMed Id: 25248080. doi:10.7554/eLife.03145. |
|||
AcrB bacterial multi-drug efflux transporter in complex with fusidic acid: Escherichia coli B Bacteria, 2.5 Å
|
Oswald et al. (2016).
Oswald C, Tam HK, & Pos KM (2016). Transport of lipophilic carboxylates is mediated by transmembrane helix 2 in multidrug transporter AcrB.
Nat Commun 7 :13819. PubMed Id: 27982032. doi:10.1038/ncomms13819. |
||
AcrB bacterial multi-drug efflux transporter in P21 space group: Escherichia coli B Bacteria, 3.30 Å
triple mutant, 3.16 Å: 4ZIV deletion mutant, 3.40 Å: 4ZIW in complex with antibiotic, 3.47 Å: 4ZJL triple mutant in complex with antibiotic, 3.60 Å: 4ZJO deletion mutant in complex with antibiotic, 3.59 Å: 4ZJQ |
Ababou & Koronakis (2016).
Ababou A, & Koronakis V (2016). Structures of Gate Loop Variants of the AcrB Drug Efflux Pump Bound by Erythromycin Substrate.
PLoS One 11 7:e0159154. PubMed Id: 27403665. doi:10.1371/journal.pone.0159154. |
||
Wang et al. (2017).
Wang Z, Fan G, Hryc CF, Blaza JN, Serysheva II, Schmid MF, Chiu W, Luisi BF, & Du D (2017). An allosteric transport mechanism for the AcrAB-TolC multidrug efflux pump.
Elife 6 :e24905. PubMed Id: 28355133. doi:10.7554/eLife.24905. |
|||
AcrB bacterial multi-drug efflux transporter showing hoisting-loop: Escherichia coli B Bacteria, 3.00 Å
|
Zwama et al. (2017).
Zwama M, Hayashi K, Sakurai K, Nakashima R, Kitagawa K, Nishino K, & Yamaguchi A (2017). Hoisting-Loop in Bacterial Multidrug Exporter AcrB Is a Highly Flexible Hinge That Enables the Large Motion of the Subdomains.
Front Microbiol 8 :2095. PubMed Id: 29118749. doi:10.3389/fmicb.2017.02095. |
||
AcrB in native lipid bilayer membrane nanoparticles: Escherichia coli B Bacteria, 3.2 Å
cryo-EM structure. Protein and surrounding lipids extracted using SMA polymers. D407A mutant in lipid bilayer, 3.0 Å: 6CSX |
Qiu et al. (2018).
Qiu W, Fu Z, Xu GG, Grassucci RA, Zhang Y, Frank J, Hendrickson WA, & Guo Y (2018). Structure and activity of lipid bilayer within a membrane-protein transporter.
Proc Natl Acad Sci USA 115 51:12985-12990. PubMed Id: 30509977. doi:10.1073/pnas.1812526115. |
||
Tam et al. (2020).
Tam HK, Malviya VN, Foong WE, Herrmann A, Malloci G, Ruggerone P, Vargiu AV, & Pos KM (2020). Binding and Transport of Carboxylated Drugs by the Multidrug Transporter AcrB.
J Mol Biol 432 4:861-877. PubMed Id: 31881208. doi:10.1016/j.jmb.2019.12.025. |
|||
AcrBZ bacterial multi-drug efflux transporter in Saposin A-nanodisc: Escherichia coli B Bacteria, 3.20 Å
cryo-EM structure AcrB and DARPin in Saposin A-nanodisc, 3.27 Å: 6SGU AcrBZ and DARPin in Saposin A-nanodisc with cardiolipin, 3.17 Å: 6SGR AcrB and DARPin in Saposin A-nanodisc with cardiolipin, 3.46 Å: 6SGT |
Du et al. (2020).
Du D, Neuberger A, Orr MW, Newman CE, Hsu PC, Samsudin F, Szewczak-Harris A, Ramos LM, Debela M, Khalid S, Storz G, & Luisi BF (2020). Interactions of a Bacterial RND Transporter with a Transmembrane Small Protein in a Lipid Environment.
Structure 28 6:625-634.e6. PubMed Id: 32348749. doi:10.1016/j.str.2020.03.013. |
||
AcrB bacterial multi-drug efflux transporter, G619P G621P mutant, fusidic acid bound to the TM1/TM2 groove: Escherichia coli B Bacteria, 2.50 Å
G619P mutant, with bound minocycline, 2.35 Å 6ZO6 3-Formylrifamycin SV bound to the access pocket of G619P mutant, 2.85 Å 6ZO7 AcrB-G621P mutant with minocycline bound to the deep binding pocket, 2.50 Å 6ZO8 two rifabutins bound to access pocket, 2.70 Å 6ZO9 Partially induced AcrB T protomer and DDM binding to the TM8/PC2 pathway, 3.05 Å 6ZOA 3-Formylrifamycin SV binding to the access pocket of AcrB L protomer, 2.80 Å 6ZOB Erythromycin bound to the access pocket of AcrB-G616P L protomer, etc., 2.89 Å 6ZOC Fusidic acid bound to the allosteric deep transmembrane domain binding pocket, etc., 2.85 Å 6ZOD |
Tam et al. (2021).
Tam HK, Foong WE, Oswald C, Herrmann A, Zeng H, & Pos KM (2021). Allosteric drug transport mechanism of multidrug transporter AcrB.
Nat Commun 12 1. PubMed Id: 34188038. doi:10.1038/s41467-021-24151-3. |
||
AcrB bacterial multi-drug efflux transporter in cycloalkane amphipol: Escherichia coli B Bacteria, 3.20 Å
cryo-EM structure |
Higgins et al. (2021).
Higgins AJ, Flynn AJ, Marconnet A, Musgrove LJ, Postis VLG, Lippiat JD, Chung CW, Ceska T, Zoonens M, Sobott F, & Muench SP (2021). Cycloalkane-modified amphiphilic polymers provide direct extraction of membrane proteins for CryoEM analysis.
Commun Biol 4 1:1337. PubMed Id: 34824357. doi:10.1038/s42003-021-02834-3. |
||
Ornik-Cha et al. (2021).
Ornik-Cha A, Wilhelm J, Kobylka J, Sjuts H, Vargiu AV, Malloci G, Reitz J, Seybert A, Frangakis AS, & Pos KM (2021). Structural and functional analysis of the promiscuous AcrB and AdeB efflux pumps suggests different drug binding mechanisms.
Nat Commun 12 1:6919. PubMed Id: 34824229. doi:10.1038/s41467-021-27146-2. |
|||
Plé et al. (2022).
Plé C, Tam HK, Vieira Da Cruz A, Compagne N, Jiménez-Castellanos JC, Müller RT, Pradel E, Foong WE, Malloci G, Ballée A, Kirchner MA, Moshfegh P, Herledan A, Herrmann A, Deprez B, Willand N, Vargiu AV, Pos KM, Flipo M, & Hartkoorn RC (2022). Pyridylpiperazine-based allosteric inhibitors of RND-type multidrug efflux pumps.
Nat Commun 13 1:115. PubMed Id: 35013254. doi:10.1038/s41467-021-27726-2. |
|||
AcrB bacterial multi-drug efflux transporter, native-SAD structure determined at wavelength 3.02 Å: Escherichia coli B Bacteria, 3.40 Å
X-ray Structure |
El Omari et al. (2023).
El Omari K, Duman R, Mykhaylyk V, Orr CM, Latimer-Smith M, Winter G, Grama V, Qu F, Bountra K, Kwong HS, Romano M, Reis RI, Vogeley L, Vecchia L, Owen CD, Wittmann S, Renner M, Senda M, Matsugaki N, Kawano Y, Bowden TA, Moraes I, Grimes JM, Mancini EJ, Walsh MA, Guzzo CR, Owens RJ, Jones EY, Brown DG, Stuart DI, Beis K, & Wagner A (2023). Experimental phasing opportunities for macromolecular crystallography at very long wavelengths.
Commun Chem 6 1:219. PubMed Id: 37828292. doi:10.1038/s42004-023-01014-0. |
||
AcrB bacterial multi-drug efflux transporter in complex with Linezolid: Salmonella enterica B Bacteria (expressed in E. coli), 4.60 Å
cryo-EM structure |
Johnson et al. (2020).
Johnson RM, Fais C, Parmar M, Cheruvara H, Marshall RL, Hesketh SJ, Feasey MC, Ruggerone P, Vargiu AV, Postis VLG, Muench SP, & Bavro VN (2020). Cryo-EM Structure and Molecular Dynamics Analysis of the Fluoroquinolone Resistant Mutant of the AcrB Transporter from Salmonella.
Microorganisms 8 6:943. PubMed Id: 32585951. doi:10.3390/microorganisms8060943. |
||
MexB bacterial multi-drug efflux transporter: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 3.0 Å
|
Sennhauser et al. (2009).
Sennhauser G, Bukowska MA, Briand C, Grütter MG (2009). Crystal Structure of the Multidrug Exporter MexB from Pseudomonas aeruginosa.
J Mol Biol 389 :134-145. PubMed Id: 19361527. |
||
Higgins et al. (2004).
Higgins MK, Bokma E, Koronakis E, Hughes C, & Koronakis V (2004). Structure of the periplasmic component of a bacterial drug efflux pump.
Proc Natl Acad Sci USA 101 :9994-9999. PubMed Id: 15226509. doi:10.1073/pnas.0400375101. |
|||
Akama et al. (2004).
Akama H, Matsuura T, Kashiwagi S, Yoneyama H, Narita S, Tsukihara T, Nakagawa A, & Nakae T (2004). Crystal structure of the membrane fusion protein, MexA, of the multidrug transporter in Pseudomonas aeruginosa.
J Biol Chem 279 :25939-25942. PubMed Id: 15117957. doi:10.1074/jbc.C400164200. |
|||
MexB bacterial multi-drug efflux transporter with bound ABI-PP inhibitor: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 3.15 Å
Drug-free MexB, 2.71 Å: 3W9I |
Nakashima et al. (2013).
Nakashima R, Sakurai K, Yamasaki S, Hayashi K, Nagata C, Hoshino K, Onodera Y, Nishino K, & Yamaguchi A (2013). Structural basis for the inhibition of bacterial multidrug exporters.
Nature 500 :102-106. PubMed Id: 23812586. doi:10.1038/nature12300. |
||
MexB bacterial multi-drug efflux transporter in complex with LMNG: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 2.91 Å
|
Sakurai et al. (2019).
Sakurai K, Yamasaki S, Nakao K, Nishino K, Yamaguchi A, & Nakashima R (2019). Crystal structures of multidrug efflux pump MexB bound with high-molecular-mass compounds.
Sci Rep 9 1:4359. PubMed Id: 30867446. doi:10.1038/s41598-019-40232-2. |
||
Tsutsumi et al. (2019).
Tsutsumi K, Yonehara R, Ishizaka-Ikeda E, Miyazaki N, Maeda S, Iwasaki K, Nakagawa A, & Yamashita E (2019). Structures of the wild-type MexAB-OprM tripartite pump reveal its complex formation and drug efflux mechanism.
Nat Commun 10 1. PubMed Id: 30944318. doi:10.1038/s41467-019-09463-9. |
|||
Glavier et al. (2020).
Glavier M, Puvanendran D, Salvador D, Decossas M, Phan G, Garnier C, Frezza E, Cece Q, Schoehn G, Picard M, Taveau JC, Daury L, Broutin I, & Lambert O (2020). Antibiotic export by MexB multidrug efflux transporter is allosterically controlled by a MexA-OprM chaperone-like complex.
Nat Commun 11 1:4948. PubMed Id: 33009415. doi:10.1038/s41467-020-18770-5. |
|||
ZneA Zn(II)/proton antiporter: Cupriavidus metallidurans B Bacteria (expressed in E. coli), 3.00 Å
Crystal form I. ZneA is a member of the resistance nodulation and cell division (RND) superfamily. Crystal form II, 3.71 Å: 4K0E |
Pak et al. (2013).
Pak JE, Ekendé EN, Kifle EG, O'Connell JD 3rd, De Angelis F, Tessema MB, Derfoufi KM, Robles-Colmenares Y, Robbins RA, Goormaghtigh E, Vandenbussche G, & Stroud RM (2013). Structures of intermediate transport states of ZneA, a Zn(II)/proton antiporter.
Proc Natl Acad Sci USA 110 :18484-18489. PubMed Id: 24173033. doi:10.1073/pnas.1318705110. |
||
CusA metal-ion efflux pump: Escherichia coli B Bacteria, 3.52 Å
Pumps out Ag+ and Cu+ ions. |
Long et al. (2010).
Long F, Su CC, Zimmermann MT, Boyken SE, Rajashankar KR, Jernigan RL, & Yu EW (2010). Crystal structures of the CusA efflux pump suggest methionine-mediated metal transport.
Nature 467 :484-488. PubMed Id: 20865003. |
||
CusBA heavy-metal efflux complex: Escherichia coli B Bacteria, 2.90 Å
CusA is the efflux transporter located in the inner membrane. CusB, located in the periplasmic space, is a so-called membrane fusion protein that bridges CusA to CusC to form the tripartite efflux complex CusCBA. |
Su et al. (2011).
Su CC, Long F, Zimmermann MT, Rajashankar KR, Jernigan RL, & Yu EW (2011). Crystal structure of the CusBA heavy-metal efflux complex of Escherichia coli.
Nature 470 :558-562. PubMed Id: 21350490. doi:10.1038/nature09743. |
||
Su et al. (2009).
Su CC, Yang F, Long F, Reyon D, Routh MD, Kuo DW, Mokhtari AK, Van Ornam JD, Rabe KL, Hoy JA, Lee YJ, Rajashankar KR, & Yu EW (2009). Crystal structure of the membrane fusion protein CusB from Escherichia coli.
J Mol Biol 393 :342-355. PubMed Id: 19695261. doi:10.1016/j.jmb.2009.08.029. |
|||
Moseng et al. (2021).
Moseng MA, Lyu M, Pipatpolkai T, Glaza P, Emerson CC, Stewart PL, Stansfeld PJ, & Yu EW (2021). Cryo-EM Structures of CusA Reveal a Mechanism of Metal-Ion Export.
mBio 12 2:e00452-21. PubMed Id: 33820823. doi:10.1128/mBio.00452-21. |
|||
Chen et al. (2007).
Chen YJ, Pornillos O, Lieu S, Ma C, Chen AP, & Chang G (2007). X-ray structure of EmrE supports dual topology model.
Proc Natl Acad Sci USA 104 :18999-19004. PubMed Id: 18024586. |
|||
EmrE bacterial multi-drug efflux transporter, S64V mutant bound to tetra(4-fluorophenyl)phosphonium at pH 5.8: Escherichia coli B Bacteria, NMR structure
|
Shcherbakov et al. (2021).
Shcherbakov AA, Hisao G, Mandala VS, Thomas NE, Soltani M, Salter EA, Davis JH Jr, Henzler-Wildman KA, & Hong M (2021). Structure and dynamics of the drug-bound bacterial transporter EmrE in lipid bilayers.
Nat Commun 12 1:172. PubMed Id: 33420032. doi:10.1038/s41467-020-20468-7. |
||
EmrE bacterial multi-drug efflux transporter, S64V mutant Bound to tetra(4-fluorophenyl)phosphonium at pH 8.0: Escherichia coli B Bacteria, NMR structure
|
Shcherbakov et al. (2022).
Shcherbakov AA, Spreacker PJ, Dregni AJ, Henzler-Wildman KA, & Hong M (2022). High-pH structure of EmrE reveals the mechanism of proton-coupled substrate transport.
Nat Commun 13 1:991. PubMed Id: 35181664. doi:10.1038/s41467-022-28556-6. |
||
EmrE-D3 mutant bacterial multi-drug efflux transporter in complex with monobody L10 in low pH (protonated state): Escherichia coli B Bacteria, 2.85 Å
in complex with methyl viologen, 3.13 Å 7MGX in complex with harmane, 3.90 Å 7SVX in complex with methyltriphenylphosphonium, 3.22 Å 7SSU in complex with TPP, 3.66 Å 7SV9 in complex with benzyltrimethylammonium, 3.91 Å 7T00 Gdx-Clo from Small Multidrug Resistance family of transporters in low pH (protonated state), 2.32 Å 7SZT |
Kermani et al. (2022).
Kermani AA, Burata OE, Koff BB, Koide A, Koide S, & Stockbridge RB (2022). Crystal structures of bacterial small multidrug resistance transporter EmrE in complex with structurally diverse substrates.
Elife 11 :e76766. PubMed Id: 35254261. doi:10.7554/eLife.76766. |
||
Kermani et al. (2020).
Kermani AA, Macdonald CB, Burata OE, Ben Koff B, Koide A, Denbaum E, Koide S, & Stockbridge RB (2020). The structural basis of promiscuity in small multidrug resistance transporters.
Nat Commun 11 1:6064. PubMed Id: 33247110. doi:10.1038/s41467-020-19820-8. |
|||
NorM Multidrug and Toxin Compound Extrusion (MATE) transporter (apo form): Vibrio cholerae B Bacteria (expressed in E. coli), 3.65 Å
With bound Rb+, 4.20 Å: 3MKU |
He et al. (2010).
He X, Szewczyk P, Karyakin A, Evin M, Hong WX, Zhang Q, & Chang G (2010). Structure of a cation-bound multidrug and toxic compound extrusion transporter.
Nature 467 :991-994. PubMed Id: 20861838. |
||
NorM Multidrug and Toxin Compound Extrusion (MATE) transporter: Vibrio cholerae B Bacteria (expressed in E. coli), 3.47 Å
cryo-EM structure structure determined by NabFab-fiducial assisted cryo-EM |
Bloch et al. (2021).
Bloch JS, Mukherjee S, Kowal J, Filippova EV, Niederer M, Pardon E, Steyaert J, Kossiakoff AA, & Locher KP (2021). Development of a universal nanobody-binding Fab module for fiducial-assisted cryo-EM studies of membrane proteins.
Proc Natl Acad Sci U S A 118 47:e2115435118. PubMed Id: 34782475. doi:10.1073/pnas.2115435118. |
||
Lu et al. (2013).
Lu M, Symersky J, Radchenko M, Koide A, Guo Y, Nie R, & Koide S (2013). Structures of a Na+-coupled, substrate-bound MATE multidrug transporter.
Proc Natl Acad Sci USA 110 :2099-2104. PubMed Id: 23341609. doi:10.1073/pnas.1219901110. |
|||
NorM Multidrug and Toxin Compound Extrusion (MATE) transporter in complex with verapamil: Neisseria gonorrhoeae B Bacteria (expressed in E. coli), 3.00 Å
|
Radchenko et al. (2015).
Radchenko M, Symersky J, Nie R, & Lu M (2015). Structural basis for the blockade of MATE multidrug efflux pumps.
Nat Commun 6 :7995. PubMed Id: 26246409. doi:10.1038/ncomms8995. |
||
Multidrug and Toxin Compound Extrusion (MATE) transporter; outward-open apo form, straight conformation: Pyrococcus furiosus A Archaea (expressed in E. coli), 2.40 Å
outward-open apo form, bent conformation, 2.50 Å: 3VVO in complex with Br-NRF, 2.91 Å: 3VVP in complex with MaL6, 2.40 Å: 3VVQ in complex with MaD5, 3.00 Å: 3VVR in complex with MaD3S, 2.60 Å: 3VVS P26A mutant, 2.10 Å: 3W4T |
Tanaka et al. (2013).
Tanaka Y, Hipolito CJ, Maturana AD, Ito K, Kuroda T, Higuchi T, Katoh T, Kato HE, Hattori M, Kumazaki K, Tsukazaki T, Ishitani R, Suga H, & Nureki O (2013). Structural basis for the drug extrusion mechanism by a MATE multidrug transporter.
Nature 496 :247-251. PubMed Id: 23535598. doi:10.1038/nature12014. |
||
Multidrug and Toxin Compound Extrusion (MATE) transporter, inward-facing conformation, lipidic cubic phase: Pyrococcus furiosus B Bacteria (expressed in E. coli), 2.8 Å
outward-facing conformation, 2.8 Å: 6GWH outward-facing (vapor diffusion method), 3.50 Å: 6HFB outward-facing (vapor diffusion method), 2.35 Å: 4MLB |
Zakrzewska et al. (2019).
Zakrzewska S, Mehdipour AR, Malviya VN, Nonaka T, Koepke J, Muenke C, Hausner W, Hummer G, Safarian S, & Michel H (2019). Inward-facing conformation of a multidrug resistance MATE family transporter.
Proc Natl Acad Sci USA 116 25:12275-12284. PubMed Id: 31160466. doi:10.1073/pnas.1904210116. |
||
DinF-BH Multidrug and Toxin Compound Extrusion (MATE) transporter: Bacillus halodurans B Bacteria (expressed in E. coli), 3.20 Å
In complex with R6G, 3.70 Å: 4LZ9 |
Lu et al. (2013).
Lu M, Radchenko M, Symersky J, Nie R, & Guo Y (2013). Structural insights into H+-coupled multidrug extrusion by a MATE transporter.
Nat. Struct. Mol. Biol. 20 :1310-1317. PubMed Id: 24141706. doi:10.1038/nsmb.2687. |
||
DinF-BH Multidrug and Toxin Compound Extrusion (MATE) transporter, D40N mutant: Bacillus halodurans B Bacteria (expressed in E. coli), 3.00 Å
with bound verapmil, 3.00 Å: 5C6O |
Radchenko et al. (2015).
Radchenko M, Symersky J, Nie R, & Lu M (2015). Structural basis for the blockade of MATE multidrug efflux pumps.
Nat Commun 6 :7995. PubMed Id: 26246409. doi:10.1038/ncomms8995. |
||
ClbM Multidrug and Toxin Compound Extrusion (MATE) transporter: Escherichia coli B Bacteria, 2.70 Å
in complex with Rb+, 3.30 Å: 4Z3P |
Mousa et al. (2016).
Mousa JJ, Yang Y, Tomkovich S, Shima A, Newsome RC, Tripathi P, Oswald E, Bruner SD, & Jobin C (2016). MATE transport of the E. coli-derived genotoxin colibactin.
Nat Microbiol 1 :15009. PubMed Id: 27571755. doi:10.1038/nmicrobiol.2015.9. |
||
Kusakizako et al. (2019).
Kusakizako T, Claxton DP, Tanaka Y, Maturana AD, Kuroda T, Ishitani R, Mchaourab HS, & Nureki O (2019). Structural Basis of H+-Dependent Conformational Change in a Bacterial MATE Transporter.
Structure 27 2:293-301.e3. PubMed Id: 30449688. doi:10.1016/j.str.2018.10.004. |
|||
Zhao et al. (2021).
Zhao J, Xie H, Mehdipour AR, Safarian S, Ermler U, Münke C, Thielmann Y, Hummer G, Ebersberger I, Wang J, & Michel H (2021). The structure of the Aquifex aeolicus MATE family multidrug resistance transporter and sequence comparisons suggest the existence of a new subfamily.
Proc Natl Acad Sci U S A 118 46:e2107335118. PubMed Id: 34753818. doi:10.1073/pnas.2107335118. |
|||
MurJ lipid II flippase: Thermosipho africanus B Bacteria (expressed in E. coli), 2.0 Å
This protein flips the lipid-linked PG precursor lipid II across the cytoplasmic membrane. It is a member of the MATE transporter family |
Kuk et al. (2017).
Kuk AC, Mashalidis EH, & Lee SY (2017). Crystal structure of the MOP flippase MurJ in an inward-facing conformation.
Nat. Struct. Mol. Biol. 24 :171-176. PubMed Id: 28024149. doi:10.1038/nsmb.3346. |
||
Kuk et al. (2019).
Kuk ACY, Hao A, Guan Z, & Lee SY (2019). Visualizing conformation transitions of the Lipid II flippase MurJ.
Nat Commun 10 1. PubMed Id: 30988294. doi:10.1038/s41467-019-09658-0. |
|||
MurJ lipid II flippase: Escherichia coli B Bacteria, 3.5 Å
|
Zheng et al. (2018).
Zheng S, Sham LT, Rubino FA, Brock KP, Robins WP, Mekalanos JJ, Marks DS, Bernhardt TG, & Kruse AC (2018). Structure and mutagenic analysis of the lipid II flippase MurJ from Escherichia coli.
Proc Natl Acad Sci USA 115 26:6709-6714. PubMed Id: 29891673. doi:10.1073/pnas.1802192115. |
||
MurJ lipid II flippase, squeezed form: Escherichia coli B Bacteria, 2.55 Å
|
Kohga et al. (2022).
Kohga H, Mori T, Tanaka Y, Yoshikaie K, Taniguchi K, Fujimoto K, Fritz L, Schneider T, & Tsukazaki T (2022). Crystal structure of the lipid flippase MurJ in a "squeezed" form distinct from its inward- and outward-facing forms.
Structure 30 8:1088-1097.e3. PubMed Id: 35660157. doi:10.1016/j.str.2022.05.008. |
||
MurJ lipid II flippase, inward closed form: Arsenophonus endosymbiont B Bacteria (expressed in E. coli), 2.80 Å
inward occluded form, 2.35 Å: 7WAX |
Kohga et al. (2022).
Kohga H, Mori T, Tanaka Y, Yoshikaie K, Taniguchi K, Fujimoto K, Fritz L, Schneider T, & Tsukazaki T (2022). Crystal structure of the lipid flippase MurJ in a "squeezed" form distinct from its inward- and outward-facing forms.
Structure 30 8:1088-1097.e3. PubMed Id: 35660157. doi:10.1016/j.str.2022.05.008. |
||
MtrD Inner Membrane Multidrug Efflux Pump: Neisseria gonorrhoeae B Bacteria (expressed in E. coli), 3.54 Å
For outer membrane component, see 4MT0 |
Bolla et al. (2014).
Bolla JR, Su CC, Do SV, Radhakrishnan A, Kumar N, Long F, Chou TH, Delmar JA, Lei HT, Rajashankar KR, Shafer WM, & Yu EW (2014). Crystal structure of the Neisseria gonorrhoeae MtrD inner membrane multidrug efflux pump.
PLoS ONE 9 6:e97903. PubMed Id: 24901477. doi:10.1371/journal.pone.0097903. |
||
MtrD Inner Membrane Multidrug Efflux Pump with bound ampicillin: Neisseria gonorrhoeae B Bacteria (expressed in E. coli), 3.02 Å
cryo-EM structure with bound erythromycin, 2.72 Å: 6VKT |
Lyu et al. (2020).
Lyu M, Moseng MA, Reimche JL, Holley CL, Dhulipala V, Su CC, Shafer WM, & Yu EW (2020). Cryo-EM Structures of a Gonococcal Multidrug Efflux Pump Illuminate a Mechanism of Drug Recognition and Resistance.
mBio 11 3. PubMed Id: 32457251. doi:10.1128/mBio.00996-20. |
||
HpnN hopanoid transporter (crystal form I): Burkholderia multivorans B Bacteria (expressed in E. coli), 3.44 Å
crystal form II, 3.76 Å: 5KHS |
Kumar et al. (2017).
Kumar N, Su CC, Chou TH, Radhakrishnan A, Delmar JA, Rajashankar KR, & Yu EW (2017). Crystal structures of the Burkholderia multivorans hopanoid transporter HpnN.
Proc Natl Acad Sci USA 114 :6557-6562. PubMed Id: 28584102. doi:10.1073/pnas.1619660114. |
||
HpnN hopanoid transporter: Burkholderia pseudomallei B Bacteria (expressed in E. coli), 3.59 Å
cryo-EM structure |
Su et al. (2021).
Su CC, Lyu M, Morgan CE, Bolla JR, Robinson CV, & Yu EW (2021). A 'Build and Retrieve' methodology to simultaneously solve cryo-EM structures of membrane proteins.
Nat Methods 18 1:69-75. PubMed Id: 33408407. doi:10.1038/s41592-020-01021-2. |
||
CmeB multi-drug efflux transporter, C2 space group: Campylobacter jejuni B Bacteria (expressed in E. coli), 3.15 Å
P1 space group, 3.55 Å: 5LQ3 |
Su et al. (2017).
Su CC, Yin L, Kumar N, Dai L, Radhakrishnan A, Bolla JR, Lei HT, Chou TH, Delmar JA, Rajashankar KR, Zhang Q, Shin YK, & Yu EW (2017). Structures and transport dynamics of a Campylobacter jejuni multidrug efflux pump.
Nat Commun 8 1:171. PubMed Id: 28761097. doi:10.1038/s41467-017-00217-z. |
||
Plant MATE protein: Camelina sativa E Eukaryota (expressed in Pichia pastoris), 2.9 Å
The first plant MATE transporter |
Tanaka et al. (2017).
Tanaka Y, Iwaki S, & Tsukazaki T (2017). Crystal Structure of a Plant Multidrug and Toxic Compound Extrusion Family Protein.
Structure 25 :1455-1460.e2. PubMed Id: 28877507. doi:10.1016/j.str.2017.07.009. |
||
MATE2 nicotine transporter: Nicotiana tabacum E Eukaryota (expressed in Komagataella pastoris), 3.50 Å
|
Tanaka et al. (2021).
Tanaka Y, Iwaki S, Sasaki A, & Tsukazaki T (2021). Crystal structures of a nicotine MATE transporter provide insight into its mechanism of substrate transport.
FEBS Lett 595 14:1902-1913. PubMed Id: 34050946. doi:10.1002/1873-3468.14136. |
||
Gong et al. (2018).
Gong X, Qian H, Cao P, Zhao X, Zhou Q, Lei J, & Yan N (2018). Structural basis for the recognition of Sonic Hedgehog by human Patched1.
Science 361 6402:568. PubMed Id: 29954986. doi:10.1126/science.aas8935. |
|||
Patched1 (Ptch1) of the Hedgehog (Hh) signaling pathway: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.50 Å
cryo-EM structure. Previous PDB codes: 6D4H & 6D4J in complex with native Sonic Hedgehog, 3.80 Å: 6OEV |
Qi et al. (2018).
Qi X, Schmiege P, Coutavas E, Wang J, & Li X (2018). Structures of human Patched and its complex with native palmitoylated sonic hedgehog.
Nature 560 7716:128-132. PubMed Id: 29995851. doi:10.1038/s41586-018-0308-7. |
||
2:1 human Ptch1-SHH-N complex: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.5 Å
cryo-EM structure |
Qi et al. (2018).
Qi X, Schmiege P, Coutavas E, & Li X (2018). Two Patched molecules engage distinct sites on Hedgehog yielding a signaling-competent complex.
Science 362 6410:eaas8843. PubMed Id: 30139912. doi:10.1126/science.aas8843. |
||
2:1 human Ptch1-SHH-N complex (revised structure): Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.50 Å
cryo-EM structure x-ray: ectodomain complex with nanobody NB64, 2.10 Å: 6RTY x-ray: ectodomain in complex with nanobody NB64 & cholesterol-hemisuccinate, 1.90 Å: 6RTW x-ray: ectodomain 1, 1.95 Å: 6RTX x-ray: ectodomain 2 (PTCH1-ECD2) in complex with nanobody 75, 2.20 Å: 6RVC |
Rudolf et al. (2019).
Rudolf AF, Kinnebrew M, Kowatsch C, Ansell TB, El Omari K, Bishop B, Pardon E, Schwab RA, Malinauskas T, Qian M, Duman R, Covey DF, Steyaert J, Wagner A, Sansom MSP, Rohatgi R, & Siebold C (2019). The morphogen Sonic hedgehog inhibits its receptor Patched by a pincer grasp mechanism.
Nat Chem Biol 15 10:975-982. PubMed Id: 31548691. doi:10.1038/s41589-019-0370-y. |
||
Qian et al. (2019).
Qian H, Cao P, Hu M, Gao S, Yan N, & Gong X (2019). Inhibition of tetrameric Patched1 by Sonic Hedgehog through an asymmetric paradigm.
Nat Commun 10 1. PubMed Id: 31127104. doi:10.1038/s41467-019-10234-9. |
|||
Patched1 (Ptch1) of the Hedgehog (Hh) signaling pathway bound to ShhNC24II: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.40 Å
cryo-EM structure |
Qi et al. (2019).
Qi C, Di Minin G, Vercellino I, Wutz A, & Korkhov VM (2019). Structural basis of sterol recognition by human hedgehog receptor PTCH1.
Sci Adv 5 9. PubMed Id: 31555730. doi:10.1126/sciadv.aaw6490. |
||
Patched1 (Ptch1) of the Hedgehog (Hh) signaling pathway: Mus musculus E Eukaryota (expressed in Sf9 cells), 3.60 Å
Cryo-EM structure |
Zhang et al. (2018).
Zhang Y, Bulkley DP, Xin Y, Roberts KJ, Asarnow DE, Sharma A, Myers BR, Cho W, Cheng Y, & Beachy PA (2018). Structural Basis for Cholesterol Transport-like Activity of the Hedgehog Receptor Patched.
Cell 175 5:1352-1364.e14. PubMed Id: 30415841. doi:10.1016/j.cell.2018.10.026. |
||
Patched1 (Ptch1) of the Hedgehog (Hh) signaling pathway in complex with conformation selective nanobody TI23: Mus musculus E Eukaryota (expressed in HEK293 cells), 3.40 Å
cryo-EM structure |
Zhang et al. (2020).
Zhang Y, Lu WJ, Bulkley DP, Liang J, Ralko A, Han S, Roberts KJ, Li A, Cho W, Cheng Y, Manglik A, & Beachy PA (2020). Hedgehog pathway activation through nanobody-mediated conformational blockade of the Patched sterol conduit.
Proc Natl Acad Sci U S A 117 46:28838-28846. PubMed Id: 33139559. doi:10.1073/pnas.2011560117. |
||
Patched1 (Ptch1) of the Hedgehog (Hh) signaling pathway in nanodisc, wild-type: Mus musculus E Eukaryota (expressed in HEK293 cells), 3.50 Å
formerly 7DZQ & 7DZR cryo-EM structure V1084A mutant, 3.64 Å 7V6Z |
Luo et al. (2021).
Luo Y, Wan G, Zhang X, Zhou X, Wang Q, Fan J, Cai H, Ma L, Wu H, Qu Q, Cong Y, Zhao Y, & Li D (2021). Cryo-EM study of patched in lipid nanodisc suggests a structural basis for its clustering in caveolae.
Structure 29 . PubMed Id: 34174188. doi:10.1016/j.str.2021.06.004. |
||
Dispatched of the Hedgehog (Hh) signaling pathway: Drosophila melanogaster E Eukaryota (expressed in HEK293 cells), 3.16 Å
cryo-EM structure bound to a modified Hedgehog ligand, HhN-C85II, 4.76 Å: |
Cannac et al. (2020).
Cannac F, Qi C, Falschlunger J, Hausmann G, Basler K, & Korkhov VM (2020). Cryo-EM structure of the Hedgehog release protein Dispatched.
Sci Adv 6 16. PubMed Id: 32494603. doi:10.1126/sciadv.aay7928. |
||
Dispatched-1 (DISP1) of the Hedgehog (Hh) signaling pathway: Homo sapiens E Eukaryota (expressed in HEK293 cells), 4.53 Å
cryo-EM structure |
Chen et al. (2020).
Chen H, Liu Y, & Li X (2020). Structure of human Dispatched-1 provides insights into Hedgehog ligand biogenesis.
Life Sci Alliance 3 8:e202000776. PubMed Id: 32646883. doi:10.26508/lsa.202000776. |
||
Li et al. (2021).
Li W, Wang L, Wierbowski BM, Lu M, Dong F, Liu W, Li S, Wang P, Salic A, & Gong X (2021). Structural insights into proteolytic activation of the human Dispatched1 transporter for Hedgehog morphogen release.
Nat Commun 12 1:6966. PubMed Id: 34845226. doi:10.1038/s41467-021-27257-w. |
|||
Wang et al. (2021).
Wang Q, Asarnow DE, Ding K, Mann RK, Hatakeyama J, Zhang Y, Ma Y, Cheng Y, & Beachy PA (2021). Dispatched uses Na+ flux to power release of lipid-modified Hedgehog.
Nature 599 7884:320-324. PubMed Id: 34707294. doi:10.1038/s41586-021-03996-0. |
|||
MmpL3 mycolic acid transporter: Mycobacterium smegmatis B Bacteria, 2.70 Å
MmpL3 is an important drug target for anti-tuberculosis drugs. It is a member of the resistance and cell division (RND) superfamily. in complex with SQ109, 2.60 Å: 6AJG in complex with AU1235, 2.82 Å: 6AJH in complex with ICA38, 2.79 Å: 6AJJ in complex with Rimonabant, 2.9 Å: 6AJI |
Zhang et al. (2019).
Zhang B, Li J, Yang X, Wu L, Zhang J, Yang Y, Zhao Y, Zhang L, Yang X, Yang X, Cheng X, Liu Z, Jiang B, Jiang H, Guddat LW, Yang H, & Rao Z (2019). Crystal Structures of Membrane Transporter MmpL3, an Anti-TB Drug Target.
Cell 176 3:636-648.e13. PubMed Id: 30682372. doi:10.1016/j.cell.2019.01.003. |
||
MmpL3 mycolic acid transporter with bound phosphatidylethanolamine: Mycobacterium smegmatis B Bacteria (expressed in E. coli), 2.59 Å
6OR2 supersedes 6N3T. Truncated protein: residues 1-773 full-length protein, 3.31 Å: 6N40 |
Su et al. (2019).
Su CC, Klenotic PA, Bolla JR, Purdy GE, Robinson CV, & Yu EW (2019). MmpL3 is a lipid transporter that binds trehalose monomycolate and phosphatidylethanolamine.
Proc Natl Acad Sci USA 116 23:11241-11246. PubMed Id: 31113875. doi:10.1073/pnas.1901346116. |
||
MmpL3 mycolic acid transporter in complex with NITD-349: Mycolicibacterium smegmatis B Bacteria, 3.10 Å
complexed with SPIRO, 2.82 Å: 7C2N |
Yang et al. (2020).
Yang X, Hu T, Yang X, Xu W, Yang H, Guddat LW, Zhang B, & Rao Z (2020). Structural Basis for the Inhibition of Mycobacterial MmpL3 by NITD-349 and SPIRO.
J Mol Biol 432 16:4426-4434. PubMed Id: 32512002. doi:10.1016/j.jmb.2020.05.019. |
||
Su et al. (2021).
Su CC, Klenotic PA, Cui M, Lyu M, Morgan CE, & Yu EW (2021). Structures of the mycobacterial membrane protein MmpL3 reveal its mechanism of lipid transport.
PLoS Biol 19 8:3001370. PubMed Id: 34383749. doi:10.1371/journal.pbio.3001370. |
|||
MmpL3 mycolic acid transporter: Mycobacterium tuberculosis B Bacteria (expressed in E. coli), 3.00 Å
cryo-EM structure |
Adams et al. (2021).
Adams O, Deme JC, Parker JL, , Fowler PW, Lea SM, & Newstead S (2021). Cryo-EM structure and resistance landscape of M. tuberculosis MmpL3: An emergent therapeutic target.
Structure 29 10:1182-1191.e4. PubMed Id: 34242558. doi:10.1016/j.str.2021.06.013. |
||
TriABC Triclosan Efflux Pump: Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 4.50 Å
cryo-EM structure |
Fabre et al. (2021).
Fabre L, Ntreh AT, Yazidi A, Leus IV, Weeks JW, Bhattacharyya S, Ruickoldt J, Rouiller I, Zgurskaya HI, & Sygusch J (2021). A "Drug Sweeping" State of the TriABC Triclosan Efflux Pump from Pseudomonas aeruginosa.
Structure 29 3:261-274.e6. PubMed Id: 32966762. doi:10.1016/j.str.2020.09.001. |
||
OqxB bacterial multi-drug efflux transporter: Klebsiella pneumoniae B Bacteria (expressed in E. coli), 1.85 Å
OqxB is a member of the resistance nodulation and cell division (RND) superfamily. |
Bharatham et al. (2021).
Bharatham N, Bhowmik P, Aoki M, Okada U, Sharma S, Yamashita E, Shanbhag AP, Rajagopal S, Thomas T, Sarma M, Narjari R, Nagaraj S, Ramachandran V, Katagihallimath N, Datta S, & Murakami S (2021). Structure and function relationship of OqxB efflux pump from Klebsiella pneumoniae.
Nat Commun 12 1:5400. PubMed Id: 34518546. doi:10.1038/s41467-021-25679-0. |
||
AdeB multidrug transporter, OOO state: Acinetobacter baumannii B Bacteria (expressed in E. coli), 3.54 Å
cryo-EM structure L*OO state, 3.84 Å 7B8Q |
Ornik-Cha et al. (2021).
Ornik-Cha A, Wilhelm J, Kobylka J, Sjuts H, Vargiu AV, Malloci G, Reitz J, Seybert A, Frangakis AS, & Pos KM (2021). Structural and functional analysis of the promiscuous AcrB and AdeB efflux pumps suggests different drug binding mechanisms.
Nat Commun 12 1:6919. PubMed Id: 34824229. doi:10.1038/s41467-021-27146-2. |
||
NorA efflux pump in complex with Fab25: Staphylococcus aureus B Bacteria (expressed in E. coli), 3.74 Å
cryo-EM structure in complex with Fab36, 3.16 Å: 7LO8 |
Brawley et al. (2022).
Brawley DN, Sauer DB, Li J, Zheng X, Koide A, Jedhe GS, Suwatthee T, Song J, Liu Z, Arora PS, Koide S, Torres VJ, Wang DN, & Traaseth NJ (2022). Structural basis for inhibition of the drug efflux pump NorA from Staphylococcus aureus.
Nat Chem Biol 18 7:706-712. PubMed Id: 35361990. doi:10.1038/s41589-022-00994-9. |
||
BpeB bacterial multi-drug efflux transporter: Burkholderia pseudomallei B Bacteria (expressed in E. coli), 2.94 Å
X-ray structure |
Kato et al. (2023).
Kato T, Okada U, Hung LW, Yamashita E, Kim HB, Kim CY, Terwilliger TC, Schweizer HP, & Murakami S (2023). Crystal structures of multidrug efflux transporters from Burkholderia pseudomallei suggest details of transport mechanism.
Proc Natl Acad Sci U S A 120 29:e2215072120. PubMed Id: 37428905. doi:10.1073/pnas.2215072120. |
||
BpeF bacterial multi-drug efflux transporter: Burkholderia pseudomallei B Bacteria (expressed in E. coli), 3.00 Å
X-ray structure |
Kato et al. (2023).
Kato T, Okada U, Hung LW, Yamashita E, Kim HB, Kim CY, Terwilliger TC, Schweizer HP, & Murakami S (2023). Crystal structures of multidrug efflux transporters from Burkholderia pseudomallei suggest details of transport mechanism.
Proc Natl Acad Sci U S A 120 29:e2215072120. PubMed Id: 37428905. doi:10.1073/pnas.2215072120. |
||
AbgT Family of Transporters
Involved in bacterial folate synthesis through catabolite transport Proteins in this family may also function as drug efflux pumps |
|||
YdaH transporter: Alcanivorax borkumensis B Bacteria (expressed in E. coli), 2.96 Å
The first structure determined for a member of the AbgT family. |
Bolla et al. (2015).
Bolla JR, Su CC, Delmar JA, Radhakrishnan A, Kumar N, Chou TH, Long F, Rajashankar KR, & Yu EW (2015). Crystal structure of the Alcanivorax borkumensis YdaH transporter reveals an unusual topology.
Nat Commun 6 :6874. PubMed Id: 25892120. doi:10.1038/ncomms7874. |
||
Sulfate-Uptake Transporters/Permeases
|
|||
CysZ sulfate permease: Idiomarina loihiensis B Bacteria (expressed in E. coli), 2.3 Å
The subunits of this transporter, like EmrE, are organized with inverted transmembrane topology |
Assur Sanghai et al. (2018).
Assur Sanghai Z, Liu Q, Clarke OB, Belcher-Dufrisne M, Wiriyasermkul P, Giese MH, Leal-Pinto E, Kloss B, Tabuso S, Love J, Punta M, Banerjee S, Rajashankar KR, Rost B, Logothetis D, Quick M, Hendrickson WA, & Mancia F (2018). Structure-based analysis of CysZ-mediated cellular uptake of sulfate.
Elife 7 :e27829. PubMed Id: 29792261. doi:10.7554/eLife.27829. |
||
CysZ sulfate permease: Pseudomonas fragi B Bacteria (expressed in E. coli), 3.50 Å
|
Assur Sanghai et al. (2018).
Assur Sanghai Z, Liu Q, Clarke OB, Belcher-Dufrisne M, Wiriyasermkul P, Giese MH, Leal-Pinto E, Kloss B, Tabuso S, Love J, Punta M, Banerjee S, Rajashankar KR, Rost B, Logothetis D, Quick M, Hendrickson WA, & Mancia F (2018). Structure-based analysis of CysZ-mediated cellular uptake of sulfate.
Elife 7 :e27829. PubMed Id: 29792261. doi:10.7554/eLife.27829. |
||
CysZ sulfate permease: Pseudomonas sp. ATCC 13867 B Bacteria (expressed in E. coli), 3.40 Å
|
Assur Sanghai et al. (2018).
Assur Sanghai Z, Liu Q, Clarke OB, Belcher-Dufrisne M, Wiriyasermkul P, Giese MH, Leal-Pinto E, Kloss B, Tabuso S, Love J, Punta M, Banerjee S, Rajashankar KR, Rost B, Logothetis D, Quick M, Hendrickson WA, & Mancia F (2018). Structure-based analysis of CysZ-mediated cellular uptake of sulfate.
Elife 7 :e27829. PubMed Id: 29792261. doi:10.7554/eLife.27829. |
||
Membrane-Associated Proteins in Eicosanoid and Glutathione Metabolism (MAPEG)
|
|||
Microsomal Glutathione Transferase 1 (MGST1): Rattus norvegicus E Eukaryota, 3.2 Å
Electron Diffraction |
Holm et al. (2006).
Holm PJ, Bhakat P, Jegerschold C, Gyobu N, Mitsuoka K, Fujiyoshi Y, Morgenstern R, & Hebert H. (2006). Structural Basis for Detoxification and Oxidative Stress Protection in Membranes.
J Mol Biol 360 :934-945. PubMed Id: 16806268. |
||
Thulasingam et al. (2021).
Thulasingam M, Orellana L, Nji E, Ahmad S, Rinaldo-Matthis A, & Haeggström JZ (2021). Crystal structures of human MGST2 reveal synchronized conformational changes regulating catalysis.
Nat Commun 12 1:1728. PubMed Id: 33741927. doi:10.1038/s41467-021-21924-8. |
|||
Microsomal Prostaglandin E Synthase 1: Homo sapiens E Eukaryota (expressed in E. coli), 3.5 Å
Electron Diffraction. In complex with glutathione. |
Jegerschöld et al. (2008).
Jegerschöld C, Pawelzik SC, Purhonen P, Bhakat P, Gheorghe KR, Gyobu N, Mitsuoka K, Morgenstern R, Jakobsson PJ, & Hebert H (2008). Structural basis for induced formation of the inflammatory mediator prostaglandin E2.
Proc Natl Acad Sci USA 105 :11110-11115. PubMed Id: 18682561. |
||
Microsomal Prostaglandin E Synthase 1: Homo sapiens E Eukaryota (expressed in S. frugiperda), 1.16 Å
With GSH analog, 1.95 Å: 4AL1 |
Sjögren et al. (2013).
Sjögren T, Nord J, Ek M, Johansson P, Liu G, & Geschwindner S (2013). Crystal structure of microsomal prostaglandin E2 synthase provides insight into diversity in the MAPEG superfamily.
Proc Natl Acad Sci USA 110 :3806-3811. PubMed Id: 23431194. doi:10.1073/pnas.1218504110. |
||
Microsomal Prostaglandin E Synthase 1 with bound inhibitor DG-031: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 1.40 Å
|
Ho et al. (2021).
Ho JD, Lee MR, Rauch CT, Aznavour K, Park JS, Luz JG, Antonysamy S, Condon B, Maletic M, Zhang A, Hickey MJ, Hughes NE, Chandrasekhar S, Sloan AV, Gooding K, Harvey A, Yu XP, Kahl SD, & Norman BH (2021). Structure-based, multi-targeted drug discovery approach to eicosanoid inhibition: Dual inhibitors of mPGES-1 and 5-lipoxygenase activating protein (FLAP).
Biochim Biophys Acta Gen Subj 1865 2:129800. PubMed Id: 33246032. doi:10.1016/j.bbagen.2020.129800. |
||
Luz et al. (2015).
Luz JG, Antonysamy S, Kuklish SL, Condon B, Lee MR, Allison D, Yu XP, Chandrasekhar S, Backer R, Zhang A, Russell M, Chang SS, Harvey A, Sloan AV, & Fisher MJ (2015). Crystal Structures of mPGES-1 Inhibitor Complexes Form a Basis for the Rational Design of Potent Analgesic and Anti-Inflammatory Therapeutics.
J Med Chem 58 11:4727-4737. PubMed Id: 25961169. doi:10.1021/acs.jmedchem.5b00330. |
|||
Microsomal Prostaglandin E Synthase 1 in complex with GSH analog, native-SAD structure determined at wavelength 2.755 Å: Homo sapiens E Eukaryota (expressed in S. frugiperda), 1.77 Å
X-Ray Structure |
El Omari et al. (2023).
El Omari K, Duman R, Mykhaylyk V, Orr CM, Latimer-Smith M, Winter G, Grama V, Qu F, Bountra K, Kwong HS, Romano M, Reis RI, Vogeley L, Vecchia L, Owen CD, Wittmann S, Renner M, Senda M, Matsugaki N, Kawano Y, Bowden TA, Moraes I, Grimes JM, Mancini EJ, Walsh MA, Guzzo CR, Owens RJ, Jones EY, Brown DG, Stuart DI, Beis K, & Wagner A (2023). Experimental phasing opportunities for macromolecular crystallography at very long wavelengths.
Commun Chem 6 1:219. PubMed Id: 37828292. doi:10.1038/s42004-023-01014-0. |
||
5-Lipoxygenase-Activating Protein (FLAP) with Bound MK-591 Inhibitor: Homo sapiens E Eukaryota (expressed in E. coli), 4.0 Å
FLAP with iodinated MK-591 analog: 2Q7R. |
Ferguson et al. (2007).
Ferguson AD, McKeever BM, Xu S, Wisniewski D, Miller DK, Yamin TT, Spencer RH, Chu L, Ujjainwalla F, Cunningham BR, Evans JF, & Becker JW (2007). Crystal structure of inhibitor-bound human 5-lipoxygenase-activating protein.
Science 317 :510-512. PubMed Id: 17600184. |
||
5-Lipoxygenase-Activating Protein (FLAP) with bound DG-031: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 2.37 Å
with bound MK-866, 2.61 Å: 6VGI |
Ho et al. (2021).
Ho JD, Lee MR, Rauch CT, Aznavour K, Park JS, Luz JG, Antonysamy S, Condon B, Maletic M, Zhang A, Hickey MJ, Hughes NE, Chandrasekhar S, Sloan AV, Gooding K, Harvey A, Yu XP, Kahl SD, & Norman BH (2021). Structure-based, multi-targeted drug discovery approach to eicosanoid inhibition: Dual inhibitors of mPGES-1 and 5-lipoxygenase activating protein (FLAP).
Biochim Biophys Acta Gen Subj 1865 2:129800. PubMed Id: 33246032. doi:10.1016/j.bbagen.2020.129800. |
||
Leukotriene LTC4 Synthase in complex with glutathione: Homo sapiens E Eukaryota (expressed in Shizosaccharomyces pombe), 3.3 Å
|
Ago et al. (2007).
Ago H, Kanaoka Y, Irikura D, Lam BK, Shimamura T, Austen KF, & Miyano M (2007). Crystal structure of a human membrane protein involved in cysteinyl leukotriene biosynthesis.
Nature 448 :609-612. PubMed Id: 17632548. |
||
Leukotriene LTC4 Synthase in complex with glutathione: Homo sapiens E Eukaryota (expressed in Pichia pastoris), 2.15 Å
apo form: 2UUI, 2.00 Å. |
Molina et al. (2007).
Molina DM, Wetterholm A, Kohl A, McCarthy AA, Niegowski D, Ohlson E, Hammarberg T, Eshaghi S, Haeggstrom JZ, & Nordlund P (2007). Structural basis for synthesis of inflammatory mediators by human leukotriene C4synthase.
Nature 448 :613-616. PubMed Id: 17632546. |
||
Niegowski et al. (2014).
Niegowski D, Kleinschmidt T, Olsson U, Ahmad S, Rinaldo-Matthis A, & Haeggström JZ (2014). Crystal Structures of Leukotriene C4 Synthase in Complex with Product Analogs: IMPLICATIONS FOR THE ENZYME MECHANISM.
J Biol Chem 289 :5199-5207. PubMed Id: 24366866. doi:10.1074/jbc.M113.534628. |
|||
SWEET and semiSWEET Transporters, and Their Relatives
SWEETs are monsaccharide and disaccharide transporters. Bacterial homologues are semiSWEETS. |
|||
semiSWEET transporter in occluded state: Leptospira biflexa B Bacteria (expressed in E. coli), 2.39 Å
|
Xu et al. (2014).
Xu Y, Tao Y, Cheung LS, Fan C, Chen LQ, Xu S, Perry K, Frommer WB, & Feng L (2014). Structures of bacterial homologues of SWEET transporters in two distinct conformations.
Nature 515 7527:448-452. PubMed Id: 25186729. doi:10.1038/nature13670. |
||
semiSWEET transporter in outward-open state: Leptospira biflexa B Bacteria (expressed in E. coli), 2.8 Å
|
Latorraca et al. (2017).
Latorraca NR, Fastman NM, Venkatakrishnan AJ, Frommer WB, Dror RO, & Feng L (2017). Mechanism of Substrate Translocation in an Alternating Access Transporter.
Cell 169 :96-107.e12. PubMed Id: 28340354. doi:10.1016/j.cell.2017.03.010. |
||
semiSWEET transporter in outward-open conformation: Vibrio sp. n418 B Bacteria (expressed in E. coli), 1.70 Å
|
Xu et al. (2014).
Xu Y, Tao Y, Cheung LS, Fan C, Chen LQ, Xu S, Perry K, Frommer WB, & Feng L (2014). Structures of bacterial homologues of SWEET transporters in two distinct conformations.
Nature 515 7527:448-452. PubMed Id: 25186729. doi:10.1038/nature13670. |
||
semiSWEET transporter in occluded state: Thermodesulfovibrio yellowstonii B Bacteria (expressed in E. coli), 2.40 Å
|
Wang et al. (2014).
Wang J, Yan C, Li Y, Hirata K, Yamamoto M, Yan N, & Hu Q (2014). Crystal structure of a bacterial homologue of SWEET transporters.
Cell Res 24 12:1486-1489. PubMed Id: 25378180. doi:10.1038/cr.2014.144. |
||
semiSWEET transporter in inward-open conformation (crystal I): Escherichia coli B Bacteria, 2.00 Å
outward-open state (crystal II), 3.00 Å: 4X5N (crystal I:P212121. Crystal II: C2) |
Lee et al. (2015).
Lee Y, Nishizawa T, Yamashita K, Ishitani R, & Nureki O (2015). Structural basis for the facilitative diffusion mechanism by SemiSWEET transporter.
Nat Commun 6 :6112. PubMed Id: 25598322. doi:10.1038/ncomms7112. |
||
SWEET transporter in a homotrimeric complex: Oryza sativa E Eukaryota (expressed in Komagataella pastoris), 3.10 Å
lower resolution structure, 3.7 Å: 5CTH |
Tao et al. (2015).
Tao Y, Cheung LS, Li S, Eom JS, Chen LQ, Xu Y, Perry K, Frommer WB, & Feng L (2015). Structure of a eukaryotic SWEET transporter in a homotrimeric complex.
Nature 527 :259-263. PubMed Id: 26479032. doi:10.1038/nature15391. |
||
PnuC vitamin B3 transporter: Neisseria mucosa B Bacteria (expressed in E. coli), 2.80 Å
|
Jaehme et al. (2014).
Jaehme M, Guskov A, & Slotboom DJ (2014). Crystal structure of the vitamin B3 transporter PnuC, a full-length SWEET homolog.
Nat Struct Mol Biol 21 11:1013-1015. PubMed Id: 25291599. doi:10.1038/nsmb.2909. |
||
Bräuer et al. (2019).
Bräuer P, Parker JL, Gerondopoulos A, Zimmermann I, Seeger MA, Barr FA, & Newstead S (2019). Structural basis for pH-dependent retrieval of ER proteins from the Golgi by the KDEL receptor.
Science 363 6431:1103-1107. PubMed Id: 30846601. doi:10.1126/science.aaw2859. |
|||
KDEL receptor bound to HDEL peptide at pH 6.0: Gallus gallus E Eukaryota (expressed in S. cerevisiae), 2.24 Å
bound to RDEL peptide at pH 6.0, 2.31 Å: 6ZXR |
Gerondopoulos et al. (2021).
Gerondopoulos A, Bräuer P, Sobajima T, Wu Z, Parker JL, Biggin PC, Barr FA, & Newstead S (2021). A signal capture and proofreading mechanism for the KDEL-receptor explains selectivity and dynamic range in ER retrieval.
eLife 10 :e68380. PubMed Id: 34137369. doi:10.7554/eLife.68380. |
||
KDEL receptor with bound nanobody-binding scaffold (Legobody): Gallus gallus E Eukaryota (expressed in S. cerevisiae), 3.20 Å
cryo-EM structure |
Wu & Rapoport (2021).
Wu X, & Rapoport TA (2021). Cryo-EM structure determination of small proteins by nanobody-binding scaffolds (Legobodies).
Proc Natl Acad Sci U S A 118 41:e2115001118. PubMed Id: 34620716. doi:10.1073/pnas.2115001118. |
||
Cystinosin cystine transporter bound to sybody and nanobody: Arabidopsis thaliana E Eukaryota (expressed in Saccharomyces cerevisiae), 2.65 Å
Cystinosin is a member of the PQ-loop family of solute carrier (SLC) transporters. bound to two nanobodies, 2.33 Å: 7ZKZ in complex with Cystine and sybody, 3.37 Å: 7ZKW |
Löbel et al. (2022).
Löbel M, Salphati SP, El Omari K, Wagner A, Tucker SJ, Parker JL, & Newstead S (2022). Structural basis for proton coupled cystine transport by cystinosin.
Nat Commun 13 1:4845. PubMed Id: 35977944. doi:10.1038/s41467-022-32589-2. |
||
Cystinosin cystine transporter, lumen-open state: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.32 Å
cryo-EM structure with bound cystine, 3.39 Å: 8DKM cytosol-open state, 3.18 Å: 8DKE N288K mutant, cytosol-open state, ph5.0, 3.09 Å: 8DKW N288K mutant, cytosol-open state, ph7.5, 3.00 Å: 8DKX x-ray structure, 3.40 Å: 8DYP |
Guo et al. (2022).
Guo X, Schmiege P, Assafa TE, Wang R, Xu Y, Donnelly L, Fine M, Ni X, Jiang J, Millhauser G, Feng L, & Li X (2022). Structure and mechanism of human cystine exporter cystinosin.
Cell 185 20:3739-3752.e18. PubMed Id: 36113465. doi:10.1016/j.cell.2022.08.020. |
||
Aluminum-Activated Malate Transporter Family (ALMTs)
|
|||
Wang et al. (2022).
Wang J, Yu X, Ding ZJ, Zhang X, Luo Y, Xu X, Xie Y, Li X, Yuan T, Zheng SJ, Yang W, & Guo J (2022). Structural basis of ALMT1-mediated aluminum resistance in Arabidopsis.
Cell Res 32 1:89-98. PubMed Id: 34799726. doi:10.1038/s41422-021-00587-6. |
|||
Neurotransmitter Sodium Symporter (NSS) Family
NSS family catalyze uptake of a variety of neurotransmitters, amino acids, and osmolytes |
|||
serotonin transporter in complex with paroxetine, ts2-inactive: Homo sapiens E Eukaryota (expressed in HEK293 cells), 4.30 Å
cryo-EM structure ts2-active with bound ibogaine, 4.10 Å 6DZY with bound ibogaine in occluded conformation, 4.20 Å 6DZV complex with ibogaine in the inward conformation, 3.60 Å 6DZZ |
Coleman et al. (2019).
Coleman JA, Yang D, Zhao Z, Wen PC, Yoshioka C, Tajkhorshid E, & Gouaux E (2019). Serotonin transporter-ibogaine complexes illuminate mechanisms of inhibition and transport.
Nature 569 7754:141-145. PubMed Id: 31019304. doi:10.1038/s41586-019-1135-1. |
||
serotonin transporter in nanodisc, 5-HT bound NaCl occluded conformation: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.50 Å
cryo-EM structure 5-HT bound in KCl, 3.90 Å 7LI9 apo form in presence of NaCl in occluded conformation, 4.10 Å 7LI7 apo form in presence of NaCl in inward open conformation, 3.90 Å 7LI8 apo form in KCl, 3.50 Å 7LI6 |
Yang & Gouaux (2021).
Yang D, & Gouaux E (2021). Illumination of serotonin transporter mechanism and role of the allosteric site.
Sci Adv 7 49:eabl3857. PubMed Id: 34851672. doi:10.1126/sciadv.abl3857. |
||
GABA transporter GAT1, inward-open state: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.20 Å
cryo-EM structure with bound GABA in NaCl solution, inward-occluded state, 2.40 Å: 7Y7W with bound nipecotic acid in NaCl solution, inward-occluded state, 2.40 Å: 7Y7Y with bound tiagabine in NaCl solution, inward-open state, 3.20 Å: 7Y7Z |
Zhu et al. (2023).
Zhu A, Huang J, Kong F, Tan J, Lei J, Yuan Y, & Yan C (2023). Molecular basis for substrate recognition and transport of human GABA transporter GAT1.
Nat Struct Mol Biol 30 7:1012-1022. PubMed Id: 37400655. doi:10.1038/s41594-023-00983-z. |
||
GABA transporter 1 (GAT1), cytosol-facing, substrate-bound: Rattus norvegicus E Eukaryota (expressed in HEK293 cells), 3.10 Å
cryo-EM structure |
Nayak et al. (2023).
Nayak SR, Joseph D, Höfner G, Dakua A, Athreya A, Wanner KT, Kanner BI, & Penmatsa A (2023). Cryo-EM structure of GABA transporter 1 reveals substrate recognition and transport mechanism.
Nat Struct Mol Biol 30 7:1023-1032. PubMed Id: 37400654. doi:10.1038/s41594-023-01011-w. |
||
Amino Acid Secondary Transporters
|
|||
LeuTAa Leucine transporter: Aquifex aeolicus B Bacteria (expressed in E. coli), 1.65 Å
|
Yamashita et al. (2005).
Yamashita A, Singh SK, Kawate T, Jin Y, & Gouaux E (2005). Crystal structure of a bacterial homologue of Na+/Cl--dependent neurotransmitter transporters.
Nature 437 :215-223. PubMed Id: 16041361. |
||
Singh et al. (2007).
Singh SK, Yamashita A, & Gouaux E (2007). Antidepressant binding site in a bacterial homologue of neurotransmitter transporters.
Nature 448 :952-956. PubMed Id: 17687333. |
|||
LeuT Leucine transporter with bound Na+ and tryptophan: Aquifex aeolicus B Bacteria (expressed in E. coli), 2.00 Å
Shows the transporter in an open-to-out conformation. w. bound glycine, 2.15 Å: 3F4J w. bound alanine, 1.90 Å: 3F48 w. bound leucine (30mM), 1.80 Å: 3F3E w. bound methionine, 1.90 Å: 3F3D w. bound selenomethionine, 1.95 Å: 3F4I w. bound 4-fluorophenylalanine, 2.10 Å: 3F3C |
Singh et al. (2009).
Singh SK, Piscitelli CL, Yamashita A, & Gouaux E (2009). A competitive inhibitor traps LeuT in an open-to-out conformation.
Science 322 :1655-1661. PubMed Id: 19074341. |
||
LeuT Leucine Transporter with Bound Desipramine: Aquifex aeolicus B Bacteria (expressed in E. coli), 2.9 Å
|
Zhou et al. (2007).
Zhou Z, Zhen J, Karpowich NK, Goetz RM, Law CJ, Reith ME, & Wang DN (2007). LeuT-desipramine structure reveals how antidepressants block neurotransmitter reuptake.
Science 317 :1390-1393. PubMed Id: 17690258. |
||
Wild-type LeuT transporter with bound octylglucopyranoside (OG): Aquifex aeolicus B Bacteria (expressed in E. coli), 2.0 Å
E290S mutant with bound OG, 2.8 Å: 3GJC |
Quick et al. (2009).
Quick M, Winther AM, Shi L, Nissen P, Weinstein H, & Javitch JA (2009). Binding of an octylglucoside detergent molecule in the second substrate (S2) site of LeuT establishes an inhibitor-bound conformation.
Proc. Natl. Acad. Sci. USA 106 :5563-5568. PubMed Id: 19307590. |
||
Mutant LeuT transporter with Nitroxide Spin Label (F177R1): Aquifex aeolicus B Bacteria (expressed in E. coli), 2.25 Å
I204R1 mutant, 2.25 Å: 3MPQ |
Kroncke et al. (2010).
Kroncke BM, Horanyi PS, Columbus L. (2010). Structural Origins of Nitroxide Side Chain Dynamics on Membrane Protein α-Helical Sites.
Biochemistry 49 :10045-10060. PubMed Id: 20964375. |
||
Piscitelli & Gouaux (2012).
Piscitelli CL & Gouaux E (2012). Insights into transport mechanism from LeuT engineered to transport tryptophan.
EMBO J 31 :228-235. PubMed Id: 21952050. doi:10.1038/emboj.2011.353. |
|||
Crystal Structure of LeuT in the outward-open conformation in complex with Fab: Aquifex aeolicus B Bacteria (expressed in E. coli), 3.10 Å
(LeuTK(Y108F)-2B12 Complex) LeuT in the inward-open conformation in complex with Fab, 3.22 Å: 3TT3 (LeuTK(TSY)-6A10 complex) LeuT mutant T355V, S354A, K288A in complex with alanine and sodium, 2.99 Å: 3TU0 (LeuTK(TS) complex with Ala) |
Krishnamurthy & Gouaux (2012).
Krishnamurthy H & Gouaux E (2012). X-ray structures of LeuT in substrate-free outward-open and apo inward-open states.
Nature 481 :469-474. PubMed Id: 22230955. doi:10.1038/nature10737. |
||
LeuT Leucine Transporter Crystallized from Bicelles: Aquifex aeolicus B Bacteria (expressed in E. coli), 2.50 Å
3USG is designated as LeuT-Leu (C2 bicelle) LeuT-Leu (P2 bicelle), 3.11 Å: 3USI LeuT-Leu (P21 form A bicelle), 3.50 Å: 3USJ LeuT-Leu (P21 form B bicelle), 4.50 Å: 3USK LeuT-SeMet (C2 bicelle), 2.71 Å: 3USL LeuT-SeMet (C2 bicelle, collected at 1.2 Å), 3.01 Å: 3USM LeuT-SeMet (P21212 bicelle), 4.50 Å: 3USO LeuT-β-SeHG (C2 β-SeHG), 2.10 Å: 3USP |
Wang et al. (2012).
Wang H, Elferich J, & Gouaux E (2012). Structures of LeuT in bicelles define conformation and substrate binding in a membrane-like context.
Nature Struc Mol Biol 19 :212-219. PubMed Id: 22245965. doi:10.1038/nsmb.2215. |
||
Malinauskaite et al. (2016).
Malinauskaite L, Said S, Sahin C, Grouleff J, Shahsavar A, Bjerregaard H, Noer P, Severinsen K, Boesen T, Schiφtt B, Sinning S, & Nissen P (2016). A conserved leucine occupies the empty substrate site of LeuT in the Na+-free return state.
Nat Commun 7 :11673. PubMed Id: 27221344. doi:10.1038/ncomms11673. |
|||
LeuT Leucine Transporter, substrate bound in inward-facing occluded conformation: Aquifex aeolicus B Bacteria (expressed in E. coli), 2.6 Å
|
Gotfryd et al. (2020).
Gotfryd K, Boesen T, Mortensen JS, Khelashvili G, Quick M, Terry DS, Missel JW, LeVine MV, Gourdon P, Blanchard SC, Javitch JA, Weinstein H, Loland CJ, Nissen P, & Gether U (2020). X-ray structure of LeuT in an inward-facing occluded conformation reveals mechanism of substrate release.
Nat Commun 11 1. PubMed Id: 32081981. doi:10.1038/s41467-020-14735-w. |
||
LeuBAT Δ13 mutant with bound paroxetine: Aquifex aeolicus B Bacteria (expressed in E. coli), 2.89 Å
LeuBAT is an engineered LeuT harboring the human biogenic amine transporter (BAT) binding motif. Δ13 mutant with bound sertraline, 3.20 Å: 4MM5 Δ13 mutant with bound duloxetine, 3.10 Å: 4MM6 Δ13 mutant with bound desvenlafaxine, 2.85 Å: 4MM7 Δ13 mutant with bound fluoxetine, 3.31 Å: 4MM8 Δ13 mutant with bound fluvoxamine, 2.90 Å: 4MM9 Δ13 mutant with bound clomipramine, 3.30 Å: 4MMA Δ6 mutant with bound sertraline, 2.25 Å: 4MMB Δ6 mutant with bound desvenlafaxine, 2.30 Å: 4MMC Δ6 mutant with bound duloxetine, 2.30 Å: 4MMD Δ6 mutant with bound mazindol, 2.50 Å: 4MME Δ5 mutant with bound mazindol, 2.70 Å: 4MMF |
Wang et al. (2013).
Wang H, Goehring A, Wang KH, Penmatsa A, Ressler R, & Gouaux E (2013). Structural basis for action by diverse antidepressants on biogenic amine transporters.
Nature 503 :141-145. PubMed Id: 24121440. doi:10.1038/nature12648. |
||
Glutamate Transporter Homologue (GltPh): Pyrococcus horikoshii A Archaea (expressed in E. coli), 3.50 Å
Outward-facing state |
Yernool et al. (2004).
Yernool D, Boudker O, Jin Y, & Gouaux E (2004). Structure of a glutamate transporter homologue from Pyrococcus horikoshii.
Nature 431 :811-818. PubMed Id: 15483603. |
||
Glutamate Transporter Homologue (GltPh): Pyrococcus horikoshii A Archaea (expressed in E. coli), 3.51 Å
Inward-facing state |
Reyes et al. (2009).
Reyes N, Ginter C, & Boudker O (2009). Transport mechanism of a bacterial homologue of glutamate transporters.
Nature 462 :880-885. PubMed Id: 19924125. |
||
Glutamate Transporter Homologue (GltPh), cross-linked V216C-M385C mutant: Pyrococcus horikoshii A Archaea (expressed in E. coli), 3.80 Å
Two protomers are inward facing and a third is outward facing. V198C, A380C mutant, 4.66 Å: 3V8G |
Verdon & Boudker (2012).
Verdon G & Boudker O (2012). Crystal structure of an asymmetric trimer of a bacterial glutamate transporter homolog.
Nature Struc Mol Biol 19 :355-357. PubMed Id: 22343718. doi:10.1038/nsmb.2233. |
||
Glutamate Transporter Homologue (GltPh), inward-facing apo form: Pyrococcus horikoshii A Archaea (expressed in E. coli), 3.25 Å
Tl+-bound, inward-facing apo conformation, 3.75 Å: 4P1A alkali-free, inward-facing, 3.50 Å: 4P3J Tl+-bound inward-facing, bound conformation, 4.08 Å: 4P6H R397A mutant, outward-facing, 4.00 Å: 4OYE R397A mutant, outward-facing, Na+-bound, 3.39 Å: 4OYF R397A mutant, outward-facing, Na+/Asp-bound, 3.50 Å: 4OYG |
Verdon et al. (2014).
Verdon G, Oh S, Serio RN, & Boudker O (2014). Coupled ion binding and structural transitions along the transport cycle of glutamate transporters.
eLife 3 :e02283. PubMed Id: 24842876. doi:10.7554/eLife.02283. |
||
Glutamate Transporter Homologue (GltPh), R276S/M395R mutant, inward facing: Pyrococcus horikoshii A Archaea (expressed in E. coli), 4.21 Å
|
Akyuz et al. (2015).
Akyuz N, Georgieva ER, Zhou Z, Stolzenberg S, Cuendet MA, Khelashvili G, Altman RB, Terry DS, Freed JH, Weinstein H, Boudker O, & Blanchard SC (2015). Transport domain unlocking sets the uptake rate of an aspartate transporter.
Nature 518 7537:68-73. PubMed Id: 25652997. doi:10.1038/nature14158. |
||
Glutamate Transporter Homologue (GltPh), L66C-S300C mutant crosslinked with divalent mercury: Pyrococcus horikoshii A Archaea (expressed in E. coli), 4.50 Å
|
Reyes et al. (2013).
Reyes N, Oh S, & Boudker O (2013). Binding thermodynamics of a glutamate transporter homolog.
Nat Struct Mol Biol 20 5:634-640. PubMed Id: 23563139. doi:10.1038/nsmb.2548. |
||
Glutamate Transporter Homologue (GltPh), Outward-facing state, in complex with TBOA: Pyrococcus horikoshii A Archaea (expressed in E. coli), 3.66 Å
cryo-EM structure Inward-facing state, in complex with L-aspartate and sodium ions, 3.05 Å: 6X15 Inward-facing state, in complex with TBOA, 3.39 Å: 6X16 Inward-facing state, in complex with TFB-TBOA, 3.71 Å: 6X14 Inward-facing sodium-bound state, 3.66 Å: 6X13 Inward-facing Apo-open state, 3.52 Å: 6X12 |
Wang & Boudker (2020).
Wang X, & Boudker O (2020). Large domain movements through the lipid bilayer mediate substrate release and inhibition of glutamate transporters.
Elife 9 . PubMed Id: 33155546. doi:10.7554/eLife.58417. |
||
Glutamate Transporter Homologue (GltPh),outward-facing state of the substrate-free Na+-only state: Pyrococcus horikoshii A Archaea (expressed in E. coli), 2.50 Å
|
Alleva et al. (2020).
Alleva C, Kovalev K, Astashkin R, Berndt MI, Baeken C, Balandin T, Gordeliy V, Fahlke C, & Machtens JP (2020). Na+-dependent gate dynamics and electrostatic attraction ensure substrate coupling in glutamate transporters.
Sci Adv 6 47. PubMed Id: 33208356. doi:10.1126/sciadv.aba9854. |
||
Glutamate Transporter Homologue (GltPh) with L-Asp & Na+, outward-facing state: Pyrococcus horikoshii A Archaea (expressed in E. coli), 3.08 Å
cryo-EM structure in intermediate outward-facing state, 3.62 Å: 6UWL |
Huang et al. (2020).
Huang Y, Wang X, Lv G, Razavi AM, Huysmans GHM, Weinstein H, Bracken C, Eliezer D, & Boudker O (2020). Use of paramagnetic 19F NMR to monitor domain movement in a glutamate transporter homolog.
Nat Chem Biol 16 9:1006-1012. PubMed Id: 32514183. doi:10.1038/s41589-020-0561-6. |
||
Glutamate Transporter Homologue transition state (Y204L/A345V/V366A mutant): Pyrococcus horikoshii A Archaea (expressed in E. coli), 3.38 Å
|
Huysmans et al. (2021).
Huysmans GHM, Ciftci D, Wang X, Blanchard SC, & Boudker O (2021). The high-energy transition state of the glutamate transporter homologue GltPh.
EMBO J 40 1:e105415. PubMed Id: 33185289. doi:10.15252/embj.2020105415. |
||
Glutamate Transporter Homologue (GltPh), V216C-A391C mutant cross-linked in outward-facing state: Pyrococcus horikoshii A Archaea (expressed in E. coli), 3.65 Å
6X01 is by x-ray crystallography. cryo-EM structures: V216C-G388C mutant cross-linked with divalent mercury, 3.45 Å: 6WZB L152C-G321C mutant in the intermediate state, 3.70 Å: 6WYJ L152C-G321C mutant in the intermediate chloride conducting state, 4.00 Å: 6WYK L152C-G351C mutant in the intermediate outward-facing state, 3.90 Å: 6WYL |
Chen et al. (2021).
Chen I, Pant S, Wu Q, Cater RJ, Sobti M, Vandenberg RJ, Stewart AG, Tajkhorshid E, Font J, & Ryan RM (2021). Glutamate transporters have a chloride channel with two hydrophobic gates.
Nature 591 7849:327-331. PubMed Id: 33597752. doi:10.1038/s41586-021-03240-9. |
||
Glutamate Transporter Homologue (GltPh), S279E/D405N mutant, in complex with L-aspartate and sodium ions: Pyrococcus horikoshii A Archaea (expressed in E. coli), 2.20 Å
cryo-EM structure |
Reddy et al. (2022).
Reddy KD, Ciftci D, Scopelliti AJ, & Boudker O (2022). The archaeal glutamate transporter homologue GltPh shows heterogeneous substrate binding.
J Gen Physiol 154 5:e202213131. PubMed Id: 35452090. doi:10.1085/jgp.202213131. |
||
Arkhipova et al. (2019).
Arkhipova V, Trinco G, Ettema TW, Jensen S, Slotboom DJ, & Guskov A (2019). Binding and transport of D-aspartate by the glutamate transporter homolog GltTk.
eLife 8 :e45286. PubMed Id: 30969168. doi:10.7554/eLife.45286. |
|||
Glutamate Transporter Homologue GltTk, Na+ only: Thermococcus kodakarensis A Archaea (expressed in E. coli), 3.22 Å
cryo-EM structure in the unsaturated conditions - inward-inward-outward configuration, 3.39 Å: 6XWO unsaturated conditions - outward-outward-inward configuration, 3.38 Å: 6XWP in saturated conditions, 3.41 Å: 6XWQ in the presence of TBOA inhibitor, 3.47 Å: 6XWN |
Arkhipova et al. (2020).
Arkhipova V, Guskov A, & Slotboom DJ (2020). Structural ensemble of a glutamate transporter homologue in lipid nanodisc environment.
Nat Commun 11 1:998. PubMed Id: 32081874. doi:10.1038/s41467-020-14834-8. |
||
Arkhipova et al. (2021).
Arkhipova V, Fu H, Hoorens MWH, Trinco G, Lameijer LN, Marin E, Feringa BL, Poelarends GJ, Szymanski W, Slotboom DJ, & Guskov A (2021). Structural Aspects of Photopharmacology: Insight into the Binding of Photoswitchable and Photocaged Inhibitors to the Glutamate Transporter Homologue.
J Am Chem Soc 143 3:1513-1520. PubMed Id: 33449695. doi:10.1021/jacs.0c11336. |
|||
Glutamate Transporter Homologue (GltTk), P208R mutant, with bound L-aspartate: Thermococcus kodakarensis A Archaea, 3.16 Å
cryo-EM structure |
Colucci et al. (2023).
Colucci E, Anshari ZR, Patiño-Ruiz MF, Nemchinova M, Whittaker J, Slotboom DJ, & Guskov A (2023). Mutation in glutamate transporter homologue GltTk provides insights into pathologic mechanism of episodic ataxia 6.
Nat Commun 14 1:1799. PubMed Id: 37002226. doi:10.1038/s41467-023-37503-y. |
||
Boudker et al. (2007).
Boudker O, Ryan RM, Yernool D, Shimamoto K, & Gouaux E (2007). Coupling substrate and ion binding to extracellular gate of a sodium-dependent aspartate transporter.
Nature 445 :387-393. PubMed Id: 17230192. |
|||
Aspartate Transporter, substrate-free: Thermococcus kodakarensis A Archaea (expressed in E. coli), 3.00 Å
|
Jensen et al. (2013).
Jensen S, Guskov A, Rempel S, Hänelt I, & Slotboom DJ (2013). Crystal structure of a substrate-free aspartate transporter.
Nat Struct Mol Biol 20 :1224-1226. PubMed Id: 24013209. doi:10.1038/nsmb.2663. |
||
Aspartate Transporter, apo form: Thermococcus kodakarensis A Archaea (expressed in E. coli), 2.7 Å
with bound aspartate and Na+, 2.8 Å: 5E9S |
Guskov et al. (2016).
Guskov A, Jensen S, Faustino I, Marrink SJ, & Slotboom DJ (2016). Coupled binding mechanism of three sodium ions and aspartate in the glutamate transporter homologue GltTk.
Nat Commun 7 :13420. PubMed Id: 27830699. doi:10.1038/ncomms13420. |
||
MhsT multi-hydrophobic amino acid transporter, occluded inward-facing state: Bacillus halodurans B Bacteria (expressed in Lactococcus lactis), 2.10 Å
lipidic cubic phase form, 2.60 Å: 4US4 |
Malinauskaite et al. (2014).
Malinauskaite L, Quick M, Reinhard L, Lyons JA, Yano H, Javitch JA, & Nissen P (2014). A mechanism for intracellular release of Na(+) by neurotransmitter/sodium symporters.
Nat Struct Mol Biol 21 11:1006-1012. PubMed Id: 25282149. doi:10.1038/nsmb.2894. |
||
Solute Carrier (SLC) Transporter Superfamily
Active transporters that use Na+ or H+ electrochemical gradients Fold Atlas of the Human SLC Superfamily Xie et al. (2022) |
|||
EAAT1 excitatory amino acid transporter 1 in complex with L-Asp and the allosteric inhibitor UCPH101: Homo sapiens E Eukaryota (expressed in HEK293F cells), 3.25 Å
Member of the solute carrier 1 (SLC1) family of transporters. Engineered protein; thermostabilized. complex with the competitive inhibitor TFB-TBOA and the allosteric inhibitor UCPH101, 3.71 Å: 5MJU cryst-II mutant in complex with L-Asp and the allosteric inhibitor UCPH101, 3.1 Å: 5LM4 cryst-II mutant in complex with L-Asp, 3.32 Å: 5LLU |
Canul-Tec et al. (2017).
Canul-Tec JC, Assal R, Cirri E, Legrand P, Brier S, Chamot-Rooke J, & Reyes N (2017). Structure and allosteric inhibition of excitatory amino acid transporter 1.
Nature 544 :446-451. PubMed Id: 28424515. doi:10.1038/nature22064. |
||
EAAT1 excitatory amino acid transporter 1 in complex with L-ASP, three sodium ions and the allosteric inhibitor UCPH101: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.25 Å
E386Q mutant in complex with L-ASP, sodium ions and the allosteric inhibitor UCPH101, 3.65 Å 7AWQ mutant in complex with Rb and Ba and the allosteric inhibitor UCPH101, 3.92 Å 7AWN cryst-II mutant in complex with Rb and Ba ions and the allosteric inhibitor UCPH101, 3.91 Å 7AWP cryst-II mutant in complex with Ba and the allosteric inhibitor UCPH101, 3.70 Å 7AWL cryo-EM: EAAT1 in K+ buffer, 3.99 Å 7NPW |
Canul-Tec et al. (2022).
Canul-Tec JC, Kumar A, Dhenin J, Assal R, Legrand P, Rey M, Chamot-Rooke J, & Reyes N (2022). The ion-coupling mechanism of human excitatory amino acid transporters.
EMBO J 41 :e108341. PubMed Id: 34747040. doi:10.15252/embj.2021108341. |
||
EAAT2 excitatory amino acid transporter 2 in complex with glutamate: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.40 Å
cryo-EM structure complex with WAY-213613, 3.40 Å 7XR6 |
Zhang et al. (2022).
Zhang Z, Chen H, Geng Z, Yu Z, Li H, Dong Y, Zhang H, Huang Z, Jiang J, & Zhao Y (2022). Structural basis of ligand binding modes of human EAAT2.
Nat Commun 13 1:3329. PubMed Id: 35680945. doi:10.1038/s41467-022-31031-x. |
||
EAAT2 excitatory amino acid transporter 2, inward facing WAY213613-bound state: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.49 Å
cryo-EM structure substrate-free state, 3.58 Å: 7VR8 |
Kato et al. (2022).
Kato T, Kusakizako T, Jin C, Zhou X, Ohgaki R, Quan L, Xu M, Okuda S, Kobayashi K, Yamashita K, Nishizawa T, Kanai Y, & Nureki O (2022). Structural insights into inhibitory mechanism of human excitatory amino acid transporter EAAT2.
Nat Commun 13 1:4714. PubMed Id: 35953475. doi:10.1038/s41467-022-32442-6. |
||
Qiu et al. (2021).
Qiu B, Matthies D, Fortea E, Yu Z, & Boudker O (2021). Cryo-EM structures of excitatory amino acid transporter 3 visualize coupled substrate, sodium, and proton binding and transport.
Sci Adv 7 10:eabf5814. PubMed Id: 33658209. doi:10.1126/sciadv.abf5814. |
|||
EAAT3 excitatory amino acid transporter 3, with bound glutamate, intermediate outward-facing state: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.80 Å
cryo-EM structure outward-facing state, 3.42 Å: 8CTD with bound K+, intermediate outward-facing state, 2.44 Å: 8CUA apo in 300 mM KCl, outward-facing state, 2.94 Å: 8CUD apo, intermediate outward facing state, 2.55 Å: 8CUI apo in 150 mM NMDG-Cl, outward-facing state, 3.04 Å: 8CUJ with bound Na+, outward-facing state, 2.44 Å: 8CV2 with bound Na+, outward-facing state, 3.04 Å: 8CV3 |
Qiu & Boudker (2023).
Qiu B, & Boudker O (2023). Symport and antiport mechanisms of human glutamate transporters.
Nat Commun 14 1:2579. PubMed Id: 37142617. doi:10.1038/s41467-023-38120-5. |
||
Neutral amino acid transporter ASCT2, inward-oriented state: Homo sapiens E Eukaryota (expressed in K. pastoris), 3.85 Å
cryo-EM structure. Member of the SLC1A5 superfamily. |
Garaeva et al. (2018).
Garaeva AA, Oostergetel GT, Gati C, Guskov A, Paulino C, & Slotboom DJ (2018). Cryo-EM structure of the human neutral amino acid transporter ASCT2.
Nat Struct Mol Biol 25 6:515-521. PubMed Id: 29872227. doi:10.1038/s41594-018-0076-y. |
||
Neutral amino acid transporter ASCT2, inward-open C467R mutant with bound TBOA: Homo sapiens E Eukaryota (expressed in P. pastoris), 3.6 Å
cryo-EM structure substrate-free structure, 4.1 Å: 6RVY |
Garaeva et al. (2019).
Garaeva AA, Guskov A, Slotboom DJ, & Paulino C (2019). A one-gate elevator mechanism for the human neutral amino acid transporter ASCT2.
Nat Commun 10 1. PubMed Id: 31366933. doi:10.1038/s41467-019-11363-x. |
||
Neutral amino acid transporter ASCT2, outward-oriented state (no ligand): Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.54 Å
cryo-EM structure with ligand, 3.84 Å: 6MPB |
Yu et al. (2019).
Yu X, Plotnikova O, Bonin PD, Subashi TA, McLellan TJ, Dumlao D, Che Y, Dong YY, Carpenter EP, West GM, Qiu X, Culp JS, & Han S (2019). Cryo-EM structures of the human glutamine transporter SLC1A5 (ASCT2) in the outward-facing conformation.
Elife 8 . PubMed Id: 31580259. doi:10.7554/eLife.48120. |
||
Neutral amino acid transporter ASCT2, in the presence Lc-BPE (position "up") in the outward-open conformation: Homo sapiens E Eukaryota (expressed in Komagataella pastoris), 3.43 Å
cryo-EM structure the presence of Lc-BPE (position "down") in the outward-open conformation, 3.43 Å 7BCS in the presence of the ERA-21 in the outward-open conformation, 3.37 Å 7BCT |
Garibsingh et al. (2021).
Garibsingh RA, Ndaru E, Garaeva AA, Shi Y, Zielewicz L, Zakrepine P, Bonomi M, Slotboom DJ, Paulino C, Grewer C, & Schlessinger A (2021). Rational design of ASCT2 inhibitors using an integrated experimental-computational approach.
Proc Natl Acad Sci U S A 118 37:e2104093118. PubMed Id: 34507995. doi:10.1073/pnas.2104093118. |
||
Concentrative nucleoside transporter (CNT) in complex with uridine: Vibrio cholerae B Bacteria (expressed in E. coli), 2.44 Å
Member of Solute Carrier Transporter Superfamily (SLC28) |
Johnson et al. (2012).
Johnson ZL, Cheong CG, & Lee SY (2012). Crystal structure of a concentrative nucleoside transporter from Vibrio cholerae at 2.4 Å
Nature 483 :489-493. PubMed Id: 22407322. doi:10.1038/nature10882. |
||
Dicarboxylate/Sodium Symporter, inward facing state: Vibrio cholerae B Bacteria (expressed in E. coli), 3.20 Å
Member of Solute Carrier Transporter Superfamily (SLC13) |
Mancusso et al. (2012).
Mancusso R, Gregorio GG, Liu Q, & Wang DN (2012). Structure and mechanism of a bacterial sodium-dependent dicarboxylate transporter.
Nature 491 :622-626. PubMed Id: 23086149. doi:10.1038/nature11542. |
||
Dicarboxylate/Sodium Symporter with bound succinate: Vibrio cholerae B Bacteria (expressed in E. coli), 2.78 Å
with bound citrate, 2.78 Å: 5UL9 humanized version with bound citrate, 2.78 Å: 5ULD humanized version with bound succinate, 2.78 Å: 5ULE Member of Solute Carrier Transporter Superfamily (SLC13) |
Nie et al. (2017).
Nie R, Stark S, Symersky J, Kaplan RS, & Lu M (2017). Structure and function of the divalent anion/Na+ symporter from Vibrio cholerae and a humanized variant.
Nat Commun 8 :15009. PubMed Id: 28436435. doi:10.1038/ncomms15009. |
||
Sauer et al. (2020).
Sauer DB, Trebesch N, Marden JJ, Cocco N, Song J, Koide A, Koide S, Tajkhorshid E, & Wang DN (2020). Structural basis for the reaction cycle of DASS dicarboxylate transporters.
Elife 9 . PubMed Id: 32869741. doi:10.7554/eLife.61350. |
|||
Dicarboxylate antiporter, apo state: Lactobacillus acidophilus B Bacteria (expressed in E.coli), 3.09 Å
cryo-EM structure alpha-ketoglutarate complex, 3.71 Å: 6WU4 in complex with malate, 3.36 Å: 6WU2 x-ray: in the presence of alpha-ketoglutarate and malate, 2.86 Å: 6WTW Member of Solute Carrier Transporter Superfamily (SLC13) |
Sauer et al. (2020).
Sauer DB, Trebesch N, Marden JJ, Cocco N, Song J, Koide A, Koide S, Tajkhorshid E, & Wang DN (2020). Structural basis for the reaction cycle of DASS dicarboxylate transporters.
Elife 9 . PubMed Id: 32869741. doi:10.7554/eLife.61350. |
||
DAT Dopamine transporter in complex with nortriptyline TCA (tricyclic antidepressant): Drosophila melanogaster E Eukaryota (expressed in HEK293 cells), 2.95 Å
Member of Solute Carrier Transporter Superfamily (SLC6) |
Penmatsa et al. (2013).
Penmatsa A, Wang KH, & Gouaux E (2013). X-ray structure of dopamine transporter elucidates antidepressant mechanism.
Nature 503 :85-90. PubMed Id: 24037379. doi:10.1038/nature12533. |
||
DAT Dopamine transporter in complex with dopamine: Drosophila melanogaster E Eukaryota (expressed in HEK293 cells), 2.89 Å
in complex with: D-amphetamine, 2.80 Å: 4XP9 methamphetamine, 3.10 Å: 4XP6 3,4-dichlorophenethylamine, 2.95 Å: 4XPA cocaine, 2.80 Å: 4XP4 cocaine analogue-RTI55, 3.30 Å: 4XP5 D121G/S426M mutant with bound cocaine, 3.05 Å: 4XPB D121G/S426M mutant with bound RTI55, 3.27 Å: 4XPF D121G/S426M mutant with bound beta-CFT, 3.21 Å: 4XPG D121G/S426M mutant with bound 3,4-dichlorophenethylamine, 2.90 Å: 4XPH D121G/S426M mutant with EL2 deletion of 162-201 with bound 3,4-dichlorophen ethylamine, 3.36 Å: 4XPT |
Wang et al. (2015).
Wang KH, Penmatsa A, & Gouaux E (2015). Neurotransmitter and psychostimulant recognition by the dopamine transporter.
Nature 521 :322-327. PubMed Id: 25970245. doi:10.1038/nature14431. |
||
DAT Dopamine transporter in complex with nisoxetine: Drosophila melanogaster E Eukaryota (expressed in HEK-293S cells), 2.98 Å
in complex with reboxetine, 3.0 Å: 4XNX |
Penmatsa et al. (2015).
Penmatsa A, Wang KH, & Gouaux E (2015). X-ray structures of Drosophila dopamine transporter in complex with nisoxetine and reboxetine.
Nat Struct Mol Biol 22 :506-508. PubMed Id: 25961798. doi:10.1038/nsmb.3029. |
||
DAT Dopamine transporter as surrogate norepinephrine transporter, with subsiteB mutations (D121G/S426M) in substrate-free form: Drosophila melanogaster E Eukaryota (expressed in HEK293 cells), 3.30 Å
with NET-like mutations (D121G/S426M/F471L) in L-norepinephrine bound form, 2.88 Å: 6M0Z dopamine transporter in L-norepinephrine bound form, 2.80 Å: 6M2R with subsiteB mutations (D121G/S426M) in S-duloxetine bound form, 3.00 Å: 6M38 with NET-like mutations (D121G/S426M/F471L) in milnacipran bound form, 3.11 Å: 6M3Z with NET-like mutations (D121G/S426M/F471L) in tramadol bound form, 3.25 Å: 6M47 |
Pidathala et al. (2021).
Pidathala S, Mallela AK, Joseph D, & Penmatsa A (2021). Structural basis of norepinephrine recognition and transport inhibition in neurotransmitter transporters.
Nat Commun 12 1:2199. PubMed Id: 33850134. doi:10.1038/s41467-021-22385-9. |
||
DAT Dopamine transporter in complex with atypical non-competitive inhibitor (AC-4-248), outward-open state: Drosophila melanogaster E Eukaryota (expressed in HEK293 cells), 3.20 Å
cryo-EM structure inhibitor-free form, outward-open state, 3.00 Å: 9EUP |
Pedersen et al. (2024).
Pedersen CN, Yang F, Ita S, Xu Y, Akunuri R, Trampari S, Neumann CMT, Desdorf LM, Schiøtt B, Salvino JM, Mortensen OV, Nissen P, & Shahsavar A (2024). Cryo-EM structure of the dopamine transporter with a novel atypical non-competitive inhibitor bound to the orthosteric site.
J Neurochem :16179. PubMed Id: 39010681. doi:10.1111/jnc.16179. |
||
DAT Dopamine transporter, apo form, inward-facing state: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.16 Å
cryo-EM structure Member of the Solute Carrier Transporter Superfamily (SLC6), specifically the Neurotransmitter Sodium Symporter (NSS) Family in complex with: dopamine, occluded state, 2.80 Å: 8Y2D benztropine, inward-facing state, 3.03 Å: 8Y2E GBR12909, inward-facing state, 2.97 Å: 8Y2F methylphenidate, outward-facing state, 2.83 Å: 8Y2G |
Li et al. (2024).
Li Y, Wang X, Meng Y, Hu T, Zhao J, Li R, Bai Q, Yuan P, Han J, Hao K, Wei Y, Qiu Y, Li N, & Zhao Y (2024). Dopamine reuptake and inhibitory mechanisms in human dopamine transporter.
Nature 632 8025:686-694. PubMed Id: 39112701. doi:10.1038/s41586-024-07796-0. |
||
DAT Dopamine transporter in complex with β-CFT, MRS7292 and Zn2+, outward-open state: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.19 Å
cryo-EM structure |
Srivastava et al. (2024).
Srivastava DK, Navratna V, Tosh DK, Chinn A, Sk MF, Tajkhorshid E, Jacobson KA, & Gouaux E (2024). Structure of the human dopamine transporter and mechanisms of inhibition.
Nature 632 8025:672-677. PubMed Id: 39112705. doi:10.1038/s41586-024-07739-9. |
||
DAT Dopamine transporter in complex with cocaine, outward-open state: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.66 Å
cryo-EM structure |
Nielsen et al. (2024).
Nielsen JC, Salomon K, Kalenderoglou IE, Bargmeyer S, Pape T, Shahsavar A, & Loland CJ (2024). Structure of the human dopamine transporter in complex with cocaine.
Nature 632 8025:678-685. PubMed Id: 39112703. doi:10.1038/s41586-024-07804-3. |
||
glycine transporter 1 (GlyT1), inward-open state in complex with a benzoylisoindoline inhibitor: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.40 Å
GlyT1 is a member of SLC6 superfamily of transporters. in complex with a benzoylisoindoline inhibitor, 3.94 Å: 6ZPL |
Shahsavar et al. (2021).
Shahsavar A, Stohler P, Bourenkov G, Zimmermann I, Siegrist M, Guba W, Pinard E, Sinning S, Seeger MA, Schneider TR, Dawson RJP, & Nissen P (2021). Structural insights into the inhibition of glycine reuptake.
Nature 591 7851:677-681. PubMed Id: 33658720. doi:10.1038/s41586-021-03274-z. |
||
Yan et al. (2020).
Yan R, Zhang Y, Li Y, Xia L, Guo Y, & Zhou Q (2020). Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2.
Science 367 6485:1444-1448. PubMed Id: 32132184. doi:10.1126/science.abb2762. |
|||
Coronavirus spike receptor-binding domain complexed with ACE2: SARS-CoV-2 V Viruses (expressed in HEK293 cells), 2.50 Å
|
Wang et al. (2020).
Wang Q, Zhang Y, Wu L, Niu S, Song C, Zhang Z, Lu G, Qiao C, Hu Y, Yuen KY, Wang Q, Zhou H, Yan J, & Qi J (2020). Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2.
Cell 181 4:894-904.e9. PubMed Id: 32275855. doi:10.1016/j.cell.2020.03.045. |
||
Coronavirus spike receptor-binding domain complexed with ACE2: SARS-CoV-2 V Viruses (expressed in Trichoplusia ni), 2.45 Å
|
Lan et al. (2020).
Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, Zhang Q, Shi X, Wang Q, Zhang L, & Wang X (2020). Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor.
Nature 581 7807:215-220. PubMed Id: 32225176. doi:10.1038/s41586-020-2180-5. |
||
ACE2-bound SARS-CoV-2 trimer spike at pH 7.4: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.93 Å
cryo-EM structure double ACE2-bound SARS-CoV-2 trimer Spike at pH 7.4, 3.62 Å: 7KMZ triple ACE2-bound SARS-CoV-2 trimer spike at pH 7.4, 3.64 Å: 7KMS Focused Refinement using Symmetry Expansion for Triple ACE2-bound SARS-CoV-2, 3.39 Å: 7KMB single ACE2-bound SARS-CoV-2 trimer spike at pH 5.5, 3.85 Å: 7KNE Double ACE2-Bound SARS-CoV-2 Trimer Spike at pH 5.5, 3.74 Å: 7KNH Triple ACE2-bound SARS-CoV-2 Trimer Spike at pH 5.5, 3.91 Å: 7KNI Consensus structure of SARS-CoV-2 spike at pH 5.5, 2.70 Å: 6XM0 SARS-CoV-2 spike at pH 5.5, single RBD up, conformation 1, 2.90 Å: 6XM3 SARS-CoV-2 spike at pH 5.5, single RBD up, conformation 2, 2.90 Å: 6XM4 SARS-CoV-2 spike at pH 5.5, all RBDs down, 3.10 Å: 6XM5 SARS-CoV-2 spike at pH 4.5, 2.50 Å: 7JWY SARS-CoV-2 spike at pH 4.0, 2.40 Å: 6XLU |
Zhou et al. (2020).
Zhou T, Tsybovsky Y, Gorman J, Rapp M, Cerutti G, Chuang GY, Katsamba PS, Sampson JM, Schön A, Bimela J, Boyington JC, Nazzari A, Olia AS, Shi W, Sastry M, Stephens T, Stuckey J, Teng IT, Wang P, Wang S, Zhang B, Friesner RA, Ho DD, Mascola JR, Shapiro L, & Kwong PD (2020). Cryo-EM Structures of SARS-CoV-2 Spike without and with ACE2 Reveal a pH-Dependent Switch to Mediate Endosomal Positioning of Receptor-Binding Domains.
Cell Host Microbe 28 6:867-879.e5. PubMed Id: 33271067. doi:10.1016/j.chom.2020.11.004. |
||
SARS-CoV-2 chimeric receptor-binding domain complexed with ACE2: SARS-CoV-2 V Viruses (expressed in Spodoptera frugiperda), 2.68 Å
|
Shang et al. (2020).
Shang J, Ye G, Shi K, Wan Y, Luo C, Aihara H, Geng Q, Auerbach A, & Li F (2020). Structural basis of receptor recognition by SARS-CoV-2.
Nature 581 7807:221-224. PubMed Id: 32225175. doi:10.1038/s41586-020-2179-y. |
||
SARS-CoV-2 S 6P trimer in complex with the ACE2 protein decoy: SARS-CoV-2 V Viruses (expressed in HEK293 cells), 4.10 Å
cryo-EM structure |
Linsky et al. (2020).
Linsky TW, Vergara R, Codina N, Nelson JW, Walker MJ, Su W, Barnes CO, Hsiang TY, Esser-Nobis K, Yu K, Reneer ZB, Hou YJ, Priya T, Mitsumoto M, Pong A, Lau UY, Mason ML, Chen J, Chen A, Berrocal T, Peng H, Clairmont NS, Castellanos J, Lin YR, Josephson-Day A, Baric RS, Fuller DH, Walkey CD, Ross TM, Swanson R, Bjorkman PJ, Gale M Jr, Blancas-Mejia LM, Yen HL, & Silva DA (2020). De novo design of potent and resilient hACE2 decoys to neutralize SARS-CoV-2.
Science 370 6521:1208-1214. PubMed Id: 33154107. doi:10.1126/science.abe0075. |
||
B0AT1 (SLC6A19) in complex with angiotensin-converting enzyme 2 (ACE2) in complex with SARS-CoV-2 spike protein: Homo sapiens, SARS coronavirus 2 E Eukaryota (expressed in HEK293 cells), 8.30 Å
cryo-EM structure S protein in active conformation, 3.30 Å: 7DWZ S protein bound with PD of ACE2 in the conformation 2, 3.30 Å: 7DX5 S protein bound with PD of ACE2 in the conformation 3, 3.00 Å: 7DX6 S protein bound with PD of ACE2 in the conformation 1, 3.50 Å: 7DX3 S(p) protein with PD of ACE2 in the conformation 3, 3.60 Å: 7DX9 S protein of SARS-CoV-2 in the locked conformation, 2.70 Å: 7DWY S(p) protein with PD of ACE2 in conformation 1, 3.40 Å: 7DX7 S(p) protein with PD of ACE2 in conformation 2, 2.90 Å: 7DX8 S(D614G) protein of SARS-CoV-2, 3.10 Å: 3.10 Å: 7DX1 |
Yan et al. (2021).
Yan R, Zhang Y, Li Y, Ye F, Guo Y, Xia L, Zhong X, Chi X, & Zhou Q (2021). Structural basis for the different states of the spike protein of SARS-CoV-2 in complex with ACE2.
Cell Res . PubMed Id: 33737693. doi:10.1038/s41422-021-00490-0. |
||
B0AT1 (SLC6A19) in complex with angiotensin-converting enzyme 2 (ACE2) with bound monoclonal antibody 3E8: Homo sapiens, SARS coronavirus 2 E Eukaryota (expressed in HEK293 cells), 3.20 Å
cryo-EM structure |
Chen et al. (2021).
Chen Y, Zhang YN, Yan R, Wang G, Zhang Y, Zhang ZR, Li Y, Ou J, Chu W, Liang Z, Wang Y, Chen YL, Chen G, Wang Q, Zhou Q, Zhang B, & Wang C (2021). ACE2-targeting monoclonal antibody as potent and broad-spectrum coronavirus blocker.
Signal Transduct Target Ther 6 1:315. PubMed Id: 34433803. doi:10.1038/s41392-021-00740-y. |
||
B0AT1 (SLC6A19) in complex with angiotensin-converting enzyme 2 (ACE2), with bound glutamine: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.20 Å
cryo-EM structure with bound methionine, 3.10 Å: 8I93 |
Li et al. (2023).
Li Y, Chen Y, Zhang Y, Shen Y, Xu K, Liu Y, Wang Z, & Yan R (2023). Structural insight into the substrate recognition and transport mechanism of amino acid transporter complex ACE2-B0AT1 and ACE2-SIT1.
Cell Discov 9 1:93. PubMed Id: 37684251. doi:10.1038/s41421-023-00596-2. |
||
B0AT1 (SLC6A19) in complex with angiotensin-converting enzyme 2 (ACE2) with bound JX98: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.18 Å
cryo-EM structure with bound JX225, 3.20 Å: 8WBZ |
Xu et al. (2024).
Xu J, Hu Z, Dai L, Yadav A, Jiang Y, Bröer A, Gardiner MG, McLeod M, Yan R, & Bröer S (2024). Molecular basis of inhibition of the amino acid transporter B0AT1 (SLC6A19).
Nat Commun 15 1:7224. PubMed Id: 39174516. doi:10.1038/s41467-024-51748-1. |
||
SLC4A4 Na+-coupled acid-base transporter NBCe1: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.9 Å
cryo-EM structure |
Huynh et al. (2018).
Huynh KW, Jiang J, Abuladze N, Tsirulnikov K, Kao L, Shao X, Newman D, Azimov R, Pushkin A, Zhou ZH, & Kurtz I (2018). CryoEM structure of the human SLC4A4 sodium-coupled acid-base transporter NBCe1.
Nat Commun 9 1. PubMed Id: 29500354. doi:10.1038/s41467-018-03271-3. |
||
SLC4A4 Na+-coupled acid-base transporter Bor1p: Saccharomyces mikatae E Eukaryota (expressed in Saccharomyces cerevisiae), 5.90 Å
cryo-EM structure |
Coudray et al. (2017).
Coudray N, L Seyler S, Lasala R, Zhang Z, Clark KM, Dumont ME, Rohou A, Beckstein O, & Stokes DL (2017). Structure of the SLC4 transporter Bor1p in an inward-facing conformation.
Protein Sci 26 1:130-145. PubMed Id: 27717063. doi:10.1002/pro.3061. |
||
Lu et al. (2023).
Lu Y, Zuo P, Chen H, Shan H, Wang W, Dai Z, Xu H, Chen Y, Liang L, Ding D, Jin Y, & Yin Y (2023). Structural insights into the conformational changes of BTR1/SLC4A11 in complex with PIP2.
Nat Commun 14 1:6157. PubMed Id: 37788993. doi:10.1038/s41467-023-41924-0. |
|||
Ravera et al. (2022).
Ravera S, Nicola JP, Salazar-De Simone G, Sigworth FJ, Karakas E, Amzel LM, Bianchet MA, & Carrasco N (2022). Structural insights into the mechanism of the sodium/iodide symporter.
Nature 612 7941:795-801. PubMed Id: 36517601. doi:10.1038/s41586-022-05530-2. |
|||
GABA reuptake transporter 1 in complex with tiagabine, inward-open conformation: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.82 Å
cryo-EM structure GABA transporter (GAT1) is a member of the Solute Carrier 6 (SLC6) transporter family. |
Motiwala et al. (2022).
Motiwala Z, Aduri NG, Shaye H, Han GW, Lam JH, Katritch V, Cherezov V, & Gati C (2022). Structural basis of GABA reuptake inhibition.
Nature 606 7915:820-826. PubMed Id: 35676483. doi:10.1038/s41586-022-04814-x. |
||
Joseph et al. (2022).
Joseph D, Nayak SR, & Penmatsa A (2022). Structural insights into GABA transport inhibition using an engineered neurotransmitter transporter.
EMBO J 41 15:e110735. PubMed Id: 35796008. doi:10.15252/embj.2022110735. |
|||
SLC7 CAT family amino acid transporter, wild-type complexed with L-Ala: Geobacillus kaustophilus B Bacteria, 2.86 Å
M321S mutant in complex with L-Arg, 3.13 Å: 6F34 |
Jungnickel et al. (2018).
Jungnickel KEJ, Parker JL, & Newstead S (2018). Structural basis for amino acid transport by the CAT family of SLC7 transporters.
Nat Commun 9 :550. PubMed Id: 29416041. doi:10.1038/s41467-018-03066-6. |
||
Wu et al. (2020).
Wu D, Grund TN, Welsch S, Mills DJ, Michel M, Safarian S, & Michel H (2020). Structural basis for amino acid exchange by a human heteromeric amino acid transporter.
Proc Natl Acad Sci U S A 117 35:21281-21287. PubMed Id: 32817565. doi:10.1073/pnas.2008111117. |
|||
SLC7A5 L-type amino acid transporter LAT1 in complex with 4F2hc (SLC3A2): Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.5 Å
cryo-EM structure incubated with JPH203, 3.3 Å: 6IRS |
Yan et al. (2019).
Yan R, Zhao X, Lei J, & Zhou Q (2019). Structure of the human LAT1-4F2hc heteromeric amino acid transporter complex.
Nature 568 7750:127-130. PubMed Id: 30867591. doi:10.1038/s41586-019-1011-z. |
||
Yan et al. (2021).
Yan R, Li Y, Müller J, Zhang Y, Singer S, Xia L, Zhong X, Gertsch J, Altmann KH, & Zhou Q (2021). Mechanism of substrate transport and inhibition of the human LAT1-4F2hc amino acid transporter.
Cell Discov 7 1:16. PubMed Id: 33758168. doi:10.1038/s41421-021-00247-4. |
|||
SLC7A5 L-type amino acid transporter LAT1–4F2hc complex with bound JPH203: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.30 Å
cryo-EM structure |
Hu & Yan (2024).
Hu Z, & Yan R (2024). Structural basis for the inhibition mechanism of LAT1-4F2hc complex by JPH203.
Cell Discov 10 1:73. PubMed Id: 38956038. doi:10.1038/s41421-024-00697-6. |
||
SLC7A5 L-type amino acid transporter LAT1-CD98hc in complex with MEM-108 Fab: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.31 Å
cryo-EM structure CD98hc extracellular domain bound to HBJ127 Fab and MEM-108 Fab, 4.1 Å 6JMR |
Lee et al. (2019).
Lee Y, Wiriyasermkul P, Jin C, Quan L, Ohgaki R, Okuda S, Kusakizako T, Nishizawa T, Oda K, Ishitani R, Yokoyama T, Nakane T, Shirouzu M, Endou H, Nagamori S, Kanai Y, & Nureki O (2019). Cryo-EM structure of the human L-type amino acid transporter 1 in complex with glycoprotein CD98hc.
Nat Struct Mol Biol 26 6:510-517. PubMed Id: 31160781. doi:10.1038/s41594-019-0237-7. |
||
4F2hc-LAT2 heterodimeric amino acid transporter, in complex with anticalin D11vs: Homo sapiens E Eukaryota (expressed in Komagataella pastoris), 3.18 Å
cryo-EM structure |
Jeckelmann et al. (2022).
Jeckelmann JM, Lemmin T, Schlapschy M, Skerra A, & Fotiadis D (2022). Structure of the human heterodimeric transporter 4F2hc-LAT2 in complex with Anticalin, an alternative binding protein for applications in single-particle cryo-EM.
Sci Rep 12 1:18269. PubMed Id: 36310334. doi:10.1038/s41598-022-23270-1. |
||
SLC7A8 L-type amino acid transporter LAT2-CD98hc complex, apo state: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.98 Å
cryo-EM structure |
Rodriguez et al. (2021).
Rodriguez CF, Escudero-Bravo P, Díaz L, Bartoccioni P, García-Martín C, Gilabert JG, Boskovic J, Guallar V, Errasti-Murugarren E, Llorca O, & Palacín M (2021). Structural basis for substrate specificity of heteromeric transporters of neutral amino acids.
Proc Natl Acad Sci U S A 118 49:e2113573118. PubMed Id: 34848541. doi:10.1073/pnas.2113573118. |
||
SLC7A9 amino acid transporter b0,+AT-rBAT complex with bound arginine: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.30 Å
cryo-EM structure ligand-free complex, 2.70 Å: 6LID |
Yan et al. (2020).
Yan R, Li Y, Shi Y, Zhou J, Lei J, Huang J, & Zhou Q (2020). Cryo-EM structure of the human heteromeric amino acid transporter b0,+AT-rBAT.
Sci Adv 6 16. PubMed Id: 32494597. doi:10.1126/sciadv.aay6379. |
||
SLC7A11 (xCT) antiporter with SLC3A2 subunit: Homo sapiens E Eukaryota (expressed in HEK293 cells), 6.20 Å
cryo-EM structure |
Oda et al. (2020).
Oda K, Lee Y, Wiriyasermkul P, Tanaka Y, Takemoto M, Yamashita K, Nagamori S, Nishizawa T, & Nureki O (2020). Consensus mutagenesis approach improves the thermal stability of system xc- transporter, xCT, and enables cryo-EM analyses.
Protein Sci 29 12:2398-2407. PubMed Id: 33016372. doi:10.1002/pro.3966. |
||
SLC7A11 (xCT, xc−) cystine antiporter: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.40 Å
cryo-EM structure in complex with glutamate, 3.70 Å 7P9U |
Parker et al. (2021).
Parker JL, Deme JC, Kolokouris D, Kuteyi G, Biggin PC, Lea SM, & Newstead S (2021). Molecular basis for redox control by the human cystine/glutamate antiporter system xc.
Nat Commun 12 1:7147. PubMed Id: 34880232. doi:10.1038/s41467-021-27414-1. |
||
SLC11 (NRAMP/MntH) transition-metal ion transporter in complex with nanobodies: Staphylococcus capitis B Bacteria (expressed in E. coli), 3.10 Å
Note: supersedes 4WGV in complex with Mn2+, 3.40 Å: 5M95 Note: supersedes 4WGW |
Ehrnstorfer et al. (2014).
Ehrnstorfer IA, Geertsma ER, Pardon E, Steyaert J, & Dutzler R (2014). Crystal structure of a SLC11 (NRAMP) transporter reveals the basis for transition-metal ion transport.
Nat Struct Mol Biol 21 11:990-996. PubMed Id: 25326704. doi:10.1038/nsmb.2904. |
||
Ehrnstorfer et al. (2017).
Ehrnstorfer IA, Manatschal C, Arnold FM, Laederach J, & Dutzler R (2017). Structural and mechanistic basis of proton-coupled metal ion transport in the SLC11/NRAMP family.
Nat Commun 8 :14033. PubMed Id: 28059071. doi:10.1038/ncomms14033. |
|||
SLC11 (NRAMP/MntH) transition-metal ion transporter (DMT1) in complex with an aromatic bis-isothiourea substituted compound: Eremococcus coleocola B Bacteria (expressed in E. coli), 3.8 Å
|
Manatschal et al. (2019).
Manatschal C, Pujol-Giménez J, Poirier M, Reymond JL, Hediger MA, & Dutzler R (2019). Mechanistic basis of the inhibition of SLC11/NRAMP-mediated metal ion transport by bis-isothiourea substituted compounds.
Elife 8 :e51913. PubMed Id: 31804182. doi:10.7554/eLife.51913. |
||
divalent metal ion transporter (DMT), monomer: Staphylococcus capitis B Bacteria (expressed in E. coli), 3.78 Å
cryo-EM structure structure determined by NabFab-fiducial assisted cryo-EM homo-dimer, 8.45 Å: 7PHQ |
Bloch et al. (2021).
Bloch JS, Mukherjee S, Kowal J, Filippova EV, Niederer M, Pardon E, Steyaert J, Kossiakoff AA, & Locher KP (2021). Development of a universal nanobody-binding Fab module for fiducial-assisted cryo-EM studies of membrane proteins.
Proc Natl Acad Sci U S A 118 47:e2115435118. PubMed Id: 34782475. doi:10.1073/pnas.2115435118. |
||
SLC11 (NRAMP/MntH) transition-metal ion transporter in inward facing apo form: Deinococcus radiodurans B Bacteria (expressed in E. coli), 3.94 Å
|
Bozzi et al. (2016).
Bozzi AT, Bane LB, Weihofen WA, Singharoy A, Guillen ER, Ploegh HL, Schulten K, & Gaudet R (2016). Crystal Structure and Conformational Change Mechanism of a Bacterial Nramp-Family Divalent Metal Transporter.
Structure 24 :2102-2114. PubMed Id: 27839948. doi:10.1016/j.str.2016.09.017. |
||
Ramanadane et al. (2022).
Ramanadane K, Straub MS, Dutzler R, & Manatschal C (2022). Structural and functional properties of a magnesium transporter of the SLC11/NRAMP family.
Elife 11 :e74589. PubMed Id: 35001872. doi:10.7554/eLife.74589. |
|||
NKCC1 cation-chloride cotransporter (SLC12A2 family): Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.52 Å
cryo-EM structure |
Zhang et al. (2021).
Zhang S, Zhou J, Zhang Y, Liu T, Friedel P, Zhuo W, Somasekharan S, Roy K, Zhang L, Liu Y, Meng X, Deng H, Zeng W, Li G, Forbush B, & Yang M (2021). The structural basis of function and regulation of neuronal cotransporters NKCC1 and KCC2.
Commun Biol 4 1:226. PubMed Id: 33597714. doi:10.1038/s42003-021-01750-w. |
||
NKCC1 cation-chloride cotransporter (SLC12A2 family), TM domain: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.55 Å
cryo-EM structure |
Neumann et al. (2022).
Neumann C, Rosenbaek LL, Flygaard RK, Habeck M, Karlsen JL, Wang Y, Lindorff-Larsen K, Gad HH, Hartmann R, Lyons JA, Fenton RA, & Nissen P (2022). Cryo-EM structure of the human NKCC1 transporter reveals mechanisms of ion coupling and specificity.
EMBO J 41 23:e110169. PubMed Id: 36239040. doi:10.15252/embj.2021110169. |
||
KCC2 cation-chloride cotransporter (SLC12A5 superfamily): Mus musculus E Eukaryota (expressed in HEK293 cells), 3.80 Å
cryo-EM structure |
Zhang et al. (2021).
Zhang S, Zhou J, Zhang Y, Liu T, Friedel P, Zhuo W, Somasekharan S, Roy K, Zhang L, Liu Y, Meng X, Deng H, Zeng W, Li G, Forbush B, & Yang M (2021). The structural basis of function and regulation of neuronal cotransporters NKCC1 and KCC2.
Commun Biol 4 1:226. PubMed Id: 33597714. doi:10.1038/s42003-021-01750-w. |
||
KCC2 cation-chloride cotransporter (SLC12A5 superfamily): Homo sapiens E Eukaryota, 3.40 Å
cryo-EM structure |
Xie et al. (2020).
Xie Y, Chang S, Zhao C, Wang F, Liu S, Wang J, Delpire E, Ye S, & Guo J (2020). Structures and an activation mechanism of human potassium-chloride cotransporters.
Sci Adv 6 50:eabc5883. PubMed Id: 33310850. doi:10.1126/sciadv.abc5883. |
||
KCC2 cation-chloride cotransporter (SLC12A5 superfamily): Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.20 Å
cryo-EM structure |
Chi et al. (2021).
Chi X, Li X, Chen Y, Zhang Y, Su Q, & Zhou Q (2021). Cryo-EM structures of the full-length human KCC2 and KCC3 cation-chloride cotransporters.
Cell Res 31 4:482-484. PubMed Id: 33199848. doi:10.1038/s41422-020-00437-x. |
||
KCC3 cation-chloride cotransporter (SLC12A5 superfamily): Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.20 Å
cryo-EM structure with bound DIOA, 2.70 Å: 6M22 |
Chi et al. (2021).
Chi X, Li X, Chen Y, Zhang Y, Su Q, & Zhou Q (2021). Cryo-EM structures of the full-length human KCC2 and KCC3 cation-chloride cotransporters.
Cell Res 31 4:482-484. PubMed Id: 33199848. doi:10.1038/s41422-020-00437-x. |
||
NaCT citrate transporter (SLC13A5 superfamily) in complex with citrate: Homo sapiens E Eukaryota (expressed in Trichoplusia ni), 3.04 Å
cryo-EM structure NaCT-PF2 complex, 3.12 Å: 7JSJ |
Sauer et al. (2021).
Sauer DB, Song J, Wang B, Hilton JK, Karpowich NK, Mindell JA, Rice WJ, & Wang DN (2021). Structure and inhibition mechanism of the human citrate transporter NaCT.
Nature 591 7848:157-161. PubMed Id: 33597751. doi:10.1038/s41586-021-03230-x. |
||
Minhas & Newstead (2019).
Minhas GS, & Newstead S (2019). Structural basis for prodrug recognition by the SLC15 family of proton-coupled peptide transporters.
Proc. Natl. Acad. Sci. U.S.A. 116 3:804-809. PubMed Id: 30602453. doi:10.1073/pnas.1813715116. |
|||
Ural-Blimke et al. (2019).
Ural-Blimke Y, Flayhan A, Strauss J, Rantos V, Bartels K, Nielsen R, Pardon E, Steyaert J, Kosinski J, Quistgaard EM, & Löw C (2019). Structure of Prototypic Peptide Transporter DtpA from E. coli in Complex with Valganciclovir Provides Insights into Drug Binding of Human PepT1.
J Am Chem Soc 141 6:2404-2412. PubMed Id: 30644743. doi:10.1021/jacs.8b11343. |
|||
SLC15A1 proton-coupled peptide transporter (PepT1) bound to Ala-Phe in the outward facing occluded conformation: Homo sapiens E Eukaryota (expressed in HEK293 cells), 4.10 Å
cryo-EM structure bound to Ala-Phe in the outward facing open conformation, 3.50 Å 7PMX apo form, outward facing conformation, 3.90 Å 7PN1 |
Killer et al. (2021).
Killer M, Wald J, Pieprzyk J, Marlovits TC, & Löw C (2021). Structural snapshots of human PepT1 and PepT2 reveal mechanistic insights into substrate and drug transport across epithelial membranes.
Sci Adv 7 45:eabk3259. PubMed Id: 34730990. doi:10.1126/sciadv.abk3259. |
||
SLC15A2 proton-coupled peptide transporter (PepT2): Rattus norvegicus E Eukaryota (expressed in HEK293 cells), 3.50 Å
cryo-EM structure |
Parker et al. (2021).
Parker JL, Deme JC, Wu Z, Kuteyi G, Huo J, Owens RJ, Biggin PC, Lea SM, & Newstead S (2021). Cryo-EM structure of PepT2 reveals structural basis for proton-coupled peptide and prodrug transport in mammals.
Sci Adv 7 35:eabh3355. PubMed Id: 34433568. doi:10.1126/sciadv.abh3355. |
||
SLC15A2 proton-coupled peptide transporter (PepT2) bound to AlaPhe, inward facing partially occluded conformation: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.80 Å
cryo-EM structure |
Killer et al. (2021).
Killer M, Wald J, Pieprzyk J, Marlovits TC, & Löw C (2021). Structural snapshots of human PepT1 and PepT2 reveal mechanistic insights into substrate and drug transport across epithelial membranes.
Sci Adv 7 45:eabk3259. PubMed Id: 34730990. doi:10.1126/sciadv.abk3259. |
||
SLC15A4 peptide/histidine transporter (PhT1) with bound compound C5: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.50 Å
cryo-EM structure |
Boeszoermenyi et al. (2023).
Boeszoermenyi A, Bernaleau L, Chen X, Kartnig F, Xie M, Zhang H, Zhang S, Delacrétaz M, Koren A, Hopp AK, Dvorak V, Kubicek S, Aletaha D, Yang M, Rebsamen M, Heinz LX, & Superti-Furga G (2023). A conformation-locking inhibitor of SLC15A4 with TASL proteostatic anti-inflammatory activity.
Nat Commun 14 1:6626. PubMed Id: 37863876. doi:10.1038/s41467-023-42070-3. |
||
Chen et al. (2023).
Chen X, Xie M, Zhang S, Monguió-Tortajada M, Yin J, Liu C, Zhang Y, Delacrétaz M, Song M, Wang Y, Dong L, Ding Q, Zhou B, Tian X, Deng H, Xu L, Liu X, Yang Z, Chang Q, Na J, Zeng W, Superti-Furga G, Rebsamen M, & Yang M (2023). Structural basis for recruitment of TASL by SLC15A4 in human endolysosomal TLR signaling.
Nat Commun 14 1:6627. PubMed Id: 37863913. doi:10.1038/s41467-023-42210-9. |
|||
Monocarboxylate transporter 1 (MCT1, SLC16 family)-Basigin-2 complex in outward open state in presence of AZD3965: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.20 Å
cryo-EM structure in the presence of BAY-8002, 3.00 Å 7CKR the presence of 7ACC2 in the inward-open conformation, 2.95 Å 7CKO D309N mutant in complex with Basigin-2 in the inward-open conformation, 3.30 Å 7DA5 |
Wang et al. (2021).
Wang N, Jiang X, Zhang S, Zhu A, Yuan Y, Xu H, Lei J, & Yan C (2021). Structural basis of human monocarboxylate transporter 1 inhibition by anti-cancer drug candidates.
Cell 184 2:370-383.e13. PubMed Id: 33333023. doi:10.1016/j.cell.2020.11.043. |
||
Monocarboxylate transporter 1 (MCT1; SLC16 family) in complex with Basigin-2, in the presence of lactate: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.30 Å
cryo-EM structure in the presence of anti-cancer drug candidate AZD3965 in the outward-open conformation, 3.20 Å 6LYY in the presence of anti-cancer drug candidate BAY-8002 in the outward-open conformation, 3.00 Å 7CKR in the presence of anti-cancer drug candidate 7ACC2 in the inward-open conformation, 2.95 Å 7CKO D309N mutant in complex with Basigin-2 in the inward-open conformation, 3.30 Å 7DA5 |
Wang et al. (2021).
Wang N, Jiang X, Zhang S, Zhu A, Yuan Y, Xu H, Lei J, & Yan C (2021). Structural basis of human monocarboxylate transporter 1 inhibition by anti-cancer drug candidates.
Cell 184 2:370-383.e13. PubMed Id: 33333023. doi:10.1016/j.cell.2020.11.043. |
||
Monocarboxylate transporter 1 (MCT1; SLC16 family) in complex with embigin, inward-facing state: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.63 Å
cryo-EM structure |
Xu et al. (2022).
Xu B, Zhang M, Zhang B, Chi W, Ma X, Zhang W, Dong M, Sheng L, Zhang Y, Jiao W, Shan Y, Chang W, Wang P, Wen S, Pei D, Chen L, Zhang X, Yan H, & Ye S (2022). Embigin facilitates monocarboxylate transporter 1 localization to the plasma membrane and transition to a decoupling state.
Cell Rep 40 11:111343. PubMed Id: 36103816. doi:10.1016/j.celrep.2022.111343. |
||
Monocarboxylate transporter 2 (MCT2, SLC16 family): Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.80 Å
cryo-EM structure |
Zhang et al. (2020).
Zhang B, Jin Q, Xu L, Li N, Meng Y, Chang S, Zheng X, Wang J, Chen Y, Neculai D, Gao N, Zhang X, Yang F, Guo J, & Ye S (2020). Cooperative transport mechanism of human monocarboxylate transporter 2.
Nat Commun 11 1:2429. PubMed Id: 32415067. doi:10.1038/s41467-020-16334-1. |
||
DgoT D-galactonate:proton symporter (SLC17), inward open form: Escherichia coli B Bacteria, 2.92 Å
E133Q mutant in the outward substrate-bound form, 3.50 Å: 6E9O |
Leano et al. (2019).
Leano JB, Batarni S, Eriksen J, Juge N, Pak JE, Kimura-Someya T, Robles-Colmenares Y, Moriyama Y, Stroud RM, & Edwards RH (2019). Structures suggest a mechanism for energy coupling by a family of organic anion transporters.
PLoS Biol 17 5. PubMed Id: 31083648. doi:10.1371/journal.pbio.3000260. |
||
vesicular glutamate transporter VGLUT2 (SLC17), luminal (outward) open state: Rattus norvegicus E Eukaryota (expressed in Spodoptera frugiperda), 3.80 Å
Cryo-EM structure Note: supersedes 6V4D |
Li et al. (2020).
Li F, Eriksen J, Finer-Moore J, Chang R, Nguyen P, Bowen A, Myasnikov A, Yu Z, Bulkley D, Cheng Y, Edwards RH, & Stroud RM (2020). Ion transport and regulation in a synaptic vesicle glutamate transporter.
Science 368 6493:893-897. PubMed Id: 32439795. doi:10.1126/science.aba9202. |
||
Reduced folate carrier (RFC) SLC19A1: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.80 Å
cryo-EM structure in complex with methotrexate, 3.30 Å: 7TX6 |
Wright et al. (2022).
Wright NJ, Fedor JG, Zhang H, Jeong P, Suo Y, Yoo J, Hong J, Im W, & Lee SY (2022). Methotrexate recognition by the human reduced folate carrier SLC19A1.
Nature 609 7929:1056-1062. PubMed Id: 36071163. doi:10.1038/s41586-022-05168-0. |
||
Zhang et al. (2022).
Zhang Q, Zhang X, Zhu Y, Sun P, Zhang L, Ma J, Zhang Y, Zeng L, Nie X, Gao Y, Li Z, Liu S, Lou J, Gao A, Zhang L, & Gao P (2022). Recognition of cyclic dinucleotides and folates by human SLC19A1.
Nature 612 7938:170-176. PubMed Id: 36265513. doi:10.1038/s41586-022-05452-z. |
|||
SLC20 sodium-dependent phosphate transporter, inward occluded state: Thermotoga maritima B Bacteria (expressed in Saccharomyces cerevisiae), 2.30 Å
|
Tsai et al. (2020).
Tsai JY, Chu CH, Lin MG, Chou YH, Hong RY, Yen CY, Hsiao CD, & Sun YJ (2020). Structure of the sodium-dependent phosphate transporter reveals insights into human solute carrier SLC20.
Sci Adv 6 32. PubMed Id: 32821837. doi:10.1126/sciadv.abb4024. |
||
Khanppnavar et al. (2022).
Khanppnavar B, Maier J, Herborg F, Gradisch R, Lazzarin E, Luethi D, Yang JW, Qi C, Holy M, Jäntsch K, Kudlacek O, Schicker K, Werge T, Gether U, Stockner T, Korkhov VM, & Sitte HH (2022). Structural basis of organic cation transporter-3 inhibition.
Nat Commun 13 1:6714. PubMed Id: 36344565. doi:10.1038/s41467-022-34284-8. |
|||
SLC26 proton-coupled fumarate symporter in complex with nanobodies: Deinococcus geothermalis B Bacteria (expressed in E. coli), 3.20 Å
|
Geertsma et al. (2015).
Geertsma ER, Chang YN, Shaik FR, Neldner Y, Pardon E, Steyaert J, & Dutzler R (2015). Structure of a prokaryotic fumarate transporter reveals the architecture of the SLC26 family.
Nat Struct Mol Biol 22 :803-808. PubMed Id: 26367249. doi:10.1038/nsmb.3091. |
||
Solute Carrier 26 family member A9 (SLC26A9) anion transporter, inward facing state: Mus musculus E Eukaryota (expressed in HEK293s cells), 3.96 Å
cryo-EM structure in an intermediate state, 7.77 Å: 6RTF |
Walter et al. (2019).
Walter JD, Sawicka M, & Dutzler R (2019). Cryo-EM structures and functional characterization of murine Slc26a9 reveal mechanism of uncoupled chloride transport.
Elife 8 . PubMed Id: 31339488. doi:10.7554/eLife.46986. e46986 |
||
Solute Carrier 26 family member A9 (SLC26A9) anion transporter: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.60 Å
|
Chi et al. (2020).
Chi X, Jin X, Chen Y, Lu X, Tu X, Li X, Zhang Y, Lei J, Huang J, Huang Z, Zhou Q, & Pan X (2020). Structural insights into the gating mechanism of human SLC26A9 mediated by its C-terminal sequence.
Cell Discov 6 . PubMed Id: 32818062. doi:10.1038/s41421-020-00193-7. |
||
prestin electromotive signal amplifier (SLC26A5) in the presence of NaCl: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.30 Å
cryo-EM structure in nanodisc in the presence of NaCl, 2.70 Å 7LGW in the presence of sodium salicylate and sodium sulfate, 3.43 Å7LH2 in the presence of sodium sulfate, 4.30 Å 7LH3 |
Ge et al. (2021).
Ge J, Elferich J, Dehghani-Ghahnaviyeh S, Zhao Z, Meadows M, von Gersdorff H, Tajkhorshid E, & Gouaux E (2021). Molecular mechanism of prestin electromotive signal amplification.
Cell 184 18:4669-4679.e13. PubMed Id: 34390643. doi:10.1016/j.cell.2021.07.034. |
||
Futamata et al. (2022).
Futamata H, Fukuda M, Umeda R, Yamashita K, Tomita A, Takahashi S, Shikakura T, Hayashi S, Kusakizako T, Nishizawa T, Homma K, & Nureki O (2022). Cryo-EM structures of thermostabilized prestin provide mechanistic insights underlying outer hair cell electromotility.
Nat Commun 13 1:6208. PubMed Id: 36266333. doi:10.1038/s41467-022-34017-x. |
|||
prestin electromotive signal amplifier (SLC26A5), sensor up (compact) state: Tursiops truncatus E Eukaryota (expressed in HEK293 cells), 3.30 Å
cryo-EM structure Inhibited I (Chloride + Salicylate), 3.80 Å 7S9A sensor down I (Expanded) state, 4.20 Å 7S9B sensor down II (Expanded II) state, 6.70 Å 7S9C intermediate state, 4.60 Å 7S9D inhibited II (Sulfate +Salicylate), 3.70 Å 7S9E |
Bavi et al. (2021).
Bavi N, Clark MD, Contreras GF, Shen R, Reddy BG, Milewski W, & Perozo E (2021). The conformational cycle of prestin underlies outer-hair cell electromotility.
Nature 600 7889:553-558. PubMed Id: 34695838. doi:10.1038/s41586-021-04152-4. |
||
prestin electromotive signal amplifier (SLC26A5): Meriones unguiculatus E Eukaryota (expressed in HEK293 cells), 3.60 Å
cryo-EM structure |
Butan et al. (2022).
Butan C, Song Q, Bai JP, Tan WJT, Navaratnam D, & Santos-Sacchi J (2022). Single particle cryo-EM structure of the outer hair cell motor protein prestin.
Nat Commun 13 1:290. PubMed Id: 35022426. doi:10.1038/s41467-021-27915-z. |
||
concentrative nucleoside transporter CNT3 (SLC29 family): Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.60 Å
cryo-EM structure |
Zhou et al. (2020).
Zhou Y, Liao L, Wang C, Li J, Chi P, Xiao Q, Liu Q, Guo L, Sun L, & Deng D (2020). Cryo-EM structure of the human concentrative nucleoside transporter CNT3.
PLoS Biol 18 8. PubMed Id: 32776918. doi:10.1371/journal.pbio.3000790. |
||
Equilibrative nucleoside transporter 1 (ENT1) SLC29 family, in complex with dilazep: Homo sapiens E Eukaryota (expressed in HEK293s cells), 2.3 Å
merohedrally twinned in complex with NBMPR, 2.9 Å: 6OB6 |
Wright & Lee (2019).
Wright NJ, & Lee SY (2019). Structures of human ENT1 in complex with adenosine reuptake inhibitors.
Nat Struct Mol Biol 26 7:599-606. PubMed Id: 31235912. doi:10.1038/s41594-019-0245-7. |
||
Equilibrative nucleoside transporter 1 (ENT1) SLC29 family, Y190A mutant, in complex with nanobody 19: Plasmodium falciparum E Eukaryota (expressed in S. frugiperda), 3.64 Å
cryo-EM structure. Member of Solute Carrier Transporter Superfamily (SLC29). in complex with nanobody 48 and inosine, 3.11 Å: 7WN1 GFP fused into between TM10 and TM11, in complex with GSK4, 4.04 Å: 7YDQ |
Wang et al. (2023).
Wang C, Yu L, Zhang J, Zhou Y, Sun B, Xiao Q, Zhang M, Liu H, Li J, Li J, Luo Y, Xu J, Lian Z, Lin J, Wang X, Zhang P, Guo L, Ren R, & Deng D (2023). Structural basis of the substrate recognition and inhibition mechanism of Plasmodium falciparum nucleoside transporter PfENT1.
Nat Commun 14 1:1727. PubMed Id: 36977719. doi:10.1038/s41467-023-37411-1. |
||
ZnT8 Zn2+/H+ antiporter, SLC30 family in the presence of Zn2+ (one subunit inward facing): Homo sapiens E Eukaryota (expressed in HEK293 cells), 4.10 Å
cryo-EM structure D110N D224N mutant, outward-facing conformation, 3.80 Å: 6XPD wild-type, in the presence of zinc. Outward-facing conformation, 4.10 Å: 6XPE |
Xue et al. (2020).
Xue J, Xie T, Zeng W, Jiang Y, & Bai XC (2020). Cryo-EM structures of human ZnT8 in both outward- and inward-facing conformations.
Elife 9 :e58823. PubMed Id: 32723473. doi:10.7554/eLife.58823. |
||
ZnT8 Zn2+/H+ antiporter, SLC30 family in the presence of Zn2+: Xenopus tropicalis E Eukaryota (expressed in Komagataella pastoris), 3.85 Å
cryo-EM structure at a low pH, 3.72 Å: 7Y5H |
Zhang et al. (2022).
Zhang S, Fu C, Luo Y, Xie Q, Xu T, Sun Z, Su Z, & Zhou X (2022). Cryo-EM structure of a eukaryotic zinc transporter at a low pH suggests its Zn2+-releasing mechanism.
J Struct Biol 215 1:107926. PubMed Id: 36464198. doi:10.1016/j.jsb.2022.107926. |
||
SLC35 superfamily Vrg4 nucleotide sugar transporter, apo form: Saccharomyces cerevisiae E Eukaryota, 3.22 Å
with bound GDP-mannose, 3.6 Å: 5OGK |
Parker & Newstead (2017).
Parker JL, & Newstead S (2017). Structural basis of nucleotide sugar transport across the Golgi membrane.
Nature 551 7681:521-524. PubMed Id: 29143814. doi:10.1038/nature24464. |
||
SLC35 superfamily Vrg4 nucleotide sugar transporter, GMP-bound: Saccharomyces cerevisiae E Eukaryota, 3.39 Å
|
Parker et al. (2019).
Parker JL, Corey RA, Stansfeld PJ, & Newstead S (2019). Structural basis for substrate specificity and regulation of nucleotide sugar transporters in the lipid bilayer.
Nat Commun 10 1:4657. PubMed Id: 31604945. doi:10.1038/s41467-019-12673-w. |
||
Ahuja & Whorton (2019).
Ahuja S, & Whorton MR (2019). Structural basis for mammalian nucleotide sugar transport.
Elife 8 :e45221. PubMed Id: 30985278. doi:10.7554/eLife.45221. |
|||
Serotonin transporter (SERT) ts3 construct with bound paroxetine at central site: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.14 Å
Thermostabilized constructs: ts2: I291A, T439S. ts3:ts2+Y110A ts2 with bound paroxetine at central site, 4.53 Å: 5I6Z ts3 with bound s-citalopram at central site, 3.15 Å: 5I71 ts3 with s-citalopram at central and allosteric sites (soaked), 3.24 Å:5I73 ts3 with Br-citalopram at central site, 3.39 Å: 5I74 ts3 with s-citalopram at central site and Br-citalopram at allosteric site, 3.49 Å: 5I75 |
Coleman et al. (2016).
Coleman JA, Green EM, & Gouaux E (2016). X-ray structures and mechanism of the human serotonin transporter.
Nature 7599:334-339. PubMed Id: 27049939. doi:10.1038/nature17629. |
||
Serotonin transporter (SERT) ts2 construct with bound paroxetine at central site: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.62 Å
ts3 construct with fluvoxamine at the central site, 3.8 Å: 6AWP ts3 construct with sertraline at the central site, 3.53 Å: 6AWO ts3 construct with sertraline (anomalous chloride signal structure), 4.05 Å:6AWQ |
Coleman & Gouaux (2018).
Coleman JA, & Gouaux E (2018). Structural basis for recognition of diverse antidepressants by the human serotonin transporter.
Nat Struct Mol Biol 25 :170-175. PubMed Id: 29379174. doi:10.1038/s41594-018-0026-8. |
||
Serotonin transporter (SERT) complexed with paroxetine & 8B6 Fab: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.30 Å
cryo-EM structure complexed with Br-paroxetine, 4.10 Å: 6VRK complexed with I-paroxetine, 3.80 Å: 6VRL Br-paroxetine complexed with transporter at the central site, 4.70 Å: 6W2B I-paroxetine complexed with the transporter at the central site, 6.30 Å: 6W2C |
Coleman et al. (2020).
Coleman JA, Navratna V, Antermite D, Yang D, Bull JA, & Gouaux E (2020). Chemical and structural investigation of the paroxetine-human serotonin transporter complex.
Elife 9 . PubMed Id: 32618269. doi:10.7554/eLife.56427. |
||
Serotonin transporter (SERT) complexed with vilazodone and imipramine: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.65 Å
cryo-EM structure |
Plenge et al. (2021).
Plenge P, Yang D, Salomon K, Laursen L, Kalenderoglou IE, Newman AH, Gouaux E, Coleman JA, & Loland CJ (2021). The antidepressant drug vilazodone is an allosteric inhibitor of the serotonin transporter.
Nat Commun 12 1:5063. PubMed Id: 34417466. doi:10.1038/s41467-021-25363-3. |
||
CitS Citrate symporter: Salmonella enterica B Bacteria (expressed in E. coli), 2.5 Å
The CitS dimer reveals three different conformations of the active protomer |
Wöhlert et al. (2015).
Wöhlert D, Grötzinger MJ, Kühlbrandt W, & Yildiz Ö (2015). Mechanism of Na+-dependent citrate transport from the structure of an asymmetrical CitS dimer.
Elife 4 :e09375. PubMed Id: 26636752. doi:10.7554/eLife.09375. |
||
SLC38A9 lysosomal amino acid transporter, cytosol-open state: Danio rerio E Eukaryota (expressed in S. frugiperda), 3.17 Å
|
Lei et al. (2018).
Lei HT, Ma J, Sanchez Martinez S, & Gonen T (2018). Crystal structure of arginine-bound lysosomal transporter SLC38A9 in the cytosol-open state.
Nat Struct Mol Biol 25 6:522-527. PubMed Id: 29872228. doi:10.1038/s41594-018-0072-2. |
||
SLC38A9 lysosomal amino acid transporter in the N-terminal plugged form: Danio rerio E Eukaryota (expressed in Spodoptera frugiperda), 3.40 Å
cryo-EM structure |
Lei et al. (2021).
Lei HT, Mu X, Hattne J, & Gonen T (2021). A conformational change in the N terminus of SLC38A9 signals mTORC1 activation.
Structure 29 5:426-432.e8. PubMed Id: 33296665. doi:10.1016/j.str.2020.11.014. |
||
Zrt/Irt-like protein (SLC39a), apo state: Bordetella bronchiseptica B Bacteria (expressed in E. coli), 2.75 Å
|
Zhang et al. (2023).
Zhang Y, Jiang Y, Gao K, Sui D, Yu P, Su M, Wei GW, & Hu J (2023). Structural insights into the elevator-type transport mechanism of a bacterial ZIP metal transporter.
Nat Commun 14 1:385. PubMed Id: 36693843. doi:10.1038/s41467-023-36048-4. |
||
Zrt/Irt-like protein (SLC39a), inward-facing, inhibited conformation: Bordetella bronchiseptica B Bacteria (expressed in E. coli), 3.05 Å
cryo-EM structure |
Pang et al. (2023).
Pang C, Chai J, Zhu P, Shanklin J, & Liu Q (2023). Structural mechanism of intracellular autoregulation of zinc uptake in ZIP transporters.
Nat Commun 14 1:3404. PubMed Id: 37296139. doi:10.1038/s41467-023-39010-6. |
||
Choline-like transporter SLC44: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.86 Å
cryo-EM structure |
Xie et al. (2022).
Xie T, Chi X, Huang B, Ye F, Zhou Q, & Huang J (2022). Rational exploration of fold atlas for human solute carrier proteins.
Structure 30 9:1321-1330.e5. PubMed Id: 35700727. doi:10.1016/j.str.2022.05.015. |
||
proton coupled folate transporter (SLC46A1), outward open at pH 7.5: Gallus gallus E Eukaryota (expressed in Saccharomyces cerevisiae), 3.20 Å
cryo-EM structure at pH 6.0 bound to pemetrexed, 3.30 Å: 7BC7 |
Parker et al. (2021).
Parker JL, Deme JC, Kuteyi G, Wu Z, Huo J, Goldman ID, Owens RJ, Biggin PC, Lea SM, & Newstead S (2021). Structural basis of antifolate recognition and transport by PCFT.
Nature 595 7865:130-134. PubMed Id: 34040256. doi:10.1038/s41586-021-03579-z. |
||
sulfate transporter AtSULTR4;1 (SLC26): Arabidopsis thaliana E Eukaryota (expressed in Trichoplusia ni), 2.75 Å
cryo-EM structure |
Wang et al. (2021).
Wang L, Chen K, & Zhou M (2021). Structure and function of an Arabidopsis thaliana sulfate transporter.
Nat Commun 12 1:4455. PubMed Id: 34294705. doi:10.1038/s41467-021-24778-2. |
||
SIT1 (SLC6A20) in complex with angiotensin-converting enzyme 2 (ACE2), with bound proline: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.30 Å
cryo-EM structure |
Li et al. (2023).
Li Y, Chen Y, Zhang Y, Shen Y, Xu K, Liu Y, Wang Z, & Yan R (2023). Structural insight into the substrate recognition and transport mechanism of amino acid transporter complex ACE2-B0AT1 and ACE2-SIT1.
Cell Discov 9 1:93. PubMed Id: 37684251. doi:10.1038/s41421-023-00596-2. |
||
OATP1B1 organic anion transporting polypeptide (SLC21A6): Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.60 Å
cryo-EM structure |
Ciută et al. (2023).
Ciută AD, Nosol K, Kowal J, Mukherjee S, Ramírez AS, Stieger B, Kossiakoff AA, & Locher KP (2023). Structure of human drug transporters OATP1B1 and OATP1B3.
Nat Commun 14 1:5774. PubMed Id: 37723174. doi:10.1038/s41467-023-41552-8. |
||
OATP1B3 organic anion transporting polypeptide (SLC21A8): Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.97 Å
cryo-EM structure |
Ciută et al. (2023).
Ciută AD, Nosol K, Kowal J, Mukherjee S, Ramírez AS, Stieger B, Kossiakoff AA, & Locher KP (2023). Structure of human drug transporters OATP1B1 and OATP1B3.
Nat Commun 14 1:5774. PubMed Id: 37723174. doi:10.1038/s41467-023-41552-8. |
||
Chi et al. (2024).
Chi X, Chen Y, Li Y, Dai L, Zhang Y, Shen Y, Chen Y, Shi T, Yang H, Wang Z, & Yan R (2024). Cryo-EM structures of the human NaS1 and NaDC1 transporters revealed the elevator transport and allosteric regulation mechanism.
Sci Adv 10 13:eadl3685. PubMed Id: 38552027. doi:10.1126/sciadv.adl3685. |
|||
Chi et al. (2024).
Chi X, Chen Y, Li Y, Dai L, Zhang Y, Shen Y, Chen Y, Shi T, Yang H, Wang Z, & Yan R (2024). Cryo-EM structures of the human NaS1 and NaDC1 transporters revealed the elevator transport and allosteric regulation mechanism.
Sci Adv 10 13:eadl3685. PubMed Id: 38552027. doi:10.1126/sciadv.adl3685. |
|||
CHT1 choline transporter (SLC5A7) with bound HC-3, dimeric state, outward-facing open confromation: Homo sapiens (expressed in E. coli), 3.60 Å
cryo-EM structure monomeric state, 3.60 Å: 8J75 apo form, monomeric state, inward-facing open conformation, 3.70 Å: 8J76 with bound choline, monomeric state, inward-facing occluded conformation, 3.70 Å: 8J77 |
Qiu et al. (2024).
Qiu Y, Gao Y, Huang B, Bai Q, & Zhao Y (2024). Transport mechanism of presynaptic high-affinity choline uptake by CHT1.
Nat Struct Mol Biol 31 4:701-709. PubMed Id: 38589607. doi:10.1038/s41594-024-01259-w. |
||
Asc1/CD98hc amino acid transporter (SLC7A10/SLC3A2) in inward-facing semi-occluded state, apo form: Homo sapiens E Eukaryota (expressed in HEK293 cells), 4.00 Å
cryo-EM structure |
Rullo-Tubau et al. (2024).
Rullo-Tubau J, Martinez-Molledo M, Bartoccioni P, Puch-Giner I, Arias Á, Saen-Oon S, Stephan-Otto Attolini C, Artuch R, Díaz L, Guallar V, Errasti-Murugarren E, Palacín M, & Llorca O (2024). Structure and mechanisms of transport of human Asc1/CD98hc amino acid transporter.
Nat Commun 15 1:2986. PubMed Id: 38582862. doi:10.1038/s41467-024-47385-3. |
||
Pidathala et al. (2023).
Pidathala S, Liao S, Dai Y, Li X, Long C, Chang CL, Zhang Z, & Lee CH (2023). Mechanisms of neurotransmitter transport and drug inhibition in human VMAT2.
Nature 623 7989:1086-1092. PubMed Id: 37914936. doi:10.1038/s41586-023-06727-9. |
|||
Vesicular monoamine transporter 2 (VMAT2, SLC18A2 family) with bound TBZ, occluded conformation: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.12 Å
cryo-EM structure |
Dalton et al. (2024).
Dalton MP, Cheng MH, Bahar I, & Coleman JA (2024). Structural mechanisms for VMAT2 inhibition by tetrabenazine.
Elife 12 :91973. PubMed Id: 38517752. doi:10.7554/eLife.91973. |
||
Wu et al. (2024).
Wu D, Chen Q, Yu Z, Huang B, Zhao J, Wang Y, Su J, Zhou F, Yan R, Li N, Zhao Y, & Jiang D (2024). Transport and inhibition mechanisms of human VMAT2.
Nature 626 7998:427-434. PubMed Id: 38081299. doi:10.1038/s41586-023-06926-4. |
|||
Vesicular monoamine transporter 2 (VMAT2, SLC18A2 family), apo form, outward-facing conformation: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.60 Å
cryo-EM structure with bound 5-HT, outward-facing conformation, 3.57 Å: 8WLM with bound TBZ, outward-facing conformation, 3.37 Å: 8WLK Y422C mutant, with bound reserpine, inward-facing conformation, 3.74 Å: 8WLL |
Wang et al. (2024).
Wang Y, Zhang P, Chao Y, Zhu Z, Yang C, Zhou Z, Li Y, Long Y, Liu Y, Li D, Wang S, & Qu Q (2024). Transport and inhibition mechanism for VMAT2-mediated synaptic vesicle loading of monoamines.
Cell Res 34 1:47-57. PubMed Id: 38163846. doi:10.1038/s41422-023-00906-z. |
||
Vesicular monoamine transporter 2 (VMAT2, SLC18A2 family), BRIL replaces TM8/9 loop: Ovis aries E Eukaryota (expressed in Komagataella pastoris), 3.20 Å
cryo-EM structure |
Lyu et al. (2024).
Lyu Y, Fu C, Ma H, Su Z, Sun Z, & Zhou X (2024). Engineering of a mammalian VMAT2 for cryo-EM analysis results in non-canonical protein folding.
Nat Commun 15 1:6511. PubMed Id: 39095428. doi:10.1038/s41467-024-50934-5. |
||
Vesicular monoamine transporter 2 (VMAT2, SLC18A2 family), apo conformation: Xenopus laevis E Eukaryota (expressed in Komagataella pastoris), 4.00 Å
cryo-EM structure |
Lyu et al. (2024).
Lyu Y, Fu C, Ma H, Su Z, Sun Z, & Zhou X (2024). Engineering of a mammalian VMAT2 for cryo-EM analysis results in non-canonical protein folding.
Nat Commun 15 1:6511. PubMed Id: 39095428. doi:10.1038/s41467-024-50934-5. |
||
Vesicular monoamine transporter 1 (VMAT1, SLC18A1 family), dimer with unbound form and reserpine (RSP)-bound form: Homo sapiens E Eukaryota (expressed in Komagataella pastoris), 3.50 Å
cryo-EM structure dimer with: both RSP-bound form, 3.50 Å: 8TGM dopamine (DA)-bound and RSP-bound form, 3.40 Å: 8TGI noradrenaline(NE)-bound and RSP-bound form, 3.40 Å: 8TGL serotonin(SERT)-bound and RSP-bound form, 3.30 Å: 8TGN histamine(HA)-bound and RSP-bound form, 3.70 Å: 8TGK amphetamine (AMPH)-bound and RSP-bound form, 3.50 Å: 8TGH MPP+-bound and RSP-bound form, 3.60 Å: 8TGG |
Ye et al. (2024).
Ye J, Chen H, Wang K, Wang Y, Ammerman A, Awasthi S, Xu J, Liu B, & Li W (2024). Structural insights into vesicular monoamine storage and drug interactions.
Nature 629 8010:235-243. PubMed Id: 38499039. doi:10.1038/s41586-024-07290-7. |
||
Dou et al. (2023).
Dou T, Lian T, Shu S, He Y, & Jiang J (2023). The substrate and inhibitor binding mechanism of polyspecific transporter OAT1 revealed by high-resolution cryo-EM.
Nat Struct Mol Biol 30 11:1794-1805. PubMed Id: 37845412. doi:10.1038/s41594-023-01123-3. |
|||
organic anion transporter 1 (OAT1, SLC22A6 family) in complex with synthetic nanobody Syb, apo form: Rattus norvegicus E Eukaryota (expressed in S. frugiperda), 3.52 Å
cryo-EM structure with bound α-ketoglutaric acid, 3.53 Å: 8BW7 with bound α-ketoglutaric acid in a low occupancy, 3.43 Å: 8OMU with bound tenofovir, 3.61 Å: 8BVS with bound Probenecid, 3.94 Å: 8BVT |
Parker et al. (2023).
Parker JL, Kato T, Kuteyi G, Sitsel O, & Newstead S (2023). Molecular basis for selective uptake and elimination of organic anions in the kidney by OAT1.
Nat Struct Mol Biol 30 11:1786-1793. PubMed Id: 37482561. doi:10.1038/s41594-023-01039-y. |
||
organic anion transporter 4 (OAT4, SLC22A11 family): Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.10 Å
cryo-EM structure member of Major Facilitator Superfamily (MFS) |
He et al. (2024).
He J, Liu G, Kong F, Tan Q, Wang Z, Yang M, He Y, Jia X, Yan C, Wang C, & Qian H (2024). Structural basis for the transport and substrate selection of human urate transporter 1.
Cell Rep 43 8:114628. PubMed Id: 39146184. doi:10.1016/j.celrep.2024.114628. |
||
urate transporter 1 (URAT1, SLC22A12 family): Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.00 Å
cryo-EM structure member of Major Facilitator Superfamily (MFS) R477S mutant, with bound urate, outward-open state, 3.80 Å: 8WJQ |
He et al. (2024).
He J, Liu G, Kong F, Tan Q, Wang Z, Yang M, He Y, Jia X, Yan C, Wang C, & Qian H (2024). Structural basis for the transport and substrate selection of human urate transporter 1.
Cell Rep 43 8:114628. PubMed Id: 39146184. doi:10.1016/j.celrep.2024.114628. |
||
Translocator Protein (18 kDA) TSPO
Principally an outer mitochondrial membrane protein that binds to cholesterol and drug ligands, but occurs in diverse organisms Previously referred to as a peripheral-type benzodiazepine receptor (PBR). In mitochondria, it is part of large multimeric complex located in the outer mitochondrial membrane, and is closely associated with VDAC. |
|||
Mitochondrial translocator protein (TSPO) in complex with PK11195: Mus musculus E Eukaryota (expressed in E. coli), NMR Structure
|
Jaremko et al. (2014).
Jaremko L, Jaremko M, Giller K, Becker S, & Zweckstetter M (2014). Structure of the mitochondrial translocator protein in complex with a diagnostic ligand.
Science 343 :1363-1366. PubMed Id: 24653034. doi:10.1126/science.1248725. |
||
Guo et al. (2015).
Guo Y, Kalathur RC, Liu Q, Kloss B, Bruni R, Ginter C, Kloppmann E, Rost B, & Hendrickson WA (2015). Protein structure. Structure and activity of tryptophan-rich TSPO proteins.
Science 347 6221:551-555. PubMed Id: 25635100. doi:10.1126/science.aaa1534. |
|||
Li et al. (2015).
Li F, Liu J, Zheng Y, Garavito RM, & Ferguson-Miller S (2015). Protein structure. Crystal structures of translocator protein (TSPO) and mutant mimic of a human polymorphism.
Science 347 6221:555-558. PubMed Id: 25635101. doi:10.1126/science.1260590. |
|||
Ca2+:Cation Antiporter (CaCA) Family
|
|||
Sodium/Calcium Exchanger (NCX), Lipidic Cubic Phase Crystallization: Methanocaldococcus jannaschii A Archaea (expressed in E. coli), 1.90 Å
Structure determined using conventional crystallization, 3.50 Å: 3V5S |
Liao et al. (2012).
Liao J, Li H, Zeng W, Sauer DB, Belmares R, & Jiang Y (2012). Structural insight into the ion-exchange mechanism of the sodium/calcium exchanger.
Science 335 :686-690. PubMed Id: 22323814. doi:10.1126/science.1215759. |
||
Vcx1 Ca2+/H+ (CaX) antiporter: Saccharomyces cerevisiae E Eukaryota, 2.30 Å
|
Waight et al. (2013).
Waight AB, Pedersen BP, Schlessinger A, Bonomi M, Chau BH, Roe-Zurz Z, Risenmay AJ, Sali A, & Stroud RM (2013). Structural basis for alternating access of a eukaryotic calcium/proton exchanger.
Nature 499 :107-110. PubMed Id: 23685453. doi:10.1038/nature12233. |
||
Ca2+/H+ (CaX) antiporter: Archaeoglobus fulgidus A Archaea (expressed in E. coli), 2.30 Å
|
Nishizawa et al. (2013).
Nishizawa T, Kita S, Maturana AD, Furuya N, Hirata K, Kasuya G, Ogasawara S, Dohmae N, Iwamoto T, Ishitani R, & Nureki O (2013). Structural Basis for the Counter-Transport Mechanism of a H+/Ca2+ Exchanger.
Science 341 :168-172. PubMed Id: 23704374. |
||
YfkE Ca2+/H+ (CaX) antiporter: Bacillus subtilis B Bacteria (expressed in E. coli), 3.05 Å
Selenium substituted structure, 3.00 Å: 4KJR |
Wu et al. (2013).
Wu M, Tong S, Waltersperger S, Diederichs K, Wang M, & Zheng L (2013). Crystal structure of Ca2+/H+ antiporter protein YfkE reveals the mechanisms of Ca2+ efflux and its pH regulation.
Proc. Natl. Acad. Sci. U.S.A. 110 28:11367-11372. PubMed Id: 23798403. doi:10.1073/pnas.1302515110. |
||
Nucleobase-Cation-Symport-1 (NCS1) Family
|
|||
Mhp1 Benzyl-hydantoin transporter (without substrate); outward-facing conformation: Microbacterium liquefaciens B Bacteria (expressed in E. coli), 2.85 Å
With hydantion substrate; closed conformation, 4.0 Å: 2JLO. |
Weyand et al. (2008).
Weyand S, Shimamura T, Yajima S, Suzuki S, Mirza O, Krusong K, Carpenter EP, Rutherford NG, Hadden JM, O'Reilly J, Ma P, Saidijam M, Patching SG, Hope RJ, Norbertczak HT, Roach PC, Iwata S, Henderson PJ, & Cameron AD (2008). Structure and Molecular Mechanism of a Nucleobase-Cation-Symport-1 Family Transporter.
Science 322 :709-713. PubMed Id: 18927357. |
||
Mhp1 Benzyl-hydantoin transporter; inward-facing conformation: Microbacterium liquefaciens B Bacteria (expressed in E. coli), 3.8 Å
|
Shimamura et al. (2010).
Shimamura T, Weyand S, Beckstein O, Rutherford NG, Hadden JM, Sharples D, Sansom MS, Iwata S, Henderson PJ, & Cameron AD (2010). Molecular basis of alternating access membrane transport by the sodium-hydantoin transporter Mhp1.
Science 328 :470-473. PubMed Id: 20413494. |
||
Nucleobase-Cation-Symport-2 (NCS2) Family
also known as nucleobase/ascorbate transporter (NAT) |
|||
UraA uracil/H+ symporter: Escherichia coli B Bacteria, 2.78 Å
First example of a NAT/NCS2 protein. It has 14 transmembrane segments divided into two inverted repeats. |
Lu et al. (2011).
Lu F, Li S, Jiang Y, Jiang J, Fan H, Lu G, Deng D, Dang S, Zhang X, Wang J, & Yan N (2011). Structure and mechanism of the uracil transporter UraA
Nature 472 :243-246. PubMed Id: 21423164. doi:10.1038/nature09885. |
||
UraA uracil/H+ symporter, L366W/I374W and 137W/I374W mutants, with bound uracil, occluded conformation: Escherichia coli (expressed in Escherichia coli), 2.50 Å
X-ray structure |
Yu et al. (2017).
Yu X, Yang G, Yan C, Baylon JL, Jiang J, Fan H, Lu G, Hasegawa K, Okumura H, Wang T, Tajkhorshid E, Li S, & Yan N (2017). Dimeric structure of the uracil:proton symporter UraA provides mechanistic insights into the SLC4/23/26 transporters.
Cell Res 27 8:1020-1033. PubMed Id: 28621327. doi:10.1038/cr.2017.83. |
||
UraA uracil/H+ symporter-synthetic nanobody (Sy45) complex, G320P mutant, unliganded form, wide inward-open conformation: Escherichia coli B Bacteria (expressed in Escherichia coli), 3.50 Å
X-ray structure with bound uracil, wide inward-open conformation, 3.50 Å:8OMZ |
Kuhn et al. (2024).
Kuhn BT, Zöller J, Zimmermann I, Gemeinhardt T, Özkul DH, Langer JD, Seeger MA, & Geertsma ER (2024). Interdomain-linkers control conformational transitions in the SLC23 elevator transporter UraA.
Nat Commun 15 1:7518. PubMed Id: 39209842. doi:10.1038/s41467-024-51814-8. |
||
UapA purine/H+ symporter in complex with Xanthine: Aspergillus nidulans E Eukaryota (expressed in S. cerevisiae), 3.7 Å
The protein has 14 TM segments. Dimerization may be important in transport. |
Alguel et al. (2016).
Alguel Y, Amillis S, Leung J, Lambrinidis G, Capaldi S, Scull NJ, Craven G, Iwata S, Armstrong A, Mikros E, Diallinas G, Cameron AD, & Byrne B (2016). Structure of eukaryotic purine/H+ symporter UapA suggests a role for homodimerization in transport activity.
Nat Commun 7 :11336. PubMed Id: 27088252. doi:10.1038/ncomms11336. |
||
Sodium-dependent vitamin C transporter (SVCT1) transporter: Mus musculus E Eukaryota (expressed in HEK293 cells), 3.20 Å
cryo-EM structure in an apo state, 3.50 Å: 7YTY |
Wang et al. (2023).
Wang M, He J, Li S, Cai Q, Zhang K, & She J (2023). Structural basis of vitamin C recognition and transport by mammalian SVCT1 transporter.
Nat Commun 14 1:1361. PubMed Id: 36914666. doi:10.1038/s41467-023-37037-3. |
||
AZG1 aza-guanine resistant protein 1, apo form at pH 7.4: Arabidopsis thaliana E Eukaryota (expressed in HEK293 cells), 2.70 Å
cryo-EM structure T440Y mutant, 2.90 Å: 8WO7 with bound 6-BAP, 2.70 Å: 8IRN with bound trans-zeatin, 2.70 Å: 8IRO with bound kinetin, 2.80 Å: 8IRP with bound adenine at pH 5.5, 2.60 Å: 8IRM with bound trans-zeatin at pH 5.5, 3.30 Å: 8WMQ |
Xu et al. (2024).
Xu L, Jia W, Tao X, Ye F, Zhang Y, Ding ZJ, Zheng SJ, Qiao S, Su N, Zhang Y, Wu S, & Guo J (2024). Structures and mechanisms of the Arabidopsis cytokinin transporter AZG1.
Nat Plants 10 1:180-191. PubMed Id: 38172575. doi:10.1038/s41477-023-01590-y. |
||
Solute Carrier Family 4 (anion exchanger)
|
|||
Erythrocyte Band 3 anion exchanger: Homo sapiens E Eukaryota, 3.5 Å
|
Arakawa et al. (2015).
Arakawa T, Kobayashi-Yurugi T, Alguel Y, Iwanari H, Hatae H, Iwata M, Abe Y, Hino T, Ikeda-Suno C, Kuma H, Kang D, Murata T, Hamakubo T, Cameron AD, Kobayashi T, Hamasaki N, & Iwata S (2015). Crystal structure of the anion exchanger domain of human erythrocyte band 3.
Science 350 :680-684. PubMed Id: 26542571. doi:10.1126/science.aaa4335. |
||
Band 3 cytoplasmic domain: Homo sapiens E Eukaryota (expressed in E. coli), 2.60 Å
|
Zhang et al. (2000).
Zhang D, Kiyatkin A, Bolin JT, & Low PS (2000). Crystallographic structure and functional interpretation of the cytoplasmic domain of erythrocyte membrane band 3.
Blood 96 :2925-2933. PubMed Id: 11049968. |
||
Erythrocyte Band 3 anion exchanger complex. Band 3-Glycophorin A complex, outward facing: Homo sapiens E Eukaryota, 2.35 Å
cryo-EM structure Ankyrin-1 complex, class 2 local refinement of AQP1 (C4 symmetry applied), 2.40 Å: 7UZE RhAG-RhCE-ANK1(AR1-5), local consensus refinement, 2.17 Å: 7UZQ Protein 4.2 (local refinement from consensus reconstruction of ankyrin complex classes), 2.20 Å: 7UZS Ankyrin-1 (N-terminal region of membrane binding domain, local refinement from consensus reconstruction; bound to N-terminal peptide from band 3, 2.30 Å:7UZU Band 3-I (local refinement) cytoplasmic domains, 2.50 Å: 7UZV Band 3-I-TM local refinement, ankyrin-1 complex consensus reconstruction, 2.80 Å: 7V07 ankyrin-1 (N-terminal half), class 1 of ankyrin-1 complex, 2.70 Å: 7V0M protein 4.2, class 1 of ankyrin-1 complex, 2.50 Å: 7V0Q RhAG/CE trimer, class 1 of ankyrin-1 complex, 2.50 Å: 7V0S Band 3-I cytoplasmic domains, class 1 of ankyrin-1, 2.70 Å: 7V0T Band 3-II cytoplasmic domains, class 1 of ankyrin-1 complex, 3.00 Å: 7V0U ankyrin-1 (C-terminal half), class 1 of ankyrin-1 complex, 3.00 Å: 7V0X Band 3-III cytoplasmic domains, class 1 of ankyrin-1 complex, 3.00 Å: 7V0Y Band 3-III cytoplasmic domains, class 1 of ankyrin-1, 3.30 Å: 7V19 Band 3-I transmembrane domains, class 1 of ankyrin-1 complex, 3.20 Å: 8CRQ Band 3-III transmembrane domains, class 1 of ankyrin-1 complex, 3.00 Å: 8CRR Rh trimer, glycophorin B and Band3-III transmembrane region, class 1a of ankyrin-1 complex, 3.00 Å: 8CRT Composite reconstruction of Class 1 of the erythrocyte ankyrin-1 complex, 2.74 Å: 8CS9 Sub-tomogram averaging of erythrocyte ankyrin-1 complex, 25 Å: 8CSL Anykyrin-1 (N-terminal half of membrane binding domain) in Class 2 of ankyrin-1 complex, 2.70 Å: 8CSV protein 4.2 in Class 2 of ankyrin-1 complex, 2.50 Å: 8CSW RhAG/CE trimer in class 2 of ankyrin-1 complex, 2.40 Å: 8CSX cytoplasmic domains of band3-I in class 2 of ankyrin-1 complex, 2.70 Å: 8CSY AQP1 tetramer in Class 2 of ankyrin-1 complex, 3.10 Å: 8CT2 band3-I transmembrane region from class 2 of ankyrin-1 complex, 3.30 Å: 8CT3 Class 2 of ankyrin-1 complex (Composite map), 2.90 Å: 8CTE |
Vallese et al. (2022).
Vallese F, Kim K, Yen LY, Johnston JD, Noble AJ, Calì T, & Clarke OB (2022). Architecture of the human erythrocyte ankyrin-1 complex.
Nat Struct Mol Biol 29 7:706-718. PubMed Id: 35835865. doi:10.1038/s41594-022-00792-w. |
||
Zhekova et al. (2022).
Zhekova HR, Jiang J, Wang W, Tsirulnikov K, Kayık G, Khan HM, Azimov R, Abuladze N, Kao L, Newman D, Noskov SY, Tieleman DP, Hong Zhou Z, Pushkin A, & Kurtz I (2022). CryoEM structures of anion exchanger 1 capture multiple states of inward- and outward-facing conformations.
Commun Biol 5 1:1372. PubMed Id: 36517642. doi:10.1038/s42003-022-04306-8. |
|||
non-erythroid band 3-like protein (AE2) anion exchanger 2, acidic KNO3 condition: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.32 Å
cryo-EM structure basic KNO3 condition, outward-facing state, 3.09 Å: 8GVF with bound inhibitor DIDS, 3.08 Å: 8GV8 with bound Cl- ion, 3.06 Å: 8GV9 with bound bicarbonate, 2.89 Å: 8GVC asymmetrical state, 3.17 Å: 8GVE |
Zhang et al. (2023).
Zhang Q, Jian L, Yao D, Rao B, Xia Y, Hu K, Li S, Shen Y, Cao M, Qin A, Zhao J, & Cao Y (2023). The structural basis of the pH-homeostasis mediated by the Cl-/HCO3- exchanger, AE2.
Nat Commun 14 1:1812. PubMed Id: 37002221. doi:10.1038/s41467-023-37557-y. |
||
non-erythroid band 3-like protein (AE2) anion exchanger 2 with bound PIP2, inward-facing conformation: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.20 Å
cryo-EM structure R932A/K1147A/H1148A mutant, inward-facing conformation, resting state, 3.30 Å: 8JNJ |
Zhang et al. (2024).
Zhang W, Ding D, Lu Y, Chen H, Jiang P, Zuo P, Wang G, Luo J, Yin Y, Luo J, & Yin Y (2024). Structural and functional insights into the lipid regulation of human anion exchanger 2.
Nat Commun 15 1:759. PubMed Id: 38272905. doi:10.1038/s41467-024-44966-0. |
||
Betaine/Choline/Carnitine Transporter (BCCT) Family
|
|||
BetP glycine betaine transporter: Corynebacterium glutamicum B Bacteria (expressed in E. coli), 3.35 Å
A Na+-coupled symporter in an intermediate state. Formerly PDB 2W8A. |
Ressl et al. (2009).
Ressl S, Terwisscha van Scheltinga AC, Vonrhein C, Ott V, & Ziegler C (2009). Molecular basis of transport and regulation in the Na+/betaine symporter BetP.
Nature 458 :47-52. PubMed Id: 19262666. |
||
BetP glycine betaine transporter in outward-facing conformation: Corynebacterium glutamicum B Bacteria (expressed in E. coli), 3.25 Å
BetP with asymmetric protomers, 3.10 Å: 4AIN |
Perez et al. (2012).
Perez C, Koshy C, Yildiz O, & Ziegler C (2012). Alternating-access mechanism in conformationally asymmetric trimers of the betaine transporter BetP.
Nature 490 :126-130. PubMed Id: 22940865. doi:10.1038/nature11403. |
||
BetP glycine betaine transporter with bound lipids: Corynebacterium glutamicum B Bacteria (expressed in E. coli), 2.70 Å
|
Koshy et al. (2013).
Koshy C, Schweikhard ES, Gärtner RM, Perez C, Yildiz O, & Ziegler C (2013). Structural evidence for functional lipid interactions in the betaine transporter BetP.
EMBO J 32 :3096-3105. PubMed Id: 24141878. doi:10.1038/emboj.2013.226. |
||
CaiT carnitine transporter: Escherichia coli B Bacteria, 3.15 Å
This is a precursor/product antiporter that catalyzes the exchange of L-carnitine wtih γ-butyrobetaine. The protein is a homotrimer with each monomer containing 12 transmembrane helices. |
Tang et al. (2010).
Tang L, Bai L, Wang WH, & Jiang T (2010). Crystal structure of the carnitine transporter and insights into the antiport mechanism.
Nat Struct Mol Biol 17 :492-496. PubMed Id: 20357772. |
||
CaiT carnitine transporter: Escherichia coli B Bacteria, 3.50 Å
Fully-open inward-facing conformation. |
Schulze et al. (2010).
Schulze S, Köster S, Geldmacher U, Terwisscha van Scheltinga AC, & Kühlbrandt W. (2010). Structural basis of Na+-independent and cooperative substrate/product antiport in CaiT.
Nature 467 :233-236. PubMed Id: 20829798. |
||
CaiT carnitine transporter: Proteus mirabilis B Bacteria, 2.3 Å
Fully-open inward-facing conformation. |
Schulze et al. (2010).
Schulze S, Köster S, Geldmacher U, Terwisscha van Scheltinga AC, & Kühlbrandt W. (2010). Structural basis of Na+-independent and cooperative substrate/product antiport in CaiT.
Nature 467 :233-236. PubMed Id: 20829798. |
||
CaiT carnitine transporter, R262E mutant with bound γ-butyrobetaine: Proteus mirabilis B Bacteria (expressed in E. coli), 3.29 Å
|
Kalayil et al. (2013).
Kalayil S, Schulze S, & Kühlbrandt W (2013). Arginine oscillation explains Na+ independence in the substrate/product antiporter CaiT.
Proc Natl Acad Sci USA 110 43:17296-17301. PubMed Id: 24101465. doi:10.1073/pnas.1309071110. |
||
Amino Acid/Polyamine/Organocation (APC) Superfamily
|
|||
AdiC Arginine:Agmatine Antiporter: Escherichia coli B Bacteria, 3.61 Å
3LRB is a re-refinement of the original 3H5B structure, which contained a register shift of 3-4 amino acids relative to 3NCY and 3GIA (below). |
Gao et al. (2009).
Gao X, Lu F, Zhou L, Dang S, Sun L, Li X, Wang J, & Shi Y. (2009). Structure and mechanism of an amino acid antiporter.
Science 324 :1565-1568. PubMed Id: 19478139. |
||
AdiC Arginine:Agmatine Antiporter (N22A, L123W mutant) with bound Arginine: Escherichia coli B Bacteria, 3.0 Å
Outward-facing occluded state |
Gao et al. (2010).
Gao X, Zhou L, Jiao X, Lu F, Yan C, Zeng X, Wang J, & Shi Y (2010). Mechanism of substrate recognition and transport by an amino acid antiporter.
Nature 463 :828-832. PubMed Id: 20090677. |
||
AdiC Arginine:Agmatine Antiporter (N101A mutant) with bound Arginine: Escherichia coli B Bacteria, 3.0 Å
Reveals AdiC in the open-to-out conformation. |
Kowalczyk et al. (2011).
Kowalczyk L, Ratera M, Paladino A, Bartoccioni P, Errasti-Murugarren E, Valencia E, Portella G, Bial S, Zorzano A, Fita I, Orozco M, Carpena X, Vázquez-Ibar JL, & Palacín M (2011). Molecular basis of substrate-induced permeation by an amino acid antiporter.
Proc Natl Acad Sci USA 108 :3935-3940. PubMed Id: 21368142. |
||
AdiC Arginine:Agmatine Antiporter in complex with agmatine: Escherichia coli B Bacteria, 2.59 Å
apo protein, 2.21 Å: 5J4I |
Ilgü et al. (2016).
Ilgü H, Jeckelmann JM, Gapsys V, Ucurum Z, de Groot BL, & Fotiadis D (2016). Insights into the molecular basis for substrate binding and specificity of the wild-type L-arginine/agmatine antiporter AdiC.
Proc. Natl. Acad. Sci. U.S.A. 113 37:10358-10363. PubMed Id: 27582465. doi:10.1073/pnas.1605442113. |
||
AdiC Arginine:Agmatine Antiporter, outward open substrate-free state: Escherichia coli E Eukaryota, 1.69 Å
|
Ilgü et al. (2021).
Ilgü H, Jeckelmann JM, Kalbermatter D, Ucurum Z, Lemmin T, & Fotiadis D (2021). High-resolution structure of the amino acid transporter AdiC reveals insights into the role of water molecules and networks in oligomerization and substrate binding.
BMC Biol 19 1:179. PubMed Id: 34461897. doi:10.1186/s12915-021-01102-4. |
||
AdiC Arginine:Agmatine Antiporter (with Fab fragment): Salmonella enterica B Bacteria (expressed in E. coli), 3.2 Å
PDB ID was originally 3HQK, which has been superseded by 3NCY. |
Fang et al. (2009).
Fang Y, Jayaram H, Shane T, Kolmakova-Partensky L, Wu F, Williams C, Xiong Y, & Miller C (2009). Structure of a prokaryotic virtual proton pump at 3.2 Å resolution.
Nature 460 :1040-1043. PubMed Id: 19578361. |
||
Shaffer et al. (2009).
Shaffer PL, Goehring A, Shankaranarayanan A, & Gouaux E (2009). Structure and Mechanism of a Na+-independent amino acid transporter.
Science 325 :1010-1014. PubMed Id: 19608859. |
|||
Ma et al. (2012).
Ma D, Lu P, Yan C, Fan C, Yin P, Wang J, & Shi Y (2012). Structure and mechanism of a glutamate-GABA antiporter.
Nature 483 :632-636. PubMed Id: 22407317. doi:10.1038/nature10917. |
|||
AgcS sodium/alanine symporter with bound L-alanine: Methanococcus maripaludis B Bacteria (expressed in E. coli), 3.24 Å
with bound D-alanine, 3.3 Å: 6CSF |
Ma et al. (2019).
Ma J, Lei HT, Reyes FE, Sanchez-Martinez S, Sarhan MF, Hattne J, & Gonen T (2019). Structural basis for substrate binding and specificity of a sodium-alanine symporter AgcS.
Proc Natl Acad Sci USA 116 6:2086-2090. PubMed Id: 30659158. doi:10.1073/pnas.1806206116. |
||
BasC alanine-serine-cysteine exchanger, open-inward conformation: Carnobacterium sp. AT7 B Bacteria (expressed in E. coli), 2.92 Å
in complex with 2-AIB, 3.4 Å: 6F2W |
Errasti-Murugarren et al. (2019).
Errasti-Murugarren E, Fort J, Bartoccioni P, Díaz L, Pardon E, Carpena X, Espino-Guarch M, Zorzano A, Ziegler C, Steyaert J, Fernández-Recio J, Fita I, & Palacín M (2019). L amino acid transporter structure and molecular bases for the asymmetry of substrate interaction.
Nat Commun 10 1:1807. PubMed Id: 31000719. doi:10.1038/s41467-019-09837-z. |
||
Chew et al. (2019).
Chew TA, Orlando BJ, Zhang J, Latorraca NR, Wang A, Hollingsworth SA, Chen DH, Dror RO, Liao M, & Feng L (2019). Structure and mechanism of the cation-chloride cotransporter NKCC1.
Nature 572 7770:488-492. PubMed Id: 31367042. doi:10.1038/s41586-019-1438-2. |
|||
NKCC1 cation-chloride cotransporter (CCC), partially loaded, inward open state: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.46 Å
cryo-EM structure |
Yang et al. (2020).
Yang X, Wang Q, & Cao E (2020). Structure of the human cation-chloride cotransporter NKCC1 determined by single-particle electron cryo-microscopy.
Nat Commun 11 1:1016. PubMed Id: 32081947. doi:10.1038/s41467-020-14790-3. |
||
Liu et al. (2019).
Liu S, Chang S, Han B, Xu L, Zhang M, Zhao C, Yang W, Wang F, Li J, Delpire E, Ye S, Bai XC, & Guo J (2019). Cryo-EM structures of the human cation-chloride cotransporter KCC1.
Science 366 6464:505-508. PubMed Id: 31649201. doi:10.1126/science.aay3129. |
|||
Chi et al. (2021).
Chi G, Ebenhoch R, Man H, Tang H, Tremblay LE, Reggiano G, Qiu X, Bohstedt T, Liko I, Almeida FG, Garneau AP, Wang D, McKinley G, Moreau CP, Bountra KD, Abrusci P, Mukhopadhyay SMM, Fernandez-Cid A, Slimani S, Lavoie JL, Burgess-Brown NA, Tehan B, DiMaio F, Jazayeri A, Isenring P, Robinson CV, & Dürr KL (2021). Phospho-regulation, nucleotide binding and ion access control in potassium-chloride cotransporters.
EMBO J 40 14:e107294. PubMed Id: 34031912. doi:10.15252/embj.2020107294. |
|||
KCC1 cation-chloride cotransporter (CCC) with bound VU0463271, outward-open state: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.50 Å
cryo-EM structure in 140 mM KCl, inward-open state, 3.25 Å: 7TTH |
Zhao et al. (2022).
Zhao Y, Shen J, Wang Q, Ruiz Munevar MJ, Vidossich P, De Vivo M, Zhou M, & Cao E (2022). Structure of the human cation-chloride cotransport KCC1 in an outward-open state.
Proc Natl Acad Sci U S A 119 27:e2109083119. PubMed Id: 35759661. doi:10.1073/pnas.2109083119. |
||
KCC3 cation-chloride cotransporter (CCC): Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.60 Å
cryo-EM structure |
Xie et al. (2020).
Xie Y, Chang S, Zhao C, Wang F, Liu S, Wang J, Delpire E, Ye S, & Guo J (2020). Structures and an activation mechanism of human potassium-chloride cotransporters.
Sci Adv 6 50:eabc5883. PubMed Id: 33310850. doi:10.1126/sciadv.abc5883. |
||
KCC3b cation-chloride cotransporter (CCC), wild-type in NaCl: homo sapiens E Eukaryota (expressed in HEK293 cells), 3.64 Å
cryo-EM structure S45D/T940D/T997D mutant in KCl, 4.08 Å: 6Y5V S45D/T940D/T997D mutant in NaCl (Reference Map), 3.20 Å: 7AIN S45D/T940D/T997D mutant in NaCl (Subclass), 3.31 Å:7AIO |
Chi et al. (2021).
Chi G, Ebenhoch R, Man H, Tang H, Tremblay LE, Reggiano G, Qiu X, Bohstedt T, Liko I, Almeida FG, Garneau AP, Wang D, McKinley G, Moreau CP, Bountra KD, Abrusci P, Mukhopadhyay SMM, Fernandez-Cid A, Slimani S, Lavoie JL, Burgess-Brown NA, Tehan B, DiMaio F, Jazayeri A, Isenring P, Robinson CV, & Dürr KL (2021). Phospho-regulation, nucleotide binding and ion access control in potassium-chloride cotransporters.
EMBO J 40 14:e107294. PubMed Id: 34031912. doi:10.15252/embj.2020107294. |
||
KCC4 cation-chloride cotransporter (CCC): Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.90 Å
cryo-EM structure |
Xie et al. (2020).
Xie Y, Chang S, Zhao C, Wang F, Liu S, Wang J, Delpire E, Ye S, & Guo J (2020). Structures and an activation mechanism of human potassium-chloride cotransporters.
Sci Adv 6 50:eabc5883. PubMed Id: 33310850. doi:10.1126/sciadv.abc5883. |
||
KCC4 cation-chloride cotransporter (CCC) in nanodiscs: mus musculus E Eukaryota (expressed in Sf9 cells), 3.65 Å
cryo-EM structure |
Reid et al. (2020).
Reid MS, Kern DM, & Brohawn SG (2020). Cryo-EM structure of the potassium-chloride cotransporter KCC4 in lipid nanodiscs.
Elife 9 . PubMed Id: 32286222. doi:10.7554/eLife.52505. |
||
KimA K+/H+ symporter, inward-facing occluded state: Bacillus subtilis B Bacteria (expressed in E. coli), 3.7 Å
cryo-EM structure Defining member of the K+ uptake (KUP) family |
Tascón et al. (2020).
Tascón I, Sousa JS, Corey RA, Mills DJ, Griwatz D, Aumüller N, Mikusevic V, Stansfeld PJ, Vonck J, & Hänelt I (2020). Structural basis of proton-coupled potassium transport in the KUP family.
Nat Commun 11 1:626. PubMed Id: 32005818. doi:10.1038/s41467-020-14441-7. |
||
KimA K+/H+ symporter with bound cyclic-di-AMP in amphipols: Bacillus subtilis B Bacteria, 3.80 Å
cryo-EM structure in DDM, 3.30 Å: 8B70 |
Fuss et al. (2023).
Fuss MF, Wieferig JP, Corey RA, Hellmich Y, Tascón I, Sousa JS, Stansfeld PJ, Vonck J, & Hänelt I (2023). Cyclic di-AMP traps proton-coupled K+ transporters of the KUP family in an inward-occluded conformation.
Nat Commun 14 1:3683. PubMed Id: 37344476. doi:10.1038/s41467-023-38944-1. |
||
Nan et al. (2022).
Nan J, Yuan Y, Yang X, Shan Z, Liu H, Wei F, Zhang W, & Zhang Y (2022). Cryo-EM structure of the human sodium-chloride cotransporter NCC.
Sci Adv 8 45:eadd7176. PubMed Id: 36351028. doi:10.1126/sciadv.add7176. |
|||
Fan et al. (2023).
Fan M, Zhang J, Lee CL, Zhang J, & Feng L (2023). Structure and thiazide inhibition mechanism of the human Na-Cl cotransporter.
Nature 614 7949:788-793. PubMed Id: 36792826. doi:10.1038/s41586-023-05718-0. |
|||
Cation Diffusion Facilitator (CDF) Family
|
|||
YiiP Zinc Transporter: Escherichia coli B Bacteria, 3.8 Å
9-18, 2005) |
Lu & Fu (2007).
Lu M & Fu D (2007). Structure of the zinc transporter YiiP.
Science 317 :1746-1748. PubMed Id: 17717154. |
||
YiiP Zinc Transporter: Escherichia coli B Bacteria, 2.9 Å
9-18, 2005) |
Lu et al. (2009).
Lu M, Chai J, & Fu D (2009). Structural basis for autoregulation of the zinc transporter YiiP.
Nat Struct Mol Biol 16 :1063-1067. PubMed Id: 19749753. |
||
YiiP Zinc Transporter: Shewanella oneidensis B Bacteria (expressed in E. coli), 4.1 Å
cryo-EM structure. Structure defines the differences between inward- and outward-facing conformations. |
Lopez-Redondo et al. (2018).
Lopez-Redondo ML, Coudray N, Zhang Z, Alexopoulos J, & Stokes DL (2018). Structural basis for the alternating access mechanism of the cation diffusion facilitator YiiP.
Proc Natl Acad Sci USA 115 12:3042-3047. PubMed Id: 29507252. doi:10.1073/pnas.1715051115. |
||
Antiporters
|
|||
NhaA Na+/H+ antiporter: Escherichia coli B Bacteria, 3.45 Å
|
Hunte et al. (2005).
Hunte C, Screpanti E, Venturi M, Rimon A, Padan E, & Michel H (2005). Structure of a Na(+)/H(+) antiporter and insights into mechanism of action and regulation by pH.
Nature 435 :1197-1202. PubMed Id: 15988517. |
||
NhaA Na+/H+ antiporter: Escherichia coli B Bacteria, by electron crystallography
Difference maps show structural changes with changes in pH. |
Appel et al. (2009).
Appel M, Hizlan D, Vinothkumar KR, Ziegler C, Kühlbrandt W (2009). Conformations of NhaA, the Na/H exchanger from Escherichia coli, in the pH-activated and ion-translocating states.
J Mol Biol 386 :351-365. PubMed Id: 19135453. |
||
NhaA Na+/H+ antiporter in dimeric state (inward-facing): Escherichia coli B Bacteria, 3.70 Å
triple mutant (A109T, Q277G, L296M), 3.50 Å: 4ATV |
Lee et al. (2014).
Lee C, Yashiro S, Dotson DL, Uzdavinys P, Iwata S, Sansom MS, von Ballmoos C, Beckstein O, Drew D, & Cameron AD (2014). Crystal structure of the sodium-proton antiporter NhaA dimer and new mechanistic insights.
J Gen Physiol 144 6:529-544. PubMed Id: 25422503. doi:10.1085/jgp.201411219. |
||
NhaA Na+/H+ antiporter at pH 6.5: Escherichia coli B Bacteria, 2.20 Å
|
Winkelmann et al. (2022).
Winkelmann I, Uzdavinys P, Kenney IM, Brock J, Meier PF, Wagner LM, Gabriel F, Jung S, Matsuoka R, von Ballmoos C, Beckstein O, & Drew D (2022). Crystal structure of the Na+/H+ antiporter NhaA at active pH reveals the mechanistic basis for pH sensing.
Nat Commun 13 1:6383. PubMed Id: 36289233. doi:10.1038/s41467-022-34120-z. |
||
NapA Na+/H+ antiporter: Thermus thermophilus B Bacteria (expressed in E. coli), 2.98 Å
|
Lee et al. (2013).
Lee C, Kang HJ, von Ballmoos C, Newstead S, Uzdavinys P, Dotson DL, Iwata S, Beckstein O, Cameron AD, & Drew D (2013). A two-domain elevator mechanism for sodium/proton antiport.
Nature 501 :573-577. PubMed Id: 23995679. doi:10.1038/nature12484. |
||
NapA Na+/H+ antiporter, outward facing: Thermus thermophilus B Bacteria (expressed in E. coli), 2.3 Å
inward facing, 3.7 Å: 5BZ2 |
Coincon et al. (2016).
Coincon M, Uzdavinys P, Nji E, Dotson DL, Winkelmann I, Abdul-Hussein S, Cameron AD, Beckstein O, & Drew D (2016). Crystal structures reveal the molecular basis of ion translocation in sodium/proton antiporters.
Nat Struct Mol Biol 23 :248-255. PubMed Id: 26828964. doi:10.1038/nsmb.3164. |
||
Wöhlert et al. (2014).
Wöhlert D, Kühlbrandt W, & Yildiz Ö (2014). Structure and substrate ion binding in the sodium/proton antiporter PaNhaP.
Elife 3 :e03579. PubMed Id: 25426802. doi:10.7554/eLife.03579. |
|||
NhaP1 Na+/H+ antiporter, pH 8: Methanocaldococcus jannaschii A Archaea (expressed in E. coli), 3.50 Å
EM 2D crystal reconstruction structure, pH 4. In-plane resolution 6 Å: 4D0A |
Paulino et al. (2014).
Paulino C, Wöhlert D, Kapotova E, Yildiz Ö, & Kühlbrandt W (2014). Structure and transport mechanism of the sodium/proton antiporter MjNhaP1.
Elife 3 :e03583. PubMed Id: 25426803. doi:10.7554/eLife.03583. |
||
Mitochondrial ADP/ATP Carrier: Bos taurus heart mitochondria E Eukaryota, 2.2 Å
Monomeric, in complex with carboxyatractyloside inhibitor. |
Pebay-Peyroula et al. (2003).
Pebay-Peyroula E, Dahout-Gonzalez C, Kahn R, Trezeguet V, Lauquin GJ, & Brandolin G (2003). Structure of mitochondrial ADP/ATP carrier in complex with carboxyatractyloside.
Nature 426 :39-44. PubMed Id: 14603310. |
||
Mitochondrial ADP/ATP Carrier: Bos taurus heart mitochondria E Eukaryota, 2.8 Å
Biological dimer with endogenous cardiolipins. |
Nury et al. (2005).
Nury H, Dahout-Gonzalez C, Trézéguet V, Lauquin G, Brandolin G, & Pebay-Peyroula E (2005). Structural basis for lipid-mediated interactions between mitochondrial ADP/ATP carrier monomers.
FEBS Lett 579 :13561-13556. PubMed Id: 16226253. |
||
Mitochondrial ADP/ATP Carrier; isoform 2 inhibited by carboxyatractyloside (C2221 crystal form): Saccharomyces cerevisiae E Eukaryota, 2.49 Å
isoform 2 inhibited by carboxyatractyloside (P212121 crystal form), 3.20 Å: 4C9H isoform 3 inhibited by carboxyatractyloside (P21 crystal form), 3.20 Å: 4C9Q isoform 3 inhibited by carboxyatractyloside (P212121 crystal form), 3.40 Å: 4C9J |
Ruprecht et al. (2014).
Ruprecht JJ, Hellawell AM, Harding M, Crichton PG, McCoy AJ, & Kunji ER (2014). Structures of yeast mitochondrial ADP/ATP carriers support a domain-based alternating-access transport mechanism.
Proc. Natl. Acad. Sci. U.S.A. 111 :E426-E434. PubMed Id: 24474793. doi:10.1073/pnas.1320692111. |
||
Mitochondrial ADP/ATP carrier, bongkrekic acid-inhibited: Myceliophthora thermophila E Eukaryota (expressed in S. cerevisiae), 3.3 Å
|
Ruprecht et al. (2019).
Ruprecht JJ, King MS, Zögg T, Aleksandrova AA, Pardon E, Crichton PG, Steyaert J, & Kunji ERS (2019). The Molecular Mechanism of Transport by the Mitochondrial ADP/ATP Carrier.
Cell 176 3:435-447.e15. PubMed Id: 30611538. doi:10.1016/j.cell.2018.11.025. |
||
UCP1 mitochondrial uncoupling protein 1: Homo sapiens E Eukaryota (expressed in S. cerevisiae), 3.80 Å
cryo-EM structure |
Jones et al. (2023).
Jones SA, Gogoi P, Ruprecht JJ, King MS, Lee Y, Zögg T, Pardon E, Chand D, Steimle S, Copeman DM, Cotrim CA, Steyaert J, Crichton PG, Moiseenkova-Bell V, & Kunji ERS (2023). Structural basis of purine nucleotide inhibition of human uncoupling protein 1.
Sci Adv 9 22:eadh4251. PubMed Id: 37256948. doi:10.1126/sciadv.adh4251. |
||
Kang & Chen (2023).
Kang Y, & Chen L (2023). Structural basis for the binding of DNP and purine nucleotides onto UCP1.
Nature 620 7972:226-231. PubMed Id: 37336486. doi:10.1038/s41586-023-06332-w. |
|||
UCP2 mitochondrial uncoupling protein 2: Mus musculus E Eukaryota (expressed in E. coli), NMR structure
Solved by a combination of NMR residual dipolar couplings, paramagnetic relaxation enhancement, and molecular fragment replacement. |
Berardi et al. (2011).
Berardi MJ, Shih WM, Harrison SC, & Chou JJ (2011). Mitochondrial uncoupling protein 2 structure determined by NMR molecular fragment searching
Nature 476 :109-113. PubMed Id: 21785437. doi:10.1038/nature10257. |
||
Multiple resistance & pH adaptation (Mrp) complex Na+/H+ antiporter: Dietzia sp. DQ12-45-1b B Bacteria (expressed in E. coli), 3.00 Å
cryo-EM structure |
Li et al. (2020).
Li B, Zhang K, Nie Y, Wang X, Zhao Y, Zhang XC, & Wu XL (2020). Structure of the Dietzia Mrp complex reveals molecular mechanism of this giant bacterial sodium proton pump.
Proc Natl Acad Sci U S A 117 49:31166-31176. PubMed Id: 33229520. doi:10.1073/pnas.2006276117. |
||
Multiple resistance & pH adaptation (Mrp) complex Na+/H+ antiporter: Alkalihalobacillus pseudofirmus B Bacteria (expressed in E. coli), 2.24 Å
cryo-EM structure |
Lee et al. (2022).
Lee Y, Haapanen O, Altmeyer A, Kühlbrandt W, Sharma V, & Zickermann V (2022). Ion transfer mechanisms in Mrp-type antiporters from high resolution cryoEM and molecular dynamics simulations.
Nat Commun 13 1:6091. PubMed Id: 36241630. doi:10.1038/s41467-022-33640-y. |
||
Na+/H+ exchanger NHE9 (SLC9A9), inward-facing conformation: Equus caballus E Eukaryota (expressed in S. cerevisiae), 3.51 Å
cryo-EM structure without C-terminal regulatory domain, 3.19 Å: 6Z3Z |
Winkelmann et al. (2020).
Winkelmann I, Matsuoka R, Meier PF, Shutin D, Zhang C, Orellana L, Sexton R, Landreh M, Robinson CV, Beckstein O, & Drew D (2020). Structure and elevator mechanism of the mammalian sodium/proton exchanger NHE9.
EMBO J 39 :e105908. PubMed Id: 33118634. doi:10.15252/embj.2020105908. |
||
Matsuoka et al. (2022).
Matsuoka R, Fudim R, Jung S, Zhang C, Bazzone A, Chatzikyriakidou Y, Robinson CV, Nomura N, Iwata S, Landreh M, Orellana L, Beckstein O, & Drew D (2022). Structure, mechanism and lipid-mediated remodeling of the mammalian Na+/H+ exchanger NHA2.
Nat Struct Mol Biol 29 2:108-120. PubMed Id: 35173351. doi:10.1038/s41594-022-00738-2. |
|||
Yeo et al. (2023).
Yeo H, Mehta V, Gulati A, & Drew D (2023). Structure and electromechanical coupling of a voltage-gated Na+/H+ exchanger.
Nature 623 7985:193-201. PubMed Id: 37880360. doi:10.1038/s41586-023-06518-2. |
|||
sperm-specific Na+/H+ exchanger (SLC9C1), apo state, dimer: Strongylocentrotus purpuratus E Eukaryota (expressed in HEK293 cells), 3.10 Å
cryo-EM structure apo state, protomer, 3.21 Å: 8XQ4 cAMP state, inactivated dimer, 3.15 Å: 8XQ7 cAMP state, inactivated protomer, 3.35 Å: 8XQ8 cAMP state, intermediate1, 3.77 Å : 8XQ9 cAMP state, intermediate2, 3.54 Å: 8XQA |
Qu et al. (2024).
Qu H, Zhen Y, Xu M, Huang Y, Wang Y, Ji G, Zhang Y, Li H, Dong Z, & Zheng X (2024). Structures of a sperm-specific sodium-hydrogen exchanger.
Cell Insight 3 4:100177. PubMed Id: 38957574. doi:10.1016/j.cellin.2024.100177. |
||
Dong et al. (2021).
Dong Y, Gao Y, Ilie A, Kim D, Boucher A, Li B, Zhang XC, Orlowski J, & Zhao Y (2021). Structure and mechanism of the human NHE1-CHP1 complex.
Nat Commun 12 1:3474. PubMed Id: 34108458. doi:10.1038/s41467-021-23496-z. |
|||
Apical Sodium-Dependent Bile Acid Transporters (ASBT)
Closely related to sodium taurocholate co-transporting polypeptide (NTCP). Both proteins are members of SLC10 solute carrier family |
|||
Hu et al. (2011).
Hu NJ, Iwata S, Cameron AD, & Drew D (2011). Crystal structure of a bacterial homologue of the bile acid sodium symporter ASBT.
Nature 478 :408-411. PubMed Id: 21976025. doi:10.1038/nature10450. |
|||
Bacterial homologue of ASBT (ASBTYf), inward-open conformation: Yersinia frederiksenii B Bacteria (expressed in E. coli), 1.95 Å
E254A mutant, probable outward-open conformation, 2.50 Å: 4N7X |
Zhou et al. (2014).
Zhou X, Levin EJ, Pan Y, McCoy JG, Sharma R, Kloss B, Bruni R, Quick M, & Zhou M (2014). Structural basis of the alternating-access mechanism in a bile acid transporter.
Nature 505 :569-573. PubMed Id: 24317697. doi:10.1038/nature12811. |
||
Bacterial homologue of ASBT (ASBTγf), P10C-S291C mutant, inward-facing state complexed with citrate: Yersinia frederiksenii B Bacteria (expressed in E. coli), 1.85 Å
inward-facing apo-state, 2.81 Å: 6LH0 inward-facing state complexed with sulfate, 2.43 Å: 6LGZ inward-facing state complexed with glycine and sodium, 2.25 Å: 6LGY |
Wang et al. (2021).
Wang X, Lyu Y, Ji Y, Sun Z, & Zhou X (2021). Substrate binding in the bile acid transporter ASBTγf from Yersinia frederiksenii.
Acta Crystallogr D Struct Biol 77 :117-125. PubMed Id: 33404531. doi:10.1107/S2059798320015004. |
||
Wang et al. (2021).
Wang X, Lyu Y, Ji Y, Sun Z, & Zhou X (2021). An engineered disulfide bridge traps and validates an outward-facing conformation in a bile acid transporter.
Acta Crystallogr D Struct Biol 77 :108-116. PubMed Id: 33404530. doi:10.1107/S205979832001517X. |
|||
sodium taurocholate co-transporting polypeptide (NTCP) transporter: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.30 Å
cryo-EM structure |
Park et al. (2022).
Park JH, Iwamoto M, Yun JH, Uchikubo-Kamo T, Son D, Jin Z, Yoshida H, Ohki M, Ishimoto N, Mizutani K, Oshima M, Muramatsu M, Wakita T, Shirouzu M, Liu K, Uemura T, Nomura N, Iwata S, Watashi K, Tame JRH, Nishizawa T, Lee W, & Park SY (2022). Structural insights into the HBV receptor and bile acid transporter NTCP.
Nature 606 7916:1027-1031. PubMed Id: 35580630. doi:10.1038/s41586-022-04857-0. |
||
sodium taurocholate co-transporting polypeptide (NTCP) transporter in complex with nanobody 87: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.70 Å
cryo-EM structure in complex with Megabody 91, 3.30 Å 7PQQ |
Goutam et al. (2022).
Goutam K, Ielasi FS, Pardon E, Steyaert J, & Reyes N (2022). Structural basis of sodium-dependent bile salt uptake into the liver.
Nature 606 7916:1015-1020. PubMed Id: 35545671. doi:10.1038/s41586-022-04723-z. |
||
sodium taurocholate co-transporting polypeptide (NTCP) transporter in complex with Fab and nanobody: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.88 Å
cryo-EM structure |
Liu et al. (2022).
Liu H, Irobalieva RN, Bang-Sørensen R, Nosol K, Mukherjee S, Agrawal P, Stieger B, Kossiakoff AA, & Locher KP (2022). Structure of human NTCP reveals the basis of recognition and sodium-driven transport of bile salts into the liver.
Cell Res 32 8:773-776. PubMed Id: 35726088. doi:10.1038/s41422-022-00680-4. |
||
Asami et al. (2022).
Asami J, Kimura KT, Fujita-Fujiharu Y, Ishida H, Zhang Z, Nomura Y, Liu K, Uemura T, Sato Y, Ono M, Yamamoto M, Noda T, Shigematsu H, Drew D, Iwata S, Shimizu T, Nomura N, & Ohto U (2022). Structure of the bile acid transporter and HBV receptor NTCP.
Nature 606 7916:1021-1026. PubMed Id: 35580629. doi:10.1038/s41586-022-04845-4. |
|||
sodium taurocholate co-transporting polypeptide (NTCP), in complex with YN69202Fab: Bos taurus E Eukaryota (expressed in S. frugiperda), 3.55 Å
cryo-EM structure |
Asami et al. (2022).
Asami J, Kimura KT, Fujita-Fujiharu Y, Ishida H, Zhang Z, Nomura Y, Liu K, Uemura T, Sato Y, Ono M, Yamamoto M, Noda T, Shigematsu H, Drew D, Iwata S, Shimizu T, Nomura N, & Ohto U (2022). Structure of the bile acid transporter and HBV receptor NTCP.
Nature 606 7916:1021-1026. PubMed Id: 35580629. doi:10.1038/s41586-022-04845-4. |
||
sodium taurocholate co-transporting polypeptide (NTCP), in complex with YN69202Fab: Mus musculus E Eukaryota (expressed in S. frugiperda), 3.11 Å
cryo-EM structure |
Asami et al. (2022).
Asami J, Kimura KT, Fujita-Fujiharu Y, Ishida H, Zhang Z, Nomura Y, Liu K, Uemura T, Sato Y, Ono M, Yamamoto M, Noda T, Shigematsu H, Drew D, Iwata S, Shimizu T, Nomura N, & Ohto U (2022). Structure of the bile acid transporter and HBV receptor NTCP.
Nature 606 7916:1021-1026. PubMed Id: 35580629. doi:10.1038/s41586-022-04845-4. |
||
Energy-Coupling Factor (ECF) Transporters
|
|||
RibU, S Component of the Riboflavin Transporter: Staphylococcus aureus B Bacteria (expressed in E. coli), 3.6 Å
|
Zhang et al. (2010).
Zhang P, Wang J, & Shi Y (2010). Structure and mechanism of the S component of a bacterial ECF transporter.
Nature 468 :717-720. PubMed Id: 20972419. |
||
ThiT, S component of the Thiamin Transporter: Lactococcus lactis B Bacteria, 2.00 Å
|
Erkens et al. (2011).
Erkens GB, Berntsson RP, Fulyani F, Majsnerowska M, Vujčić-Žagar A, Ter Beek J, Poolman B, & Slotboom DJ (2011). The structural basis of modularity in ECF-type ABC transporters.
Nat Struct Mol Biol 18 :755-760. PubMed Id: 21706007. doi:10.1038/nsmb.2073. |
||
BioY, S component of the Biotin Transporter: Lactococcus lactis B Bacteria, 2.09 Å
|
Berntsson et al. (2012).
Berntsson RP, ter Beek J, Majsnerowska M, Duurkens RH, Puri P, Poolman B, & Slotboom DJ (2012). Structural divergence of paralogous S components from ECF-type ABC transporters.
Proc Natl Acad Sci USA 109 :13990-13995. PubMed Id: 22891302. doi:10.1073/pnas.1203219109. |
||
Folate ECF transporter complex: Lactobacillus brevis B Bacteria (expressed in E. coli), 3.00 Å
Structure of the intact transporter consisting of FolT, EcfT, EcfA, and EcfA'. |
Xu et al. (2013).
Xu K, Zhang M, Zhao Q, Yu F, Guo H, Wang C, He F, Ding J, & Zhang P (2013). Crystal structure of a folate energy-coupling factor transporter from Lactobacillus brevis.
Nature 497 :268-271. PubMed Id: 23584589. doi:10.1038/nature12046. |
||
ECF transporter complex: Lactobacillus brevis B Bacteria (expressed in E. coli), 3.53 Å
Thought to be specific for hydroxymethylpyrimidine (HMP). |
Wang et al. (2013).
Wang T, Fu G, Pan X, Wu J, Gong X, Wang J, & Shi Y (2013). Structure of a bacterial energy-coupling factor transporter.
Nature 497 :272-276. PubMed Id: 23584587. |
||
Swier et al. (2016).
Swier LJ, Guskov A, & Slotboom DJ (2016). Structural insight in the toppling mechanism of an energy-coupling factor transporter.
Nat Commun 7 :11072. PubMed Id: 27026363. doi:10.1038/ncomms11072. |
|||
Folate ECF transporter complex in MSP2N2 lipid nanodiscs: Lactobacillus delbrueckii B Bacteria (expressed in E. coli), 2.20 Å
cryo-EM structure complex in DDM micelles, 3.40 Å 7NNT |
Thangaratnarajah et al. (2021).
Thangaratnarajah C, Rheinberger J, Paulino C, & Slotboom DJ (2021). Insights into the bilayer-mediated toppling mechanism of a folate-specific ECF transporter by cryo-EM.
Proc Natl Acad Sci U S A 118 34:e2105014118. PubMed Id: 34408021. doi:10.1073/pnas.2105014118. |
||
ECF-PanT energy-coupling factor pantothenate transporter: Lactobacillus brevis B Bacteria, 3.23 Å
|
Zhang et al. (2014).
Zhang M, Bao Z, Zhao Q, Guo H, Xu K, Wang C, & Zhang P (2014). Structure of a pantothenate transporter and implications for ECF module sharing and energy coupling of group II ECF transporters.
Proc Natl Acad Sci USA 111 52:18560-18565. PubMed Id: 25512487. doi:10.1073/pnas.1412246112. |
||
ECF-PanT energy-coupling factor pantothenate transporter in complex with a nanobody: Lactobacillus delbrueckii B Bacteria (expressed in E. coli), 2.80 Å
|
Setyawati et al. (2020).
Setyawati I, Stanek WK, Majsnerowska M, Swier LJYM, Pardon E, Steyaert J, Guskov A, & Slotboom DJ (2020). In vitro reconstitution of dynamically interacting integral membrane subunits of energy-coupling factor transporters.
Elife 9 :e64389. PubMed Id: 33350937. doi:10.7554/eLife.64389. |
||
BtuM cobalamin transporter: Thiobacillus denitrificans B Bacteria (expressed in E. coli), 2.01 Å
|
Rempel et al. (2018).
Rempel S, Colucci E, de Gier JW, Guskov A, & Slotboom DJ (2018). Cysteine-mediated decyanation of vitamin B12 by the predicted membrane transporter BtuM.
Nat Commun 9 1:3038. PubMed Id: 30072686. doi:10.1038/s41467-018-05441-9. |
||
Group II energy-coupling factor (ECF) transporter for vitamin B12, apo inward-facing state: Lactobacillus delbrueckii B Bacteria, 3.40 Å
|
Santos et al. (2018).
Santos JA, Rempel S, Mous ST, Pereira CT, Ter Beek J, de Gier JW, Guskov A, & Slotboom DJ (2018). Functional and structural characterization of an ECF-type ABC transporter for vitamin B12.
Elife 7 :e35828. PubMed Id: 29809140. doi:10.7554/eLife.35828. |
||
ATP Binding Cassette (ABC) Transporters
Reviewed by Hou et al. (2022) |
|||
BtuCD Vitamin B12 Transporter: Escherichia coli B Bacteria, 3.2 Å
|
Locher et al. (2002).
Locher KP, Lee AT, & Rees DC (2002). The E. coli BtuCD structure: A framework for ABC transporter architecture and mechanism.
Science 296 :1091-1098. PubMed Id: 12004122. |
||
BtuCD-F Complex; BtuCD B12 Transporter + BtuF binding protein: Escherichia coli B Bacteria, 2.6 Å
|
Hvorup et al. (2007).
Hvorup RN, Goetz BA, Niederer M, Hollenstein K, Perozo E, & Locher KP (2007). Asymmetry in the structure of the ABC transporter-binding protein complex BtuCD-BtuF.
Science 317 :1387-1390. PubMed Id: 17673622. |
||
BtuCD-F Vitamin B12 Transporter with bound AMP-PNP: Escherichia coli B Bacteria, 3.47 Å
Has engineered disulphide cross-linking. Structure suggests a peristaltic transport mechanism. |
Korkhov et al. (2012).
Korkhov VM, Mireku SA, & Locher KP (2012). Structure of AMP-PNP-bound vitamin B12 transporter BtuCD-F.
Nature 490 :367-372. PubMed Id: 23000901. doi:10.1038/nature11442. |
||
Sav1866 Multidrug Transporter: Staphylococcus aureus B Bacteria, 3.0 Å
|
Dawson and Locher (2006).
Dawson RJP & Locher KP (2006). Structure of a bacterial multidrug ABC transporter.
Nature 443 :180-185. PubMed Id: 16943773. |
||
Sav1866 Multidrug Transporter in complex with AMP-PNP: Staphylococcus aureus B Bacteria (expressed in E. coli), 3.40 Å
|
Dawson & Locher (2007).
Dawson RJ, & Locher KP (2007). Structure of the multidrug ABC transporter Sav1866 from Staphylococcus aureus in complex with AMP-PNP.
FEBS Lett 581 5:935-938. PubMed Id: 17303126. |
||
Hollenstein et al. (2007).
Hollenstein K, Frei DC, & Locher KP (2007). Structure of an ABC transporter in complex with its binding protein.
Nature 446 :213-216. PubMed Id: 17322901. |
|||
ModBC Molybdate ABC Transporter in a trans-inhibited state: Methanosarcina acetivorans A Archaea, 3.0 Å
|
Gerber et al. (2008).
Gerber S, Comellas-Bigler M, Goetz BA, & Locher KP (2008). Structural basis of trans-inhibition in a molybdate/tungstate ABC transporter.
Science 321 :246-250. PubMed Id: 18511655. |
||
HI1470/1 Putative Metal-Chelate-type ABC Transporter: Haemophilus influenzae B Bacteria, 2.4 Å
First structure showing an inward-facing conformation of an ABC transporter |
Pinkett et al. (2007).
Pinkett HW, Lee AT, Lum P, Locher KP & Rees DC (2007). An inward-facing conformation of a putative metal-chelate-type ABC transporter.
Science 315 :373-377. PubMed Id: 17158291. |
||
MsbA Lipid "flippase" with bound AMPPNP: Salmonella typhimurium B Bacteria (expressed in E. coli), 3.7 Å
MsbA with bound AMPPNP used for initial model: 3B5Y, 4.5 Å ADP + Vanadate-bound conformation: 3B5Z, 4.2 Å Open apo-conformation (E. coli): 3B5W, 5.3 Å Closed apo-conformation (Vibrio cholerae expressed in E. coli): 3B5X, 5.5 Å |
Ward et al. (2007).
Ward A, Reyes CL, Yu J, Roth CB, & Chang G (2007). Flexibility in the ABC transporter MsbA: Alternating access with a twist.
Proc Natl Acad Sci U S A 104 :19005-19010. PubMed Id: 18024585. |
||
MsbA Lipid "flippase" with bound lipid A: Salmonella typhimurium B Bacteria (expressed in E. coli), 2.8 Å
apo protein, 4.47 Å: 6O30 |
Padayatti et al. (2019).
Padayatti PS, Lee SC, Stanfield RL, Wen PC, Tajkhorshid E, Wilson IA, & Zhang Q (2019). Structural Insights into the Lipid A Transport Pathway in MsbA.
Structure 27 7:1114-1123.e3. PubMed Id: 31130486. doi:10.1016/j.str.2019.04.007. |
||
MsbA Lipid "flippase" in nano-discs with bound LPS: Escherichia coli B Bacteria, 4.2 Å
cryo-EM structure with bound ADP-vanadate, 4.8 Å: 5TTP |
Mi et al. (2017).
Mi W, Li Y, Yoon SH, Ernst RK, Walz T, & Liao M (2017). Structural basis of MsbA-mediated lipopolysaccharide transport.
Nature 549 :233-237. PubMed Id: 28869968. doi:10.1038/nature23649. |
||
MsbA Lipid "flippase" in complex with LPS and inhibitor G907: Escherichia coli B Bacteria, 2.91 Å
in complex with LPS and inhibitor G092, 2.92 Å: 6BPP |
Ho et al. (2018).
Ho H, Miu A, Alexander MK, Garcia NK, Oh A, Zilberleyb I, Reichelt M, Austin CD, Tam C, Shriver S, Hu H, Labadie SS, Liang J, Wang L, Wang J, Lu Y, Purkey HE, Quinn J, Franke Y, Clark K, Beresini MH, Tan MW, Sellers BD, Maurer T, Koehler MFT, Wecksler AT, Kiefer JR, Verma V, Xu Y, Nishiyama M, Payandeh J, & Koth CM (2018). Structural basis for dual-mode inhibition of the ABC transporter MsbA.
Nature 557 7704:196-201. PubMed Id: 29720648. doi:10.1038/s41586-018-0083-5. |
||
MsbA Lipid "flippase" in peptidiscs, conformation 1: Escherichia coli B Bacteria, 4.2 Å
conformation 2, 4.4 Å: 6UZL |
Angiulli et al. (2020).
Angiulli G, Dhupar HS, Suzuki H, Wason IS, Duong Van Hoa F, & Walz T (2020). New approach for membrane protein reconstitution into peptidiscs and basis for their adaptability to different proteins.
Elife 9 :e53530. PubMed Id: 32125274. doi:10.7554/eLife.53530. |
||
MsbA Lipid "flippase" in Salipro with ADP vanadate: Escherichia coli B Bacteria, 3.50 Å
cryo-EM structure |
Kehlenbeck et al. (2021).
Kehlenbeck DM, Traore DAK, Josts I, Sander S, Moulin M, Haertlein M, Prevost S, Forsyth VT, & Tidow H (2021). Cryo-EM structure of MsbA in saposin-lipid nanoparticles (Salipro) provides insights into nucleotide coordination.
FEBS J . PubMed Id: 34921499. doi:10.1111/febs.16327. |
||
Lyu et al. (2022).
Lyu J, Liu C, Zhang T, Schrecke S, Elam NP, Packianathan C, Hochberg GKA, Russell D, Zhao M, & Laganowsky A (2022). Structural basis for lipid and copper regulation of the ABC transporter MsbA.
Nat Commun 13 1:7291. PubMed Id: 36435815. doi:10.1038/s41467-022-34905-2. |
|||
MsbA Lipid "flippase" in nano-discs, in complex with nanobodies, spin-labeled at position A60C: Escherichia coli B Bacteria, 3.70 Å
cryo-EM structure AMP-PNP bound MsbA with nanobodies, spin-labeled at position A60C, 2.80 Å: 7PH3 spin-labeled at position T68C, 2.80 Å: 2.80 Å: 7PH4 in complex with nanobodies, spin-labeled at position T68C, 4.10 Å: 7PH7 |
Galazzo et al. (2022).
Galazzo L, Meier G, Januliene D, Parey K, De Vecchis D, Striednig B, Hilbi H, Schäfer LV, Kuprov I, Moeller A, Bordignon E, & Seeger MA (2022). The ABC transporter MsbA adopts the wide inward-open conformation in E. coli cells.
Sci Adv 8 41:eabn6845. PubMed Id: 36223470. doi:10.1126/sciadv.abn6845. |
||
MsbA Lipid "flippase” with bound KDL, nucleotide-free, open & outward-facing state: Escherichia coli B Bacteria (expressed in E. coli), 2.68 Å
cryo-EM structure open & inward-facing state (OIF1), 3.90 Å: 8TSP open & inward-facing state (OIF2), 3.60 Å: 8TSQ open & inward-facing state (OIF3), 3.70 Å: 8TSS open & inward-facing state (OIF4), 3.90 Å: 8TSR |
Zhang et al. (2024).
Zhang T, Lyu J, Yang B, Yun SD, Scott E, Zhao M, & Laganowsky A (2024). Native mass spectrometry and structural studies reveal modulation of MsbA-nucleotide interactions by lipids.
Nat Commun 15 1:5946. PubMed Id: 39009687. doi:10.1038/s41467-024-50350-9. |
||
Aller et al. (2009).
Aller SG, Yu J, Ward A, Weng Y, Chittaboina S, Zhuo R, Harrell PM, Trinh YT, Zhang Q, Urbatsch IL, & Chang G. (2009). Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding.
Science 323 :1718-1722. PubMed Id: 19325113. |
|||
Li et al. (2014).
Li J, Jaimes KF, & Aller SG (2014). Refined structures of mouse P-glycoprotein.
Protein Sci. 23 :34-46. PubMed Id: 24155053. doi:10.1002/pro.2387. |
|||
Szewczyk et al. (2015).
Szewczyk P, Tao H, McGrath AP, Villaluz M, Rees SD, Lee SC, Doshi R, Urbatsch IL, Zhang Q, & Chang G (2015). Snapshots of ligand entry, malleable binding and induced helical movement in P-glycoprotein.
Acta Crystallogr D Biol Crystallogr 71 :732-741. PubMed Id: 25760620. doi:10.1107/S1399004715000978. |
|||
P-Glycoprotein multi-drug transporter (ABCB1) co-crystallized with BDE-100: Mus musculus E Eukaryota (expressed in Komagataella pastoris), 3.50 Å
|
Nicklisch et al. (2016).
Nicklisch SC, Rees SD, McGrath AP, Gökirmak T, Bonito LT, Vermeer LM, Cregger C, Loewen G, Sandin S, Chang G, & Hamdoun A (2016). Global marine pollutants inhibit P-glycoprotein: Environmental levels, inhibitory effects, and cocrystal structure.
Sci Adv 2 4. PubMed Id: 27152359. doi:10.1126/sciadv.1600001. |
||
P-Glycoprotein multi-drug transporter (ABCB1), mutant-C952A-with BDE100: Mus musculus E Eukaryota (expressed in Komagataella pastoris), 3.98 Å
mutant-F979A and C952A-with BDE100, 3.98 Å: 6UJP mutant-F724A and C952A-with BDE100, 4.10 Å: 6UJR mutant-F728A and C952A-with BDE100, 4.17 Å: 6UJS mutant-Y303A and C952A-with BDE100, 4.17 Å: 6UJT mutant-Y306A and C952A-with BDE100, 4.15 Å: 6UJW |
Le et al. (2020).
Le CA, Harvey DS, & Aller SG (2020). Structural definition of polyspecific compensatory ligand recognition by P-glycoprotein.
IUCrJ 7 :663-672. PubMed Id: 32695413. doi:10.1107/S2052252520005709. |
||
P-Glycoprotein multi-drug transporter (ABCB1) in the presence of the CFTR potentiator ivacaftor: Mus musculus E Eukaryota (expressed in Komagataella pastoris), 5.40 Å
cryo-EM structure P-glycoprotein in apo state, 4.20 Å 7OTI |
Barbieri et al. (2021).
Barbieri A, Thonghin N, Shafi T, Prince SM, Collins RF, & Ford RC (2021). Structure of ABCB1/P-Glycoprotein in the Presence of the CFTR Potentiator Ivacaftor.
Membranes (Basel) 11 12:923. PubMed Id: 34940424. doi:10.3390/membranes11120923. |
||
P-Glycoprotein multi-drug transporter (ABCB1), L335C mutant, outward facing state: Mus musculus E Eukaryota (expressed in Komagataella pastoris), 2.60 Å
cryo-EM structure L335C mutant, with one AAC bound, outward facing state, 2.60 Å: 7ZK5 L335C mutant, with two AAC bound, outward facing state, 3.10 Å: 7ZK6 L335C mutant, apo-form, outward facing state, 2.90 Å: 8AVY L335C mutant, with two AAC bound, inward facing state, 3.80 Å: 8PEE L971C mutant, with one AAC bound, outward facing state, 3.00 Å: 7XK8 L971C mutant, with one AAC bound, inward facing state, 4.30 Å: 7ZK9 V978C mutant, with one AAC bound, outward facing state, 2.90 Å: 7ZKA V978C mutant, with two AAC bound, inward facing state, 4.70 Å: 7ZKB |
Gewering et al. (2024).
Gewering T, Waghray D, Parey K, Jung H, Tran NNB, Zapata J, Zhao P, Chen H, Januliene D, Hummer G, Urbatsch I, Moeller A, & Zhang Q (2024). Tracing the substrate translocation mechanism in P-glycoprotein.
Elife 12 . PubMed Id: 38259172. doi:10.7554/eLife.90174. |
||
P-Glycoprotein multi-drug transporter (ABCB1) chimera, Zosuquidar/UIC2 Fab complex: Mus musculus & Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.58 Å
cryo-EM structure. Chimera: mouse ABCB1 background with human extracellular region. apo form of UIC2 Fab complex, 4.14 Å: 6FN4 |
Alam et al. (2018).
Alam A, Küng R, Kowal J, McLeod RA, Tremp N, Broude EV, Roninson IB, Stahlberg H, & Locher KP (2018). Structure of a zosuquidar and UIC2-bound human-mouse chimeric ABCB1.
Proc Natl Acad Sci USA 115 9:E1973-E1982. PubMed Id: 29440498. doi:10.1073/pnas.1717044115. |
||
P-Glycoprotein multi-drug transporter (ABCB1), ATP-bound outward-facing conformation: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.4 Å
cryo-EM structure |
Kim & Chen (2018).
Kim Y, & Chen J (2018). Molecular structure of human P-glycoprotein in the ATP-bound, outward-facing conformation.
Science 359 :915-919. PubMed Id: 29371429. doi:10.1126/science.aar7389. |
||
P-Glycoprotein multi-drug transporter (ABCB1) in nanodiscs, with bound taxol: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.5 Å
cryo-EM structure with bound zosuquidar, 3.86 Å: 6QEE |
Alam et al. (2019).
Alam A, Kowal J, Broude E, Roninson I, & Locher KP (2019). Structural insight into substrate and inhibitor discrimination by human P-glycoprotein.
Science 363 6428:753-756. PubMed Id: 30765569. doi:10.1126/science.aav7102. |
||
P-Glycoprotein multi-drug transporter (ABCB1) in nanodiscs: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.90 Å
cryo-EM structure in complex with vincristine, 3.20 Å: 7A69 in complex with tariquidar, 3.60 Å: 7A6E in complex with zosuquidar, 3.50 Å: 7A6F in complex with elacridar, 3.60 Å: 7A6C |
Nosol et al. (2020).
Nosol K, Romane K, Irobalieva RN, Alam A, Kowal J, Fujita N, & Locher KP (2020). Cryo-EM structures reveal distinct mechanisms of inhibition of the human multidrug transporter ABCB1.
Proc Natl Acad Sci U S A 117 42:26245-26253. PubMed Id: 33020312. doi:10.1073/pnas.2010264117. |
||
P-Glycoprotein multi-drug transporter (ABCB1) in complex with UIC2: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.50 Å
cryo-EM structure |
Urgaonkar et al. (2022).
Urgaonkar S, Nosol K, Said AM, Nasief NN, Bu Y, Locher KP, Lau JYN, & Smolinski MP (2022). Discovery and Characterization of Potent Dual P-Glycoprotein and CYP3A4 Inhibitors: Design, Synthesis, Cryo-EM Analysis, and Biological Evaluations.
J Med Chem 65 1:191-216. PubMed Id: 34928144. doi:10.1021/acs.jmedchem.1c01272. |
||
P-Glycoprotein multi-drug transporter (ABCB1) in complex with UIC2 Fab, with bound elacridar, in nanodiscs: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.54 Å
cryo-EM structure in LMNG detergent, 2.49 Å: 8Y6H |
Hamaguchi-Suzuki et al. (2024).
Hamaguchi-Suzuki N, Adachi N, Moriya T, Yasuda S, Kawasaki M, Suzuki K, Ogasawara S, Anzai N, Senda T, & Murata T (2024). Cryo-EM structure of P-glycoprotein bound to triple elacridar inhibitor molecules.
Biochem Biophys Res Commun 709 :149855. PubMed Id: 38579618. doi:10.1016/j.bbrc.2024.149855. |
||
P-Glycoprotein multi-drug transporter (ABCB1): Caenorhabditis elegans E Eukaryota (expressed in Pichia pastoris), 3.40 Å
|
Jin et al. (2012).
Jin MS, Oldham ML, Zhang Q, & Chen J (2012). Crystal structure of the multidrug transporter P-glycoprotein from Caenorhabditis elegans.
Nature 490 :566-569. PubMed Id: 23000902. doi:10.1038/nature11448. |
||
Kodan et al. (2014).
Kodan A, Yamaguchi T, Nakatsu T, Sakiyama K, Hipolito CJ, Fujioka A, Hirokane R, Ikeguchi K, Watanabe B, Hiratake J, Kimura Y, Suga H, Ueda K, & Kato H (2014). Structural basis for gating mechanisms of a eukaryotic P-glycoprotein homolog.
Proc Natl Acad Sci USA 111 :4049-4054. PubMed Id: 24591620. doi:10.1073/pnas.1321562111. |
|||
P-Glycoprotein multi-drug transporter (ABCB1) homolog with bound AMP-PNP-Mg2+, outward facing state: Cyanidioschyzon merolae E Eukaryota (expressed in S. cerevisiae), 1.89 Å
apo state, inward facing, 2.70 Å: 6A6N |
Kodan et al. (2019).
Kodan A, Yamaguchi T, Nakatsu T, Matsuoka K, Kimura Y, Ueda K, & Kato H (2019). Inward- and outward-facing X-ray crystal structures of homodimeric P-glycoprotein CmABCB1.
Nat Commun 10 1. PubMed Id: 30622258. doi:10.1038/s41467-018-08007-x. |
||
MalFGK2-MBP Maltose uptake transporter complex: Escherichia coli B Bacteria, 2.8 Å
Complex includes maltose-binding protein (MBP), maltose, and ATP |
Oldham et al. (2007).
Oldham ML, Khare D, Quiocho FA, Davidson AL, & Chen J (2007). Crystal structure of a catalytic intermediate of the maltose transporter.
Nature 450 :515-521. PubMed Id: 18033289. |
||
MalFGK2 uptake transporter: Escherichia coli B Bacteria, 4.5 Å
Helix TM1 deleted. Shows transporter in the inward conformation in the resting state. |
Khare et al. (2009).
Khare D, Oldham ML, Orelle C, Davidson AL, & Chen J (2009). Alternating access in maltose transporter mediated by rigid-body rotations.
Mol Cell 27 :528-536. PubMed Id: 19250913. |
||
MalFGK2-MBP Maltose uptake transporter complex: Escherichia coli B Bacteria, 3.10 Å
The structure shows the transporter in the pretranslocation (pre-T) state using a mutant maltose binding protein MBPG69C/S337C that stabilizes the closed substrate-bound conformation. Complex with MBPG69C/S337C and AMP-PNP, 2.9 Å: 3PUZ Complex with wt. MBP and AMP-PNP, 3.1 Å: 3PUY |
Oldham & Chen (2011).
Oldham ML & Chen J (2011). Crystal structure of the maltose transporter in a pretranslocation intermediate State
Science 332 :1202-1205. PubMed Id: 21566157. doi:10.1126/science.1200767. |
||
Oldham & Chen (2011).
Oldham ML & Chen J (2011). Snapshots of the maltose transporter during ATP hydrolysis.
Proc Natl Acad Sci USA 108 :15152-15156. PubMed Id: 21825153. doi:10.1073/pnas.1108858108. |
|||
MalFGK2 in complex with glucose-specific enzyme IIA: Escherichia coli B Bacteria, 3.91 Å
The structure provides a structural framework for understanding carbon catabolite represion. |
Chen et al. (2013).
Chen S, Oldham ML, Davidson AL, & Chen J (2013). Carbon catabolite repression of the maltose transporter revealed by X-ray crystallography.
Nature 499 7458:364-368. PubMed Id: 23770568. doi:10.1038/nature12232. |
||
MalFGK2-MBP Maltose uptake transporter complex; pre-translocation conformation bound to maltoheptaose : Escherichia coli B Bacteria, 2.90 Å
Outward-facing conformation bound to maltohexaose, 2.38 Å: 4KI0 |
Oldham et al. (2013).
Oldham ML, Chen S, & Chen J (2013). Structural basis for substrate specificity in the Escherichia coli maltose transport system.
Proc Natl Acad Sci USA 110 :18132-18137. PubMed Id: 24145421. doi:10.1073/pnas.1311407110. |
||
MetNI Methionine uptake transporter complex: Escherichia coli B Bacteria, 3.7 Å
MetN-C2 domain 3DHX, 2.1 Å |
Kadaba et al. (2008).
Kadaba NS, Kaiser JT, Johnson E, Lee A, & Rees DC (2008). The high-affinity E. coli methionine ABC transporter: structure and allosteric regulation.
Science 321 :250-253. PubMed Id: 18621668. |
||
MetNI methionine ABC transporter, inward facing conformation: Neisseria meningitidis B Bacteria (expressed in E. coli), 3.30 Å
cryo-EM structure outward facing conformation in complex with lipo-MetQ, 6.40 Å: 7MBZ |
Sharaf et al. (2021).
Sharaf NG, Shahgholi M, Kim E, Lai JY, VanderVelde DG, Lee AT, & Rees DC (2021). Characterization of the ABC methionine transporter from Neisseria meningitidis reveals that lipidated MetQ is required for interaction.
Elife 10 :e69742. PubMed Id: 34409939. doi:10.7554/eLife.69742. |
||
FbpC ferric iron-uptake transporter nucleotide-binding domain: Neisseria gonorrhoeae B Bacteria, 1.9 Å
A domain-swapped neucleotide-binding domain dimer |
Newstead et al. (2009).
Newstead S, Fowler PW, Bilton P, Carpenter EP, Sadler PJ, Campopiano DJ, Sansom MS, & Iwata S (2009). Insights into how nucleotide-binding domains power ABC transport.
Structure 17 :1213-1222. PubMed Id: 19748342. |
||
Heterodimeric ABC exporter TM287-TM288: Thermotoga maritima B Bacteria (expressed in E. coli), 2.90 Å
Protein is in the inward-facing conformation. |
Hohl et al. (2012).
Hohl M, Briand C, Grütter MG, & Seeger MA (2012). Crystal structure of a heterodimeric ABC transporter in its inward-facing conformation.
Nature Struc Mol Biol 19 :395-402. PubMed Id: 22447242. doi:10.1038/nsmb.2267. |
||
Hohl et al. (2014).
Hohl M, Hürlimann LM, Böhm S, Schöppe J, Grütter MG, Bordignon E, & Seeger MA (2014). Structural basis for allosteric cross-talk between the asymmetric nucleotide binding sites of a heterodimeric ABC exporter.
Proc Natl Acad Sci USA 111 :11025-11030. PubMed Id: 25030449. doi:10.1073/pnas.1400485111. |
|||
Bukowska et al. (2015).
Bukowska MA, Hohl M, Geertsma ER, Hürlimann LM, Grütter MG, & Seeger MA (2015). A Transporter Motor Taken Apart: Flexibility in the Nucleotide Binding Domains of a Heterodimeric ABC Exporter.
Biochemistry 54 :3086-3099. PubMed Id: 25947941. doi:10.1021/acs.biochem.5b00188. |
|||
Hutter et al. (2019).
Hutter CAJ, Timachi MH, Hürlimann LM, Zimmermann I, Egloff P, Göddeke H, Kucher S, Štefanić S, Karttunen M, Schäfer LV, Bordignon E, & Seeger MA (2019). The extracellular gate shapes the energy profile of an ABC exporter.
Nat Commun 10 1:2260. PubMed Id: 31113958. doi:10.1038/s41467-019-09892-6. |
|||
HmuUV heme transporter: Yersinia pestis B Bacteria (expressed in E. coli), 3.00 Å
|
Woo et al. (2012).
Woo JS, Zeltina A, Goetz BA, & Locher KP (2012). X-ray structure of the Yersinia pestis heme transporter HmuUV
Nature Struc Mol Biol 19 :1310-1314. PubMed Id: 23142986. doi:10.1038/nsmb.2417. |
||
ABCB6 Mitochondrial ABC transporter core domain: Homo sapiens E Eukaryota (expressed in HEK293 cells), 4.00 Å
cryo-EM structure complete structure with TMD0 domains, 5.20 Å: 7D7N |
Wang et al. (2020).
Wang C, Cao C, Wang N, Wang X, Wang X, & Zhang XC (2020). Cryo-electron microscopy structure of human ABCB6 transporter.
Protein Sci 29 12:2363-2374. PubMed Id: 33007128. doi:10.1002/pro.3960. |
||
ABCB6 Mitochondrial ABC transporter in a nanodisc, ATP-bound state: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.50 Å
cryo-EM structure apo state, 3.60 Å 7EKM |
Song et al. (2021).
Song G, Zhang S, Tian M, Zhang L, Guo R, Zhuo W, & Yang M (2021). Molecular insights into the human ABCB6 transporter.
Cell Discov 7 1:55. PubMed Id: 34312373. doi:10.1038/s41421-021-00284-z. |
||
ABCB6 Mitochondrial ABC transporter, coproporphyrin III-bound state: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.40 Å
cryo-EM structure Hemin and GSH-bound state, 3.60 Å: 7DNZ |
Kim et al. (2022).
Kim S, Lee SS, Park JG, Kim JW, Ju S, Choi SH, Kim S, Kim NJ, Hong S, Kang JY, & Jin MS (2022). Structural Insights into Porphyrin Recognition by the Human ATP-Binding Cassette Transporter ABCB6.
Mol Cells 45 8:575-587. PubMed Id: 35950458. doi:10.14348/molcells.2022.0040. |
||
ABCB7 Mitochondrial ABC transporter with bound AMP-PNP: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 3.30 Å
cryo-EM structure |
Yan et al. (2022).
Yan Q, Shen Y, & Yang X (2022). Cryo-EM structure of AMP-PNP-bound human mitochondrial ATP-binding cassette transporter ABCB7.
J Struct Biol 214 1:107832. PubMed Id: 35041979. doi:10.1016/j.jsb.2022.107832. |
||
ABCB8 Mitochondrial ABC transporter in nucleotide binding state: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 4.1 Å
cryo-EM structure |
Li et al. (2021).
Li S, Ren Y, Lu X, Shen Y, & Yang X (2021). Cryo-EM structure of human ABCB8 transporter in nucleotide binding state.
Biochem Biophys Res Commun 557 :187-191. PubMed Id: 33872987. doi:10.1016/j.bbrc.2021.04.007. |
||
ABCB10 Mitochondrial ABC transporter with bound AMPPC: Homo sapiens E Eukaryota (expressed in S. frugiperda), 2.85 Å
Supersedes 2YL4. This is the first human ABC transporter and also the first mitochondrial ABC transporter. The protein conformation is open-inward (residues 152-738). Rod form B, 2.90 Å: 4AYX Plate form, 3.30 Å: 4AYW Nucleotide-free rod form, 2.85 Å: 3ZDQ |
Shintre et al. (2013).
Shintre CA, Pike AC, Li Q, Kim JI, Barr AJ, Goubin S, Shrestha L, Yang J, Berridge G, Ross J, Stansfeld PJ, Sansom MS, Edwards AM, Bountra C, Marsden BD, von Delft F, Bullock AN, Gileadi O, Burgess-Brown NA, & Carpenter EP (2013). Structures of ABCB10, a human ATP-binding cassette transporter in apo- and nucleotide-bound states.
Proc Natl Acad Sci USA 110 :9710–9715. PubMed Id: 23716676. doi:10.1073/pnas.1217042110. |
||
ABCB10 Mitochondrial ABC transporter with bound biliverdin: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.58 Å
cryo-EM structure apo form, 3.67 Å: 7Y49 |
Cao et al. (2023).
Cao S, Yang Y, He L, Hang Y, Yan X, Shi H, Wu J, & Ouyang Z (2023). Cryo-EM structures of mitochondrial ABC transporter ABCB10 in apo and biliverdin-bound form.
Nat Commun 14 1:2030. PubMed Id: 37041204. doi:10.1038/s41467-023-37851-9. |
||
Bile salt exporter ABCB11, apo form, inward-open conformation: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.50 Å
cryo-EM structure |
Wang et al. (2020).
Wang L, Hou WT, Chen L, Jiang YL, Xu D, Sun L, Zhou CZ, & Chen Y (2020). Cryo-EM structure of human bile salts exporter ABCB11.
Cell Res 30 7:623-625. PubMed Id: 32203132. doi:10.1038/s41422-020-0302-0. |
||
Bile salt exporter ABCB11 with two taurocholates bound: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.70 Å
cryo-EM structure with one taurocholate bound, 3.66 Å 7E1A |
Wang et al. (2022).
Wang L, Hou WT, Wang J, Xu D, Guo C, Sun L, Ruan K, Zhou CZ, & Chen Y (2022). Structures of human bile acid exporter ABCB11 reveal a transport mechanism facilitated by two tandem substrate-binding pockets.
Cell Res 32 5:501-504. PubMed Id: 35043010. doi:10.1038/s41422-021-00611-9. |
||
Liu et al. (2023).
Liu H, Irobalieva RN, Kowal J, Ni D, Nosol K, Bang-Sørensen R, Lancien L, Stahlberg H, Stieger B, & Locher KP (2023). Structural basis of bile salt extrusion and small-molecule inhibition in human BSEP.
Nat Commun 14 1:7296. PubMed Id: 37949847. doi:10.1038/s41467-023-43109-1. |
|||
Lee et al. (2014).
Lee JY, Yang JG, Zhitnitsky D, Lewinson O, & Rees DC (2014). Structural basis for heavy metal detoxification by an Atm1-type ABC exporter.
Science 343 :1133-1136. PubMed Id: 24604198. doi:10.1126/science.1246489. |
|||
Atm1-type ABC exporter with MgADP bound: Novosphingobium aromaticivorans B Bacteria (expressed in E. coli), 3.70 Å
with ATP bound, 3.40 Å: 6PAN with ATP bound, 3.65 Å: 6PAO with ATP bound, 3.30 Å: 6PAQ with MgAMPPNP bound, 3.35 Å: 6PAR cryo-EM structure in nanodiscs with MgADPVO4 bound, 3.03 Å: 6VQT cryo-EM structure in nanodiscs, 3.88 Å: 6VQU |
Fan et al. (2020).
Fan C, Kaiser JT, & Rees DC (2020). A structural framework for unidirectional transport by a bacterial ABC exporter.
Proc Natl Acad Sci USA 117 32:19228-19236. PubMed Id: 32703810. doi:10.1073/pnas.2006526117. |
||
Atm1 mitochondrial ABC transporter, apo form: Saccharomyces cerevisiae E Eukaryota (expressed in E. coli), 3.06 Å
in complex with GSH, 3.38 Å: 4MYH |
Srinivasan et al. (2014).
Srinivasan V, Pierik AJ, & Lill R (2014). Crystal structures of nucleotide-free and glutathione-bound mitochondrial ABC transporter Atm1.
Science 343 :1137-1140. PubMed Id: 24604199. doi:10.1126/science.1246729. |
||
Ellinghaus et al. (2021).
Ellinghaus TL, Marcellino T, Srinivasan V, Lill R, & Kühlbrandt W (2021). Conformational changes in the yeast mitochondrial ABC transporter Atm1 during the transport cycle.
Sci Adv 7 52:eabk2392. PubMed Id: 34936443. doi:10.1126/sciadv.abk2392. |
|||
Fan & Rees (2022).
Fan C, & Rees DC (2022). Glutathione binding to the plant AtAtm3 transporter and implications for the conformational coupling of ABC transporters.
Elife 11 :e76140. PubMed Id: 35333177. doi:10.7554/eLife.76140. |
|||
McjD antimicrobial peptide transporter: Escherichia coli B Bacteria, 2.70 Å
Structure shows transporter in a novel outward occluded state |
Choudhury et al. (2014).
Choudhury HG, Tong Z, Mathavan I, Li Y, Iwata S, Zirah S, Rebuffat S, van Veen HW, & Beis K (2014). Structure of an antibacterial peptide ATP-binding cassette transporter in a novel outward occluded state.
Proc Natl Acad Sci USA 111 :9145-9150. PubMed Id: 24920594. doi:10.1073/pnas.1320506111. |
||
McjD antimicrobial peptide transporter, high energy outward occluded intermediate state: Escherichia coli B Bacteria, 3.4 Å
apo inward occluded conformation, 4.71 Å: 5OFP |
Bountra et al. (2017).
Bountra K, Hagelueken G, Choudhury HG, Corradi V, El Omari K, Wagner A, Mathavan I, Zirah S, Yuan Wahlgren W, Tieleman DP, Schiemann O, Rebuffat S, & Beis K (2017). Structural basis for antibacterial peptide self-immunity by the bacterial ABC transporter McjD.
EMBO J 36 :3062-3079. PubMed Id: 28864543. doi:10.15252/embj.201797278. |
||
McjD antimicrobial peptide transporter, native-SAD structure determined at wavelength 2.75 Å: Escherichia coli B Bacteria, 2.80 Å
X-ray Structure |
El Omari et al. (2023).
El Omari K, Duman R, Mykhaylyk V, Orr CM, Latimer-Smith M, Winter G, Grama V, Qu F, Bountra K, Kwong HS, Romano M, Reis RI, Vogeley L, Vecchia L, Owen CD, Wittmann S, Renner M, Senda M, Matsugaki N, Kawano Y, Bowden TA, Moraes I, Grimes JM, Mancini EJ, Walsh MA, Guzzo CR, Owens RJ, Jones EY, Brown DG, Stuart DI, Beis K, & Wagner A (2023). Experimental phasing opportunities for macromolecular crystallography at very long wavelengths.
Commun Chem 6 1:219. PubMed Id: 37828292. doi:10.1038/s42004-023-01014-0. |
||
Yu et al. (2015).
Yu J, Ge J, Heuveling J, Schneider E, & Yang M (2015). Structural basis for substrate specificity of an amino acid ABC transporter.
Proc Natl Acad Sci USA 112 :5243-5248. PubMed Id: 25848002. doi:10.1073/pnas.1415037112. |
|||
Peptidase-containing ABC transporter (PCAT1): Ruminiclostridium thermocellum B Bacteria (expressed in E. coli), 3.61 Å
E648Q mutant with bound ATPγS, 5.51 Å: 4S0F |
Lin et al. (2015).
Lin DY, Huang S, & Chen J (2015). Crystal structures of a polypeptide processing and secretion transporter.
Nature 523 :425-430. PubMed Id: 26201595. doi:10.1038/nature14623. |
||
Peptidase-containing ABC transporter (PCAT1) bound to CtA peptide substrate: Hungateiclostridium thermocellum B Bacteria (expressed in E. coli), 3.35 Å
cryo-EM structure |
Kieuvongngam et al. (2020).
Kieuvongngam V, Olinares PDB, Palillo A, Oldham ML, Chait BT, & Chen J (2020). Structural basis of substrate recognition by a polypeptide processing and secretion transporter.
Elife 9 :e51492. PubMed Id: 31934861. doi:10.7554/eLife.51492. |
||
peptidase-containing ABC transporter PCAT1, outward facing conformation: Acetivibrio thermocellus B Bacteria (expressed in E. coli), 4.50 Å
cryo-EM structure inward-facing wide conformation under ATP turnover, 4.10 Å 7T55 inward-facing intermediate conformation under ATP turnover, 3.70 Å 7T56 inward-facing narrow conformation under ATP turnover, 3.70 Å 7T57 |
Kieuvongngam & Chen (2022).
Kieuvongngam V, & Chen J (2022). Structures of the peptidase-containing ABC transporter PCAT1 under equilibrium and nonequilibrium conditions.
Proc Natl Acad Sci U S A 119 4:e2120534119. PubMed Id: 35074919. doi:10.1073/pnas.2120534119. |
||
Alginate transporter AlgM1M2SS with bound periplasmic protein AlgQ2: Sphingomonas sp. B Bacteria (expressed in E. coli), 3.20 Å
AlgQ2-free structure, 4.50 Å: 4TQV |
Maruyama et al. (2015).
Maruyama Y, Itoh T, Kaneko A, Nishitani Y, Mikami B, Hashimoto W, & Murata K (2015). Structure of a Bacterial ABC Transporter Involved in the Import of an Acidic Polysaccharide Alginate.
Structure 23 9:1643-1654. PubMed Id: 26235029. doi:10.1016/j.str.2015.06.021. |
||
Perez et al. (2015).
Perez C, Gerber S, Boilevin J, Bucher M, Darbre T, Aebi M, Reymond JL, & Locher KP (2015). Structure and mechanism of an active lipid-linked oligosaccharide flippase.
Nature 524 :433-438. PubMed Id: 26266984. doi:10.1038/nature14953. |
|||
PglK lipid-linked oligosaccharide flippase, outward facing with bound ATPγS: Campylobacter jejuni B Bacteria (expressed in E. coli), 3.3 Å
|
Perez et al. (2019).
Perez C, Mehdipour AR, Hummer G, & Locher KP (2019). Structure of Outward-Facing PglK and Molecular Dynamics of Lipid-Linked Oligosaccharide Recognition and Translocation.
Structure 27 4:669-678.e5. PubMed Id: 30799077. doi:10.1016/j.str.2019.01.013. |
||
Bi et al. (2018).
Bi Y, Mann E, Whitfield C, & Zimmer J (2018). Architecture of a channel-forming O-antigen polysaccharide ABC transporter.
Nature 553 :361-365. PubMed Id: 29320481. doi:10.1038/nature25190. |
|||
O-antigen polysaccharide ABC-transporter, Wzm-WztN homolog, ATP-bound conformation: Aquifex aeolicus B Bacteria (expressed in E. coli), 2.05 Å
|
Caffalette et al. (2019).
Caffalette CA, Corey RA, Sansom MSP, Stansfeld PJ, & Zimmer J (2019). A lipid gating mechanism for the channel-forming O antigen ABC transporter.
Nat Commun 10 1. PubMed Id: 30778065. doi:10.1038/s41467-019-08646-8. |
||
O-antigen polysaccharide ABC-transporter carbohydrate-binding domain: Aquifex aeolicus B Bacteria (expressed in E. coli), 2.65 Å
|
Bi & Zimmer (2020).
Bi Y, & Zimmer J (2020). Structure and Ligand-Binding Properties of the O Antigen ABC Transporter Carbohydrate-Binding Domain.
Structure 28 2:252-258.e2. PubMed Id: 31879128. doi:10.1016/j.str.2019.11.020. |
||
O-antigen polysaccharide ABC-transporter Wzm-WztN bound to ATP, full length in nanodiscs: Aquifex aeolicus B Bacteria (expressed in E. coli), 3.60 Å
cryo-EM structure |
Caffalette & Zimmer (2021).
Caffalette CA, & Zimmer J (2021). Cryo-EM structure of the full-length WzmWzt ABC transporter required for lipid-linked O antigen transport.
Proc Natl Acad Sci U S A 118 1. PubMed Id: 33443152. doi:10.1073/pnas.2016144118. |
||
O-antigen polysaccharide Wzm-Wzt ABC-transporter, bound to the native O antigen: Aquifex aeolicus B Bacteria (expressed in E. coli), 3.20 Å
cryo-EM structure ADP-bound, 3.54 Å: 8DOU bound to 3-O-methyl-D-mannose, 3.70 Å: 8DN8 bound to the native O antigen and ADP, 3.30 Å: 8DNC bound to ATP, 3.50 Å: 8DNE DDM-solubilized and nucleotide-free, 4.10 Å: 8DL0 x-ray: Carbohydrate Binding Domain bound to 3-O-methyl-D-mannose, 1.61 Å: 8DKY |
Spellmon et al. (2022).
Spellmon N, Muszyński A, Górniak I, Vlach J, Hahn D, Azadi P, & Zimmer J (2022). Molecular basis for polysaccharide recognition and modulated ATP hydrolysis by the O antigen ABC transporter.
Nat Commun 13 1:5226. PubMed Id: 36064941. doi:10.1038/s41467-022-32597-2. |
||
ABCB4 phosphatidylcholine transporter: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.2 Å
cryo-EM structure |
Olsen et al. (2020).
Olsen JA, Alam A, Kowal J, Stieger B, & Locher KP (2020). Structure of the human lipid exporter ABCB4 in a lipid environment.
Nat Struct Mol Biol 27 1:62-70. PubMed Id: 31873305. doi:10.1038/s41594-019-0354-3. |
||
Nosol et al. (2021).
Nosol K, Bang-Sørensen R, Irobalieva RN, Erramilli SK, Stieger B, Kossiakoff AA, & Locher KP (2021). Structures of ABCB4 provide insight into phosphatidylcholine translocation.
Proc Natl Acad Sci U S A 118 33:e2106702118. PubMed Id: 34385322. doi:10.1073/pnas.2106702118. |
|||
peroxisomal fatty acid transporter ABCD1, oleoyl-CoA-bound: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.10 Å
cryo-EM structure ATP-bound, 3.14 Å 7SHM |
Wang et al. (2021).
Wang R, Qin Y, & Li X (2021). Structural basis of acyl-CoA transport across the peroxisomal membrane by human ABCD1.
Cell Res . PubMed Id: 34754073. doi:10.1038/s41422-021-00585-8. |
||
peroxisomal fatty acid transporter ABCD1, nucleotide bound, outward open conformation: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.50 Å
cryo-EM structure inward open conformation, 4.40 Å: 7RRA |
Le et al. (2022).
Le LTM, Thompson JR, Dang PX, Bhandari J, & Alam A (2022). Structures of the human peroxisomal fatty acid transporter ABCD1 in a lipid environment.
Commun Biol 5 1. PubMed Id: 35013584. doi:10.1038/s42003-021-02970-w. |
||
Chen et al. (2022).
Chen ZP, Xu D, Wang L, Mao YX, Li Y, Cheng MT, Zhou CZ, Hou WT, & Chen Y (2022). Structural basis of substrate recognition and translocation by human very long-chain fatty acid transporter ABCD1.
Nat Commun 13 1:3299. PubMed Id: 35676282. doi:10.1038/s41467-022-30974-5. |
|||
peroxisomal fatty acid transporter ABCD1, also known as adrenoleukodystrophy protein (ALDP), C26:0 bound: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.78 Å
cryo-EM structure E630Q mutant, C26:0-CoA and ATP bound, 3.30 Å: 7X0T E630Q mutant, ATP bound, inward-facing state 2, 3.34 Å: 7XEC E630Q mutant, ATP and Magnesium bound, outward-facing state, 2.96 Å: 7X0Z E630Q mutant, ATP bound, inward-facing state, 3.30 Å: 7X1W |
Xiong et al. (2023).
Xiong C, Jia LN, Xiong WX, Wu XT, Xiong LL, Wang TH, Zhou D, Hong Z, Liu Z, & Tang L (2023). Structural insights into substrate recognition and translocation of human peroxisomal ABC transporter ALDP.
Signal Transduct Target Ther 8 1:74. PubMed Id: 36810450. doi:10.1038/s41392-022-01280-9. |
||
lysosomal cobalamin exporter ABCD4: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.60 Å
cryo-EM structure |
Xu et al. (2019).
Xu D, Feng Z, Hou WT, Jiang YL, Wang L, Sun L, Zhou CZ, & Chen Y (2019). Cryo-EM structure of human lysosomal cobalamin exporter ABCD4.
Cell Res 29 12:1039-1041. PubMed Id: 31467407. doi:10.1038/s41422-019-0222-z. |
||
ABCG1 cholesterol transporter: Homo sapiens E Eukaryota (expressed in HEK293 cells), 4.00 Å
cryo-EM structure |
Skarda et al. (2021).
Skarda L, Kowal J, & Locher KP (2021). Structure of the Human Cholesterol Transporter ABCG1.
J Mol Biol 433 21:167218. PubMed Id: 34461069. doi:10.1016/j.jmb.2021.167218. |
||
Sun et al. (2021).
Sun Y, Wang J, Long T, Qi X, Donnelly L, Elghobashi-Meinhardt N, Esparza L, Cohen JC, Xie XS, Hobbs HH, & Li X (2021). Molecular basis of cholesterol efflux via ABCG subfamily transporters.
Proc Natl Acad Sci U S A 118 34:e2110483118. PubMed Id: 34404721. doi:10.1073/pnas.2110483118. |
|||
ABCG1 cholesterol transporter in complex with cholesterol: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.26 Å
cryo-EM structure |
Xu et al. (2022).
Xu D, Li Y, Yang F, Sun CR, Pan J, Wang L, Chen ZP, Fang SC, Yao X, Hou WT, Zhou CZ, & Chen Y (2022). Structure and transport mechanism of the human cholesterol transporter ABCG1.
Cell Rep 38 4. PubMed Id: 35081353. doi:10.1016/j.celrep.2022.110298. |
||
ABCG5/ABCG8 sterol transporter: Homo sapiens E Eukaryota (expressed in Komagataella pastoris), 3.93 Å
|
Lee et al. (2016).
Lee JY, Kinch LN, Borek DM, Wang J, Wang J, Urbatsch IL, Xie XS, Grishin NV, Cohen JC, Otwinowski Z, Hobbs HH, & Rosenbaum DM (2016). Crystal structure of the human sterol transporter ABCG5/ABCG8.
Nature 533 :561-564. PubMed Id: 27144356. doi:10.1038/nature17666. |
||
ABCG5/ABCG8 sterol transporter purified from mammalian cells: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.90 Å
cryo-EM structure ABCG5-I529W/ABCG8-WT, 3.50 Å 7R88 ABCG5-WT/ABCG8-I419E, 3.40 Å 7R87 Purified from Komagataella pastoris: ABCG5/ABCG8 wild type, 2.60 Å 7R89 ABCG5/ABCG8 supplemented with cholesterol, 3.10 Å 7R8B |
Sun et al. (2021).
Sun Y, Wang J, Long T, Qi X, Donnelly L, Elghobashi-Meinhardt N, Esparza L, Cohen JC, Xie XS, Hobbs HH, & Li X (2021). Molecular basis of cholesterol efflux via ABCG subfamily transporters.
Proc Natl Acad Sci U S A 118 34:e2110483118. PubMed Id: 34404721. doi:10.1073/pnas.2110483118. |
||
ABCG5/ABCG8 sterol transporter in complex with cholesterol: Homo sapiens E Eukaryota (expressed in Komagataella pastoris), 4.05 Å
|
Farhat et al. (2022).
Farhat D, Rezaei F, Ristovski M, Yang Y, Stancescu A, Dzimkova L, Samnani S, Couture JF, & Lee JY (2022). Structural Analysis of Cholesterol Binding and Sterol Selectivity by ABCG5/G8.
J Mol Biol 434 20:167795. PubMed Id: 35988751. doi:10.1016/j.jmb.2022.167795. |
||
BhuU/BhuV haem importer, inward facing: Burkholderia cenocepacia B Bacteria (expressed in E. coli), 2.8 Å
in complex with periplasmic heme binding protein BhuT, 3.21 Å: 5B58 |
Naoe et al. (2016).
Naoe Y, Nakamura N, Doi A, Sawabe M, Nakamura H, Shiro Y, & Sugimoto H (2016). Crystal structure of bacterial haem importer complex in the inward-facing conformation.
Nat Commun 7 :13411. PubMed Id: 27830695. doi:10.1038/ncomms13411. |
||
Cystic Fibrosis Transmembrane Conductance Regulator (CFTR): Danio rerio E Eukaryota (expressed in Sf9 cells), 3.73 Å
Cryo-EM structure |
Zhang & Chen (2016).
Zhang Z, & Chen J (2016). Atomic Structure of the Cystic Fibrosis Transmembrane Conductance Regulator.
Cell 167 :1586-1597.e9. PubMed Id: 27912062. doi:10.1016/j.cell.2016.11.014. |
||
Cystic Fibrosis Transmembrane Conductance Regulator (CFTR), phosphorylated, ATP-bound state: Danio rerio E Eukaryota (expressed in HEK293S), 3.37 Å
cryo-EM structure |
Zhang et al. (2017).
Zhang Z, Liu F, & Chen J (2017). Conformational Changes of CFTR upon Phosphorylation and ATP Binding.
Cell 170 :483-491.e8. PubMed Id: 28735752. doi:10.1016/j.cell.2017.06.041. |
||
Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) in dephosphorylated, ATP-free state: Homo sapiens E Eukaryota (expressed in HEK293S cells), 3.87 Å
cryo-EM structure |
Liu et al. (2017).
Liu F, Zhang Z, Csanády L, Gadsby DC, & Chen J (2017). Molecular Structure of the Human CFTR Ion Channel.
Cell 169 1:85-95.e8. PubMed Id: 28340353. doi:10.1016/j.cell.2017.02.024. |
||
Cystic Fibrosis Transmembrane Conductance Regulator (CFTR), ATP-bound and phosphorylated: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.2 Å
cryo-EM structure |
Zhang et al. (2018).
Zhang Z, Liu F, & Chen J (2018). Molecular structure of the ATP-bound, phosphorylated human CFTR.
Proc Natl Acad Sci USA 115 50:12757-12762. PubMed Id: 30459277. doi:10.1073/pnas.1815287115. |
||
Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) with bound ivacaftor: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.3 Å
cryo-EM structure in complex with GLPG1837, 3.2 Å: 6O1V |
Liu et al. (2019).
Liu F, Zhang Z, Levit A, Levring J, Touhara KK, Shoichet BK, & Chen J (2019). Structural identification of a hotspot on CFTR for potentiation.
Science 364 6446:1184-1188. PubMed Id: 31221859. doi:10.1126/science.aaw7611. |
||
Fiedorczuk & Chen (2022).
Fiedorczuk K, & Chen J (2022). Mechanism of CFTR correction by type I folding correctors.
Cell 185 1:158-168.e11. PubMed Id: 34995514. doi:10.1016/j.cell.2021.12.009. |
|||
ΔF508 cystic fibrosis transmembrane conductance regulator (CFTR), dephosphorylated: Homo sapiens E Eukaryota (expressed in HEK293 cells), 6.90 Å
cryo-EM structure phosphorylated with elexacaftor (VX-445) and ATP/Mg, 3.60 Å: 8EIG phosphorylated with elexacaftor (VX-445), lumacaftor (VX-809), and ATP/Mg, 2.80 Å: 8EIO phosphorylated with Trikafta [elexacaftor (VX-445), tezacaftor (VX-661), ivacaftor (VX-770)], and ATP/Mg, 3.00 Å: 8EIQ |
Fiedorczuk & Chen (2022).
Fiedorczuk K, & Chen J (2022). Molecular structures reveal synergistic rescue of Δ508 CFTR by Trikafta modulators.
Science 378 6617:284-290. PubMed Id: 36264792. doi:10.1126/science.ade2216. |
||
Cystic Fibrosis Transmembrane Conductance Regulator (CFTR), dephosphorylated, ATP-bound state: Homo sapiens E Eukaryota (expressed in HEK293 cells), 4.30 Å
cryo-EM structure |
Levring et al. (2023).
Levring J, Terry DS, Kilic Z, Fitzgerald G, Blanchard S, & Chen J (2023). CFTR function, pathology and pharmacology at single-molecule resolution.
Nature 616 7957:606-614. PubMed Id: 36949202. doi:10.1038/s41586-023-05854-7. |
||
Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) with bound inhibitor CFTRinh-172: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.70 Å
cryo-EM structure |
Young et al. (2024).
Young PG, Levring J, Fiedorczuk K, Blanchard SC, & Chen J (2024). Structural basis for CFTR inhibition by CFTRinh-172.
Proc Natl Acad Sci U S A 121 10:e2316675121. PubMed Id: 38422021. doi:10.1073/pnas.2316675121. |
||
Cystic Fibrosis Transmembrane Conductance Regulator (CFTR), dephosphorylated form: Gallus gallus E Eukaryota (expressed in BHK cells), 4.3 Å
cryo-EM structure phosphorylated form, 6.6 Å: 6D3S |
Fay et al. (2018).
Fay JF, Aleksandrov LA, Jensen TJ, Cui LL, Kousouros JN, He L, Aleksandrov AA, Gingerich DS, Riordan JR, & Chen JZ (2018). Cryo-EM Visualization of an Active High Open Probability CFTR Anion Channel.
Biochemistry 57 43:6234-6246. PubMed Id: 30281975. doi:10.1021/acs.biochem.8b00763. |
||
Transporter associated with antigen processing (TAP) bound to ICP47: Homo sapiens E Eukaryota (expressed in Pichia pastoris), 4.0 Å
cryo-EM structure |
Oldham et al. (2016).
Oldham ML, Grigorieff N, & Chen J (2016). Structure of the transporter associated with antigen processing trapped by herpes simplex virus.
Elife 5 :e21829. PubMed Id: 27935481. doi:10.7554/eLife.21829. |
||
Park et al. (2022).
Park JG, Kim S, Jang E, Choi SH, Han H, Ju S, Kim JW, Min DS, & Jin MS (2022). The lysosomal transporter TAPL has a dual role as peptide translocator and phosphatidylserine floppase.
Nat Commun 13 1:5851. PubMed Id: 36195619. doi:10.1038/s41467-022-33593-2. |
|||
TmrAB antigen transporter homolog: Thermus thermophilus B Bacteria (expressed in E. coli), 2.7 Å
|
Nöll et al. (2017).
Nöll A, Thomas C, Herbring V, Zollmann T, Barth K, Mehdipour AR, Tomasiak TM, Büchert S, Joseph B, Abele R, Oliéric V, Wang M, Diederichs K, Hummer G, Stroud RM, Pos KM, & Tampé R (2017). Crystal structure and mechanistic basis of a functional homolog of the antigen transporter TAP.
Proc Natl Aca. Sci USA 114 :E438-E447. PubMed Id: 28069938. doi:10.1073/pnas.1620009114. |
||
TmrAB antigen transporter homolog under turnover conditions, inward-facing narrow conformation: Thermus thermophilus B Bacteria (expressed in E. coli), 3.8 Å
cryo-EM structure Download video of conformational transitions: Nature Magazine inward-facing wide conformation, 4.2 Å: 6RAG ATP-bound outward-facing open conformation, 2.8 Å: 6RAH ATP-bound outward-facing occluded conformation, 2.9 Å: 6RAI in vanadate trapped outward-facing open conformation, 3.5 Å: 6RAJ in vanadate trapped outward-facing occluded conformation, 3.3 Å: 6RAK in asymmetric unlocked return conformation, 3.5 Å: 6RAL in asymmetric unlocked return conformation with wider opened intracellular gate, 3.8 Å: 6RAM in inward-facing wide conformation, 4.2 Å: 6RAN |
Hofmann et al. (2019).
Hofmann S, Januliene D, Mehdipour AR, Thomas C, Stefan E, Brüchert S, Kuhn BT, Geertsma ER, Hummer G, Tampé R, & Moeller A (2019). Conformation space of a heterodimeric ABC exporter under turnover conditions.
Nature 571 7766:580-583. PubMed Id: 31316210. doi:10.1038/s41586-019-1391-0. |
||
PrtD Type-1 secretion system ABC transporter: Aquifex aeolicus B Bacteria (expressed in E. coli), 3.15 Å
|
Morgan et al. (2017).
Morgan JL, Acheson JF, & Zimmer J (2017). Structure of a Type-1 Secretion System ABC Transporter.
Structure 25 :522-529. PubMed Id: 28216041. doi:10.1016/j.str.2017.01.010. |
||
MRP1 Multidrug resistance protein 1: Bos taurus E Eukaryota (expressed in S. frugiperda), 3.49 Å
cryo-EM structure with bound LTC4, 3.34 Å: 5UJA |
Johnson & Chen (2017).
Johnson ZL, & Chen J (2017). Structural Basis of Substrate Recognition by the Multidrug Resistance Protein MRP1.
Cell 168 :1075-1085. PubMed Id: 28238471. doi:10.1016/j.cell.2017.01.041. |
||
MRP1 Multidrug resistance protein 1, ATP-bound form: Bos taurus E Eukaryota (expressed in HEK293S cells), 3.14 Å
cryo-EM structure |
Johnson & Chen (2018).
Johnson ZL, & Chen J (2018). ATP Binding Enables Substrate Release from Multidrug Resistance Protein 1.
Cell 172 :81-89.e10. PubMed Id: 29290467. doi:10.1016/j.cell.2017.12.005. |
||
MRP1 Multidrug resistance protein 1 under active turnover conditions: Bos taurus E Eukaryota (expressed in HEK293 cells), 3.23 Å
cryo-EM structure |
Wang et al. (2020).
Wang L, Johnson ZL, Wasserman MR, Levring J, Chen J, & Liu S (2020). Characterization of the kinetic cycle of an ABC transporter by single-molecule and cryo-EM analyses.
Elife 9 :e56451. PubMed Id: 32458799. doi:10.7554/eLife.56451. |
||
MRP1 Multidrug resistance protein 1 with bound cyclic peptide inhibitor 1 (CPI1): Bos taurus E Eukaryota (expressed in HEK293 cells), 3.27 Å
cryo-EM structure |
Pietz et al. (2023).
Pietz HL, Abbas A, Johnson ZL, Oldham ML, Suga H, & Chen J (2023). A macrocyclic peptide inhibitor traps MRP1 in a catalytically incompetent conformation.
Proc Natl Acad Sci U S A 120 11:e2220012120. PubMed Id: 36893260. doi:10.1073/pnas.2220012120. |
||
cadmium factor 1 protein (cf1p) homolog of multidrug resistance protein 1 (MRP1): Saccharomyces cerevisiae E Eukaryota, 3.20 Å
cryo-EM structure |
Bickers et al. (2021).
Bickers SC, Benlekbir S, Rubinstein JL, & Kanelis V (2021). Structure of Ycf1p reveals the transmembrane domain TMD0 and the regulatory region of ABCC transporters.
Proc Natl Acad Sci U S A 118 21:e2025853118. PubMed Id: 34021087. doi:10.1073/pnas.2025853118. |
||
cadmium factor 1 protein (cf1p) homolog of multidrug resistance protein 1 (MRP1), E1435Q mutant in inward-facing narrow conformation: Saccharomyces cerevisiae E Eukaryota, 4.04 Å
cryo-EM structure inward-facing wide conformation, 3.42 Å 7M69 |
Khandelwal et al. (2022).
Khandelwal NK, Millan CR, Zangari SI, Avila S, Williams D, Thaker TM, & Tomasiak TM (2022). The structural basis for regulation of the glutathione transporter Ycf1 by regulatory domain phosphorylation.
Nat Commun 13 1:1278. PubMed Id: 35277487. doi:10.1038/s41467-022-28811-w. |
||
Huang et al. (2023).
Huang Y, Xue C, Wang L, Bu R, Mu J, Wang Y, & Liu Z (2023). Structural basis for substrate and inhibitor recognition of human multidrug transporter MRP4.
Commun Biol 6 1:549. PubMed Id: 37217525. doi:10.1038/s42003-023-04935-7. |
|||
Lipopolysaccharide transporter complex LptB2FG (nucleotide free): Pseudomonas aeruginosa B Bacteria (expressed in E. coli), 3.46 Å
|
Luo et al. (2017).
Luo Q, Yang X, Yu S, Shi H, Wang K, Xiao L, Zhu G, Sun C, Li T, Li D, Zhang X, Zhou M, & Huang Y (2017). Structural basis for lipopolysaccharide extraction by ABC transporter LptB2FG.
Nat Struct Mol Biol 24 :469-474. PubMed Id: 28394325. doi:10.1038/nsmb.3399. |
||
Li et al. (2019).
Li Y, Orlando BJ, & Liao M (2019). Structural basis of lipopolysaccharide extraction by the LptB2FGC complex.
Nature 567 7749:486-490. PubMed Id: 30894744. doi:10.1038/s41586-019-1025-6. |
|||
Lipopolysaccharide transporter complex LptB2FGC: Enterobacter cloacae B Bacteria (expressed in E. coli), 3.2 Å
|
Owens et al. (2019).
Owens TW, Taylor RJ, Pahil KS, Bertani BR, Ruiz N, Kruse AC, & Kahne D (2019). Structural basis of unidirectional export of lipopolysaccharide to the cell surface.
Nature 567 7749:550-553. PubMed Id: 30894747. doi:10.1038/s41586-019-1039-0. |
||
Lipopolysaccharide transporter complex LptB2FGC: Vibrio cholerae B Bacteria (expressed in E.coli), 2.85 Å
|
Owens et al. (2019).
Owens TW, Taylor RJ, Pahil KS, Bertani BR, Ruiz N, Kruse AC, & Kahne D (2019). Structural basis of unidirectional export of lipopolysaccharide to the cell surface.
Nature 567 7749:550-553. PubMed Id: 30894747. doi:10.1038/s41586-019-1039-0. |
||
Tang et al. (2019).
Tang X, Chang S, Luo Q, Zhang Z, Qiao W, Xu C, Zhang C, Niu Y, Yang W, Wang T, Zhang Z, Zhu X, Wei X, Dong C, Zhang X, & Dong H (2019). Cryo-EM structures of lipopolysaccharide transporter LptB2FGC in lipopolysaccharide or AMP-PNP-bound states reveal its transport mechanism.
Nat Commun 10 1. PubMed Id: 31519889. doi:10.1038/s41467-019-11977-1. |
|||
Lipopolysaccharide transporter LptB2FGC in complex with LPS: Klebsiella pneumoniae B Bacteria (expressed in E. coli), 3.85 Å
cryo-EM structure |
Luo et al. (2021).
Luo Q, Shi H, & Xu X (2021). Cryo-EM structures of LptB2FG and LptB2FGC from Klebsiella pneumoniae in complex with lipopolysaccharide.
Biochem Biophys Res Commun 571 :20-25. PubMed Id: 34303191. doi:10.1016/j.bbrc.2021.07.049. |
||
Multidrug transporter ABCG2: Homo sapiens E Eukaryota (expressed in HEK293), 3.78 Å
cryo-EM structure de novo built TMD in complex with 5D4-fab variable domain, 3.78 Å: 5NJG |
Taylor et al. (2017).
Taylor NMI, Manolaridis I, Jackson SM, Kowal J, Stahlberg H, & Locher KP (2017). Structure of the human multidrug transporter ABCG2.
Nature 546 :504-509. PubMed Id: 28554189. doi:10.1038/nature22345. |
||
Jackson et al. (2018).
Jackson SM, Manolaridis I, Kowal J, Zechner M, Taylor NMI, Bause M, Bauer S, Bartholomaeus R, Bernhardt G, Koenig B, Buschauer A, Stahlberg H, Altmann KH, & Locher KP (2018). Structural basis of small-molecule inhibition of human multidrug transporter ABCG2.
Nat Struct Mol Biol 25 4:333-340. PubMed Id: 29610494. doi:10.1038/s41594-018-0049-1. |
|||
Multidrug transporter ABCG2 E211Q mutant with bound substrate estrone 3-sulfate: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.58 Å
cryo-EM structure E211Q mutant bound to ATP and Magnesium, 3.09 Å: 6HBU |
Manolaridis et al. (2018).
Manolaridis I, Jackson SM, Taylor NMI, Kowal J, Stahlberg H, & Locher KP (2018). Cryo-EM structures of a human ABCG2 mutant trapped in ATP-bound and substrate-bound states.
Nature 563 7731:426-430. PubMed Id: 30405239. doi:10.1038/s41586-018-0680-3. |
||
Orlando & Liao (2020).
Orlando BJ, & Liao M (2020). ABCG2 transports anticancer drugs via a closed-to-open switch.
Nat Commun 11 1:2264. PubMed Id: 32385283. doi:10.1038/s41467-020-16155-2. |
|||
Kowal et al. (2021).
Kowal J, Ni D, Jackson SM, Manolaridis I, Stahlberg H, & Locher KP (2021). Structural Basis of Drug Recognition by the Multidrug Transporter ABCG2.
J Mol Biol 433 13:166980. PubMed Id: 33838147. doi:10.1016/j.jmb.2021.166980. |
|||
Yu et al. (2021).
Yu Q, Ni D, Kowal J, Manolaridis I, Jackson SM, Stahlberg H, & Locher KP (2021). Structures of ABCG2 under turnover conditions reveal a key step in the drug transport mechanism.
Nat Commun 12 1:4376. PubMed Id: 34282134. doi:10.1038/s41467-021-24651-2. |
|||
Multidrug transporter ABCG2, tariquidar turnover-1 state: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.10 Å
cryo-EM structure tariquidar turnover-2 state, 3.20 Å: 8BI0 |
Rasouli et al. (2023).
Rasouli A, Yu Q, Dehghani-Ghahnaviyeh S, Wen PC, Kowal J, Locher KP, & Tajkhorshid E (2023). Differential dynamics and direct interaction of bound ligands with lipids in multidrug transporter ABCG2.
Proc Natl Acad Sci U S A 120 1:e2213437120. PubMed Id: 36580587. doi:10.1073/pnas.2213437120. |
||
Irobalieva et al. (2023).
Irobalieva RN, Manolaridis I, Jackson SM, Ni D, Pardon E, Stahlberg H, Steyaert J, & Locher KP (2023). Structural Basis of the Allosteric Inhibition of Human ABCG2 by Nanobodies.
J Mol Biol 435 19:168234. PubMed Id: 37597690. doi:10.1016/j.jmb.2023.168234. |
|||
MacB ABC transporter: Acinetobacter baumannii B Bacteria (expressed in E. coli), 3.39 Å
with bound ADPβS, 3.4 Å: 5WS4 |
Okada et al. (2017).
Okada U, Yamashita E, Neuberger A, Morimoto M, van Veen HW, & Murakami S (2017). Crystal structure of tripartite-type ABC transporter MacB from Acinetobacter baumannii.
Nat Commun 8 1:1336. PubMed Id: 29109439. doi:10.1038/s41467-017-01399-2. |
||
MacAB-TolC tripartite multidrug efflux pump, MacA-TolC section: Escherichia coli B Bacteria, 3.3 Å
cryo-EM structure MacB section, 5.3 Å: 5NIL |
Fitzpatrick et al. (2017).
Fitzpatrick AWP, Llabrés S, Neuberger A, Blaza JN, Bai XC, Okada U, Murakami S, van Veen HW, Zachariae U, Scheres SHW, Luisi BF, & Du D (2017). Structure of the MacAB-TolC ABC-type tripartite multidrug efflux pump.
Nat Microbiol 2 :17070. PubMed Id: 28504659. doi:10.1038/nmicrobiol.2017.70. |
||
MacB ABC tranporter with bound ATPγS (P21): Aggregatibacter actinomycetemcomitans B Bacteria (expressed in E. coli), 3.35 Å
with bound ATPγS (P6522), 3.9 Å: 5LJ6 with bound ATP (P21), 3.25 Å: 5LJ7 E. coli periplasmic domain (P21), 1.9 Å:5LJ8 E. coli MacB ABC domain (C2221), 2.3 Å: 5LJ9 E. coli MacB ABC domain (P6122), 2.4 Å:5LJA E. coli Lipoprotein-releasing system transmembrane protein LolC, 1.88 Å: 5NAA |
Crow et al. (2017).
Crow A, Greene NP, Kaplan E, & Koronakis V (2017). Structure and mechanotransmission mechanism of the MacB ABC transporter superfamily.
Proc Natl Acad Sci USA 114 47:12572-12577. PubMed Id: 29109272. doi:10.1073/pnas.1712153114. |
||
MacAB-like efflux pump, Spr0694-0695 section: Streptococcus pneumoniae R6 B Bacteria (expressed in E. coli), 3.3 Å
Spr0693 section, 2.95 Å: 5UX0 |
Yang et al. (2018).
Yang HB, Hou WT, Cheng MT, Jiang YL, Chen Y, & Zhou CZ (2018). Structure of a MacAB-like efflux pump from Streptococcus pneumoniae.
Nat Commun 9 1:196. PubMed Id: 29335499. doi:10.1038/s41467-017-02741-4. |
||
ABC transporter Rv1819c in AMP-PNP bound state: Mycobacterium tuberculosis B Bacteria (expressed in E. coli), 3.50 Å
cryo-EM structure Rv1819c without addition of substrate, 4.30 Å: 6TQE |
Rempel et al. (2020).
Rempel S, Gati C, Nijland M, Thangaratnarajah C, Karyolaimos A, de Gier JW, Guskov A, & Slotboom DJ (2020). A mycobacterial ABC transporter mediates the uptake of hydrophilic compounds.
Nature 580 7803:409-412. PubMed Id: 32296172. doi:10.1038/s41586-020-2072-8. |
||
SbmA proton-dependent antibacterial peptide transporter in a nanodisc: Escherichia coli B Bacteria, 3.59 Å
cryo-EM structure SbmA is not a true ABC transporter. Its closest relative is ABC transporter Rv1819c. |
Ghilarov et al. (2021).
Ghilarov D, Inaba-Inoue S, Stepien P, Qu F, Michalczyk E, Pakosz Z, Nomura N, Ogasawara S, Walker GC, Rebuffat S, Iwata S, Heddle JG, & Beis K (2021). Molecular mechanism of SbmA, a promiscuous transporter exploited by antimicrobial peptides.
Sci Adv 7 37:eabj5363. PubMed Id: 34516884. doi:10.1126/sciadv.abj5363. |
||
heterodimeric IrtAB ABC transporter, apo form: Mycolicibacterium thermoresistibile B Bacteria (expressed in E. coli), 2.70 Å
siderophore interaction domain of IrtAB, 1.80 Å: 6TEK |
Arnold et al. (2020).
Arnold FM, Weber MS, Gonda I, Gallenito MJ, Adenau S, Egloff P, Zimmermann I, Hutter CAJ, Hürlimann LM, Peters EE, Piel J, Meloni G, Medalia O, & Seeger MA (2020). The ABC exporter IrtAB imports and reduces mycobacterial siderophores.
Nature 580 7803:413-417. PubMed Id: 32296173. doi:10.1038/s41586-020-2136-9. |
||
YbtPQ ABC importer: Escherichia coli B Bacteria, 3.67 Å
cryo-EM structure with substrate Ybt-Fe bound, 3.40 Å: 6P6J |
Wang et al. (2020).
Wang Z, Hu W, & Zheng H (2020). Pathogenic siderophore ABC importer YbtPQ adopts a surprising fold of exporter.
Sci Adv 6 6. PubMed Id: 32076651. doi:10.1126/sciadv.aay7997. |
||
YbtPQ ABC importer in occluded state:: Escherichia coli B Bacteria, 3.10 Å
cryo-EM structure |
Hu et al. (2024).
Hu W, Parkinson C, & Zheng H (2024). Mechanistic Insights Revealed by YbtPQ in the Occluded State.
Biomolecules 14 3:322. PubMed Id: 38540742. doi:10.3390/biom14030322. |
||
FhuCDB ferrichrome importer: Escherichia coli B Bacteria, 3.40 Å
cryo-EM structure |
Hu & Zheng (2021).
Hu W, & Zheng H (2021). Cryo-EM reveals unique structural features of the FhuCDB Escherichia coli ferrichrome importer.
Commun Biol 4 1:1383. PubMed Id: 34887516. doi:10.1038/s42003-021-02916-2. |
||
Zeytuni et al. (2020).
Zeytuni N, Dickey SW, Hu J, Chou HT, Worrall LJ, Alexander JAN, Carlson ML, Nosella M, Duong F, Yu Z, Otto M, & Strynadka NCJ (2020). Structural insight into the Staphylococcus aureus ATP-driven exporter of virulent peptide toxins.
Sci Adv 6 40. PubMed Id: 32998902. doi:10.1126/sciadv.abb8219. |
|||
Sikkema et al. (2020).
Sikkema HR, van den Noort M, Rheinberger J, de Boer M, Krepel ST, Schuurman-Wolters GK, Paulino C, & Poolman B (2020). Gating by ionic strength and safety check by cyclic-di-AMP in the ABC transporter OpuA.
Sci Adv 6 47:eabd7697. PubMed Id: 33208376. doi:10.1126/sciadv.abd7697. |
|||
ABCA1 lipid exporter: Homo sapiens E Eukaryota (expressed in S. frugiperda), 4.1 Å
cryo-EM structure |
Qian et al. (2017).
Qian H, Zhao X, Cao P, Lei J, Yan N, & Gong X (2017). Structure of the Human Lipid Exporter ABCA1.
Cell 169 7:1228-1239.e10. PubMed Id: 28602350. doi:10.1016/j.cell.2017.05.020. |
||
ABCA1 lipid exporter in nanodisc: Homo sapiens E Eukaryota (expressed in HEK293 cells), 4.00 Å
cryo-EM structure |
Plummer-Medeiros et al. (2023).
Plummer-Medeiros AM, Culbertson AT, Morales-Perez CL, & Liao M (2023). Activity and Structural Dynamics of Human ABCA1 in a Lipid Membrane.
J Mol Biol 435 8:168038. PubMed Id: 36889459. doi:10.1016/j.jmb.2023.168038. |
||
surfactant lipids exporter ABCA3 (nucleotide-free): Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.30 Å
cryo-EM structure with bound ATP, 3.30 Å: 7W02 |
Xie et al. (2022).
Xie T, Zhang Z, Yue J, Fang Q, & Gong X (2022). Cryo-EM structures of the human surfactant lipid transporter ABCA3.
Sci Adv 8 14:eabn3727. PubMed Id: 35394827. doi:10.1126/sciadv.abn3727. |
||
retinal importer ABCA4 (Rim protein ABCR), ATP-free: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.27 Å
cryo-EM structure with bound ATP, 3.27 Å: 7LKZ |
Liu et al. (2021).
Liu F, Lee J, & Chen J (2021). Molecular structures of the eukaryotic retinal importer ABCA4.
Elife 10 :e63524. PubMed Id: 33605212. doi:10.7554/eLife.63524. |
||
Xie et al. (2021).
Xie T, Zhang Z, Fang Q, Du B, & Gong X (2021). Structural basis of substrate recognition and translocation by human ABCA4.
Nat Commun 12 1:3853. PubMed Id: 34158497. doi:10.1038/s41467-021-24194-6. |
|||
retinal importer ABCA4 (Rim protein ABCR), unbound state: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.60 Å
cryo-EM structure in complex with N-ret-PE, 2.92 Å 7M1Q |
Scortecci et al. (2021).
Scortecci JF, Molday LL, Curtis SB, Garces FA, Panwar P, Van Petegem F, & Molday RS (2021). Cryo-EM structures of the ABCA4 importer reveal mechanisms underlying substrate binding and Stargardt disease.
Nat Commun 12 1:5902. PubMed Id: 34625547. doi:10.1038/s41467-021-26161-7. |
||
Le et al. (2023).
Le LTM, Thompson JR, Dehghani-Ghahnaviyeh S, Pant S, Dang PX, French JB, Kanikeyo T, Tajkhorshid E, & Alam A (2023). Cryo-EM structures of human ABCA7 provide insights into its phospholipid translocation mechanisms.
EMBO J 42 3:e111065. PubMed Id: 36484366. doi:10.15252/embj.2022111065. |
|||
lipoprotein outer membrane localization (Lol) protein LolCDE in complex with lipoprotein: Escherichia coli B Bacteria, 3.30 Å
cryo-EM structure in complex with lipoprotein and LolA, 3.60 Å: 7ARM in complex with AMP-PNP in the closed NBD state, 4.10 Å: 7ARK in complex with lipoprotein and AMP-PNP complex, undimerized form, 3.20 Å: 7ARJ in complex with lipoprotein and ADP, 3.20 Å: 7ARL apo structure, 3.40 Å: 7ARI |
Tang et al. (2021).
Tang X, Chang S, Zhang K, Luo Q, Zhang Z, Wang T, Qiao W, Wang C, Shen C, Zhang Z, Zhu X, Wei X, Dong C, Zhang X, & Dong H (2021). Structural basis for bacterial lipoprotein relocation by the transporter LolCDE.
Nat Struct Mol Biol 28 4:347-355. PubMed Id: 33782615. doi:10.1038/s41594-021-00573-x. |
||
lipoprotein outer membrane localization (Lol) protein LolCDE, nucleotide-free: Escherichia coli B Bacteria, 3.80 Å
cryo-EM structure nucleotide-bound, 3.50 Å: 7MDY |
Sharma et al. (2021).
Sharma S, Zhou R, Wan L, Feng S, Song K, Xu C, Li Y, & Liao M (2021). Mechanism of LolCDE as a molecular extruder of bacterial triacylated lipoproteins.
Nat Commun 12 1:4687. PubMed Id: 34344901. doi:10.1038/s41467-021-24965-1. |
||
Pdr5 pleiotropic drug resistance transporter, inward-facing conformation: Saccharomyces cerevisiae E Eukaryota, 3.45 Å
cryo-EM structure inward-facing conformation with ADP/ATP, 2.85 Å 7P04 inward-facing conformation with ADP/ATP and rhodamine 6G, 3.13 Å 7P05 in outward-facing conformation with ADP-orthovanadate/ATP, 3.77 Å 7P06 |
Harris et al. (2021).
Harris A, Wagner M, Du D, Raschka S, Nentwig LM, Gohlke H, Smits SHJ, Luisi BF, & Schmitt L (2021). Structure and efflux mechanism of the yeast pleiotropic drug resistance transporter Pdr5.
Nat Commun 12 1:5254. PubMed Id: 34489436. doi:10.1038/s41467-021-25574-8. |
||
BmrCD heterodimeric multidrug exporter: Bacillus subtilis B Bacteria (expressed in E. coli), 3.55 Å
cryo-EM structure |
Thaker et al. (2022).
Thaker TM, Mishra S, Zhou W, Mohan M, Tang Q, Faraldo-Goméz JD, Mchaourab HS, & Tomasiak TM (2022). Asymmetric drug binding in an ATP-loaded inward-facing state of an ABC transporter.
Nat Chem Biol 18 2:226-235. PubMed Id: 34931066. doi:10.1038/s41589-021-00936-x. |
||
BmrCD heterodimeric multidrug exporter, inward-facing conformation with bound 2 Hoechst molecules and ATP: Bascillus subtilis B Bacteria (expressed in E. coli), 3.34 Å
cryo-EM structure inward-facing conformation, with bound 1 Hoechst molecule and ATP, 3.06 Å: 8SZC occluded conformation, with bound ATP, 2.90 Å: 8FHK occluded confirmation, with bound ADPVi, 2.96 Å: 8T1P |
Tang et al. (2023).
Tang Q, Sinclair M, Hasdemir HS, Stein RA, Karakas E, Tajkhorshid E, & Mchaourab HS (2023). Asymmetric conformations and lipid interactions shape the ATP-coupled cycle of a heterodimeric ABC transporter.
Nat Commun 14 1:7184. PubMed Id: 37938578. doi:10.1038/s41467-023-42937-5. |
||
Chaptal et al. (2022).
Chaptal V, Zampieri V, Wiseman B, Orelle C, Martin J, Nguyen KA, Gobet A, Di Cesare M, Magnard S, Javed W, Eid J, Kilburg A, Peuchmaur M, Marcoux J, Monticelli L, Hogbom M, Schoehn G, Jault JM, Boumendjel A, & Falson P (2022). Substrate-bound and substrate-free outward-facing structures of a multidrug ABC exporter.
Sci Adv 8 4:eabg9215. PubMed Id: 35080979. doi:10.1126/sciadv.abg9215. |
|||
Bce-type ABC transporter, nucleotide-free conformation: Bacillus subtilis B Bacteria (expressed in E. coli), 3.80 Å
cryo-EM structure E169Q variant, ATP-bound conformation, 3.70 Å 7TCH |
George et al. (2022).
George NL, Schilmiller AL, & Orlando BJ (2022). Conformational snapshots of the bacitracin sensing and resistance transporter BceAB.
Proc Natl Acad Sci U S A 119 14:e2123268119. PubMed Id: 35349335. doi:10.1073/pnas.2123268119. |
||
NosDFY ABC transporter complexed with nitrous oxide reductase NosZ: Pseudomonas stutzeri B Bacteria (expressed in E. coli), 3.78 Å
cryo-EM structure NosDFYL in GDN, 3.04 Å: 7ZNQ |
Müller et al. (2022).
Müller C, Zhang L, Zipfel S, Topitsch A, Lutz M, Eckert J, Prasser B, Chami M, Lü W, Du J, & Einsle O (2022). Molecular interplay of an assembly machinery for nitrous oxide reductase.
Nature 608 7923:626-631. PubMed Id: 35896743. doi:10.1038/s41586-022-05015-2. |
||
hemolysin A secretion system HlyB/D complex: Escherichia coli B Bacteria, 2.90 Å
cryo-EM structure ATP-bound, 3.40 Å: 8DCK |
Zhao et al. (2022).
Zhao H, Lee J, & Chen J (2022). The hemolysin A secretion system is a multi-engine pump containing three ABC transporters.
Cell 185 18:3329-3340.e13. PubMed Id: 36055198. doi:10.1016/j.cell.2022.07.017. |
||
ABC transporter STE6-2p, apo conformation: Pichia pastoris E Eukaryota, 3.10 Å
cryo-EM structure with bound Verapamil, 3.20 Å: 7QKR |
Schleker et al. (2022).
Schleker ESM, Buschmann S, Xie H, Welsch S, Michel H, & Reinhart C (2022). Structural and functional investigation of ABC transporter STE6-2p from Pichia pastoris reveals unexpected interaction with sterol molecules.
Proc Natl Acad Sci U S A 119 43:e2202822119. PubMed Id: 36256814. doi:10.1073/pnas.2202822119. |
||
EfrCD ABC transporter in complex with nanobody: Enterococcus faecalis B Bacteria (expressed in Lactococcus lactis), 4.25 Å
cryo-EM structure |
Meier et al. (2023).
Meier G, Thavarasah S, Ehrenbolger K, Hutter CAJ, Hürlimann LM, Barandun J, & Seeger MA (2023). Deep mutational scan of a drug efflux pump reveals its structure-function landscape.
Nat Chem Biol 19 4:440-450. PubMed Id: 36443574. doi:10.1038/s41589-022-01205-1. |
||
OppABCD oligopeptide permease in pre-translocation state: Mycobacterium tuberculosis B Bacteria (expressed in M. smegmatis), 3.25 Å
cryo-EM structure in resting state, 3.28 Å: 8J5R in pre-catalytic intermediate state, 3.00 Å: 8J5S in catalytic intermediate state, 2.98 Å: 8J5T X-ray: OppA with bound endogenous oligopeptide, 1.98 Å: 8J5U |
Yang et al. (2024).
Yang X, Hu T, Liang J, Xiong Z, Lin Z, Zhao Y, Zhou X, Gao Y, Sun S, Yang X, Guddat LW, Yang H, Rao Z, & Zhang B (2024). An oligopeptide permease, OppABCD, requires an iron-sulfur cluster domain for functionality.
Nat Struct Mol Biol . PubMed Id: 38548954. doi:10.1038/s41594-024-01256-z. |
||
Tripartite ATP-independent periplasmic (TRAP) protein family
|
|||
SiaQM TRAP transporter: Haemophilus influenzae B Bacteria (expressed in E. coli), 4.70 Å
cryo-EM structure |
Peter et al. (2022).
Peter MF, Ruland JA, Depping P, Schneberger N, Severi E, Moecking J, Gatterdam K, Tindall S, Durand A, Heinz V, Siebrasse JP, Koenig PA, Geyer M, Ziegler C, Kubitscheck U, Thomas GH, & Hagelueken G (2022). Structural and mechanistic analysis of a tripartite ATP-independent periplasmic TRAP transporter.
Nat Commun 13 1:4471. PubMed Id: 35927235. doi:10.1038/s41467-022-31907-y. |
||
Davies et al. (2023).
Davies JS, Currie MJ, North RA, Scalise M, Wright JD, Copping JM, Remus DM, Gulati A, Morado DR, Jamieson SA, Newton-Vesty MC, Abeysekera GS, Ramaswamy S, Friemann R, Wakatsuki S, Allison JR, Indiveri C, Drew D, Mace PD, & Dobson RCJ (2023). Structure and mechanism of a tripartite ATP-independent periplasmic TRAP transporter.
Nat Commun 14 1:1120. PubMed Id: 36849793. doi:10.1038/s41467-023-36590-1. |
|||
Major Facilitator Superfamily (MFS) Transporters
|
|||
LacY Lactose Permease Transporter (C154G mutant): Escherichia coli B Bacteria, 3.6 Å
1PV7 is with bound high-affinity lactose homolog, TDG. See 1PV6 for structure without TDG (3.5 Å). |
Abramson et al. (2003).
Abramson J, Smirnova I, Kasho V, Verner G, Kaback HR, & Iwata S (2003). Structure and mechanism of the lactose permease of Escherichia coli.
Science 301 :610-615. PubMed Id: 12893935. |
||
LacY Lactose Permease (C154G mutant) without substrate at 2 pH values: Escherichia coli B Bacteria, 2.95 Å
2CFQ structure determined at pH 6.5. 2CFP structure determined at pH 5.6 (3.30 Å). |
Mirza et al. (2006).
Mirza O, Guan L, Verner G, Iwata S & Kaback HR (2006). Structural evidence for induced fit and a mechanism for sugar/H+symport in LacY.
EMBO J 25 :1177-1183. PubMed Id: 16525509. |
||
LacY Lactose Permease (wild-type) with TDG: Escherichia coli B Bacteria, 3.6 Å
|
Guan et al. (2007).
Guan L, Mirza O, Verner G, Iwata S, & Kaback HR (2007). Structural determination of wild-type lactose permease.
Proc Natl Acad Sci USA 104 :15294-15298. PubMed Id: 17881559. |
||
LacY Lactose Permease with covalently bound MTS-gal: Escherichia coli B Bacteria, 3.4 Å
methanethiosulfonyl-galactopyranoside (MTS-gal) is a 'suicide' substrate. |
Chaptal et al. (2011).
Chaptal V, Kwon S, Sawaya MR, Guan L, Kaback HR, & Abramson J (2011). Crystal structure of lactose permease in complex with an affinity inactivator yields unique insight into sugar recognition.
Proc Natl Acad Sci USA 108 :9361-9366. PubMed Id: 21593407. doi:10.1073/pnas.1105687108. |
||
LacY Lactose Permease Transporter (G46W/G262W mutant) with bound lactose analog: Escherichia coli B Bacteria, 3.50 Å
Occluded, partially open to periplasmic side |
Kumar et al. (2014).
Kumar H, Kasho V, Smirnova I, Finer-Moore JS, Kaback HR, & Stroud RM (2014). Structure of sugar-bound LacY.
Proc Natl Acad Sci USA 111 :1784-1788. PubMed Id: 24453216. doi:10.1073/pnas.1324141111. |
||
LacY Lactose Permease Transporter (G46W, G262W mutant) with bound α-NPG: Escherichia coli B Bacteria, 3.31 Å
|
Kumar et al. (2015).
Kumar H, Finer-Moore JS, Kaback HR, & Stroud RM (2015). Structure of LacY with an ?-substituted galactoside: Connecting the binding site to the protonation site.
Proc Natl. Acad Sc. USA 112 :9004-9009. PubMed Id: 26157133. doi:10.1073/pnas.1509854112. |
||
LacY Lactose Permease Transporter (G46W, G262W mutant) with bound nanobody Nb9039: Escherichia coli B Bacteria, 3.3 Å
|
Jiang et al. (2016).
Jiang X, Smirnova I, Kasho V, Wu J, Hirata K, Ke M, Pardon E, Steyaert J, Yan N, & Kaback HR (2016). Crystal structure of a LacY-nanobody complex in a periplasmic-open conformation.
Proc Natl Acad Sci USA 113 :12420-12425. PubMed Id: 27791182. doi:10.1073/pnas.1615414113. |
||
LacY Lactose Permease Transporter (G46W, G262W mutant) with bound nanobody Nb9047 in complex with NPG: Escherichia coli B Bacteria, 3.0 Å
|
Kumar et al. (2018).
Kumar H, Finer-Moore JS, Jiang X, Smirnova I, Kasho V, Pardon E, Steyaert J, Kaback HR, & Stroud RM (2018). Crystal Structure of a ligand-bound LacY-Nanobody Complex.
Proc Natl Acad Sci USA 115 35:8769-8774. PubMed Id: 30108145. doi:10.1073/pnas.1801774115. |
||
FucP Fucose Transporter in outward-facing conformation: Escherichia coli B Bacteria, 3.1 Å
N162A mutant, 3.2 Å: 3O7P |
Dang et al. (2010).
Dang S, Sun L, Huang Y, Lu F, Liu Y, Gong H, Wang J, & Yan N (2010). Structure of a fucose transporter in an outward-open conformation.
Nature 467 :734-738. PubMed Id: 20877283. |
||
MelB Na+/melibiose symporter: Salmonella typhimurium B Bacteria (expressed in E. coli), 3.35 Å
MelB catalyzes electrogenic symport of galactosides with Na+, Li+, or H+ |
Ethayathulla et al. (2014).
Ethayathulla AS, Yousef MS, Amin A, Leblanc G, Kaback HR, & Guan L (2014). Structure-based mechanism for Na+/melibiose symport by MelB.
Nat Commun 5 :3009. PubMed Id: 24389923. doi:10.1038/ncomms4009. |
||
MelB Na+/melibiose symporter, D59C mutant with bound DDMB: Salmonella typhimurium B Bacteria (expressed in E. coli), 3.15 Å
with bound α-NPG, 3.05 Å 7L17 |
Guan & Hariharan (2021).
Guan L, & Hariharan P (2021). X-ray crystallography reveals molecular recognition mechanism for sugar binding in a melibiose transporter MelB.
Commun Biol 4 1:931. PubMed Id: 34341464. doi:10.1038/s42003-021-02462-x. |
||
Sun et al. (2012).
Sun L, Zeng X, Yan C, Sun X, Gong X, Rao Y, & Yan N (2012). Crystal structure of a bacterial homologue of glucose transporters GLUT1-4.
Nature 490 :361-366. PubMed Id: 23075985. doi:10.1038/nature11524. |
|||
XylE proton:xylose symporter in partially occluded inward-open state: Escherichia coli B Bacteria, 3.80 Å
inward-open state, 4.20 Å: 4JA4 |
Quistgaard et al. (2013).
Quistgaard EM, Löw C, Moberg P, Trésaugues L, & Nordlund P (2013). Structural basis for substrate transport in the GLUT-homology family of monosaccharide transporters.
Nature Struc Mol Biol 20 :766-768. PubMed Id: 23624861. doi:10.1038/nsmb.2569. |
||
XylE proton:xylose symporter, inward-facing open conformation: Escherichia coli B Bacteria, 3.51 Å
|
Wisedchaisri et al. (2014).
Wisedchaisri G, Park MS, Iadanza MG, Zheng H, & Gonen T (2014). Proton-coupled sugar transport in the prototypical major facilitator superfamily protein XylE.
Nat Comms 5 :4521. PubMed Id: 25088546. doi:10.1038/ncomms5521. |
||
GlcP Glucose/H+ symporter: Staphylococcus epidermidis B Bacteria (expressed in E. coli), 3.20 Å
|
Iancu et al. (2013).
Iancu CV, Zamoon J, Woo SB, Aleshin A, & Choe JY (2013). Crystal structure of a glucose/H+ symporter and its mechanism of action.
Proc Natl Acad Sci USA 110 :17862-17867. PubMed Id: 24127585. doi:10.1073/pnas.1311485110. |
||
GlpT Glycerol-3-Phosphate Transporter: Escherichia coli B Bacteria, 3.3 Å
|
Huang et al. (2003).
Huang Y, Lemieux MJ, Song J, Auer M, & Wang D-N (2003). Structure and mechanism of the glycerol-3-phosphate transporter from Eschericia coli.
Science 301 :616-620. PubMed Id: 12893936. |
||
EmrD Multidrug Transporter: Escherichia coli B Bacteria, 3.5 Å
|
Yin et al. (2006).
Yin Y, He X, Szewczyk P, Nguyen T, & Chang G. (2006). Structure of the multidrug transporter EmrD from Escherichia coli.
Science 312 :741-744. PubMed Id: 16675700. |
||
PepTSo Oligopeptide-proton symporter (POT family): Shewanella oneidensis B Bacteria (expressed in E. coli), 3.6 Å
The conformation appears to be that of an occluded state. |
Newstead et al. (2011).
Newstead S, Drew D, Cameron AD, Postis VL, Xia X, Fowler PW, Ingram JC, Carpenter EP, Sansom MS, McPherson MJ, Baldwin SA, & Iwata S (2011). Crystal structure of a prokaryotic homologue of the mammalian oligopeptide-proton symporters, PepT1 and PepT2.
EMBO J 30 :417-426. PubMed Id: 21131908. |
||
Guettou et al. (2014).
Guettou F, Quistgaard EM, Raba M, Moberg P, Löw C, & Nordlund P (2014). Selectivity mechanism of a bacterial homolog of the human drug-peptide transporters PepT1 and PepT2.
Nat Struct Mol Biol 21 8:728-731. PubMed Id: 25064511. doi:10.1038/nsmb.2860. |
|||
PepTSo Oligopeptide-proton symporter (POT family), inward-open conformation: Shewanella oneidensi B Bacteria (expressed in E. coli), 3.00 Å
|
Fowler et al. (2015).
Fowler PW, Orwick-Rydmark M, Radestock S, Solcan N, Dijkman PM, Lyons JA, Kwok J, Caffrey M, Watts A, Forrest LR, & Newstead S (2015). Gating topology of the proton-coupled oligopeptide symporters.
Structure 23 2:290-301. PubMed Id: 25651061. doi:10.1016/j.str.2014.12.012. |
||
Nagamura et al. (2019).
Nagamura R, Fukuda M, Kawamoto A, Matoba K, Dohmae N, Ishitani R, Takagi J, & Nureki O (2019). Structural basis for oligomerization of the prokaryotic peptide transporter PepTSo2.
Acta Crystallogr F Struct Biol Commun 75 :348-358. PubMed Id: 31045564. doi:10.1107/S2053230X19003546. |
|||
PepTSt Oligopeptide-proton symporter (POT family): Streptococcus thermophilus B Bacteria (expressed in E. coli), 3.30 Å
Conformation appears to be that of an inward-facing state. |
Solcan et al. (2012).
Solcan N, Kwok J, Fowler PW, Cameron AD, Drew D, Iwata S, & Newstead S (2012). Alternating access mechanism in the POT family of oligopeptide transporters.
EMBO J 31 :3411-3421. PubMed Id: 22659829. doi:10.1038/emboj.2012.157. |
||
PepTSt Oligopeptide-proton symporter (POT family) at 100 K: Streptococcus thermophilus B Bacteria (expressed in E. coli), 2.30 Å
data collected at 293 K, 2.80 Å: 4XNI Data collected by serial x-ray crystallography. |
Huang et al. (2015).
Huang CY, Olieric V, Ma P, Panepucci E, Diederichs K, Wang M, & Caffrey M (2015). In meso in situ serial X-ray crystallography of soluble and membrane proteins.
Acta Crystallogr D Biol Crystallogr 71 :1238-1256. PubMed Id: 26057665. doi:10.1107/S1399004715005210. |
||
PepTSt Oligopeptide-proton symporter (POT family) with bound dipeptide Ala-Leu: Streptococcus thermophilus B Bacteria (expressed in E. coli), 2.66 Å
with Ala-Gln peptide, 2.38 Å: 5OXK with Asp-Glu peptide, 2.30 Å: 5OXM with Phe-Ala peptide, 2.20 Å: 5OXN in 100 mM HEPES, 2.0 Å: 6EIA in 300 mM HEPES, 2.20 Å: 5OXQ occluded state with bound PO4, 2.37 Å: 5OXP apo protein, 1.95 Å: 5OXO |
Martinez Molledo et al. (2018).
Martinez Molledo M, Quistgaard EM, Flayhan A, Pieprzyk J, & Löw C (2018). Multispecific Substrate Recognition in a Proton-Dependent Oligopeptide Transporter.
Structure 26 :467-476.e4. PubMed Id: 29429879. doi:10.1016/j.str.2018.01.005. |
||
PepTSt Oligopeptide-proton symporter (POT family) crystallized in space group P3121: Streptococcus thermophilus B Bacteria (expressed in E. coli), 3.40 Å
|
Quistgaard et al. (2017).
Quistgaard EM, Martinez Molledo M, & Löw C (2017). Structure determination of a major facilitator peptide transporter: Inward facing PepTSt from Streptococcus thermophilus crystallized in space group P3121.
PLoS ONE 12 3. PubMed Id: 28264013. doi:10.1371/journal.pone.0173126. |
||
Proton-dependent oligopeptide transporter (POT): Geobacillus kaustophilus B Bacteria (expressed in E. coli), 1.90 Å
In complex with sulfate, 2.00 Å: 4IKW E310Q mutant, 2.30 Å: 4IKX E310Q mutant in complex with sulfate, 2.10 Å: 4IKY E310Q mutant in complex with dipeptide analog alafosfalin, 2.40 Å: 4IKZ |
Doki et al. (2013).
Doki S, Kato HE, Solcan N, Iwaki M, Koyama M, Hattori M, Iwase N, Tsukazaki T, Sugita Y, Kandori H, Newstead S, Ishitani R, & Nureki O (2013). Structural basis for dynamic mechanism of proton-coupled symport by the peptide transporter POT.
Proc Natl Acad Sci USA 110 28:11343-11348. PubMed Id: 23798427. doi:10.1073/pnas.1301079110. |
||
YbgH peptide transporter (POT family), inward facing conformation: Escherichia coli B Bacteria, 3.40 Å
|
Zhao et al. (2014).
Zhao Y, Mao G, Liu M, Zhang L, Wang X, & Zhang XC (2014). Crystal Structure of the E. coli Peptide Transporter YbgH.
Structure 22 :1152-1160. PubMed Id: 25066136. doi:10.1016/j.str.2014.06.008. |
||
PepT dipeptide transporter (POT family): Yersinia enterocolitica B Bacteria (expressed in E. coli), 3.02 Å
|
Boggavarapu et al. (2015).
Boggavarapu R, Jeckelmann JM, Harder D, Ucurum Z, & Fotiadis D (2015). Role of electrostatic interactions for ligand recognition and specificity of peptide transporters.
BMC Biol 13 1. PubMed Id: 26246134. doi:10.1186/s12915-015-0167-8. |
||
PepTXc mammalian-like peptide transporter (POT family): Xanthomonas campestris B Bacteria (expressed in E. coli), 2.1 Å
|
Parker et al. (2017).
Parker JL, Li C, Brinth A, Wang Z, Vogeley L, Solcan N, Ledderboge-Vucinic G, Swanson JMJ, Caffrey M, Voth GA, & Newstead S (2017). Proton movement and coupling in the POT family of peptide transporters.
Proc Natl Acad Sci USA 114 50:13182-13187. PubMed Id: 29180426. doi:10.1073/pnas.1710727114. |
||
PepTSh S-Cys-Gly-3M3SH transporter involved in body odor production: Staphylococcus hominis B Bacteria (expressed in E. coli), 2.5 Å
|
Minhas et al. (2018).
Minhas GS, Bawdon D, Herman R, Rudden M, Stone AP, James AG, Thomas GH, & Newstead S (2018). Structural basis of malodour precursor transport in the human axilla.
Elife 7 :e34995. PubMed Id: 29966586. doi:10.7554/eLife.34995. |
||
PiPT high-affinity phosphate transporter: Piriformospora indica E Eukaryota (expressed in S. cerevisiae), 2.90 Å
|
Pedersen et al. (2013).
Pedersen BP, Kumar H, Waight AB, Risenmay AJ, Roe-Zurz Z, Chau BH, Schlessinger A, Bonomi M, Harries W, Sali A, Johri AK, & Stroud RM (2013). Crystal structure of a eukaryotic phosphate transporter.
Nature 496 :533-536. PubMed Id: 23542591. doi:10.1038/nature12042. |
||
NarU nitrate transporter: Escherichia coli B Bacteria, 3.01 Å
First structure of a member of the nitrate/nitrite porter family (NNP) Selenomethionine derivative, 3.11 Å: 4IU8 |
Yan et al. (2013).
Yan H, Huang W, Yan C, Gong X, Jiang S, Zhao Y, Wang J, & Shi Y (2013). Structure and mechanism of a nitrate transporter.
Cell Rep 3 :716-723. PubMed Id: 23523348. doi:10.1016/j.celrep.2013.03.007. |
||
NarK nitrate/nitrite exchanger: Escherichia coli B Bacteria, 2.60 Å
A member of the nitrate/nitrite porter family (NNP) with bound nitrite, 2.80 Å: 4JRE |
Zheng et al. (2013).
Zheng H, Wisedchaisri G, & Gonen T (2013). Crystal structure of a nitrate/nitrite exchanger.
Nature 497 :647-651. PubMed Id: 23665960. doi:10.1038/nature12139. |
||
Fukuda et al. (2015).
Fukuda M, Takeda H, Kato HE, Doki S, Ito K, Maturana AD, Ishitani R, & Nureki O (2015). Structural basis for dynamic mechanism of nitrate/nitrite antiport by NarK.
Nat Commun 6 :7097. PubMed Id: 25959928. doi:10.1038/ncomms8097. |
|||
NRT1.1 nitrate transporter, apo form: Arabidopsis thaliana E Eukaryota (expressed in S. cerevisiae), 3.70 Å
Member of the NPF (NRT1/PTR) family. 5A2N supersedes 4CL4. in complex with nitrate, 3.71 Å: 5A2O 5A2O supersedes 4CL5. |
Parker et al. (2014).
Parker JL, & Newstead S (2014). Molecular basis of nitrate uptake by the plant nitrate transporter NRT1.1.
Nature 507 :68-72. PubMed Id: 24572366. doi:10.1038/nature13116. |
||
NRT1.1 nitrate transporter, homodimer in inward-facing conformation: Arabidopsis thaliana E Eukaryota (expressed in S. frugiperda), 3.25 Å
|
Sun et al. (2014).
Sun J, Bankston JR, Payandeh J, Hinds TR, Zagotta WN, & Zheng N (2014). Crystal structure of the plant dual-affinity nitrate transporter NRT1.1.
Nature 507 :73-77. PubMed Id: 24572362. doi:10.1038/nature13074. |
||
YajR drug efflux transporter: Escherichia coli B Bacteria, 3.15 Å
Belongs to the 12-TM drug-resistance H+-driven antiporter (DHA12) subfamily. |
Jiang et al. (2013).
Jiang D, Zhao Y, Wang X, Fan J, Heng J, Liu X, Feng W, Kang X, Huang B, Liu J, & Zhang XC (2013). Structure of the YajR transporter suggests a transport mechanism based on the conserved motif A.
Proc Natl Acad Sci USA 110 :14664-14669. PubMed Id: 23950222. doi:10.1073/pnas.1308127110. |
||
Heng et al. (2015).
Heng J, Zhao Y, Liu M, Liu Y, Fan J, Wang X, Zhao Y, & Zhang XC (2015). Substrate-bound structure of the E. coli multidrug resistance transporter MdfA.
Cell Res 25 9:1060-1073. PubMed Id: 26238402. doi:10.1038/cr.2015.94. |
|||
Wu et al. (2020).
Wu HH, Symersky J, & Lu M (2020). Structure and mechanism of a redesigned multidrug transporter from the Major Facilitator Superfamily.
Sci Rep 10 1. PubMed Id: 32127561. doi:10.1038/s41598-020-60332-8. |
|||
Wu et al. (2019).
Wu HH, Symersky J, & Lu M (2019). Structure of an engineered multidrug transporter MdfA reveals the molecular basis for substrate recognition.
Commun Biol 2 :210. PubMed Id: 31240248. doi:10.1038/s42003-019-0446-y. |
|||
MdfA multidrug resistance transporter in outward open conformation: Escherichia coli B Bacteria, 3.40 Å
|
Nagarathinam et al. (2018).
Nagarathinam K, Nakada-Nakura Y, Parthier C, Terada T, Juge N, Jaenecke F, Liu K, Hotta Y, Miyaji T, Omote H, Iwata S, Nomura N, Stubbs MT, & Tanabe M (2018). Outward open conformation of a Major Facilitator Superfamily multidrug/H+ antiporter provides insights into switching mechanism.
Nat Commun 9 1:4005. PubMed Id: 30275448. doi:10.1038/s41467-018-06306-x. |
||
MdfA multidrug resistance transporter, Q131R/L339E mutant: Escherichia coli B Bacteria, 2.20 Å
|
Zomot et al. (2018).
Zomot E, Yardeni EH, Vargiu AV, Tam HK, Malloci G, Ramaswamy VK, Perach M, Ruggerone P, Pos KM, & Bibi E (2018). A New Critical Conformational Determinant of Multidrug Efflux by an MFS Transporter.
J Mol Biol 430 9:1368-1385. PubMed Id: 29530612. doi:10.1016/j.jmb.2018.02.026. |
||
GLUT1 glucose transporter (N45T/E329Q mutant): Homo sapiens E Eukaryota (expressed in Trichoplusia ni), 3.17 Å
GLUT1 is a uniporter that catalyzes movement of glucose down its concentration gradient |
Deng et al. (2014).
Deng D, Xu C, Sun P, Wu J, Yan C, Hu M, & Yan N (2014). Crystal structure of the human glucose transporter GLUT1.
Nature 510 :121-125. PubMed Id: 24847886. doi:10.1038/nature13306. |
||
Kapoor et al. (2016).
Kapoor K, Finer-Moore JS, Pedersen BP, Caboni L, Waight A, Hillig RC, Bringmann P, Heisler I, Müller T, Siebeneicher H, & Stroud RM (2016). Mechanism of inhibition of human glucose transporter GLUT1 is conserved between cytochalasin B and phenylalanine amides.
Proc Natl Acad Sci USA 113 :4711-4716. PubMed Id: 27078104. doi:10.1073/pnas.1603735113. |
|||
GLUT1 glucose transporter (SLC2A1), inward conformation: Homo sapiens E Eukaryota (expressed in S. cerevisiae), 2.4 Å
|
Custódio et al. (2021).
Custódio TF, Paulsen PA, Frain KM, & Pedersen BP (2021). Structural comparison of GLUT1 to GLUT3 reveal transport regulation mechanism in sugar porter family.
Life Sci Alliance 4 4:e202000858. PubMed Id: 33536238. doi:10.26508/lsa.202000858. |
||
GLUT3 glucose transporter (N45T mutant) with bound D-glucose, outward-occluded conformation: Homo sapiens E Eukaryota (expressed in S. frugiperda), 1.50 Å
with exofacial inhibitor maltose in outward-occluded conformation, 2.4 Å: 4ZWB with exofacial inhibitor maltose in outward-open conformation, 2.6 Å: 4ZWC |
Deng et al. (2015).
Deng D, Sun P, Yan C, Ke M, Jiang X, Xiong L, Ren W, Hirata K, Yamamoto M, Fan S, & Yan N (2015). Molecular basis of ligand recognition and transport by glucose transporters.
Nature 526 :391-396. PubMed Id: 26176916. doi:10.1038/nature14655. |
||
GLUT3 glucose transporter in complex with C3361: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 2.30 Å
|
Huang et al. (2021).
Huang J, Yuan Y, Zhao N, Pu D, Tang Q, Zhang S, Luo S, Yang X, Wang N, Xiao Y, Zhang T, Liu Z, Sakata-Kato T, Jiang X, Kato N, Yan N, & Yin H (2021). Orthosteric-allosteric dual inhibitors of PfHT1 as selective antimalarial agents.
Proc Natl Acad Sci U S A 118 3:e2017749118. PubMed Id: 33402433. doi:10.1073/pnas.2017749118. |
||
GLUT3 glucose transporter with bound glucose, exofacial state: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 2.10 Å
with bound exofacial inhibitor SA47, 2.30 Å 7SPS |
Wang et al. (2022).
Wang N, Zhang S, Yuan Y, Xu H, Defossa E, Matter H, Besenius M, Derdau V, Dreyer M, Halland N, He KH, Petry S, Podeschwa M, Tennagels N, Jiang X, & Yan N (2022). Molecular basis for inhibiting human glucose transporters by exofacial inhibitors.
Nat Commun 13 1:2632. PubMed Id: 35552392. doi:10.1038/s41467-022-30326-3. |
||
GLUT4 glucose transporter with bound cytochalasin B in lipid nanodiscs: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.25 Å
cryo-EM structure with bound cytochalasin B in detergent micelles, 3.31 Å 7WSN |
Yuan et al. (2022).
Yuan Y, Kong F, Xu H, Zhu A, Yan N, & Yan C (2022). Cryo-EM structure of human glucose transporter GLUT4.
Nat Commun 13 1:2671. PubMed Id: 35562357. doi:10.1038/s41467-022-30235-5. |
||
GLUT5 fructose transporter, open-inward conformation: Bos taurus E Eukaryota, 3.20 Å
|
Nomura et al. (2015).
Nomura N, Verdon G, Kang HJ, Shimamura T, Nomura Y, Sonoda Y, Hussien SA, Qureshi AA, Coincon M, Sato Y, Abe H, Nakada-Nakura Y, Hino T, Arakawa T, Kusano-Arai O, Iwanari H, Murata T, Kobayashi T, Hamakubo T, Kasahara M, Iwata S, & Drew D (2015). Structure and mechanism of the mammalian fructose transporter GLUT5.
Nature 526 :397-401. PubMed Id: 26416735. doi:10.1038/nature14909. |
||
GLUT5 fructose transporter, open-outward conformation: Rattus norvegicus E Eukaryota, 3.27 Å
|
Nomura et al. (2015).
Nomura N, Verdon G, Kang HJ, Shimamura T, Nomura Y, Sonoda Y, Hussien SA, Qureshi AA, Coincon M, Sato Y, Abe H, Nakada-Nakura Y, Hino T, Arakawa T, Kusano-Arai O, Iwanari H, Murata T, Kobayashi T, Hamakubo T, Kasahara M, Iwata S, & Drew D (2015). Structure and mechanism of the mammalian fructose transporter GLUT5.
Nature 526 :397-401. PubMed Id: 26416735. doi:10.1038/nature14909. |
||
Hexose transporter (HT1): Plasmodium falciparum E Eukaryota (expressed in S. cerevisiae), 3.65 Å
|
Qureshi et al. (2020).
Qureshi AA, Suades A, Matsuoka R, Brock J, McComas SE, Nji E, Orellana L, Claesson M, Delemotte L, & Drew D (2020). The molecular basis for sugar import in malaria parasites.
Nature 578 7794:321-325. PubMed Id: 31996846. doi:10.1038/s41586-020-1963-z. |
||
Taniguchi et al. (2015).
Taniguchi R, Kato HE, Font J, Deshpande CN, Wada M, Ito K, Ishitani R, Jormakka M, & Nureki O (2015). Outward- and inward-facing structures of a putative bacterial transition-metal transporter with homology to ferroportin.
Nat Commun 6 :8545. PubMed Id: 26461048. doi:10.1038/ncomms9545. |
|||
Billesbølle et al. (2020).
Billesbølle CB, Azumaya CM, Kretsch RC, Powers AS, Gonen S, Schneider S, Arvedson T, Dror RO, Cheng Y, & Manglik A (2020). Structure of hepcidin-bound ferroportin reveals iron homeostatic mechanisms.
Nature 586 7831:807-811. PubMed Id: 32814342. doi:10.1038/s41586-020-2668-z. |
|||
Ferroportin (FPN) Fe2+ transporter (SLC40A1), bound to Ca2+ in nanodisc: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.00 Å
cryo-EM structure |
Shen et al. (2023).
Shen J, Wilbon AS, Zhou M, & Pan Y (2023). Mechanism of Ca2+ transport by ferroportin.
Elife 12 :e82947. PubMed Id: 36648329. doi:10.7554/eLife.82947. |
||
Ferroportin (FPN) Fe2+ transporter (SLC40A1) in complex with Fab: Carlito syrichta E Eukaryota (expressed in Trichoplusia ni), 3.00 Å
cryo-EM structure in the presence of hepcidin, 3.40 Å: 6WIK |
Pan et al. (2020).
Pan Y, Ren Z, Gao S, Shen J, Wang L, Xu Z, Yu Y, Bachina P, Zhang H, Fan X, Laganowsky A, Yan N, & Zhou M (2020). Structural basis of ion transport and inhibition in ferroportin.
Nat Commun 11 1:5686. PubMed Id: 33173040. doi:10.1038/s41467-020-19458-6. |
||
Sugar Transport Protein 10 in complex with glucose in the outward occluded state: Arabidopsis thaliana E Eukaryota (expressed in S. cerevisiae), 2.4 Å
|
Paulsen et al. (2019).
Paulsen PA, Custódio TF, & Pedersen BP (2019). Crystal structure of the plant symporter STP10 illuminates sugar uptake mechanism in monosaccharide transporter superfamily.
Nat Commun 10 1:407. PubMed Id: 30679446. doi:10.1038/s41467-018-08176-9. |
||
Sugar Transport Protein 10, outward occluded conformation: Arabidopsis thaliana E Eukaryota (expressed in S. cerevisiae), 1.81 Å
inward open conformation, 2.64 Å 7AAR |
Bavnhøj et al. (2021).
Bavnhøj L, Paulsen PA, Flores-Canales JC, Schiøtt B, & Pedersen BP (2021). Molecular mechanism of sugar transport in plants unveiled by structures of glucose/H+ symporter STP10.
Nat Plants 7 10:1409-1419. PubMed Id: 34556835. doi:10.1038/s41477-021-00992-0. |
||
LtaA Lipoteichoic acids flippase: Staphylococcus aureus B Bacteria (expressed in E. coli), 3.30 Å
|
Zhang et al. (2020).
Zhang B, Liu X, Lambert E, Mas G, Hiller S, Veening JW, & Perez C (2020). Structure of a proton-dependent lipid transporter involved in lipoteichoic acids biosynthesis.
Nat Struct Mol Biol 27 6:561-569. PubMed Id: 32367070. doi:10.1038/s41594-020-0425-5. |
||
LmrP multidrug transporter, ligand bound outward-open state: Lactococcus lactis B Bacteria, 2.90 Å
|
Debruycker et al. (2020).
Debruycker V, Hutchin A, Masureel M, Ficici E, Martens C, Legrand P, Stein RA, Mchaourab HS, Faraldo-Gómez JD, Remaut H, & Govaerts C (2020). An embedded lipid in the multidrug transporter LmrP suggests a mechanism for polyspecificity.
Nat Struct Mol Biol 27 9:829-835. PubMed Id: 32719456. doi:10.1038/s41594-020-0464-y. |
||
Wang et al. (2021).
Wang C, Xiao Q, Duan H, Li J, Zhang J, Wang Q, Guo L, Hu J, Sun B, & Deng D (2021). Molecular basis for substrate recognition by the bacterial nucleoside transporter NupG.
J Biol Chem 296 :100479. PubMed Id: 33640454. doi:10.1016/j.jbc.2021.100479. |
|||
Xiao et al. (2021).
Xiao Q, Sun B, Zhou Y, Wang C, Guo L, He J, & Deng D (2021). Visualizing the nonlinear changes of a drug-proton antiporter from inward-open to occluded state.
Biochem Biophys Res Commun 534 :272-278. PubMed Id: 33280821. doi:10.1016/j.bbrc.2020.11.096. |
|||
MFSD2A lysolipid transporter in complex with LPC-18:3: Gallus gallus E Eukaryota (expressed in Spodoptera frugiperda), 3.03 Å
cryo-EM structure |
Cater et al. (2021).
Cater RJ, Chua GL, Erramilli SK, Keener JE, Choy BC, Tokarz P, Chin CF, Quek DQY, Kloss B, Pepe JG, Parisi G, Wong BH, Clarke OB, Marty MT, Kossiakoff AA, Khelashvili G, Silver DL, & Mancia F (2021). Structural basis of omega-3 fatty acid transport across the blood-brain barrier.
Nature 595 7866:315-319. PubMed Id: 34135507. doi:10.1038/s41586-021-03650-9. |
||
MFSD2A lysolipid transporter: Mus musculus E Eukaryota (expressed in HEK293 cells), 3.50 Å
cryo-EM structure |
Wood et al. (2021).
Wood CAP, Zhang J, Aydin D, Xu Y, Andreone BJ, Langen UH, Dror RO, Gu C, & Feng L (2021). Structure and mechanism of blood-brain-barrier lipid transporter MFSD2A.
Nature 596 7872:444-448. PubMed Id: 34349262. doi:10.1038/s41586-021-03782-y. |
||
MFSD2A lysolipid transporter in complex with syncytin-2 (SYNC2): Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.60 Å
cryo-EM structure |
Martinez-Molledo et al. (2022).
Martinez-Molledo M, Nji E, & Reyes N (2022). Structural insights into the lysophospholipid brain uptake mechanism and its inhibition by syncytin-2.
Nat Struct Mol Biol 29 6:604-612. PubMed Id: 35710838. doi:10.1038/s41594-022-00786-8. |
||
MFSD2A lysolipid transporter, isoform B, inward open state, with bound lysolipid 1A,2B,3C merged conformation: Danio rerio E Eukaryota (expressed in S. frugiperda), 2.90 Å
cryo-EM structure lysolipid 1A conformation, 3.30 Å: 8D2U lysolipid 1B conformation, 4.10 Å: 8D2V lysolipid 2B conformation, 3.40 Å: 8D2W lysolipid 3C conformation, 3.40 Å: 8D2X ligand-free conformation, 3.40 Å: 8D2T |
Nguyen et al. (2023).
Nguyen C, Lei HT, Lai LTF, Gallenito MJ, Mu X, Matthies D, & Gonen T (2023). Lipid flipping in the omega-3 fatty-acid transporter.
Nat Commun 14 1:2571. PubMed Id: 37156797. doi:10.1038/s41467-023-37702-7. |
||
OxlT oxalate:formate antiporter (OFA) in complex with fab, oxalate-bound occluded form: Oxalobacter formigenes B Bacteria (expressed in E. coli), 3.00 Å
in complex with Fv, ligand-free outward-facing form, 3.30 Å, 8HPJ |
Jaunet-Lahary et al. (2023).
Jaunet-Lahary T, Shimamura T, Hayashi M, Nomura N, Hirasawa K, Shimizu T, Yamashita M, Tsutsumi N, Suehiro Y, Kojima K, Sudo Y, Tamura T, Iwanari H, Hamakubo T, Iwata S, Okazaki KI, Hirai T, & Yamashita A (2023). Structure and mechanism of oxalate transporter OxlT in an oxalate-degrading bacterium in the gut microbiota.
Nat Commun 14 1:1730. PubMed Id: 37012268. doi:10.1038/s41467-023-36883-5. |
||
SUC1 sucrose transporter: Arabidopsis thaliana E Eukaryota (expressed in S. cerevisiae), 2.68 Å
x-ray structure |
Bavnhøj et al. (2023).
Bavnhøj L, Driller JH, Zuzic L, Stange AD, Schiøtt B, & Pedersen BP (2023). Structure and sucrose binding mechanism of the plant SUC1 sucrose transporter.
Nat Plants 9 6:938-950. PubMed Id: 37188854. doi:10.1038/s41477-023-01421-0. |
||
Solute Sodium Symporter (SSS) Family
|
|||
SGLT Sodium-Galactose Transporter: Vibrio parahaemolyticus B Bacteria (expressed in E. coli), 2.70 Å
Galactose-bound inward-occuluded conformation |
Faham et al. (2008).
Faham S, Watanabe A, Besserer GM, Cascio D, Specht A, Hirayama BA, Wright EM, & Abramson J (2008). The crystal structure of a sodium galactose transporter reveals mechanistic insights into Na+/sugar symport.
Science 321 :810-814. PubMed Id: 18599740. |
||
SGLT Sodium Galactose Transporter, K294A mutant: Vibrio parahaemolyticus B Bacteria (expressed in E. coli), 2.70 Å
inward-open conformation |
Watanabe et al. (2010).
Watanabe A, Choe S, Chaptal V, Rosenberg JM, Wright EM, Grabe M, & Abramson J (2010). The mechanism of sodium and substrate release from the binding pocket of vSGLT.
Nature 468 :988-991. PubMed Id: 21131949. |
||
SGLT1 Sodium-Glucose Transporter: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.40 Å
cryo-EM structure |
Han et al. (2022).
Han L, Qu Q, Aydin D, Panova O, Robertson MJ, Xu Y, Dror RO, Skiniotis G, & Feng L (2022). Structure and mechanism of the SGLT family of glucose transporters.
Nature 601 7892:274-279. PubMed Id: 34880492. doi:10.1038/s41586-021-04211-w. |
||
SGLT1-MAP17 complex bound with LX2761: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.20 Å
cryo-EM structure |
Niu et al. (2022).
Niu Y, Cui W, Liu R, Wang S, Ke H, Lei X, & Chen L (2022). Structural mechanism of SGLT1 inhibitors.
Nat Commun 13 1:6440. PubMed Id: 36307403. doi:10.1038/s41467-022-33421-7. |
||
Cui et al. (2023).
Cui W, Niu Y, Sun Z, Liu R, & Chen L (2023). Structures of human SGLT in the occluded state reveal conformational changes during sugar transport.
Nat Commun 14 1:2920. PubMed Id: 37217492. doi:10.1038/s41467-023-38720-1. |
|||
SMCT1 Sodium-monocarboxylate Transporter: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.50 Å
cryo-EM structure |
Han et al. (2022).
Han L, Qu Q, Aydin D, Panova O, Robertson MJ, Xu Y, Dror RO, Skiniotis G, & Feng L (2022). Structure and mechanism of the SGLT family of glucose transporters.
Nature 601 7892:274-279. PubMed Id: 34880492. doi:10.1038/s41586-021-04211-w. |
||
SGLT2 Sodium-Glucose Transporter in complex with MAP17: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.95 Å
cryo-EM structure |
Niu et al. (2022).
Niu Y, Liu R, Guan C, Zhang Y, Chen Z, Hoerer S, Nar H, & Chen L (2022). Structural basis of inhibition of the human SGLT2-MAP17 glucose transporter.
Nature 601 7892:280-284. PubMed Id: 34880493. doi:10.1038/s41586-021-04212-9. |
||
SiaT sialic acid transporter (SeMet): Proteus mirabilis B Bacteria (expressed in E. coli), 1.95 Å
native, 2.26 Å: 5NVA |
Wahlgren et al. (2018).
Wahlgren WY, Dunevall E, North RA, Paz A, Scalise M, Bisignano P, Bengtsson-Palme J, Goyal P, Claesson E, Caing-Carlsson R, Andersson R, Beis K, Nilsson UJ, Farewell A, Pochini L, Indiveri C, Grabe M, Dobson RCJ, Abramson J, Ramaswamy S, & Friemann R (2018). Substrate-bound outward-open structure of a Na+-coupled sialic acid symporter reveals a new Na+ site.
Nat Commun 9 1. PubMed Id: 29717135. doi:10.1038/s41467-018-04045-7. |
||
SbtA-SbtB Na+ dependent bicarbonate transporter complex bound to HCO3-: Synechocystis sp. PCC 6803 substr. Kazusa B Bacteria, 3.20 Å
bound to AMP, 2.70 Å: 7EGK |
Fang et al. (2021).
Fang S, Huang X, Zhang X, Zhang M, Hao Y, Guo H, Liu LN, Yu F, & Zhang P (2021). Molecular mechanism underlying transport and allosteric inhibition of bicarbonate transporter SbtA.
Proc Natl Acad Sci U S A 118 22:e2101632118. PubMed Id: 34031249. doi:10.1073/pnas.2101632118. |
||
PIN-FORMED (PIN) Auxin Efflux Carriers and Related Proteins
PIN-FORMED refers to the phenotype of the pin1 mutant. Plants with this mutation fail to flower properly. |
|||
Yang et al. (2022).
Yang Z, Xia J, Hong J, Zhang C, Wei H, Ying W, Sun C, Sun L, Mao Y, Gao Y, Tan S, Friml J, Li D, Liu X, & Sun L (2022). Structural insights into auxin recognition and efflux by Arabidopsis PIN1.
Nature 609 7927:611-615. PubMed Id: 35917925. doi:10.1038/s41586-022-05143-9. |
|||
Su et al. (2022).
Su N, Zhu A, Tao X, Ding ZJ, Chang S, Ye F, Zhang Y, Zhao C, Chen Q, Wang J, Zhou CY, Guo Y, Jiao S, Zhang S, Wen H, Ma L, Ye S, Zheng SJ, Yang F, Wu S, & Guo J (2022). Structures and mechanisms of the Arabidopsis auxin transporter PIN3.
Nature 609 7927:616-621. PubMed Id: 35917926. doi:10.1038/s41586-022-05142-w. |
|||
Ung et al. (2022).
Ung KL, Winkler M, Schulz L, Kolb M, Janacek DP, Dedic E, Stokes DL, Hammes UZ, & Pedersen BP (2022). Structures and mechanism of the plant PIN-FORMED auxin transporter.
Nature 609 7927:605-610. PubMed Id: 35768502. doi:10.1038/s41586-022-04883-y. |
|||
CDP-Alcohol Phosphotransferases
These enzymes facilitate the conjugation of polar headgroups to diacylglycerol lipid tails |
|||
Sciara et al. (2014).
Sciara G, Clarke OB, Tomasek D, Kloss B, Tabuso S, Byfield R, Cohn R, Banerjee S, Rajashankar KR, Slavkovic V, Graziano JH, Shapiro L, & Mancia F (2014). Structural basis for catalysis in a CDP-alcohol phosphotransferase.
Nat Commun 5 :4068. PubMed Id: 24923293. doi:10.1038/ncomms5068. |
|||
CDP-alcohol phosphotransferase domain (DIPPS) with fused nucleotidyltransferase domain: Archaeoglobus fulgidus B Bacteria (expressed in E. coli), 2.66 Å
|
Nogly et al. (2014).
Nogly P, Gushchin I, Remeeva A, Esteves AM, Borges N, Ma P, Ishchenko A, Grudinin S, Round E, Moraes I, Borshchevskiy V, Santos H, Gordeliy V, & Archer M (2014). X-ray structure of a CDP-alcohol phosphatidyltransferase membrane enzyme and insights into its catalytic mechanism.
Nat Commun 5 4169. PubMed Id: 24942835. doi:10.1038/ncomms5169. |
||
Phosphatidylinositol-phosphate synthase with bound CDP-diacylglycerol: Renibacterium salmoninarum B Bacteria (expressed in E. coli), 3.6 Å
without bound CDP-diacylglycerol, 2.5 Å: 5D92 |
Clarke et al. (2015).
Clarke OB, Tomasek D, Jorge CD, Dufrisne MB, Kim M, Banerjee S, Rajashankar KR, Shapiro L, Hendrickson WA, Santos H, & Mancia F (2015). Structural basis for phosphatidylinositol-phosphate biosynthesis.
Nat Commun 6 :8505. PubMed Id: 26510127. doi:10.1038/ncomms9505. |
||
Insulin-Induced Gene Products: Insig Proteins
These are components of the sterol regulatory element-binding protein (SREBP) pathway |
|||
Ren et al. (2015).
Ren R, Zhou X, He Y, Ke M, Wu J, Liu X, Yan C, Wu Y, Gong X, Lei X, Yan SF, Radhakrishnan A, & Yan N (2015). PROTEIN STRUCTURE: Crystal structure of a mycobacterial Insig homolog provides insight into how these sensors monitor sterol levels.
Science 349 6244:187-191. PubMed Id: 26160948. doi:10.1126/science.aab1091. |
|||
Scap/Insig complex in the presence of 25-hydroxyl cholesterol: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.70 Å
cryo-EM structure |
Yan et al. (2021).
Yan R, Cao P, Song W, Qian H, Du X, Coates HW, Zhao X, Li Y, Gao S, Gong X, Liu X, Sui J, Lei J, Yang H, Brown AJ, Zhou Q, Yan C, & Yan N (2021). A structure of human Scap bound to Insig-2 suggests how their interaction is regulated by sterols.
Science 371 6533:eabb2224. PubMed Id: 33446483. doi:10.1126/science.abb2224. |
||
Sterol Reductases
|
|||
Δ14 Sterol reductase: Methylomicrobium alcaliphilum B Bacteria (expressed in E. coli), 2.74 Å
|
Li et al. (2015).
Li X, Roberti R, & Blobel G (2015). Structure of an integral membrane sterol reductase from Methylomicrobium alcaliphilum.
Nature 517 :104-107. PubMed Id: 25307054. doi:10.1038/nature13797. |
||
Steroid 5-alpha-reductase SRD5A: Proteobacteria bacterium B Bacteria (expressed in Spodoptera frugiperda), 2.00 Å
|
Han et al. (2021).
Han Y, Zhuang Q, Sun B, Lv W, Wang S, Xiao Q, Pang B, Zhou Y, Wang F, Chi P, Wang Q, Li Z, Zhu L, Li F, Deng D, Chiang YC, Li Z, & Ren R (2021). Crystal structure of steroid reductase SRD5A reveals conserved steroid reduction mechanism.
Nat Commun 12 1:449. PubMed Id: 33469028. doi:10.1038/s41467-020-20675-2. |
||
HMG CoA Reductase
3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) |
|||
HMG CoA Reductase (HMG CoA) in complex with UBIAD1, state 1: Cricetulus griseus E Eukaryota (expressed in HEK293 cells), 3.23 Å
cryo-EM structure HMGCR-UBIAD1 Complex State 2, 3.33 Å: 8DJK |
Chen et al. (2022).
Chen H, Qi X, Faulkner RA, Schumacher MM, Donnelly LM, DeBose-Boyd RA, & Li X (2022). Regulated degradation of HMG CoA reductase requires conformational changes in sterol-sensing domain.
Nat Commun 13 1:4273. PubMed Id: 35879350. doi:10.1038/s41467-022-32025-5. |
||
Sterol Isomerases
|
|||
Emopamil-Binding Protein (EBP) in complex with U18666A: Homo sapiens E Eukaryota (expressed in HEK293s cells), 3.2 Å
in complex with tamoxifen, 3.53 Å: 6OHU |
Long et al. (2019).
Long T, Hassan A, Thompson BM, McDonald JG, Wang J, & Li X (2019). Structural basis for human sterol isomerase in cholesterol biosynthesis and multidrug recognition.
Nat Commun 10 1. PubMed Id: 31165728. doi:10.1038/s41467-019-10279-w. |
||
Sterol-Sensing Domain (SSD) Proteins
These proteins are involved in cholesterol trafficking in the cholesterol-uptake pathway |
|||
Niemann-Pick C1 protein (NPC1*): Homo sapiens E Eukaryota (expressed in 293 GnTI- cells), 3.35 Å
NPC1* protein consists of NPC1 residues 314-1278. 5U73 supersedes 5I31 |
Li et al. (2016).
Li X, Wang J, Coutavas E, Shi H, Hao Q, & Blobel G (2016). Structure of human Niemann-Pick C1 protein.
Proc Natl Acad Sci USA 113 :8212-8217. PubMed Id: 27307437. doi:10.1073/pnas.1607795113. |
||
Niemann-Pick C1 protein, full-length: Homo sapiens E Eukaryota (expressed in HEK 293F cells), 4.43 Å
cryo-EM structure in complex with the cleaved glycoprotein of Ebola virus, 6.56 Å: 5JNX |
Gong et al. (2016).
Gong X, Qian H, Zhou X, Wu J, Wan T, Cao P, Huang W, Zhao X, Wang X, Wang P, Shi Y, Gao GF, Zhou Q, & Yan N (2016). Structural Insights into the Niemann-Pick C1 (NPC1)-Mediated Cholesterol Transfer and Ebola Infection.
Cell 165 :1467-1478. PubMed Id: 27238017. doi:10.1016/j.cell.2016.05.022. |
||
Niemann-Pick C1 protein (NPC1*): Homo sapiens E Eukaryota (expressed in 293 GnTI- cells), 3.3 Å
NPC1* is residues 314-1278. This structure features well-resolved structure of the entire C-terminal luminal domain (CTD) |
Li et al. (2017).
Li X, Lu F, Trinh MN, Schmiege P, Seemann J, Wang J, & Blobel G (2017). 3.3 Å structure of Niemann-Pick C1 protein reveals insights into the function of the C-terminal luminal domain in cholesterol transport.
Proc Nat Acad Sci USA 114 :9116-9121. PubMed Id: 28784760. doi:10.1073/pnas.1711716114. |
||
Niemann-Pick C1 protein (NPC1) with bound itraconazole: Homo sapiens E Eukaryota (expressed in HEK293 cells), 4.02 Å
cryo-EM structure |
Long et al. (2020).
Long T, Qi X, Hassan A, Liang Q, De Brabander JK, & Li X (2020). Structural basis for itraconazole-mediated NPC1 inhibition.
Nat Commun 11 1. PubMed Id: 31919352. doi:10.1038/s41467-019-13917-5. |
||
Niemann-Pick C1 protein (NPC1) in nanodiscs: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.60 Å
cryo-EM structure in GDN micelles at pH 8.0, 3.00 Å: 6W5S in GDN micelles at pH 5.5, 3.70 Å: 6W5T in GDN micelles at pH 5.5, conformation b, 3.90 Å: 6W5U NPC1-NPC2 complex structure at pH 5.5, 4.00 Å: 6W5V |
Qian et al. (2020).
Qian H, Wu X, Du X, Yao X, Zhao X, Lee J, Yang H, & Yan N (2020). Structural Basis of Low-pH-Dependent Lysosomal Cholesterol Egress by NPC1 and NPC2.
Cell 182 1:98-111.e18. PubMed Id: 32544384. doi:10.1016/j.cell.2020.05.020. |
||
Niemann-Pick C1 protein (NPC1), luminal domain C: Homo sapiens B Bacteria (expressed in E. coli), 2.30 Å
|
Odongo et al. (2023).
Odongo L, Zadrozny KK, Diehl WE, Luban J, White JM, Ganser-Pornillos BK, Tamm LK, & Pornillos O (2023). Purification and structure of luminal domain C of human Niemann-Pick C1 protein.
Acta Crystallogr F Struct Biol Commun 79 2:45-50. PubMed Id: 36748341. doi:10.1107/S2053230X23000705. |
||
Winkler et al. (2019).
Winkler MBL, Kidmose RT, Szomek M, Thaysen K, Rawson S, Muench SP, Wüstner D, & Pedersen BP (2019). Structural Insight into Eukaryotic Sterol Transport through Niemann-Pick Type C Proteins.
Cell 179 2:485-497.e18. PubMed Id: 31543266. doi:10.1016/j.cell.2019.08.038. |
|||
Niemann-Pick C1-Like 1 (NPC1L1) cholesterol intracellular transporter protein: Rattus norvegicus E Eukaryota (expressed in HEK293 cells), 3.70 Å
cryo-EM structure in complex with an ezetimibe analog, 3.50 Å: 6V3H |
Huang et al. (2020).
Huang CS, Yu X, Fordstrom P, Choi K, Chung BC, Roh SH, Chiu W, Zhou M, Min X, & Wang Z (2020). Cryo-EM structures of NPC1L1 reveal mechanisms of cholesterol transport and ezetimibe inhibition.
Sci Adv 6 25:eabb1989. PubMed Id: 32596471. doi:10.1126/sciadv.abb1989. |
||
Hu et al. (2021).
Hu M, Yang F, Huang Y, You X, Liu D, Sun S, & Sui SF (2021). Structural insights into the mechanism of human NPC1L1-mediated cholesterol uptake.
Sci Adv 7 29:eabg3188. PubMed Id: 34272236. doi:10.1126/sciadv.abg3188. |
|||
Long et al. (2021).
Long T, Liu Y, Qin Y, DeBose-Boyd RA, & Li X (2021). Structures of dimeric human NPC1L1 provide insight into mechanisms for cholesterol absorption.
Sci Adv 7 34:abh3997. PubMed Id: 34407950. doi:10.1126/sciadv.abh3997. |
|||
Fatty Acid Desaturases
These enzymes maintain the cellular balance of saturated and monounsaturated lipids |
|||
Stearoyl-coenzyme A desaturase (SCD1) in complex with substrate: Homo sapiens E Eukaryota (expressed in S. frugiperda), 3.25 Å
|
Wang et al. (2015).
Wang H, Klein MG, Zou H, Lane W, Snell G, Levin I, Li K, & Sang BC (2015). Crystal structure of human stearoyl-coenzyme A desaturase in complex with substrate.
Nat Struct Mol Biol 22 :581-585. PubMed Id: 26098317. doi:10.1038/nsmb.3049. |
||
Stearoyl-coenzyme A desaturase (SCD1) in complex with substrate: Mus musculus E Eukaryota (expressed in Trichoplusia ni), 2.61 Å
|
Bai et al. (2015).
Bai Y, McCoy JG, Levin EJ, Sobrado P, Rajashankar KR, Fox BG, & Zhou M (2015). X-ray structure of a mammalian stearoyl-CoA desaturase.
Nature 252 :252-256. PubMed Id: 26098370. doi:10.1038/nature14549. |
||
Stearoyl-coenzyme A desaturase (SCD1) with diiron center: Mus musculus E Eukaryota (expressed in HEK293 cells), 3.51 Å
|
Shen et al. (2020).
Shen J, Wu G, Tsai AL, & Zhou M (2020). Structure and Mechanism of a Unique Diiron Center in Mammalian Stearoyl-CoA Desaturase.
J Mol Biol 432 18:5152-5161. PubMed Id: 32470559. doi:10.1016/j.jmb.2020.05.017. |
||
Superfamily of K+ Transporters (SKT proteins)
|
|||
TrkH potassium ion transporter: Vibrio parahaemolyticus B Bacteria (expressed in E. coli), 3.51 Å
Lacking a Na+/K+-ATPase, non-animal cells require two different systems for K+ uptake, one of which is the SKT family of proteins. |
Cao et al. (2011).
Cao Y, Jin X, Huang H, Derebe MG, Levin EJ, Kabaleeswaran V, Pan Y, Punta M, Love J, Weng J, Quick M, Ye S, Kloss B, Bruni R, Martinez-Hackert E, Hendrickson WA, Rost B, Javitch JA, Rajashankar KR, Jiang Y, & Zhou M (2011). Crystal structure of a potassium ion transporter, TrkH.
Nature 471 :336-340. PubMed Id: 21317882. |
||
TrkH potassium ion transporter in complex with TrkA: Vibrio parahaemolyticus B Bacteria (expressed in E. coli), 3.80 Å
TrkA Gating ring bound to ATP-gamma-S, 3.05 Å: 4J9V |
Cao et al. (2013).
Cao Y, Pan Y, Huang H, Jin X, Levin EJ, Kloss B, & Zhou M (2013). Gating of the TrkH ion channel by its associated RCK protein TrkA.
Nature 496 :317-322. PubMed Id: 23598339. doi:10.1038/nature12056. |
||
Zhang et al. (2020).
Zhang H, Pan Y, Hu L, Hudson MA, Hofstetter KS, Xu Z, Rong M, Wang Z, Prasad BVV, Lockless SW, Chiu W, & Zhou M (2020). TrkA undergoes a tetramer-to-dimer conversion to open TrkH which enables changes in membrane potential.
Nat Commun 11 1:547. PubMed Id: 31992706. doi:10.1038/s41467-019-14240-9. |
|||
Vieira-Pires et al. (2013).
Vieira-Pires RS, Szollosi A, & Morais-Cabral JH (2013). The structure of the KtrAB potassium transporter.
Nature 496 :323-328. PubMed Id: 23598340. doi:10.1038/nature12055. |
|||
Potassium-importing KdpFABC membrane complex: Escherichia coli B Bacteria, 2.9 Å
The complex has a channel-like subunit (KdpA) and a pump-like P-type ATPase (KdpB). |
Huang et al. (2017).
Huang CS, Pedersen BP, & Stokes DL (2017). Crystal structure of the potassium-importing KdpFABC membrane complex.
Nature 546 :681-685. PubMed Id: 28636601. doi:10.1038/nature22970. |
||
Sweet et al. (2021).
Sweet ME, Larsen C, Zhang X, Schlame M, Pedersen BP, & Stokes DL (2021). Structural basis for potassium transport in prokaryotes by KdpFABC.
Proc Natl Acad Sci U S A 118 29:e2105195118. PubMed Id: 34272288. doi:10.1073/pnas.2105195118. |
|||
Potassium-importing KdpFABC membrane complex, E1-ATP conformation loaded with K+: Escherichia coli B Bacteria, 3.10 Å
cryo-EM structure Rb-loaded structure, 3.20 Å 7NNP |
Silberberg et al. (2021).
Silberberg JM, Corey RA, Hielkema L, Stock C, Stansfeld PJ, Paulino C, & Hänelt I (2021). Deciphering ion transport and ATPase coupling in the intersubunit tunnel of KdpFABC.
Nat Commun 12 1:5098. PubMed Id: 34429416. doi:10.1038/s41467-021-25242-x. |
||
Potassium-importing KdpFABC membrane complex in the E1-ATP early state under turnover conditions: Escherichia coli B Bacteria, 3.50 Å
cryo-EM structure E1P tight state, 3.40 Å: 7ZRE E1P-ADP state, 3.10 Å: 7ZRK E2P state, 4.00 Å: 7ZRL E1P-ADP state, 3.70 Å: 7ZRM E1P tight state with bound inhibitor orthovanadate, 3.30 Å: 7ZRD E1 apo tight state, 3.40 Å: 7ZRH E1 apo open 1 state, 3.50 Å: 7ZRI E1 apo open 2 state, 3.70 Å: 7ZRJ |
Silberberg et al. (2022).
Silberberg JM, Stock C, Hielkema L, Corey RA, Rheinberger J, Wunnicke D, Dubach VRA, Stansfeld PJ, Hänelt I, & Paulino C (2022). Inhibited KdpFABC transitions into an E1 off-cycle state.
Elife 11 :80988. PubMed Id: 36255052. doi:10.7554/eLife.80988. |
||
Membrane-Integral Pyrophosphatases (M-PPases)
Ion-Translocating Pyrophosphatases Link Pyrophosphate (PPi) Hydrolysis to Sodium or Proton Pumping V-ATPases and H+-PPases coexist on plant vacuolar membranes |
|||
H+-translocating M-PPase: Vigna radiata E Eukaryota (expressed in S. cerevisiae), 2.35 Å
Structure shows protein in complex with the non-hydrolysable substrate analog imidodiphosphate (IDP). The protein has 16 TM helices. |
Lin et al. (2012).
Lin SM, Tsai JY, Hsiao CD, Huang YT, Chiu CL, Liu MH, Tung JY, Liu TH, Pan RL, & Sun YJ (2012). Crystal structure of a membrane-embedded H+-translocating pyrophosphatase.
Nature 484 :399-403. PubMed Id: 22456709. doi:10.1038/nature10963. |
||
H+-translocating M-PPase: Vigna radiata E Eukaryota (expressed in S. crevisiae), 3.5 Å
|
Li et al. (2016).
Li KM, Wilkinson C, Kellosalo J, Tsai JY, Kajander T, Jeuken LJ, Sun YJ, & Goldman A (2016). Membrane pyrophosphatases from Thermotoga maritima and Vigna radiata suggest a conserved coupling mechanism.
Nat Commun 7 :13596. PubMed Id: 27922000. doi:10.1038/ncomms13596. |
||
H+-translocating M-PPase with two bound phosphates: Vigna radiata E Eukaryota (expressed in S. cerevisiae), 2.30 Å
E301Q mutant, 2.49 Å: 6AFT L555M mutant, 2.80 Å: 6AFU L555K mutant, 2.70 Å: 6AFV T228D mutant, 2.18 Å: 6AFW E225A mutant, 2.30 Å: 6AFX E225S mutant, 2.40 Å: 6AFY E225H mutant, 2.48 Å: 6AFZ |
Tsai et al. (2019).
Tsai JY, Tang KZ, Li KM, Hsu BL, Chiang YW, Goldman A, & Sun YJ (2019). Roles of the Hydrophobic Gate and Exit Channel in Vigna radiata Pyrophosphatase Ion Translocation.
J Mol Biol 431 8:1619-1632. PubMed Id: 30878480. doi:10.1016/j.jmb.2019.03.009. |
||
Na+-translocating M-PPase with metal ions in active site: Thermotoga maritima B Bacteria (expressed in S. cerevisiae), 2.60 Å
In complex with phosphate and magnesium, 4.00 Å: 4AV6 |
Kellosalo et al. (2012).
Kellosalo J, Kajander T, Kogan K, Pokharel K, & Goldman A (2012). The structure and catalytic cycle of a sodium-pumping pyrophosphatase.
Science 337 :473-476. PubMed Id: 22837527. doi:10.1126/science.1222505. |
||
Na+-translocating M-PPase in complex with imidodiphosphate and magnesium, and with bound sodium ion: Thermotoga maritima E Eukaryota (expressed in S. cerevisiae), 3.49 Å
in complex with tungstate and magnesium, 4.0 Å: 5LZR |
Li et al. (2016).
Li KM, Wilkinson C, Kellosalo J, Tsai JY, Kajander T, Jeuken LJ, Sun YJ, & Goldman A (2016). Membrane pyrophosphatases from Thermotoga maritima and Vigna radiata suggest a conserved coupling mechanism.
Nat Commun 7 :13596. PubMed Id: 27922000. doi:10.1038/ncomms13596. |
||
Vacuolar Iron Transporter (VIT) Family
These proteins transport cytoplasmic ferrous ions into vacuoles |
|||
iron transporter VIT1 with zinc ions: Eucalyptus grandis E Eukaryota (expressed in Saccharomyces cerevisiae), 2.70 Å
with cobalt ion, 3.50 Å 6IU4 cytoplasmic metal binding domain with zinc ions, 2.25 Å 6IU5 cytoplasmic metal binding domain with nickel ions, 2.90 Å 6IU6 cytoplasmic metal binding domain with cobalt ions, 2.70 Å 6IU8 cytoplasmic metal binding domain with iron ions, 3.00 Å6IU9 |
Kato et al. (2019).
Kato T, Kumazaki K, Wada M, Taniguchi R, Nakane T, Yamashita K, Hirata K, Ishitani R, Ito K, Nishizawa T, & Nureki O (2019). Crystal structure of plant vacuolar iron transporter VIT1.
Nat Plants 5 3:308-315. PubMed Id: 30742036. doi:10.1038/s41477-019-0367-2. |
||
Bacterial V-type ATPase
Also called A-type ATPase |
|||
Rotor of V-type Na+-ATPase: Enterococcus hirae B Bacteria, 2.1 Å
|
Murata et al. (2005).
Murata T, Yamato I, Kakinuma Y, Leslie AG, & Walker JE (2005). Structure of the rotor of the V-Type Na+-ATPase from Enterococcus hirae.
Science 308 :654-659. PubMed Id: 15802565. |
||
V-ATPase central-axis DF complex: Enterococcus hirae B Bacteria (expressed in Cell-free synthesis), 2.00 Å
|
Saijo et al. (2011).
Saijo S, Arai S, Hossain KM, Yamato I, Suzuki K, Kakinuma Y, Ishizuka-Katsura Y, Ohsawa N, Terada T, Shirouzu M, Yokoyama S, Iwata S, & Murata T (2011). Crystal structure of the central axis DF complex of the prokaryotic V-ATPase.
Proc Natl Acad Sci USA 108 :19955-19960. PubMed Id: 22114184. doi:10.1073/pnas.1108810108. |
||
Arai et al. (2013).
Arai S, Saijo S, Suzuki K, Mizutani K, Kakinuma Y, Ishizuka-Katsura Y, Ohsawa N, Terada T, Shirouzu M, Yokoyama S, Iwata S, Yamato I, & Murata T (2013). Rotation mechanism of Enterococcus hirae V1-ATPase based on asymmetric crystal structures.
Nature 493 :703-707. PubMed Id: 23334411. doi:10.1038/nature11778. |
|||
Suzuki et al. (2016).
Suzuki K, Mizutani K, Maruyama S, Shimono K, Imai FL, Muneyuki E, Kakinuma Y, Ishizuka-Katsura Y, Shirouzu M, Yokoyama S, Yamato I, & Murata T (2016). Crystal structures of the ATP-binding and ADP-release dwells of the V1 rotary motor.
Nat Commun 7 :13235. PubMed Id: 27807367. doi:10.1038/ncomms13235. |
|||
V1-ATPase atomic model derived from Cryo-EM reconstructions.: Thermus thermophilus B Bacteria, 9.7 Å
|
Lau & Rubinstein (2012).
Lau WC & Rubinstein JL (2012). Subnanometre-resolution structure of the intact Thermus thermophilus H+-driven ATP synthase.
Nature 481 :214-218. PubMed Id: 22178924. doi:10.1038/nature10699. |
||
V1-ATPase Complex (V-ATPase soluble domain) with bound nucleotide: Thermus thermophilus B Bacteria, 4.51 Å
Without nucleotide, 4.80 Å: 3A5D |
Numoto et al. (2009).
Numoto N, Hasegawa Y, Takeda K, & Miki K (2009). Inter-subunit interaction and quaternary rearrangement defined by the central stalk of prokaryotic V1-ATPase.
EMBO Rep 10 :1228-1234. PubMed Id: 19779483. |
||
A3B3 complex of V1-ATPase: Thermus thermophilus B Bacteria (expressed in E. coli), 2.8 Å
|
Maher et al. (2009).
Maher MJ, Akimoto S, Iwata M, Nagata K, Hori Y, Yoshida M, Yokoyama S, Iwata S, & Yokoyama K (2009). Crystal structure of A3B3complex of V-ATPase from Thermus thermophilus.
EMBO J 28 :3771-3779. PubMed Id: 19893485. |
||
Peripheral stalk of H+-dependent V-ATP Synthase: Thermus thermophilus B Bacteria (expressed in E. coli), 3.10 Å
So-called PS1 structure. |
Lee et al. (2010).
Lee LK, Stewart AG, Donohoe M, Bernal RA, & Stock D (2010). The structure of the peripheral stalk of Thermus thermophilus H+-ATPase/synthase.
Nat Struct Mol Biol 17 :373-378. PubMed Id: 20173764. |
||
Peripheral stalk of H+-dependent V-ATP Synthase: Thermus thermophilus B Bacteria (expressed in E. coli), 2.25 Å
So-called PS2 structure. |
Stewart et al. (2012).
Stewart AG, Lee LK, Donohoe M, Chaston JJ, & Stock D (2012). The dynamic stator stalk of rotary ATPases.
Nature Commun 3 :687. PubMed Id: 22353718. doi:10.1038/ncomms1693. |
||
A3B3DF complex of V1-ATPase: Thermus thermophilus B Bacteria, 3.90 Å
|
Nagamatsu et al. (2013).
Nagamatsu Y, Takeda K, Kuranaga T, Numoto N, & Miki K (2013). Origin of Asymmetry at the Intersubunit Interfaces of V1-ATPase from Thermus thermophilus.
J Mol Biol 425 15:2699-2708. PubMed Id: 23639357. doi:10.1016/j.jmb.2013.04.022. |
||
Nakanishi et al. (2018).
Nakanishi A, Kishikawa JI, Tamakoshi M, Mitsuoka K, & Yokoyama K (2018). Cryo EM structure of intact rotary H+-ATPase/synthase from Thermus thermophilus.
Nat Commun 9 1:89. PubMed Id: 29311594. doi:10.1038/s41467-017-02553-6. |
|||
Zhou & Sazanov (2019).
Zhou L, & Sazanov LA (2019). Structure and conformational plasticity of the intact Thermus thermophilus V/A-type ATPase.
Science 365 6455. PubMed Id: 31439765. doi:10.1126/science.aaw9144. |
|||
V/A—type ATPase in nanodiscs, soluble domain: Thermus thermophilus B Bacteria, 3.50 Å
cryo-EM structure membrane-embedded Vo domain, 3.93 Å: 6YL9 |
Kishikawa et al. (2020).
Kishikawa JI, Nakanishi A, Furuta A, Kato T, Namba K, Tamakoshi M, Mitsuoka K, & Yokoyama K (2020). Mechanical inhibition of isolated Vo from V/A-ATPase for proton conductance.
Elife 9 . PubMed Id: 32639230. doi:10.7554/eLife.56862. |
||
V1EG of V/A-ATPase, state 1-1: Thermus thermophilus B Bacteria, 3.10 Å
cryo-EM structure Nucleotide-free V1EG domain, state 1-2, 3.10 Å: 7VAJ Nucleotide-free V1EG domain, state 2, 4.70 Å: 7VAK V1EG, high ATP state 1-1, 3.10 Å: 7VAL V1EG, high ATP, state 1-2, 3.20 Å: 7VAM V1EG, high ATP, state 2-1, 3.00 Å: 7VAN V1EG, high ATP, state 2-2, 3.40 Å: 7VAO V1EG, high ATP, state 2-2, 3.00 Å: 7VAP V1EG, high ATP, state 3-2, 3.60 Å: 7VAQ V1EG, low ATP, state 1-1, 2.90 Å: 7VAR V1EG, low ATP, state 1-2, 3.00 Å: 7VAS V1EG, low ATP, state 2-1, 3.20 Å: 7VAT V1EG, low ATP, state 2-2, 3.30 Å: 7VAU V1EG, low ATP, state 3, 2.80 Å: 7VAV V1EG, saturated ATP-γ-S condition, state1-1, 2.70 Å : 7VAW V1EG, saturated ATP-γ-S condition, state1-2, 2.90 Å : 7VAX V1EG, saturated ATP-γ-S condition, state 2, 3.30 Å: 7VAY V1EG, saturated ATP-γ-S condition, state 3, 3.60 Å: 7VB0 |
Kishikawa et al. (2022).
Kishikawa J, Nakanishi A, Nakano A, Saeki S, Furuta A, Kato T, Mistuoka K, & Yokoyama K (2022). Structural snapshots of V/A-ATPase reveal the rotary catalytic mechanism of rotary ATPases.
Nat Commun 13 1:1213. PubMed Id: 35260556. doi:10.1038/s41467-022-28832-5. |
||
Peripheral stalk of H+-dependent V-ATP Synthase: Pyrococcus horikoshii A Archaea (expressed in E. coli), 3.65 Å
|
Balakrishna et al. (2012).
Balakrishna AM, Hunke C, & Grüber G (2012). The structure of subunit E of the Pyrococcus horikoshii OT3 A-ATP synthase gives insight into the elasticity of the peripheral stalk.
J Mol Biol 420 :155-183. PubMed Id: 22516614. doi:10.1016/j.jmb.2012.04.012. |
||
Vacuolar ATPase (V-ATPase)
Eukaryotic V-ATPases |
|||
Heterotrimeric EGChead Peripheral Stalk Complex: Saccharomyces cerevisiae E Eukaryota, 2.90 Å
Second conformation, 2.82 Å: 4EFA |
Oot et al. (2012).
Oot RA, Huang LS, Berry EA, & Wilkens S (2012). Crystal Structure of the Yeast Vacuolar ATPase Heterotrimeric EGC(head) Peripheral Stalk Complex.
Structure 20 :1881-1892. PubMed Id: 23000382. doi:10.1016/j.str.2012.08.020. |
||
Subunits DF complex: Saccharomyces cerevisiae E Eukaryota (expressed in E. coli), 3.18 Å
|
Balakrishna et al. (2015).
Balakrishna AM, Basak S, Manimekalai MS, & Grüber G (2015). Crystal structure of subunits D and F in complex gives insight into energy transmission of the eukaryotic V-ATPase from Saccharomyces cerevisiae.
J Biol Chem 290 :3183-3196. PubMed Id: 25505269. doi:10.1074/jbc.M114.622688. |
||
Zhao et al. (2015).
Zhao J, Benlekbir S, & Rubinstein JL (2015). Electron cryomicroscopy observation of rotational states in a eukaryotic V-ATPase.
Nature 521 :241-245. PubMed Id: 25971514. doi:10.1038/nature14365. |
|||
Khan et al. (2022).
Khan MM, Lee S, Couoh-Cardel S, Oot RA, Kim H, Wilkens S, & Roh SH (2022). Oxidative stress protein Oxr1 promotes V-ATPase holoenzyme disassembly in catalytic activity-independent manner.
EMBO J 41 3:e109360. PubMed Id: 34918374. doi:10.15252/embj.2021109360. |
|||
Complete V1-ATPase in auto-inhibited state by cryo-EM: Saccharomyces cerevisiae E Eukaryota, 6.2 Å
7 Å structure, 5BW9 |
Oot et al. (2016).
Oot RA, Kane PM, Berry EA, & Wilkens S (2016). Crystal structure of yeast V1-ATPase in the auto-inhibited state.
EMBO J 35 :1694-1706. PubMed Id: 27295975. doi:10.15252/embj.201593447. |
||
membrane-embedded VO motor of V-ATPase: Saccharomyces cerevisiae E Eukaryota, 3.9 Å
cryo-EM structure |
Mazhab-Jafari et al. (2016).
Mazhab-Jafari MT, Rohou A, Schmidt C, Bueler SA, Benlekbir S, Robinson CV, & Rubinstein JL (2016). Atomic model for the membrane-embedded VO motor of a eukaryotic V-ATPase.
Nature 539 :118-122. PubMed Id: 27776355. doi:10.1038/nature19828. |
||
ATPase Vo proton channel reconstituted in nano-discs: Saccharomyces cerevisiae E Eukaryota, 3.5 Å
cryo-EM structure |
Roh et al. (2018).
Roh SH, Stam NJ, Hryc CF, Couoh-Cardel S, Pintilie G, Chiu W, & Wilkens S (2018). The 3.5-Å CryoEM Structure of Nanodisc-Reconstituted Yeast Vacuolar ATPase Vo Proton Channel.
Mol Cell 69 6:993-1004.e3. PubMed Id: 29526695. doi:10.1016/j.molcel.2018.02.006. |
||
Vasanthakumar et al. (2019).
Vasanthakumar T, Bueler SA, Wu D, Beilsten-Edmands V, Robinson CV, & Rubinstein JL (2019). Structural comparison of the vacuolar and Golgi V-ATPases from Saccharomyces cerevisiae.
Proc Natl Acad Sci USA 116 15:7272-7277. PubMed Id: 30910982. doi:10.1073/pnas.1814818116. |
|||
VO motor of V-ATPase in complex with 1 VopQ toxin: Saccharomyces cerevisiae & Vibrio parahaemolyticus (VopQ) E Eukaryota (expressed in E. coli), 3.10 Å
cryo-EM structure complex with 2 VopQ toxins, 3.20 Å: 6PE5 |
Peng et al. (2020).
Peng W, Casey AK, Fernandez J, Carpinone EM, Servage KA, Chen Z, Li Y, Tomchick DR, Starai VJ, & Orth K (2020). A distinct inhibitory mechanism of the V-ATPase by Vibrio VopQ revealed by cryo-EM.
Nat. Struct. Mol. Biol. 27 6:589-597. PubMed Id: 32424347. doi:10.1038/s41594-020-0429-1. |
||
V-ATPase Vo complex in state 3: Saccharomyces cerevisiae E Eukaryota, 2.70 Å
cryo-EM structure state3 prime, 3.60 Å: 6M0S |
Roh et al. (2020).
Roh SH, Shekhar M, Pintilie G, Chipot C, Wilkens S, Singharoy A, & Chiu W (2020). Cryo-EM and MD infer water-mediated proton transport and autoinhibition mechanisms of Vo complex.
Sci Adv 6 41. PubMed Id: 33028525. doi:10.1126/sciadv.abb9605. |
||
V-ATPase Vo complex with bound bafilomycin A1: Saccharomyces cerevisiae E Eukaryota, 3.20 Å
cryo-EM structure with bound archazolid A, 2.80 Å 7TAP |
Keon et al. (2022).
Keon KA, Benlekbir S, Kirsch SH, Müller R, & Rubinstein JL (2022). Cryo-EM of the Yeast VO Complex Reveals Distinct Binding Sites for Macrolide V-ATPase Inhibitors.
ACS Chem Biol 17 3:619-628. PubMed Id: 35148071. doi:10.1021/acschembio.1c00894. |
||
V-ATPase, composite model rotational state 1 bound to ADP & SidK: Rattus norvegicus & Legionella pneumophila (SidK) E Eukaryota, 3.9 Å
cryo-EM structure rotational state 2 bound to ADP and SidK, 4 Å: 6VQ7 rotational state 3 bound to ADP and SidK, 3.9 Å: 6VQ8 Focused refinement models' PDB codes are listed in Table S6 of the paper. |
Abbas et al. (2020).
Abbas YM, Wu D, Bueler SA, Robinson CV, & Rubinstein JL (2020). Structure of V-ATPase from the mammalian brain.
Science 367 6483:1240-1246. PubMed Id: 32165585. doi:10.1126/science.aaz2924. |
||
Wang et al. (2020).
Wang R, Long T, Hassan A, Wang J, Sun Y, Xie XS, & Li X (2020). Cryo-EM structures of intact V-ATPase from bovine brain.
Nat Commun 11 1:3921. PubMed Id: 32764564. doi:10.1038/s41467-020-17762-9. |
|||
V-ATPase with bound bafilomycin A1: Bos taurus E Eukaryota, 3.62 Å
cryo-EM structure |
Wang et al. (2021).
Wang R, Wang J, Hassan A, Lee CH, Xie XS, & Li X (2021). Molecular basis of V-ATPase inhibition by bafilomycin A1.
Nat Commun 12 1:1782. PubMed Id: 33741963. doi:10.1038/s41467-021-22111-5. |
||
V-ATPase complete structure, state 1 with SidK and ADP: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.10 Å
cryo-EM structure in state 2 with SidK and ADP, 3.40 Å: 6WM3 in state 3 with SidK and ADP, 3.60 Å: 6WM4 V1 region in state 1 (focused refinement), 2.90 Å: 6WLZ Vo region in state 1 (focused refinement), 3.00 Å: 6WLW |
Wang et al. (2020).
Wang L, Wu D, Robinson CV, Wu H, & Fu TM (2020). Structures of a Complete Human V-ATPase Reveal Mechanisms of Its Assembly.
Mol Cell 80 3:501-511.e3. PubMed Id: 33065002. doi:10.1016/j.molcel.2020.09.029. |
||
V-ATPase complex,with mEAK7: Homo sapiens E Eukaryota (expressed in HEK293 cells), 4.08 Å
cryo-EM structure V1 region of bovine V-ATPase in complex with human mEAK7 (focused refinement), 3.73 Å: 7UNE |
Wang et al. (2022).
Wang R, Qin Y, Xie XS, & Li X (2022). Molecular basis of mEAK7-mediated human V-ATPase regulation.
Nat Commun 13 1:3272. PubMed Id: 35672408. doi:10.1038/s41467-022-30899-z. |
||
Tan et al. (2022).
Tan YZ, Abbas YM, Wu JZ, Wu D, Keon KA, Hesketh GG, Bueler SA, Gingras AC, Robinson CV, Grinstein S, & Rubinstein JL (2022). CryoEM of endogenous mammalian V-ATPase interacting with the TLDc protein mEAK-7.
Life Sci Alliance 5 11:e202201527. PubMed Id: 35794005. doi:10.26508/lsa.202201527. |
|||
Flagellar Motor Proteins
|
|||
Santiveri et al. (2020).
Santiveri M, Roa-Eguiara A, Kühne C, Wadhwa N, Hu H, Berg HC, Erhardt M, & Taylor NMI (2020). Structure and Function of Stator Units of the Bacterial Flagellar Motor.
Cell 183 1:244-257.e16. PubMed Id: 32931735. doi:10.1016/j.cell.2020.08.016. |
|||
MotAB stator units: Clostridium sporogenes B Bacteria (expressed in E. coli), 3.40 Å
cryo-EM structure |
Deme et al. (2020).
Deme JC, Johnson S, Vickery O, Aron A, Monkhouse H, Griffiths T, James RH, Berks BC, Coulton JW, Stansfeld PJ, & Lea SM (2020). Structures of the stator complex that drives rotation of the bacterial flagellum.
Nat Microbiol 5 12:1553-1564. PubMed Id: 32929189. doi:10.1038/s41564-020-0788-8. |
||
MotAB stator units: Bacillus subtilis B Bacteria (expressed in E. coli), 3.50 Å
cryo-EM structure |
Deme et al. (2020).
Deme JC, Johnson S, Vickery O, Aron A, Monkhouse H, Griffiths T, James RH, Berks BC, Coulton JW, Stansfeld PJ, & Lea SM (2020). Structures of the stator complex that drives rotation of the bacterial flagellum.
Nat Microbiol 5 12:1553-1564. PubMed Id: 32929189. doi:10.1038/s41564-020-0788-8. |
||
flagellar LP ring: Salmonella enterica B Bacteria, 3.50 Å
cryo-EM structure |
Yamaguchi et al. (2021).
Yamaguchi T, Makino F, Miyata T, Minamino T, Kato T, & Namba K (2021). Structure of the molecular bushing of the bacterial flagellar motor.
Nat Commun 12 1:4469. PubMed Id: 34294704. doi:10.1038/s41467-021-24715-3. |
||
MotA stator unit: Aquifex aeolicus B Bacteria (expressed in E. coli), 3.40 Å
cryo-EM structure |
Nishikino et al. (2022).
Nishikino T, Takekawa N, Tran DP, Kishikawa JI, Hirose M, Onoe S, Kojima S, Homma M, Kitao A, Kato T, & Imada K (2022). Structure of MotA, a flagellar stator protein, from hyperthermophile.
Biochem Biophys Res Commun 631 :78-85. PubMed Id: 36179499. doi:10.1016/j.bbrc.2022.09.072. |
||
F-type ATPase
|
|||
F1-ATPase from bovine heart mitochondria: Bos taurus E Eukaryota, 2.8 Å
|
Abrahams et al. (1994).
Abrahams JP, Leslie AG, Lutter R, & Walker JE (1994). Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria.
Nature 370 :621-628. PubMed Id: 8065448. |
||
F1-ATPase complexed with antibiotic inhibitor aurovertin B: Bos taurus E Eukaryota, 3.10 Å
|
van Raaij et al. (1996).
van Raaij MJ, Abrahams JP, Leslie AG, & Walker JE (1996). The structure of bovine F1-ATPase complexed with the antibiotic inhibitor aurovertin B.
Proc Natl Acad Sci USA 93 :6913-6917. PubMed Id: 8692918. |
||
F1-ATPase complexed with peptide antibiotic efrapeptin: Bos taurus E Eukaryota, 3.10 Å
|
Abrahams et al. (1996).
Abrahams JP, Buchanan SK, Van Raaij MJ, Fearnley IM, Leslie AG, & Walker JE (1996). The structure of bovine F1-ATPase complexed with the peptide antibiotic efrapeptin.
Proc Natl Acad Sci USA 93 :9420-9424. PubMed Id: 8790345. |
||
F1-ATPase complexed with azide: Bos taurus E Eukaryota, 1.95 Å
|
Bowler et al. (2006).
Bowler MW, Montgomery MG, Leslie AG, & Walker JE (2006). How azide inhibits ATP hydrolysis by the F-ATPases.
Proc Natl Acad Sci USA 103 :8646-8649. PubMed Id: 16728506. |
||
F1-ATPase, Ground State Structure: Bos taurus E Eukaryota, 1.90 Å
|
Bowler et al. (2007).
Bowler MW, Montgomery MG, Leslie AG, & Walker JE (2007). Ground state structure of F1-ATPase from bovine heart mitochondria at 1.9 Å resolution.
J Biol Chem 282 :14238-14242. PubMed Id: 17350959. |
||
ATP Synthase Extrinsic Region: Bos taurus E Eukaryota, 3.2 Å
|
Rees et al. (2009).
Rees DM, Leslie AG, Walker JE (2009). The structure of the membrane extrinsic region of bovine ATP synthase.
Proc Natl Acad Sci USA 106 :21597-21601. PubMed Id: 19995987. |
||
F1-ATPase inhibited by AMP-PNP and ADP in the presence of thiophosphate: Bos taurus E Eukaryota, 3.10 Å
inhibited by three copies of the inhibitor protein IF1 crystallised in the presence of thiophosphate, 3.30 Å: 4Z1M |
Bason et al. (2015).
Bason JV, Montgomery MG, Leslie AG, & Walker JE (2015). How release of phosphate from mammalian F1-ATPase generates a rotary substep.
Proc Natl Acad Sci USA 112 :6009-6014. PubMed Id: 25918412. doi:10.1073/pnas.1506465112. |
||
F1Fo ATP synthase, F1-peripheral stalk domain, state 1: Bos taurus E Eukaryota (expressed in E. coli), 3.23 Å
cryo-EM structure Fo domain, 3.61 Å: 6ZBB rotor domain, state 3, 3.66 Å: 6ZIK stator domain, state 3, 6.02 Å: 6ZIU F1-peripheral stalk domain, state 2, 3.29 Å: 6Z1R rotor domain, state 1, 3.49 Å: 6ZG7 stator domain, state 1, 4.33 Å: 6ZIQ ATP synthase monomer state 1 (combined), 4.00 Å: 6ZPO F1c8-peripheral stalk domain, state 3, 3.47 Å: 6Z1U rotor domain state 2, 3.49 Å: 6ZG8 stator domain, state 2, 3.49 Å: 6ZIT monomer state 2 (combined), 3.29 Å: 6ZQM monomer state 3 (combined), 4.00 Å: 6ZQN Sus scrofa Fo domain, 3.94 Å: 6ZMR Sus scrofa Fo domain, 6.20 Å: 6ZNA |
Spikes et al. (2020).
Spikes TE, Montgomery MG, & Walker JE (2020). Structure of the dimeric ATP synthase from bovine mitochondria.
Proc Natl Acad Sci U S A 117 38:23519-23526. PubMed Id: 32900941. doi:10.1073/pnas.2013998117. |
||
F1Fo-ATPase dimer, state1:state1: Bos taurus E Eukaryota (expressed in E. coli), 9.20 Å
cryo-EM structure state1:state2, 11.9 Å 7AJC state1:state3, 9.00 Å 7AJD state1:state3, 9.40 Å 7AJE state2:state2, 8.45 Å 7AJF state2:state3, 10.7 Å 7AJG state3:state1, 9.70 Å 7AJH state3:state2, 11.4 Å 7AJI state3:state3, 13.1 Å 7AJJ |
Spikes et al. (2021).
Spikes TE, Montgomery MG, & Walker JE (2021). Interface mobility between monomers in dimeric bovine ATP synthase participates in the ultrastructure of inner mitochondrial membranes.
Proc Natl Acad Sci U S A 118 8:e2021012118. PubMed Id: 33542155. doi:10.1073/pnas.2021012118. |
||
F1-c-ring (c8) complex: Bos taurus E Eukaryota, 3.50 Å
|
Watt et al. (2010).
Watt IN, Montgomery MG, Runswick MJ, Leslie AG, & Walker JE (2010). Bioenergetic cost of making an adenosine triphosphate molecule in animal mitochondria.
Proc Natl Acad Sci USA 107 :16823-16827. PubMed Id: 20847295. doi:10.1073/pnas.1011099107. |
||
F1Fo ATP synthase, subunit C: Escherichia coli B Bacteria, NMR Structure
|
Girvin et al. (1998).
Girvin ME, Rastogi VK, Abildgaard F, Markley JL, & Fillingame RH (1998). Solution structure of the transmembrane H+-transporting subunit c of the F1F0 ATP synthase.
Biochemistry 37 :8817-8824. PubMed Id: 9636021. doi:10.1021/bi980511m. |
||
Sobti et al. (2016).
Sobti M, Smits C, Wong AS, Ishmukhametov R, Stock D, Sandin S, & Stewart AG (2016). Cryo-EM structures of the autoinhibited E. coli ATP synthase in three rotational states.
Elife 5 :e21598. PubMed Id: 28001127. doi:10.7554/eLife.21598. |
|||
F1Fo synthase, ADP state 1A: Escherichia coli B Bacteria, 3.10 Å
cryo-EM structure state 1B, 3.30 Å: 6OQS state 1C, 3.10 Å: 6OQT state 1D, 3.20 Å: 6OQU state 1E, 3.30 Å: 6PQV state 2A, 3.40 Å: 6WNQ state 2B, 3.30 Å: 6OQV state 3A, 3.10 Å: 6OQW state 3B, 3.30 Å: 6WNR ADP, substate 3A Fofocussed, 3.30 Å: 6VWK |
Sobti et al. (2020).
Sobti M, Walshe JL, Wu D, Ishmukhametov R, Zeng YC, Robinson CV, Berry RM, & Stewart AG (2020). Cryo-EM structures provide insight into how E. coli F1Fo ATP synthase accommodates symmetry mismatch.
Nat Commun 11 1. PubMed Id: 32457314. doi:10.1038/s41467-020-16387-2. |
||
Vinothkumar et al. (2016).
Vinothkumar KR, Montgomery MG, Liu S, & Walker JE (2016). Structure of the mitochondrial ATP synthase from Pichia angusta determined by electron cryo-microscopy.
Proc Natl Acad Sci USA 113 :12709-12714. PubMed Id: 27791192. doi:10.1073/pnas.1615902113. |
|||
Stock et al. (1999).
Stock S, Leslie AGW, & Walker JE (1999). Molecular architecture of rotary motor in ATP synthase.
Science 286 :1700-1705. PubMed Id: 10576729. |
|||
Symersky et al. (2012).
Symersky J, Pagadala V, Osowski D, Krah A, Meier T, Faraldo-Gómez JD, & Mueller DM (2012). Structure of the c10 ring of the yeast mitochondrial ATP synthase in the open conformation.
Nature Struc Mol Biol 19 :485-491. PubMed Id: 22504883. doi:10.1038/nsmb.2284. |
|||
ATP Synthase c10 ring with bound oligomycin: Saccharomyces cerevisiae E Eukaryota, 1.90 Å
|
Symersky et al. (2012).
Symersky J, Osowski D, Walters DE, & Mueller DM (2012). Oligomycin frames a common drug-binding site in the ATP synthase.
Proc Natl Acad Sci USA 109 :13961-13965. PubMed Id: 22869738. doi:10.1073/pnas.1207912109. |
||
F1-c-ring (c10) complex: Saccharomyces cerevisiae E Eukaryota, 3.43 Å
|
Dautant et al. (2010).
Dautant A, Velours J, & Giraud MF (2010). Crystal structure of the Mg·ADP-inhibited state of the yeast F1c10-ATP synthase.
J Biol Chem 285 :29502-29510. PubMed Id: 20610387. doi:10.1074/jbc.M110.124529. |
||
dimeric FO of ATP synthase: Saccharomyces cerevisiae E Eukaryota, 3.6 Å
cryo-EM structure F1FO dimer model 6B2Z |
Guo et al. (2017).
Guo H, Bueler SA, & Rubinstein JL (2017). Atomic model for the dimeric FO region of mitochondrial ATP synthase.
Science 358 :936-940. PubMed Id: 29074581. doi:10.1126/science.aao4815. |
||
Srivastava et al. (2018).
Srivastava AP, Luo M, Zhou W, Symersky J, Bai D, Chambers MG, Faraldo-Gómez JD, Liao M, & Mueller DM (2018). High-resolution cryo-EM analysis of the yeast ATP synthase in a lipid membrane.
Science 360 6389:619. PubMed Id: 29650704. doi:10.1126/science.aas9699. |
|||
ATP synthase (Fo) in nanodisc with inhibitor Bedaquiline: Saccharomyces cerevisiae E Eukaryota, 4.20 Å
cryo-EM structure |
Luo et al. (2020).
Luo M, Zhou W, Patel H, Srivastava AP, Symersky J, Bonar MM, Faraldo-Gómez JD, Liao M, & Mueller DM (2020). Bedaquiline inhibits the yeast and human mitochondrial ATP synthases.
Commun Biol 3 1. PubMed Id: 32814813. doi:10.1038/s42003-020-01173-z. |
||
F1Fo ATP synthase in multiple states, State 1 catalytic (a) without exogenous ATP, backbone model: Saccharomyces cerevisiae E Eukaryota, 3.80 Å
cryo-EM structure Backbone models, without exogenous ATP: State 1 catalytic (b), 4.40 Å 7TJZ State 1 catalytic (c), 4.40 Å 7TK0 State 1catalytic (d), 7.10 Å 7TK1 Backbone models, with 10 mM ATP: State 1 binding (a), 6.50 Å 7TK2 State 1 binding (b), 6.30 Å 7TK3 State 1 binding (c), 7.00 Å 7TK4 State 1 binding (d), 7.80 Å 7TK5 State 1 catalytic (a), 6.50 Å 7TK6 State 1 catalytic (b), 6.70 Å 7TK7 State 1 catalytic (c), 4.70 Å 7TK8 State 1 catalytic (d), 6.00 Å 7TK9 State 1 catalytic (e), 7.10 Å 7TKA State 1 catalytic (f), 6.30 Å 7TKB State 1 catalytic (g), 5.80 Å 7TKC State 1 catalytic (h), 7.70 Å 7TKD State 2 binding (a), 7.10 Å 7TKE State 2 binding (b), 7.10 Å 7TKF State 2 catalytic (a), 4.50 Å 7TKG State 2 catalytic (b), 4.40 Å 7TKH State 2 catalytic (c), 7.10 Å 7TKI State 2 catalytic (d), 7.50 Å 7TKJ State 2 catalytic (e), 7.30 Å 7TKK State 3 binding (a), 6.40 Å 7TKL State 3 binding (b), 4.50 Å 7TKM State 3 binding (c), 7.10 Å 7TKN State 3 catalytic (a), 4.80 Å 7TKO State 3 catalytic (b), 4.60 Å 7TKP State 3 catalytic (c), 4.50 Å 7TKQ State 3 catalytic (d), 6.50 Å 7TKR State 3 catalytic (e), 7.50 Å 7TKS |
Guo & Rubinstein (2022).
Guo H, & Rubinstein JL (2022). Structure of ATP synthase under strain during catalysis.
Nat Commun 13 1:2232. PubMed Id: 35468906. doi:10.1038/s41467-022-29893-2. |
||
Rotor (c11) of Na+-dependent F-ATP Synthase: Ilyobacter tartaricus B Bacteria, 2.4 Å
|
Meier et al. (2005).
Meier T, Polzer P, Diederichs K, Welte W, & Dimroth P (2005). Structure of the rotor ring of F-type Na-ATPase from Ilyobacter tartaricus.
Science 308 :659-662. PubMed Id: 15860619. |
||
Rotor (c11) of Na+-dependent F-ATP Synthase with complete ion-coördination structure: Ilyobacter tartaricus B Bacteria, 2.35 Å
|
Meier et al. (2009).
Meier T, Krah A, Bond PJ, Pogoryelov D, Diederichs K, & Faraldo-Gómez JD (2009). Complete Ion-Coordination Structure in the Rotor Ring of Na+-Dependent F-ATP Synthases.
J Mol Biol 391 :498-507. PubMed Id: 19500592. |
||
Rotor (c14) of H+-dependent F-ATP Synthase of spinach chloroplasts: Spinacia oleracea E Eukaryota, 3.80 Å
|
Vollmar et al. (2009).
Vollmar M, Schlieper D, Winn M, Büchner C, & Groth G (2009). Structure of the c14Rotor Ring of the Proton Translocating Chloroplast ATP Synthase.
J Biol Chem 284 :18228-18235. PubMed Id: 19423706. |
||
Hahn et al. (2018).
Hahn A, Vonck J, Mills DJ, Meier T, & Kühlbrandt W (2018). Structure, mechanism, and regulation of the chloroplast ATP synthase.
Science 360 6389:620. PubMed Id: 29748256. doi:10.1126/science.aat4318. |
|||
Rotor (c14) of H+-dependent F-ATP Synthase of spinach chloroplasts: Spinacia oleracea E Eukaryota, 2.3 Å
|
Vlasov et al. (2019).
Vlasov AV, Kovalev KV, Marx SH, Round ES, Gushchin IY, Polovinkin VA, Tsoy NM, Okhrimenko IS, Borshchevskiy VI, Büldt GD, Ryzhykau YL, Rogachev AV, Chupin VV, Kuklin AI, Dencher NA, & Gordeliy VI (2019). Unusual features of the c-ring of F1FO ATP synthases.
Sci Rep 9 1. PubMed Id: 31811229. doi:10.1038/s41598-019-55092-z. |
||
F1Fo ATP synthase, R1, CF1FO: Spinacia oleracea E Eukaryota, 3.35 Å
cryo-EM structure R1, CF1; 3.05 Å: 6VOO R2, CF1FO; 4.06 Å: 6VOL R2, CF1; 3.60 Å: 6VOM R3, CF1FO; 4.34 Å: 6VOJ R3, CF1; 3.85 Å: 6VOK O1, CF1FO; 4.16 Å: 6VOH O1, CF1; 4.03 Å: 6VOI O2, CF1FO; 4.51 Å: 6VOF O2, CF1; 4.35 Å: 6VOG O3, CF1FO; 6.46 Å: 6VMG C1, CF1FO; 5.23 Å: 6VMB C1, CF1; 4.53 Å: 6VMD C2, CF1FO; 7.08 Å: 6VM4 |
Yang et al. (2020).
Yang JH, Williams D, Kandiah E, Fromme P, & Chiu PL (2020). Structural basis of redox modulation on chloroplast ATP synthase.
Commun Biol 3 1:482. PubMed Id: 32879423. doi:10.1038/s42003-020-01221-8. |
||
Rotor (c14) of H+-dependent F-ATP Synthase of green pea chloroplasts: Pisum sativum E Eukaryota, 3.40 Å
|
Saroussi et al. (2012).
Saroussi S, Schushan M, Ben-Tal N, Junge W, & Nelson N (2012). Structure and flexibility of the C-ring in the electromotor of rotary F0F1-ATPase of pea chloroplasts.
PLoS ONE 7 . PubMed Id: 23049735. doi:10.1371/journal.pone.0043045. |
||
Rotor (c15) of H+-dependent F-ATP Synthase of an alkaliphilic cyanobacterium: Spirulina platensis B Bacteria, 2.1 Å
|
Pogoryelov et al. (2009).
Pogoryelov D, Yildiz O, Faraldo-Gómez JD, & Meier T (2009). High-resolution structure of the rotor ring of a proton-dependent ATP synthase.
Nat Struct Mol Biol 16 :1068-1073. PubMed Id: 19783985. |
||
Rotor (c13) of H+-dependent F-ATP Synthase: Bacillus pseudofirmus OF4 B Bacteria, 2.5 Å
|
Preiss et al. (2010).
Preiss L, Yildiz O, Hicks DB, Krulwich TA, & Meier T (2010). A New Type of Proton Coordination in an F1F0-ATP Synthase Rotor Ring.
PLoS Biol 8 :e1000443. PubMed Id: 20689804. doi:10.1371/journal.pbio.1000443. |
||
Rotor (c12) of H+-dependent F-ATP Synthase mutant: Bacillus pseudofirmus OF4 B Bacteria, 4.10 Å
In this mutant, the GxGxGxG motif has been replaced by AxAxAxA. |
Preiss et al. (2013).
Preiss L, Klyszejko AL, Hicks DB, Liu J, Fackelmayer OJ, Yildiz Ö, Krulwich TA, & Meier T (2013). The c-ring stoichiometry of ATP synthase is adapted to cell physiological requirements of alkaliphilic Bacillus pseudofirmus OF4.
Proc Natl Acad Sci USA 110 19:7874-7879. PubMed Id: 23613590. doi:10.1073/pnas.1303333110. |
||
F1-ATPase, wild-type: Caldalkalibacillus thermarum B Bacteria (expressed in E. coli), 3.0 Å
epsilon mutant, 2.6 Å: 5IK2 |
Ferguson et al. (2016).
Ferguson SA, Cook GM, Montgomery MG, Leslie AG, & Walker JE (2016). Regulation of the thermoalkaliphilic F1-ATPase from Caldalkalibacillus thermarum.
Proc Natl Acad Sci USA 113 :10860-10865. PubMed Id: 27621435. doi:10.1073/pnas.1612035113. |
||
F1-ATPase: Trypanosoma brucei E Eukaryota, 3.2 Å
|
Montgomery et al. (2018).
Montgomery MG, Gahura O, Leslie AGW, Zíková A, & Walker JE (2018). ATP synthase from Trypanosoma brucei has an elaborated canonical F1-domain and conventional catalytic sites.
Proc Natl Acad Sci USA 115 9:2102-2107. PubMed Id: 29440423. doi:10.1073/pnas.1720940115. |
||
Fo subunit of F1Fo synthase: Polytomells sp. E Eukaryota, 3.7 Å
cryo-EM structure |
Klusch et al. (2017).
Klusch N, Murphy BJ, Mills DJ, Yildiz Ö, & Kühlbrandt W (2017). Structural basis of proton translocation and force generation in mitochondrial ATP synthase.
Elife 6 :e33274. PubMed Id: 29210357. doi:10.7554/eLife.33274. |
||
F1-ATPase in an autoinhibited conformation: Escherichia coli B Bacteria, 3.26 Å
|
Cingolani & Duncan (2011).
Cingolani G & Duncan TM (2011). Structure of the ATP synthase catalytic complex (F1) from Escherichia coli in an autoinhibited conformation.
Nat Struct Mol Biol 18 :701-707. PubMed Id: 21602818. doi:10.1038/nsmb.2058. |
||
F1-ATPase: Saccharomyces cerevisiae E Eukaryota, 2.80 Å
|
Kabaleeswaran et al. (2006).
Kabaleeswaran V, Puri N, Walker JE, Leslie AG, & Mueller DM (2006). Novel features of the rotary catalytic mechanism revealed in the structure of yeast F1ATPase.
EMBO J 25 :5433-5442. PubMed Id: 17082766. |
||
F1-ATPase inhibited by its regulatory protein IF1: Saccharomyces cerevisiae E Eukaryota, 2.50 Å
|
Robinson et al. (2013).
Robinson GC, Bason JV, Montgomery MG, Fearnley IM, Mueller DM, Leslie AG, & Walker JE (2013). The structure of F1-ATPase from Saccharomyces cerevisiae inhibited by its regulatory protein IF1.
Open Biol 3 :120164. PubMed Id: 23407639. doi:10.1098/rsob.120164. |
||
F1-ATPase: Fusobacterium nucleatum B Bacteria (expressed in E. coli), 3.6 Å
|
Petri et al. (2019).
Petri J, Nakatani Y, Montgomery MG, Ferguson SA, Aragão D, Leslie AGW, Heikal A, Walker JE, & Cook GM (2019). Structure of F1-ATPase from the obligate anaerobe Fusobacterium nucleatum.
Open Biol 9 6. PubMed Id: 31238823. doi:10.1098/rsob.190066. |
||
Guo et al. (2019).
Guo H, Suzuki T, & Rubinstein JL (2019). Structure of a bacterial ATP synthase.
Elife 8 :e43128. PubMed Id: 30724163. doi:10.7554/eLife.43128. |
|||
Sobti et al. (2021).
Sobti M, Ueno H, Noji H, & Stewart AG (2021). The six steps of the complete F1-ATPase rotary catalytic cycle.
Nat Commun 12 1:4690. PubMed Id: 34344897. doi:10.1038/s41467-021-25029-0. |
|||
F1Fo synthase, c-ring: Bacillus sp. (strain PS3) B Bacteria (expressed in Escherichia coli), NMR Structure
|
Todokoro et al. (2022).
Todokoro Y, Kang SJ, Suzuki T, Ikegami T, Kainosho M, Yoshida M, Fujiwara T, & Akutsu H (2022). Chemical Conformation of the Essential Glutamate Site of the c-Ring within Thermophilic Bacillus FoF1-ATP Synthase Determined by Solid-State NMR Based on its Isolated c-Ring Structure.
J Am Chem Soc 144 31:14132-14139. PubMed Id: 35905443. doi:10.1021/jacs.2c03580. |
||
F1Fo synthase (complete structure; dimeric): Yarrowia lipolytica E Eukaryota, 3.5 Å
|
Hahn et al. (2016).
Hahn A, Parey K, Bublitz M, Mills DJ, Zickermann V, Vonck J, Kühlbrandt W, & Meier T (2016). Structure of a Complete ATP Synthase Dimer Reveals the Molecular Basis of Inner Mitochondrial Membrane Morphology.
Mol Cell 63 3:445-456. PubMed Id: 27373333. doi:10.1016/j.molcel.2016.05.037. |
||
F1Fo synthase (complete structure; dimeric): Polytomella sp. E Eukaryota, 2.9 Å
cryo-EM structure The structure is a composite built from more than 50 structures. For a complete list of the individual structures go to Science Magazine |
Murphy et al. (2019).
Murphy BJ, Klusch N, Langer J, Mills DJ, Yildiz Ö, & Kühlbrandt W (2019). Rotary substates of mitochondrial ATP synthase reveal the basis of flexible F1-Fo coupling.
Science 364 6446. PubMed Id: 31221832. doi:10.1126/science.aaw9128. |
||
Gu et al. (2019).
Gu J, Zhang L, Zong S, Guo R, Liu T, Yi J, Wang P, Zhuo W, & Yang M (2019). Cryo-EM structure of the mammalian ATP synthase tetramer bound with inhibitory protein IF1.
Science 364 6445:1068-1075. PubMed Id: 31197009. doi:10.1126/science.aaw4852. |
|||
F1Fo synthase (complete structure; dimeric), rotational state 1: Euglena gracilis E Eukaryota, 4.32 Å
cryo-EM structure membrane region, 2.8 Å: 6TDV peripheral stalk, rotational state 1, 3.8 Å: 6TDW rotor, rotational state 1, 3.3 Å: 3.3 Å: 6TDX OSCP/F1/c-ring in rotational state 1, 3.04 Å: 6TDY OSCP/F1/c-ring, rotational state 2, 3.14 Å: 6TDZ OSCP/F1/c-ring, rotational state 3, 3.92 Å: 6TE0 |
Mühleip et al. (2019).
Mühleip A, McComas SE, & Amunts A (2019). Structure of a mitochondrial ATP synthase with bound native cardiolipin.
Elife 8 . PubMed Id: 31738165. doi:10.7554/eLife.51179. |
||
Flygaard et al. (2020).
Flygaard RK, Mühleip A, Tobiasson V, & Amunts A (2020). Type III ATP synthase is a symmetry-deviated dimer that induces membrane curvature through tetramerization.
Nat Commun 11 1:5342. PubMed Id: 33093501. doi:10.1038/s41467-020-18993-6. |
|||
F1Fo ATP synthase, complete structure in 1a state: Ovis aries E Eukaryota, 3.50 Å
cryo-EM structure Fo domain, 3.76 Å: 6ZA9 |
Pinke et al. (2020).
Pinke G, Zhou L, & Sazanov LA (2020). Cryo-EM structure of the entire mammalian F-type ATP synthase.
Nat Struct Mol Biol 27 :1077-1085. PubMed Id: 32929284. doi:10.1038/s41594-020-0503-8. |
||
F1Fo synthase, bedaquiline-free, rotational state 1: Mycolicibacterium smegmatis B Bacteria, 3.40 Å
cryo-EM structure bedaquiline-free, state 2 (backbone model), 3.70 Å: 7JG6 bedaquiline-free, state 3 (backbone model), 3.50 Å: 7JG7 bedaquiline-saturated, state 1 (backbone model), 3.30 Å: 7JG8 bedaquiline-saturated, state 2 (backbone model), 3.40 Å: 7JG9 bedaquiline-saturated, state 3, 3.20 Å: 7JGA bedaquiline-free, Fo region, 3.50 Å: 7JGB bedaquiline-saturated, Fo region, 3.40 Å: 7JGC |
Guo et al. (2021).
Guo H, Courbon GM, Bueler SA, Mai J, Liu J, & Rubinstein JL (2021). Structure of mycobacterial ATP synthase bound to the tuberculosis drug bedaquiline.
Nature 589 7840:143-147. PubMed Id: 33299175. doi:10.1038/s41586-020-3004-3. |
||
F1Fo synthase, state 1a: Mycolicibacterium smegmatis B Bacteria, 2.52 Å
cryo-EM structure state 1b, 2.71 Å 7NJL state 1c, 2.84 Å 7NJM state 1d, 2.64 Å 7NJN state 1e, 2.92 Å 7NJO state 2, 2.84 Å 7NJP state 3a, 2.67 Å 7NJQ state 3b, 2.56 Å 7NJR state 3c, 2.46 Å 7NJS Fo combined all classes, 2.75 Å 7NJT Fo combined class 1, 3.74 Å 7NJU Fo combined class 2, 2.90 Å 7NJV Fo combined class 3, 3.67 Å 7NJW Fo combined class 4, 4.32 Å 7JNX Focombined class 5, 2.94 Å 7NJY F1 state 1, 2.11 Å 7NK7 Fo domain state 1, 2.90 Å 7NK9 rotor state 1, 2.90 Å 7NKB b-delta state 1, 3.12 Å 7NKD F1 state 2, 2.78 Å 7NKH F1 state 3, 2.17 Å 7NKJ rotor state 2, 3.60 Å, 7NKK b-delta state 2, 3.67 Å 7NKL rotor state 3, 2.71 Å 7NKN Fo state 2, 4.06 Å 7NKP b-delta state 3, 2.98 Å 7NKQ Fo state 3, 2.86 Å7NL9 |
Montgomery et al. (2021).
Montgomery MG, Petri J, Spikes TE, & Walker JE (2021). Structure of the ATP synthase from Mycobacterium smegmatis provides targets for treating tuberculosis.
Proc Natl Acad Sci U S A 118 47:e2111899118. PubMed Id: 34782468. doi:10.1073/pnas.2111899118. |
||
F1Fo ATP synthase hexamer, composite model: Toxoplasma gondii E Eukaryota, 4.80 Å
cryo-EM structure dimer, membrane region model, 2.80 Å: 6TMG dimer, OSCP/F1/c-ring model, 3.10 Å: 6TMH dimer, peripheral stalk model, 3.50 Å: 6TMI dimer, rotor-stator model, 3.50 Å: 6TMJ dimer, composite model, 2.90 Å: 6TMK |
Mühleip et al. (2021).
Mühleip A, Kock Flygaard R, Ovciarikova J, Lacombe A, Fernandes P, Sheiner L, & Amunts A (2021). ATP synthase hexamer assemblies shape cristae of Toxoplasma mitochondria.
Nat Commun 12 1. PubMed Id: 33402698. doi:10.1038/s41467-020-20381-z. |
||
Demmer et al. (2022).
Demmer JK, Phillips BP, Uhrig OL, Filloux A, Allsopp LP, Bublitz M, & Meier T (2022). Structure of ATP synthase from ESKAPE pathogen Acinetobacter baumannii.
Sci Adv 8 7:eabl5966. PubMed Id: 35171679. doi:10.1126/sciadv.abl5966. |
|||
F1Fo ATP synthase, state 1, combined: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.53 Å
cryo-EM structure state 1, F1 head domain, 2.53 Å: 8H9E state 1, subregion 2, 2.95 Å: 8H9G state 1, subregion 3, 2.69 Å: 8H9F state 2, F1 head domain, 2.77 Å: 8H9I state 2, combined, 2.77 Å: 8H9T state 2, subregion 2, 3.51 Å: 8H9K state 2, subregion 3, 3.26 Å: 8H9J state 3a, F1 head domain, 2.61 Å: 8H9L state 3a, combined, 2.61 Å: 8H9U state 3a, subregion 2, 3.56 Å: 8H9N state 3a, subregion 3, 3.00 Å: 8H9M state 3b, F1 head domain, 3.02 Å: 8H9P state 3b, combined, 3.02 Å: 8H9V state 3b, subregion 2, 3.97 Å: 8H9R state 3b, subregion 3, 3.47 Å: 8H9Q |
Lai et al. (2023).
Lai Y, Zhang Y, Zhou S, Xu J, Du Z, Feng Z, Yu L, Zhao Z, Wang W, Tang Y, Yang X, Guddat LW, Liu F, Gao Y, Rao Z, & Gong H (2023). Structure of the human ATP synthase.
Mol Cell 83 12:2137-2147.e4. PubMed Id: 37244256. doi:10.1016/j.molcel.2023.04.029. |
||
P-type ATPase
|
|||
Calcium ATPase; rabbit sarcoplasmic reticulum. E1 state with bound calcium: Oryctolagus cuniculus E Eukaryota, 2.4 Å
This structure supersedes 1EUL. These ATPases are referred to as SERCA pumps; SERCA: Sarco(Endo)plasmic Reticulum CAlcium |
Toyoshima et al. (2000).
Toyoshima C, Nakasako M, Nomura H, & Ogawa H (2000). Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution.
Nature 405 :647-655. PubMed Id: 10864315. |
||
Calcium ATPase; rabbit sarcoplasmic reticulum. E1 state with bound calcium, magnesium, and an ATP analog: Oryctolagus cuniculus E Eukaryota, 2.9 Å
|
Toyoshima & Mizutani (2004).
Toyoshima C & Mizutani T (2004). Crystal structure of the calcium pump with a bound ATP analogue.
Nature 430 :529-35. PubMed Id: 15229613. |
||
Calcium ATPase; rabbit sarcoplasmic reticulum. E2 state without bound calcium: Oryctolagus cuniculus E Eukaryota, 3.1 Å
|
Toyoshima & Nomura (2002).
Toyoshima C & Nomura H (2002). Structural changes in the calcium pump accompanying the dissociation of calcium.
Nature 418 :605-611. PubMed Id: 12167852. |
||
Calcium ATPase; rabbit sarcoplasmic reticulum. E2 state calcium-free with bound magnesium fluoride: Oryctolagus cuniculus E Eukaryota, 2.3 Å
E1 state with bound AlFx and ADP, 2.40 Å: 2ZDB (supersedes 1WPE, which was superseded by 2Z9R) |
Toyoshima et al. (2004).
Toyoshima C, Nomura H, & Tsuda T (2004). Lumenal gating mechanism revealed in calcium pump crystal structures with phosphate analogues.
Nature 432 :361-368. PubMed Id: 15448704. |
||
Calcium ATPase; rabbit sarcoplamic reticulum. E1 state with bound calcium and AMPPC: Oryctolagus cuniculus E Eukaryota, 2.6 Å
E1 state with bound calcium and ADP:AlF4–, 2.9 Å: 1T5T |
Sørensen et al. (2004).
Sørensen TL, Jensen AM Møller JV, & Nissen P (2004). Phosphoryl transfer and calcium ion occlusion in the calcium pump.
Science 304 :1672-1675. PubMed Id: 15192230. |
||
Calcium ATPase; rabbit sarcoplasmic reticulum. E2 state with bound AlF4– calcium-free: Oryctolagus cuniculus E Eukaryota, 3.0 Å
|
Olesen et al. (2004).
Olesen C, Sørensen TL, Nielsen RC, Møller JV, & Nissen P (2004). Dephosphorylation of the calcium pump coupled to counterion occlusion.
Science 306 :2251-2255. PubMed Id: 15618517. |
||
Calcium ATPase; rabbit sarcoplasmic reticulum. Ca2+-free, with bound BHQ and thapsigargin: Oryctolagus cuniculus E Eukaryota, 3.0 Å
|
Obara et al. (2005).
Obara K, Miyashita N, Xu C, Toyoshima I, Sugita Y, Inesi G, & Toyoshima C (2005). Structural role of countertransport revealed in Ca2+pump crystal structure in the absence of Ca2+.
Proc Natl Acad Sci U S A 102 :14489-14496. PubMed Id: 16150713. |
||
Calcium ATPase; rabbit sarcoplasmic reticulum. With bound synthesized derivative of thapsigargin: Oryctolagus cuniculus E Eukaryota, 3.30 Å
|
Søhoel et al. (2006).
Søhoel H, Jensen AM, Møller JV, Nissen P, Denmeade SR, Isaacs JT, Olsen CE, Christensen SB (2006). Natural products as starting materials for development of second-generation SERCA inhibitors targeted towards prostate cancer cells.
Bioorg Med Chem 14 :2810-2815. PubMed Id: 16150713. |
||
Jensen et al. (2006).
Jensen AM, Sørensen TL, Olesen C, Møller JV, & Nissen P (2006). Modulatory and catalytic modes of ATP binding by the calcium pump.
EMBO J 25 :2305-2314. PubMed Id: 16710301. |
|||
Calcium ATPase; rabbit sarcoplamic reticulum. Calcium-free with bound AlF4– and cyclopiazonic acid (CPA): Oryctolagus cuniculus E Eukaryota, 2.65 Å
Calcium-free with bound CPA and ADP, 3.4 Å: 2OA0 |
Moncoq et al. (2007).
Moncoq K, Trieber CA, & Young HS (2007). The molecular basis for cyclopiazonic acid inhibition of the sarcoplasmic reticulum calcium pump.
J Biol Chem 282 :9748-9757. PubMed Id: 17259168. |
||
Olesen et al. (2007).
Olesen C, Picard M, Winther A-M L, Gyrup C, Morth JP, Oxvig C, Møller JV & Nissen P (2007). The structural basis of calcium transport by the calcium pump.
Nature 450 :1036-1042. PubMed Id: 18075584. |
|||
Calcium ATPase; rabbit sarcoplamic reticulum. Ca2+-free E2 state with debutanoyl thapsigargin: Oryctolagus cuniculus E Eukaryota, 3.10 Å
Structural analysis of the Type I crystal structure reveals the location and thickness of the lipid bilayer |
Sonntag et al. (2011).
Sonntag Y, Musgaard M, Olesen C, Schiφtt B, Mφller JV, Nissen P, & Thφgersen L. (2011). Mutual adaptation of a membrane protein and its lipid bilayer during conformational changes.
Nat Commun 2 :304. PubMed Id: 21556058. doi:10.1038/ncomms1307. |
||
Calcium ATPase; rabbit sarcoplasmic reticulum with bound sarcolipin: Oryctolagus cuniculus E Eukaryota, 3.10 Å
|
Winther et al. (2013).
Winther AM, Bublitz M, Karlsen JL, Møller JV, Hansen JB, Nissen P, & & Buch-Pedersen MJ (2013). The sarcolipin-bound calcium pump stabilizes calcium sites exposed to the cytoplasm.
Nature 495 :265-268. PubMed Id: 23455424. doi:10.1038/nature11900. |
||
Toyoshima et al. (2013).
Toyoshima C, Iwasawa S, Ogawa H, Hirata A, Tsueda J, & Inesi G (2013). Crystal structures of the calcium pump and sarcolipin in the Mg2+-bound E1 state.
Nature 495 :260-264. PubMed Id: 23455422. doi:10.1038/nature11899. |
|||
Calcium ATPase; rabbit sarcoplasmic reticulum with bound phospholamban: Oryctolagus cuniculus E Eukaryota, 2.83 Å
|
Akin et al. (2013).
Akin BL, Hurley TD, Chen Z, & Jones LR (2013). The structural basis for phospholamban inhibition of the calcium pump in sarcoplasmic reticulum.
J Biol Chem 288 42:30181-30191. PubMed Id: 23996003. doi:10.1074/jbc.M113.501585. |
||
Calcium ATPase; rabbit sarcoplasmic reticulum E309Q mutant in Ca2E1 state: Oryctolagus cuniculus E Eukaryota (expressed in S. cerevisiae), 3.50 Å
|
Clausen et al. (2013).
Clausen JD, Bublitz M, Arnou B, Montigny C, Jaxel C, Møller JV, Nissen P, Andersen JP, & le Maire M (2013). SERCA mutant E309Q binds two Ca(2+) ions but adopts a catalytically incompetent conformation.
EMBO J. 32 :3231-3243. PubMed Id: 24270570. doi:10.1038/emboj.2013.250. |
||
Takahashi et al. (2007).
Takahashi M, Kondou Y, & Toyoshima C (2007). Interdomain communication in calcium pump as revealed in the crystal structures with transmembrane inhibitors.
Proc Natl Acad Sci USA 104 :5800-5805. PubMed Id: 17389383. |
|||
Calcium ATPase; structure determined by electron crystallography using ultrathin protein crystals: Oryctolagus cuniculus E Eukaryota, 3.40 Å
Electron crystallography of the ultrathin crystals permit determination of atomic models with charges. |
Yonekura et al. (2015).
Yonekura K, Kato K, Ogasawara M, Tomita M, & Toyoshima C (2015). Electron crystallography of ultrathin 3D protein crystals: Atomic model with charges.
Proc Natl Acad Sci USA 112 11:3368-3373. PubMed Id: 25730881. doi:10.1073/pnas.1500724112. |
||
Calcium ATPase; rabbit sarcoplasmic reticulum. E1 state with bound calcium and AMPPC by free-electron laser: Oryctolagus cuniculus E Eukaryota, 2.80 Å
Structure determined using an x-ray free-electron laser. |
Bublitz et al. (2015).
Bublitz M, Nass K, Drachmann ND, Markvardsen AJ, Gutmann MJ, Barends TR, Mattle D, Shoeman RL, Doak RB, Boutet S, Messerschmidt M, Seibert MM, Williams GJ, Foucar L, Reinhard L, Sitsel O, Gregersen JL, Clausen JD, Boesen T, Gotfryd K, Wang KT, Olesen C, Møller JV, Nissen P, & Schlichting I (2015). Structural studies of P-type ATPase-ligand complexes using an X-ray free-electron laser.
IUCrJ 2 :409-420. PubMed Id: 26175901. doi:10.1107/S2052252515008969. |
||
Clausen et al. (2016).
Clausen JD, Bublitz M, Arnou B, Olesen C, Andersen JP, Møller JV, & Nissen P (2016). Crystal Structure of the Vanadate-Inhibited Ca2+-ATPase.
Structure 24 :617-623. PubMed Id: 27050689. doi:10.1016/j.str.2016.02.018. |
|||
Norimatsu et al. (2017).
Norimatsu Y, Hasegawa K, Shimizu N, & Toyoshima C (2017). Protein-phospholipid interplay revealed with crystals of a calcium pump.
Nature 545 7653:193-198. PubMed Id: 28467821. doi:10.1038/nature22357. |
|||
Calcium ATPase, E1 state with bound calcium and AMPPC: Oryctolagus cuniculus E Eukaryota, 3.54 Å
room temperature structure from large seeded crystals |
Sørensen et al. (2018).
Sørensen TLM, Hjorth-Jensen SJ, Oksanen E, Andersen JL, Olesen C, Møller JV, & Nissen P (2018). Membrane-protein crystals for neutron diffraction.
Acta Crystallogr D Struct Biol 74 :1208-1218. PubMed Id: 30605135. doi:10.1107/S2059798318012561. |
||
Calcium ATPase, E2 state, E309A mutant: Oryctolagus cuniculus E Eukaryota (expressed in Chlorocebus sabaeus), 3.3 Å
E309Q mutant, 2.5 Å: 5ZMW |
Tsunekawa et al. (2018).
Tsunekawa N, Ogawa H, Tsueda J, Akiba T, & Toyoshima C (2018). Mechanism of the E2 to E1 transition in Ca2+ pump revealed by crystal structures of gating residue mutants.
Proc Natl Acad Sci USA 115 50:12722-12727. PubMed Id: 30482857. doi:10.1073/pnas.1815472115. |
||
SERCA Calcium ATPase with bound inhibitor CAD204520: Oryctolagus cuniculus E Eukaryota, 3.40 Å
|
Marchesini et al. (2020).
Marchesini M, Gherli A, Montanaro A, Patrizi L, Sorrentino C, Pagliaro L, Rompietti C, Kitara S, Heit S, Olesen CE, Møller JV, Savi M, Bocchi L, Vilella R, Rizzi F, Baglione M, Rastelli G, Loiacono C, La Starza R, Mecucci C, Stegmaier K, Aversa F, Stilli D, Lund Winther AM, Sportoletti P, Bublitz M, Dalby-Brown W, & Roti G (2020). Blockade of Oncogenic NOTCH1 with the SERCA Inhibitor CAD204520 in T Cell Acute Lymphoblastic Leukemia.
Cell Chem Biol 27 6:678-697.e13. PubMed Id: 32386594. doi:10.1016/j.chembiol.2020.04.002. |
||
Sarcoplasmic reticulum Calcium ATPase, structure phased using vanadium: Oryctolagus cuniculus E Eukaryota, 3.13 Å
|
El Omari et al. (2020).
El Omari K, Mohamad N, Bountra K, Duman R, Romano M, Schlegel K, Kwong HS, Mykhaylyk V, Olesen C, Moller JV, Bublitz M, Beis K, & Wagner A (2020). Experimental phasing with vanadium and application to nucleotide-binding membrane proteins.
IUCrJ 7 :1092-1101. PubMed Id: 33209320. doi:10.1107/S2052252520012312. |
||
Calcium ATPase sarco/endoplasmic reticulum (SERCA) E340A mutant in the Ca2+-E1-CaAMPPCP form: Oryctolagus cuniculus E Eukaryota (expressed in Saccharomyces cerevisiae), 3.20 Å
|
Geurts et al. (2020).
Geurts MMG, Clausen JD, Arnou B, Montigny C, Lenoir G, Corey RA, Jaxel C, Møller JV, Nissen P, Andersen JP, le Maire M, & Bublitz M (2020). The SERCA residue Glu340 mediates interdomain communication that guides Ca2+ transport.
Proc Natl Acad Sci U S A 117 49:31114-31122. PubMed Id: 33229570. doi:10.1073/pnas.2014896117. |
||
Plasma membrane Ca2+-ATPase 1 (PMCA1) in complex with its obligatory subunit neuroplastin (NPTP): Homo sapiens E Eukaryota (expressed in HEK293 cells), 4.1 Å
cryo-EM structure. The TM domain resolution is 3.9 Å. |
Gong et al. (2018).
Gong D, Chi X, Ren K, Huang G, Zhou G, Yan N, Lei J, & Zhou Q (2018). Structure of the human plasma membrane Ca2+-ATPase 1 in complex with its obligatory subunit neuroplastin.
Nat Commun 9 1. PubMed Id: 30190470. doi:10.1038/s41467-018-06075-7. |
||
DWORF peptide associated with Ca2+-ATPase 1 (PMCA1): Homo sapiens E Eukaryota (expressed in E. coli), NMR structure
DWORF controls the activation of the ATPase |
Reddy et al. (2022).
Reddy UV, Weber DK, Wang S, Larsen EK, Gopinath T, De Simone A, Robia S, & Veglia G (2022). A kink in DWORF helical structure controls the activation of the sarcoplasmic reticulum Ca2+-ATPase.
Structure 30 3:360-370.e6. PubMed Id: 34875216. doi:10.1016/j.str.2021.11.003. |
||
Calcium ATPase sarco/endoplasmic reticulum (SERCA2a): Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.2 Å
SERCA2b, 3.45 Å: 5ZTF |
Inoue et al. (2019).
Inoue M, Sakuta N, Watanabe S, Zhang Y, Yoshikaie K, Tanaka Y, Ushioda R, Kato Y, Takagi J, Tsukazaki T, Nagata K, & Inaba K (2019). Structural Basis of Sarco/Endoplasmic Reticulum Ca2+-ATPase 2b Regulation via Transmembrane Helix Interplay.
Cell Rep 27 4:1221-1230.e3. PubMed Id: 31018135. doi:10.1016/j.celrep.2019.03.106. |
||
Calcium ATPase sarco/endoplasmic reticulum (SERCA2a), E2-ATP state: Homo sapiens E Eukaryota (expressed in Chlorocebus sabaeus), 3.0 Å
|
Kabashima et al. (2020).
Kabashima Y, Ogawa H, Nakajima R, & Toyoshima C (2020). What ATP binding does to the Ca2+ pump and how nonproductive phosphoryl transfer is prevented in the absence of Ca2+.
Proc Natl Acad Sci USA 117 31:18448-18458. PubMed Id: 32675243. doi:10.1073/pnas.2006027117. |
||
Calcium ATPase sarco/endoplasmic reticulum (SERCA2b) in E1-2Ca2+-AMPPCP state: Homo sapiens E Eukaryota (expressed in HEK293), 2.90 Å
cryo-EM structure in E2-BeF3- state, 2.80 Å: 6LLY |
Zhang et al. (2020).
Zhang Y, Inoue M, Tsutsumi A, Watanabe S, Nishizawa T, Nagata K, Kikkawa M, & Inaba K (2020). Cryo-EM structures of SERCA2b reveal the mechanism of regulation by the luminal extension tail.
Sci Adv 6 33. PubMed Id: 32851169. doi:10.1126/sciadv.abb0147. |
||
Calcium ATPase sarco/endoplasmic reticulum (SERCA2b) in E1-2Ca2+ state: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.30 Å
cryo-EM structure |
Zhang et al. (2021).
Zhang Y, Watanabe S, Tsutsumi A, Kadokura H, Kikkawa M, & Inaba K (2021). Cryo-EM analysis provides new mechanistic insight into ATP binding to Ca2+ -ATPase SERCA2b.
EMBO J 40 19:e108482. PubMed Id: 34459010. doi:10.15252/embj.2021108482. |
||
Zhang et al. (2022).
Zhang Y, Kobayashi C, Cai X, Watanabe S, Tsutsumi A, Kikkawa M, Sugita Y, & Inaba K (2022). Multiple sub-state structures of SERCA2b reveal conformational overlap at transition steps during the catalytic cycle.
Cell Rep 41 10:111760. PubMed Id: 36476867. doi:10.1016/j.celrep.2022.111760. |
|||
Calcium ATPase sarco/endoplasmic reticulum (SERCA2a), CPA-stabilized E2-AlF-4 form: Sus scrofa E Eukaryota, 3.3 Å
Ca2E1-AMPPCP form, 4 Å: 6HXB |
Sitsel et al. (2019).
Sitsel A, De Raeymaecker J, Drachmann ND, Derua R, Smaardijk S, Andersen JL, Vandecaetsbeek I, Chen J, De Maeyer M, Waelkens E, Olesen C, Vangheluwe P, & Nissen P (2019). Structures of the heart specific SERCA2a Ca2+-ATPase.
EMBO J 38 5. PubMed Id: 30777856. doi:10.15252/embj.2018100020. |
||
Na,K-ATPase; pig kidney : Sus scrofa E Eukaryota, 3.5 Å
|
Morth et al. (2007).
Morth JP, Pedersen BP, Kohl A,Toustrup-Jensen MS, Sørensen TL-M D, Petersen J, Petersen JP, Vilsen B, & Nissen P (2007). Crystal structure of the sodium-potassim pump.
Nature 450 :1043-1049. PubMed Id: 18075585. |
||
Na,K-ATPase, phosphorylated form in complex with ouabain: Sus scrofa E Eukaryota, 4.60 Å
|
Yatime et al. (2011).
Yatime L, Laursen M, Morth JP, Esmann M, Nissen P, & Fedosova NU (2011). Structural insights into the high affinity binding of cardiotonic steroids to the Na+,K+-ATPase.
J Struct Biol 174 :296-306. PubMed Id: 21182963. doi:10.1016/j.jsb.2010.12.004. |
||
Na,K-ATPase-ouabain complex with Mg2+ in cation binding site: Sus scrofa E Eukaryota, 3.40 Å
|
Laursen et al. (2013).
Laursen M, Yatime L, Nissen P, & Fedosova NU (2013). Crystal structure of the high-affinity Na+,K+-ATPase-ouabain complex with Mg+2 bound in the cation binding site.
Proc Natl Acad Sci USA 110 :10958-10963. PubMed Id: 23776223. doi:10.1073/pnas.1222308110. |
||
Na,K-ATPase; pig kidney in the Na+-bound state: Sus scrofa E Eukaryota, 4.30 Å
|
Nyblom et al. (2013).
Nyblom M, Poulsen H, Gourdon P, Reinhard L, Andersson M, Lindahl E, Fedosova N, & Nissen P (2013). Crystal Structure of Na+, K+-ATPase in the Na+-Bound State.
Science 342 :123-127. PubMed Id: 24051246. |
||
Na,K-ATPase with bound Na+ preceding the E1P state: Sus scrofa E Eukaryota, 2.80 Å
With oligomycin, 2.80 Å: 3WGV |
Kanai et al. (2013).
Kanai R, Ogawa H, Vilsen B, Cornelius F, & Toyoshima C (2013). Crystal structure of a Na+-bound Na+,K+-ATPase preceding the E1P state.
Nature 502 :201-206. PubMed Id: 24089211. doi:10.1038/nature12578. |
||
Na,K-ATPase, phosphorylated form in complex with bufalin: Sus scrofa E Eukaryota, 3.41 Å
in complex with digoxin, 4.00 Å: 4RET |
Laursen et al. (2015).
Laursen M, Gregersen JL, Yatime L, Nissen P, & Fedosova NU (2015). Structures and characterization of digoxin- and bufalin-bound Na+,K+-ATPase compared with the ouabain-bound complex.
Proc Natl Acad Sci USA 112 :1755-1760. PubMed Id: 25624492. doi:10.1073/pnas.1422997112. |
||
Na,K-ATPase in the E2P state, with bound Mg2+ (P4(3)2(1)2 symmetry): Sus scrofa E Eukaryota, 3.35 Å
with bound Mg2+ and anthroylouabain, 3.90 Å: 7D92 bound Mg2+ and anthroylouabain (P2(1)2(1)2(1) symmetry), 3.65 Å: 7D93 bound one Mg2+ and one Rb+ in the presence of bufalin, 7D94 in complex with beryllium fluoride, 4.62 Å: 4.62 Å: 7DDF in complex with istaroxime, 3.71 Å: 7DDG in complex with digoxin, 3.46 Å: 7DDH in complex with digitoxin, 3.72 Å: 7DDI in complex with ouabain, 2.90 Å: 7DDJ in complex with rostafuroxin, 3.50 Å: 7DDK in complex with bufalin, 3.20 Å: 7DDL |
Kanai et al. (2021).
Kanai R, Cornelius F, Ogawa H, Motoyama K, Vilsen B, & Toyoshima C (2021). Binding of cardiotonic steroids to Na+,K+-ATPase in the E2P state.
Proc Natl Acad Sci U S A 118 1:e2020438118. PubMed Id: 33318128. doi:10.1073/pnas.2020438118. |
||
Na,K-ATPase in complex with istaroxime: Sus scrofa E Eukaryota, 3.71 Å
in complex with ouabain, 2.90 Å: 7WYT cryo-EM structures: in the E2P state formed by ATP, 3.40 Å: 7WYU E2P state formed by ATP in the presence of 40 mM Mg2+, 3.70 Å: 7WYV E2P state formed by inorganic phosphate, 3.80 Å: 7WYW E2P state formed by ATP with istaroxime, 3.40 Å: 7WYX E2P state formed by inorganic phosphate with istaroxime, 3.90 Å: 7WYY E2P state formed by ATP with ouabain, 3.40 Å: 7WYZ E2P state formed by inorganic phosphate with ouabain, 3.00 Å: 7WZ0 |
Kanai et al. (2022).
Kanai R, Cornelius F, Vilsen B, & Toyoshima C (2022). Cryoelectron microscopy of Na+,K+-ATPase in the two E2P states with and without cardiotonic steroids.
Proc Natl Acad Sci U S A 119 15:e2123226119. PubMed Id: 35380894. doi:10.1073/pnas.2123226119. |
||
Fruergaard et al. (2022).
Fruergaard MU, Dach I, Andersen JL, Ozol M, Shahsavar A, Quistgaard EM, Poulsen H, Fedosova NU, & Nissen P (2022). The Na+,K+-ATPase in complex with beryllium fluoride mimics an ATPase phosphorylated state.
J Biol Chem 298 9:102317. PubMed Id: 35926706. doi:10.1016/j.jbc.2022.102317. |
|||
Na,K-ATPase; bovine kidney: Bos taurus E Eukaryota, 3.9 Å
|
Gregersen et al. (2016).
Gregersen JL, Mattle D, Fedosova NU, Nissen P, & Reinhard L (2016). Isolation, crystallization, and crystal structure determination of bovine kidney Na+,K+-ATPase.
Acta Crystallogr F Struct Biol Commun 72 :282-287. PubMed Id: 27050261. doi:10.1107/S2053230X1600279X. |
||
Na,K-ATPase; shark: Squalus acanthias E Eukaryota, 2.4 Å
Includes α and β subunits plus FXYD regulatory protein. Reveals coordination of K+ in the transmembrane binding site. |
Shinoda et al. (2009).
Shinoda T, Ogawa H, Cornelius F, & Toyoshima C (2009). Crystal structure of the sodium-potassium pump at 2.4 Å resolution.
Nature 459 :446-450. PubMed Id: 19458722. |
||
Na,K-ATPase with bound ouabain and K+: Squalus acanthias E Eukaryota, 2.80 Å
|
Ogawa et al. (2009).
Ogawa H, Shinoda T, Cornelius F, & Toyoshima C (2009). Crystal structure of the sodium-potassium pump (Na+,K+-ATPase) with bound potassium and ouabain.
Proc Natl Acad Sci USA 106 :13742-13747. PubMed Id: 19666591. doi:10.1073/pnas.0907054106. |
||
Na,K-ATPase, E2.MgF42-, Tl+ substitution at 0.75 min: Squalus acanthias E Eukaryota, 2.60 Å
Tl+ substitution at various times: 1.5 min, 2.70 Å: 5AVR 3.5 min, 2.90 Å: 5AVS 5.0 min, 2.90 Å: 5AVT 7.0 min, 2.55 Å: 5AVU 8.5 min, 2.90 Å: 5AVV 16.5 min, 2.60 Å: 5AVW 20.0 min, 3.30 Å: 5AVX 20.0 min, 3.45 Å: 5AVY 55.0 min, 3.20 Å: 5AVZ 85.0 min, 3.35 Å: 5AW1 85.0 min, 3.20 Å 5AW2 100.0 min, 3.35 Å: 5AW3 Rb+ substitution at various times: 1.5 min, 2.80 Å: 5AW4 2.2 min, 2.90 Å: 5AW5 5.5 min, 2.80 Å: 5AW6 11.3 min, 2.90 Å: 5AW7 Rb+ crystal, 2.80 Å: 5AW8 native 2K+ crystal, 2.80 Å: 5AW9 |
Ogawa et al. (2015).
Ogawa H, Cornelius F, Hirata A, & Toyoshima C (2015). Sequential substitution of K+ bound to Na+,K+-ATPase visualized by X-ray crystallography.
Nat Commun 6 :8004. PubMed Id: 26258479. doi:10.1038/ncomms9004. |
||
Guo et al. (2022).
Guo Y, Zhang Y, Yan R, Huang B, Ye F, Wu L, Chi X, Shi Y, & Zhou Q (2022). Cryo-EM structures of recombinant human sodium-potassium pump determined in three different states.
Nat Commun 13 1:3957. PubMed Id: 35803952. doi:10.1038/s41467-022-31602-y. |
|||
Nguyen et al. (2022).
Nguyen PT, Deisl C, Fine M, Tippetts TS, Uchikawa E, Bai XC, & Levine B (2022). Structural basis for gating mechanism of the human sodium-potassium pump.
Nat Commun 13 1:5293. PubMed Id: 36075933. doi:10.1038/s41467-022-32990-x. |
|||
Na,K-ATPase Regulatory Protein FXYD1: Homo sapiens E Eukaryota (expressed in E. coli), NMR Structure
|
Teriete et al. (2007).
Teriete P, Franzin CM, Choi J, & Marassi FM (2007). Structure of the Na,K-ATPase regulatory protein FXYD1 in micelles.
Biochemistry 46 :6774-6783. PubMed Id: 17511473. |
||
Oxenoid and Chou (2005).
Oxenoid K & Chou JJ (2005). The structure of phospholamban pentamer reveals a channel-like architecture in membranes.
Proc Natl Acad Sci USA 102 :10870-10875. PubMed Id: 16043693. |
|||
Phospholamban homopentamer in T state: Homo sapiens E Eukaryota (expressed in E. coli), NMR Structure
|
Verardi et al. (2011).
Verardi R, Shi L, Traaseth NJ, Walsh N, & Veglia G (2011). Structural topology of phospholamban pentamer in lipid bilayers by a hybrid solution and solid-state NMR method.
Proc Natl Acad Sci USA 108 :9101-9106. PubMed Id: 21576492. doi:10.1073/pnas.1016535108. |
||
Phospholamban homopentamer in phosphorylated state: Oryctolagus cuniculus E Eukaryota (expressed in E. coli), NMR Structure
|
Vostrikov et al. (2013).
Vostrikov VV, Mote KR, Verardi R, & Veglia G (2013). Structural dynamics and topology of phosphorylated phospholamban homopentamer reveal its role in the regulation of calcium transport.
Structure 21 :2119-2130. PubMed Id: 24207128. doi:10.1016/j.str.2013.09.008. |
||
Plasma Membrane H+-ATPase: Arabidopsis thaliana E Eukaryota, 3.6 Å
|
Pedersen et al. (2007).
Pedersen BP, Buch-Pedersen MJ, Morth JP, Palmgren MG, Lauquin GJ, & Nissen P (2007). Crystal structure of the plasma membrane proton pump.
Nature 450 :1111-1114. PubMed Id: 18075595. |
||
Plasma membrane hexameric H+-ATPase, autoinhibited state (pH 7.4, C1 symmetry): Saccharomyces cerevisiae E Eukaryota, 3.20 Å
cryo-EM structure active state (pH 6.0, BeF3-, conformation 1, C1 symmetry), 3.80 Å 7VH6 |
Zhao et al. (2021).
Zhao P, Zhao C, Chen D, Yun C, Li H, & Bai L (2021). Structure and activation mechanism of the hexameric plasma membrane H+-ATPase.
Nat Commun 12 1:6439. PubMed Id: 34750373. doi:10.1038/s41467-021-26782-y. |
||
Copper-transporting ATPase type P1B: Legionella pneumophila B Bacteria (expressed in E. coli), 3.20 Å
The structure suggests a three-stage copper transport pathway |
Gourdon et al. (2011).
Gourdon P, Liu XY, Skjφrringe T, Morth JP, Mφller LB, Pedersen BP, & Nissen P (2011). Crystal structure of a copper-transporting PIB-type ATPase.
Nature 475 :59-64. PubMed Id: 21716286. doi:10.1038/nature10191. |
||
Copper-transporting ATPase type P1B (E2P state): Legionella pneumophila B Bacteria (expressed in E. coli), 2.75 Å
|
Andersson et al. (2014).
Andersson M, Mattle D, Sitsel O, Klymchuk T, Nielsen AM, Møller LB, White SH, Nissen P, & Gourdon P (2014). Copper-transporting P-type ATPases use a unique ion-release pathway.
Nat Struct Mol Biol 21 :43-48. PubMed Id: 24317491. doi:10.1038/nsmb.2721. |
||
Salustros et al. (2022).
Salustros N, Grønberg C, Abeyrathna NS, Lyu P, Orädd F, Wang K, Andersson M, Meloni G, & Gourdon P (2022). Structural basis of ion uptake in copper-transporting P1B-type ATPases.
Nat Commun 13 1:5121. PubMed Id: 36045128. doi:10.1038/s41467-022-32751-w. |
|||
Guo et al. (2024).
Guo Z, Orädd F, Bågenholm V, Grønberg C, Ma JF, Ott P, Wang Y, Andersson M, Pedersen PA, Wang K, & Gourdon P (2024). Diverse roles of the metal binding domains and transport mechanism of copper transporting P-type ATPases.
Nat Commun 15 1:2690. PubMed Id: 38538615. doi:10.1038/s41467-024-47001-4. |
|||
Cadmium-transporting ATPase type P1B-4, E2-BeF3−: Sulfitobacter sp. B Bacteria (expressed in E. coli), 3.25 Å
E2-AlF4−, 3.11 Å 7QC0 |
Grønberg et al. (2021).
Grønberg C, Hu Q, Mahato DR, Longhin E, Salustros N, Duelli A, Lyu P, Bågenholm V, Eriksson J, Rao KU, Henderson DI, Meloni G, Andersson M, Croll T, Godaly G, Wang K, & Gourdon P (2021). Structure and ion-release mechanism of PIB-4-type ATPases.
Elife 10 :e73124. PubMed Id: 34951590. doi:10.7554/eLife.73124. |
||
gastric H+,K+-ATPase with bound BeF and SCH28080: Sus scrofa E Eukaryota, 7.0 Å
2D electron crystallographic structure in ADP-insensitive E2 state |
Abe et al. (2011).
Abe K, Tani K, & Fujiyoshi Y (2011). Conformational rearrangement of gastric H+,K+-ATPase induced by an acid suppressant.
Nat Commun 2 :155. PubMed Id: 21224846. |
||
gastric H+,K+-ATPase with bound BYK99: Sus scrofa E Eukaryota, 6.5 Å
2D electron crystallographic structure |
Abe et al. (2017).
Abe K, Shimokawa J, Naito M, Munson K, Vagin O, Sachs G, Suzuki H, Tani K, & Fujiyoshi Y (2017). The cryo-EM structure of gastric H+,K+-ATPase with bound BYK99, a high-affinity member of K+-competitive, imidazo[1,2-a]pyridine inhibitors.
Sci Rep 7 :6632. PubMed Id: 28747707. doi:10.1038/s41598-017-06698-8. |
||
gastric H+,K+-ATPase with bound vonoprazan: Sus scrofa E Eukaryota (expressed in HEK293S cells), 2.80 Å
with bound SCH28080, 2.80 Å: 5YLV |
Abe et al. (2018).
Abe K, Irie K, Nakanishi H, Suzuki H, & Fujiyoshi Y (2018). Crystal structures of the gastric proton pump.
Nature 556 7700:214-218. PubMed Id: 29618813. doi:10.1038/s41586-018-0003-8. |
||
Yamamoto et al. (2019).
Yamamoto K, Dubey V, Irie K, Nakanishi H, Khandelia H, Fujiyoshi Y, & Abe K (2019). A single K+-binding site in the crystal structure of the gastric proton pump.
Elife 8 . PubMed Id: 31436534. doi:10.7554/eLife.47701. |
|||
Tanaka et al. (2022).
Tanaka S, Morita M, Yamagishi T, Madapally HV, Hayashida K, Khandelia H, Gerle C, Shigematsu H, Oshima A, & Abe K (2022). Structural Basis for Binding of Potassium-Competitive Acid Blockers to the Gastric Proton Pump.
J Med Chem 65 11:7843-7853. PubMed Id: 35604136. doi:10.1021/acs.jmedchem.2c00338. |
|||
non-gastric (ng) H+,K+-ATPase: alpha2 in K+E2-AlF state: Rattus norvegicus E Eukaryota (expressed in HEK293 cells), 3.30 Å
X-ray structure. cryo-EM structures: K794A in (K+)E2-AlF state, 2.80 Å: 7X21 K794S in 2K+ E2-AlF state, 3.00 Å: 7X22 SPWC mutant in 3Na+E1-AMPPCPF state, 3.20 Å: 7X23 SPWC mutant in (2K+)E2-AlF state, 3.40 Å: 7X24 |
Young et al. (2022).
Young VC, Nakanishi H, Meyer DJ, Nishizawa T, Oshima A, Artigas P, & Abe K (2022). Structure and function of H+/K+ pump mutants reveal Na+/K+ pump mechanisms.
Nat Commun 13 1:5270. PubMed Id: 36085139. doi:10.1038/s41467-022-32793-0. |
||
Timcenko et al. (2019).
Timcenko M, Lyons JA, Januliene D, Ulstrup JJ, Dieudonné T, Montigny C, Ash MR, Karlsen JL, Boesen T, Kühlbrandt W, Lenoir G, Moeller A, & Nissen P (2019). Structure and autoregulation of a P4-ATPase lipid flippase.
Nature 571 7765:366-370. PubMed Id: 31243363. doi:10.1038/s41586-019-1344-7. |
|||
P4-ATPase lipid flippase, autoinhibited Drs2p-Cdc50p, apo form: Saccharomyces cerevisiae E Eukaryota, 2.8 Å
cryo-EM structure in the PI4P-activated form, 3.3 Å: 6SPX |
Bai et al. (2019).
Bai L, Kovach A, You Q, Hsu HC, Zhao G, & Li H (2019). Autoinhibition and activation mechanisms of the eukaryotic lipid flippase Drs2p-Cdc50p.
Nat Commun 10 1. PubMed Id: 31515475. doi:10.1038/s41467-019-12191-9. |
||
P4-ATPase: phosphatidylcholine flippase Dnf2-Lem3 complex in the E1-ADP state: Saccharomyces cerevisiae E Eukaryota, 4.05 Å
cryo-EM structure in the E2P transition state, 3.98 Å: 7KY5 in the E2P state, 3.50 &Ariing;: 7KYA Dnf1-Lem3 complex in the apo E1 state, 3.10 Å: 7KY6 Dnf1-Lem3 complex in the E1-ADP state, 3.20 Å: 7KYB Dnf1-Lem3 complex in the E2P state, 2.80 Å: 7KYC Dnf2-Lem3 complex in the apo E1 state, 3.08 Å: 7KY7 Dnf2-Lem3 complex in the E1-ATP state, 3.85 Å: 7KY8 |
Bai et al. (2020).
Bai L, You Q, Jain BK, Duan HD, Kovach A, Graham TR, & Li H (2020). Transport mechanism of P4 ATPase phosphatidylcholine flippases.
Elife 9 :e62163. PubMed Id: 33320091. doi:10.7554/eLife.62163. |
||
Timcenko et al. (2021).
Timcenko M, Dieudonné T, Montigny C, Boesen T, Lyons JA, Lenoir G, & Nissen P (2021). Structural Basis of Substrate-Independent Phosphorylation in a P4-ATPase Lipid Flippase.
J Mol Biol 433 16:167062. PubMed Id: 34023399. doi:10.1016/j.jmb.2021.167062. |
|||
Bai et al. (2021).
Bai L, Jain BK, You Q, Duan HD, Takar M, Graham TR, & Li H (2021). Structural basis of the P4B ATPase lipid flippase activity.
Nat Commun 12 1:5963. PubMed Id: 34645814. doi:10.1038/s41467-021-26273-0. |
|||
P4-ATPase lipid flippase ATP8A1-CDC50 in all states, E1 state class1: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.3 Å
cryo-EM structure. Movie of structural transitions: Science Magazine E1 state class 2, 3.22 Å: 6K7H E1-ATP state class1, 3.08 Å: 6K7J E1-ATP state class2, 3.22 Å: 6K7I E1-ADP-Pi state, 3.04 Å: 6K7K E2P state class2, 2.83 Å: 6K7L E2Pi-PL state, 2.95 Å: 6K7M E1P state, 2.84 Å: 6K7N |
Hiraizumi et al. (2019).
Hiraizumi M, Yamashita K, Nishizawa T, & Nureki O (2019). Cryo-EM structures capture the transport cycle of the P4-ATPase flippase.
Science 365 6458:1149-1155. PubMed Id: 31416931. doi:10.1126/science.aay3353. |
||
P4-ATPase lipid flippase ATP8B1-CDC50A in E2P autoinhibited state: homo sapiens E Eukaryota (expressed in Saccharomyces cerevisiae), 3.10 Å
cryo-EM structure |
Dieudonné et al. (2022).
Dieudonné T, Herrera SA, Laursen MJ, Lejeune M, Stock C, Slimani K, Jaxel C, Lyons JA, Montigny C, Pomorski TG, Nissen P, & Lenoir G (2022). Autoinhibition and regulation by phosphoinositides of ATP8B1, a human lipid flippase associated with intrahepatic cholestatic disorders.
Elife 11 :e75272. PubMed Id: 35416773. doi:10.7554/eLife.75272. |
||
Nakanishi et al. (2020).
Nakanishi H, Nishizawa T, Segawa K, Nureki O, Fujiyoshi Y, Nagata S, & Abe K (2020). Transport Cycle of Plasma Membrane Flippase ATP11C by Cryo-EM.
Cell Reports 32 13. PubMed Id: 32997992. doi:10.1016/j.celrep.2020.108208. |
|||
P4-ATPase lipid flippase ATP11C-CDC50A in stabilized E2P conformation: Homo Sapiens E Eukaryota (expressed in HEK293 cells), 3.90 Å
|
Nakanishi et al. (2020).
Nakanishi H, Irie K, Segawa K, Hasegawa K, Fujiyoshi Y, Nagata S, & Abe K (2020). Crystal structure of a human plasma membrane phospholipid flippase.
J Biol Chem 295 30:10180-10194. PubMed Id: 32493773. doi:10.1074/jbc.RA120.014144. |
||
P4-ATPase lipid flippase ATP11C in a Nanodisc in PtdSer-occluded E2-Pi state.: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.90 Å
cryo-EM structure E1-P state, 3.40 Å 7VSH |
Nakanishi et al. (2021).
Nakanishi H, Hayashida K, Nishizawa T, Oshima A, & Abe K (2021). Cryo-EM of the ATP11C flippase reconstituted in Nanodiscs shows a distended phospholipid bilayer inner membrane around transmembrane helix 2.
J Biol Chem 298 1:101498. PubMed Id: 34922944. doi:10.1016/j.jbc.2021.101498. |
||
Cheng et al. (2022).
Cheng MT, Chen Y, Chen ZP, Liu X, Zhang Z, Chen Y, Hou WT, & Zhou CZ (2022). Structural insights into the activation of autoinhibited human lipid flippase ATP8B1 upon substrate binding.
Proc Natl Acad Sci U S A 119 14:e2118656119. PubMed Id: 35349344. doi:10.1073/pnas.2118656119. |
|||
McKenna et al. (2020).
McKenna MJ, Sim SI, Ordureau A, Wei L, Harper JW, Shao S, & Park E (2020). The endoplasmic reticulum P5A-ATPase is a transmembrane helix dislocase.
Science 369 6511:1583. PubMed Id: 32973005. doi:10.1126/science.abc5809. |
|||
Li et al. (2021).
Li P, Wang K, Salustros N, Grønberg C, & Gourdon P (2021). Structure and transport mechanism of P5B-ATPases.
Nat Commun 12 1:3973. PubMed Id: 34172751. doi:10.1038/s41467-021-24148-y. |
|||
P5B-ATPase ATP13A2, BeF-bound E2P-like state: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 2.80 Å
cryo-EM structure AlF-bound E2-Pi-like state, 2.50 Å 7N72 ADP-AlF-bound E1P-ADP-like state, 2.90 Å 7N73 D508N mutant in the E1-ATP-like state, 2.80 Å 7N74 E1-apo state, Conformation 1, 2.90 Å 7N75 D458N/D962N mutant in the E1-apo state, Conformation 2, 2.90 Å 7N76 D458N/D962N mutant in the AlF-bound E1P-like state, 3.20 Å 7N77 in the E2-Pi state, 3.00 Å 7N78 |
Sim et al. (2021).
Sim SI, von Bülow S, Hummer G, & Park E (2021). Structural basis of polyamine transport by human ATP13A2 (PARK9).
Mol Cell 81 22:4635-4649.e8. PubMed Id: 34715013. doi:10.1016/j.molcel.2021.08.017. |
||
Tomita et al. (2021).
Tomita A, Daiho T, Kusakizako T, Yamashita K, Ogasawara S, Murata T, Nishizawa T, & Nureki O (2021). Cryo-EM reveals mechanistic insights into lipid-facilitated polyamine export by human ATP13A2.
Mol Cell 81 23:4799-4809.e5. PubMed Id: 34798056. doi:10.1016/j.molcel.2021.11.001. |
|||
Tillinghast et al. (2021).
Tillinghast J, Drury S, Bowser D, Benn A, & Lee KPK (2021). Structural mechanisms for gating and ion selectivity of the human polyamine transporter ATP13A2.
Mol Cell 81 22:4650-4662.e4. PubMed Id: 34715014. doi:10.1016/j.molcel.2021.10.002. |
|||
Mu et al. (2023).
Mu J, Xue C, Fu L, Yu Z, Nie M, Wu M, Chen X, Liu K, Bu R, Huang Y, Yang B, Han J, Jiang Q, Chan KC, Zhou R, Li H, Huang A, Wang Y, & Liu Z (2023). Conformational cycle of human polyamine transporter ATP13A2.
Nat Commun 14 1:1978. PubMed Id: 37031211. doi:10.1038/s41467-023-37741-0. |
|||
Yang et al. (2023).
Yang GM, Xu L, Wang RM, Tao X, Zheng ZW, Chang S, Ma D, Zhao C, Dong Y, Wu S, Guo J, & Wu ZY (2023). Structures of the human Wilson disease copper transporter ATP7B.
Cell Rep 42 5:112417. PubMed Id: 37074913. doi:10.1016/j.celrep.2023.112417. |
|||
Type IX Secretion System Motors
These are α-helical proteins that power secretion of adhesin proteins. See Type IX Secretion System in β-barrel Proteins. |
|||
GldLM proton-powered motor: Flavobacterium johnsoniae B Bacteria, 3.90 Å
cryo-EM structure. See also 6H3I |
Hennell James et al. (2021).
Hennell James R, Deme JC, Kjær A, Alcock F, Silale A, Lauber F, Johnson S, Berks BC, & Lea SM (2021). Structure and mechanism of the proton-driven motor that powers type 9 secretion and gliding motility.
Nat Microbiol 6 2:221-233. PubMed Id: 33432152. doi:10.1038/s41564-020-00823-6. |
||
Decarboxylases
|
|||
Oxaloacetate Decarboxylase Sodium Pump (OAD) βγ sub-complex: Salmonella typhimurium B Bacteria (expressed in E. coli), 3.88 Å
cryo-EM structure crystal structure, 4.4 Å: 6IVA |
Xu et al. (2020).
Xu X, Shi H, Gong X, Chen P, Gao Y, Zhang X, & Xiang S (2020). Structural insights into sodium transport by the oxaloacetate decarboxylase sodium pump.
Elife 9 . PubMed Id: 32459174. doi:10.7554/eLife.53853. |
||
Hydrolases
|
|||
Estrone Sulfatase: Homo sapiens placenta E Eukaryota, 2.6 Å
|
Hernandez-Guzman et al. (2003).
Hernandez-Guzman FG, Higashiyama T, Pangborn W, Osawa Y, & Ghosh D (2003). Structure of human estrone sulfatase suggests functional roles of membrane association.
J Biol Chem 278 :22989-22997. PubMed Id: 12657638. |
||
Estrone Sulfatase: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.04 Å
|
Ghosh (2022).
Ghosh D (2022). Structure of human placental steroid sulfatase at 2.0 angstrom resolution: Catalysis, quaternary association, and a secondary ligand site.
J Steroid Biochem Mol Biol 227 :106228. PubMed Id: 36427797. doi:10.1016/j.jsbmb.2022.106228. |
||
peptidoglycan release complex, SagB-SpdC: Staphylococcus aureus B Bacteria (expressed in E. coli), 2.60 Å
|
Schaefer et al. (2021).
Schaefer K, Owens TW, Page JE, Santiago M, Kahne D, & Walker S (2021). Structure and reconstitution of a hydrolase complex that may release peptidoglycan from the membrane after polymerization.
Nat Microbiol 6 1:34-43. PubMed Id: 33168989. doi:10.1038/s41564-020-00808-5. |
||
alkaline ceramidase 3 (ACER3) determined by Serial Crystallography (SSX) using CrystalDirect: Homo sapiens E Eukaryota (expressed in Spodoptera frugiperda), 2.60 Å
|
Healey et al. (2021).
Healey RD, Basu S, Humm AS, Leyrat C, Cong X, Golebiowski J, Dupeux F, Pica A, Granier S, & Márquez JA (2021). An automated platform for structural analysis of membrane proteins through serial crystallography.
Cell Rep Methods 1 6:100102. PubMed Id: 34723237. doi:10.1016/j.crmeth.2021.100102. |
||
Oxygenases
|
|||
Particulate methane monooxgenase (pMMO): Methylococcus capsulatus B Bacteria, 2.8 Å
|
Lieberman & Rosenzweig (2005).
Lieberman RL & Rosenzweig AC (2005). Crystal structure of a membrane-bound metalloenzyme that catalyses the biological oxidation of methane.
Nature 434 :177-181. PubMed Id: 15674245. |
||
Particulate methane monooxgenase (pMMO): Methylococcus capsulatus B Bacteria, 2.60 Å
cryo-EM structure |
Chang et al. (2021).
Chang WH, Lin HH, Tsai IK, Huang SH, Chung SC, Tu IP, Yu SS, & Chan SI (2021). Copper Centers in the Cryo-EM Structure of Particulate Methane Monooxygenase Reveal the Catalytic Machinery of Methane Oxidation.
J Am Chem Soc 143 26:9922-9932. PubMed Id: 34170126. doi:10.1021/jacs.1c04082. |
||
Particulate methane monooxgenase (pMMO) in a native lipid nanodisc (MC01): Methylococcus capsulatus (Bath) B Bacteria, 2.14 Å
cryo-EM structure MC02, 2.26 Å 7S4I MC03, 2.16 Å 7S4J MC04, 2.36 Å 7S4K MC05, treated with potassium cyanide, 3.62 Å 7T4O MC06, treated with potassium cyanide and copper, 3.62 Å 7T4P |
Koo et al. (2022).
Koo CW, Tucci FJ, He Y, & Rosenzweig AC (2022). Recovery of particulate methane monooxygenase structure and activity in a lipid bilayer.
Science 375 6586:1287-1291. PubMed Id: 35298269. doi:10.1126/science.abm3282. |
||
Particulate methane monooxgenase (pMMO) in a POPC nanodisc: Methylotuvimicrobium alcaliphilum 20Z B Bacteria, 2.46 Å
cryo-EM structure |
Koo et al. (2022).
Koo CW, Tucci FJ, He Y, & Rosenzweig AC (2022). Recovery of particulate methane monooxygenase structure and activity in a lipid bilayer.
Science 375 6586:1287-1291. PubMed Id: 35298269. doi:10.1126/science.abm3282. |
||
Particulate methane monooxgenase (pMMO) in POPC nanodisc: Methylocystis sp. ATCC 49242 B Bacteria, 2.42 Å
cryo-EM structure |
Koo et al. (2022).
Koo CW, Tucci FJ, He Y, & Rosenzweig AC (2022). Recovery of particulate methane monooxygenase structure and activity in a lipid bilayer.
Science 375 6586:1287-1291. PubMed Id: 35298269. doi:10.1126/science.abm3282. |
||
Particulate methane monooxgenase (pMMO): Methylosinus trichosporium OB3b B Bacteria, 3.90 Å
|
Hakemian et al. (2008).
Hakemian AS, Kondapalli KC, Telser J, Hoffman BM, Stemmler TL, & Rosenzweig AC (2008). The metal centers of particulate methane monooxygenase from Methylosinus trichosporium OB3b.
Biochemistry 47 :6793-6801. PubMed Id: 18540635. |
||
kynurenine 3-monooxygenase (KMO), full length, in complex with a pyrazoyl benzoic acid inhibitor: Rattus norvegicus E Eukaryota (expressed in Spodoptera frugiperda), 3.00 Å
in complex with an inhibitor identified via DNA-encoded chemical library screening, 3.00 Å 6LKE |
Mimasu et al. (2021).
Mimasu S, Yamagishi H, Kubo S, Kiyohara M, Matsuda T, Yahata T, Thomson HA, Hupp CD, Liu J, Okuda T, & Kakefuda K (2021). Full-length in meso structure and mechanism of rat kynurenine 3-monooxygenase inhibition.
Commun Biol 4 1:159. PubMed Id: 33542467. doi:10.1038/s42003-021-01666-5. |
||
Transhydrogenases
|
|||
Nicotinamide nucleotide transhydrogenase (TH) proton channel domain, pH 8.5: Thermus thermophilus B Bacteria (expressed in E. coli), 2.77 Å
holo-TH, 6.92 Å: 4O9U |
Leung et al. (2015).
Leung JH, Schurig-Briccio LA, Yamaguchi M, Moeller A, Speir JA, Gennis RB, & Stout CD (2015). Division of labor in transhydrogenase by alternating proton translocation and hydride transfer.
Science 347 6218:178-181. PubMed Id: 25574024. doi:10.1126/science.1260451. |
||
Nicotinamide nucleotide transhydrogenase (TH) proton channel domain, pH 6.5: Thermus thermophilus B Bacteria (expressed in E. coli), 2.2 Å
|
Padayatti et al. (2017).
Padayatti PS, Leung JH, Mahinthichaichan P, Tajkhorshid E, Ishchenko A, Cherezov V, Soltis SM, Jackson JB, Stout CD, Gennis RB, & Zhang Q (2017). Critical Role of Water Molecules in Proton Translocation by the Membrane-Bound Transhydrogenase.
Structure 25 :1111-1119.e3. PubMed Id: 28648609. doi:10.1016/j.str.2017.05.022. |
||
Kampjut & Sazanov (2019).
Kampjut D, & Sazanov LA (2019). Structure and mechanism of mitochondrial proton-translocating transhydrogenase.
Nature 573 7773:291-295. PubMed Id: 31462775. doi:10.1038/s41586-019-1519-2. |
|||
Mo/Wbis-MGD Oxidoreductases
|
|||
Jormakka et al. (2008).
Jormakka M, Yokoyama K, Yano T, Tamakoshi M, Akimoto S, Shimamura T, Curmi P, & Iwata S (2008). Molecular mechanism of energy conservation in polysulfide respiration.
Nat Struct Mol Biol 15 :730-737. PubMed Id: 18536726. |
|||
Oxidoreductases
|
|||
Sulfide:quinone oxidoreductase in complex with decylubiquinone: Aquifex aeolicus B Bacteria, 2.0 Å
"as-purified" protein, 2.30 Å: 3HYV in complex with aurachin C, 2.9 Å: 3HYX This monotopic membrane protein is thought to be buried about 12 Å in the bilayer interface. Listed under TRANSMEMBRANE PROTEINS: ALPHA-HELICAL : Oxidoreductases, MONOTOPIC MEMBRANE PROTEINS : Oxidoreductases (Monotopic). |
Marcia et al. (2009).
Marcia M, Ermler U, Peng G, & Michel H (2009). The structure of Aquifex aeolicus sulfide:quinone oxidoreductase, a basis to understand sulfide detoxification and respiration.
Proc Natl Acad Sci USA 106 :9625-9630. PubMed Id: 19487671. |
||
Electron Transfer Flavoprotein-ubiquinone oxidoreductase (ETF-QO) with bound UQ: Sus scrofa E Eukaryota, 2.5 Å
UQ-free structure, 2.6 Å: 2GMJ. Because this is a mitochondrial respiratory chain protein, it is listed under TRANSMEMBRANE PROTEINS: ALPHA-HELICAL : Oxidoreductases and MONOTOPIC MEMBRANE PROTEINS : Oxidoreductases (Monotopic). |
Zhang et al. (2006).
Zhang J, Frerman FE, & Kim J-JP (2006). Structure of electron transfer flavoprotein-ubiquinone oxidoreductase and electron transfer to the mitochondrial ubiquinone pool.
Proc Natl Acad Sci U S A 103 :16212-16217. PubMed Id: 17050691. |
||
Glycerol-3-phosphate dehydrogenase (GlpD, native): Escherichia coli B Bacteria, 1.75 Å
SeMet-GlpD, 1.95 Å: 2R4J GlpD-2-PGA, 2.3 Å: 2R45 GlpD-PEP, 2.1 Å: 2R46 GlpD-DHAP, 2.1 Å: 2R4E Listed under MONOTOPIC MEMBRANE PROTEINS : Dehydrogenases, TRANSMEMBRANE PROTEINS: ALPHA-HELICAL : Oxidoreductases. |
Yeh et al. (2008).
Yeh JI, Chinte U, & Du S (2008). Structure of glycerol-3-phosphate dehydrogenase, an essential monotopic membrane enzyme involved in respiration and metabolism.
Proc. Natl. Acad. Sci. USA 105 :3280-3285. PubMed Id: 18296637. |
||
NarGHI Nitrate Reductase A: Escherichia coli B Bacteria, 1.9 Å
|
Bertero et al. (2003).
Bertero MG, Rothery RA, Palak M, Hou C, Lim D, Blasco F, Weiner JH, & Strynadka NC (2003). Insights into the respiratory electron transfer pathway from the structure of nitrate reductase A.
Nature Structural Biol 10 :681-687. PubMed Id: 12910261. |
||
NarGHI Nitrate Reductase A catalytic domain NarG with FS0 cluster: Escherichia coli B Bacteria, 2.2 Å
|
Rothery et al. (2004).
Rothery RA, Bertero MG, Cammack R, Palak M, Blasco F, Strynadka NC, & Weiner JH (2004). The catalytic subunit of Escherichia coli nitrate reductase A contains a novel [4Fe-4S] cluster with a high-spin ground state.
Biochemistry 43 :5324-5333. PubMed Id: 15122898. |
||
Bertero et al. (2005).
Bertero MG, Rothery RA, Boroumand N, Palak M, Blasco F, Ginet N, Weiner JH, Strynadka NC (2005). Structural and biochemical characterization of a quinol binding site of Escherichia coli nitrate reductase A.
J Biol Chem 280 :14836-14843. PubMed Id: 15615728. |
|||
NrfH Cytochrome C Quinol Dehydrogenase: Desulfovibrio vulgaris B Bacteria, 2.3 Å
In complex with NrfA cytochrome c nitrite reductase. |
Rodrigues et al. (2006).
Rodrigues ML, Oliveira TF, Pereira AC & Archer M (2006). X-ray structure of the membrane-bound cytochrome c quinol dehydrogenase NrfH reveals novel haem coordination.
EMBO J 25 :5951-5960. PubMed Id: 17139260. |
||
DsbB-DsbA Periplasmic Oxidase Complex: Escherichia coli B Bacteria, 3.7 Å
DsbB is a four-helix bundle membrane protein that works with the periplasmic DsbA oxidase to introduce disulfide bonds into periplasmic proteins. |
Inaba et al. (2006).
Inaba K, Murakami S, Suzuki M, Nakagawa A, Yamashita E, Okada K, & Ito K (2006). Crystal structure of the DsbA-DsbB complex reveals a mechanism of disulfide bond generation.
Cell 127 :789-801. PubMed Id: 17110337. |
||
DsbB-Fab complex: Escherichia coli B Bacteria, 3.4 Å
Shows the principal Cys104-Cys130 disulfide Updated DsbB-DsbA complex: 3.7 Å 2ZUP |
Inaba et al. (2009).
Inaba K, Murakami S, Nakagawa A, Iida H, Kinjo M, Ito K, & Suzuki M (2009). Dynamic nature of disulphide bond formation catalysts revealed by crystal structures of DsbB.
EMBO J 28 :779-791. PubMed Id: 19214188. |
||
wtDsbB-DsbA(Cys133A)-Q8 Complex: Escherichia coli B Bacteria, 3.7 Å
|
Malojcic et al. (2008).
Malojcic G, Owen RL, Grimshaw JP, & Glockshuber R (2008). Preparation and structure of the charge-transfer intermediate of the transmembrane redox catalyst DsbB.
FEBS Lett 582 :3301-3307. PubMed Id: 18775700. |
||
Zhou et al. (2008).
Zhou Y, Cierpicki T, Jimenez RH, Lukasik SM, Ellena JF, Cafiso DS, Kadokura H, Beckwith J, & Bushweller JH (2008). NMR solution structure of the integral membrane enzyme DsbB: functional insights into DsbB-catalyzed disulfide bond formation.
Mol Cell 31 :896-908. PubMed Id: 18922471. |
|||
DsbB in POPE lipid bilayer: Escherichia coli B Bacteria, 1.35 Å
Cys41Ser mutant. Solid-state NMR used to refine the X-ray structure 2ZUQ |
Tang et al. (2013).
Tang M, Nesbitt AE, Sperling LJ, Berthold DA, Schwieters CD, Gennis RB, & Rienstra CM (2013). Structure of the Disulfide Bond Generating Membrane Protein DsbB in the Lipid Bilayer.
J Mol Biol 425 :1670-1682. PubMed Id: 23416557. doi:10.1016/j.jmb.2013.02.009. |
||
DsbB C104S with ubiquinone: Escherichia coli B Bacteria, 2.90 Å
The protein was stabilized for crystallization using a split superfolder green fluorescent protein (from Aequorea victoria) attached to N- and C-termini of DsbB. |
Liu et al. (2020).
Liu S, Li S, Yang Y, & Li W (2020). Termini restraining of small membrane proteins enables structure determination at near-atomic resolution.
Sci Adv 6 51:eabe3717. PubMed Id: 33355146. doi:10.1126/sciadv.abe3717. |
||
CcdA electron transporter: Archaeoglobus fulgidus A Archaea (expressed in E. coli), NMR structure
|
Williamson et al. (2015).
Williamson JA, Cho SH, Ye J, Collet JF, Beckwith JR, & Chou JJ (2015). Structure and multistate function of the transmembrane electron transporter CcdA.
Nat Struct Mol Biol 22 :809-814. PubMed Id: 26389738. doi:10.1038/nsmb.3099. |
||
CcdA electron transporter: Thermus thermophilus B Bacteria (expressed in E. coli), NMR structure
|
Zhou & Bushweller (2018).
Zhou Y, & Bushweller JH (2018). Solution structure and elevator mechanism of the membrane electron transporter CcdA.
Nat Struct Mol Biol 25 2:163-169. PubMed Id: 29379172. doi:10.1038/s41594-018-0022-z. |
||
Vitamin K epoxide reductase: Synechococcus sp. B Bacteria (expressed in E. coli), 3.60 Å
|
Li et al. (2010).
Li W, Schulman S, Dutton RJ, Boyd D, Beckwith J, Rapoport TA (2010). Structure of a bacterial homologue of vitamin K epoxide reductase.
Nature 463 :507-512. PubMed Id: 20110994. |
||
Liu et al. (2014).
Liu S, Cheng W, Fowle Grider R, Shen G, & Li W (2014). Structures of an intramembrane vitamin K epoxide reductase homolog reveal control mechanisms for electron transfer.
Nat Commun 5 :3110. PubMed Id: 24477003. doi:10.1038/ncomms4110. |
|||
Vitamin K epoxide reductase (VKOR) with warfarin: Homo sapiens E Eukaryota (expressed in Komagataella pastoris), 2.20 Å
with phenindione, 2.70 Å: 6WV6 with Brodifacoum, 1.99 Å: 6WVH with Chlorophacinone, 2.48 Å: 6WV7 C43S mutant with warfarin, 3.01 Å: 6WV4 C43S mutant with vitamin K1 epoxide, 2.80 Å: 6WV5 |
Liu et al. (2021).
Liu S, Li S, Shen G, Sukumar N, Krezel AM, & Li W (2021). Structural basis of antagonizing the vitamin K catalytic cycle for anticoagulation.
Science 371 6524:43. PubMed Id: 33154105. doi:10.1126/science.abc5667. |
||
Vitamin K epoxide reductase (VKOR-like): Takifugu rubripes E Eukaryota (expressed in Komagataella pastoris), 2.40 Å
VKOR-like with warfarin, 2.87 Å: 6WVB VKOR-like with vitamin K1 in noncatalytic state, 3.35 Å: 6WV9 VKOR-like with vitamin K1 epoxide at non-catalytic state, 3.35 Å: 6WVA VKOR-like C138S mutant with vitamin K1, 3.01 Å: 6WV8 |
Liu et al. (2021).
Liu S, Li S, Shen G, Sukumar N, Krezel AM, & Li W (2021). Structural basis of antagonizing the vitamin K catalytic cycle for anticoagulation.
Science 371 6524:43. PubMed Id: 33154105. doi:10.1126/science.abc5667. |
||
O2-tolerant Hydrogenase-1 in complex with cytochrome b: Escherichia coli B Bacteria, 3.30 Å
Structure includes transmembrane helices. |
Volbeda et al. (2013).
Volbeda A, Darnault C, Parkin A, Sargent F, Armstrong FA, & Fontecilla-Camps JC (2013). Crystal Structure of the O2-Tolerant Membrane-Bound Hydrogenase 1 from Escherichia coli in Complex with Its Cognate Cytochrome b.
Structure 21 :184-190. PubMed Id: 23260654. doi:10.1016/j.str.2012.11.010. |
||
Volbeda et al. (2012).
Volbeda A, Amara P, Darnault C, Mouesca JM, Parkin A, Roessler MM, Armstrong FA, & Fontecilla-Camps JC (2012). X-ray crystallographic and computational studies of the O2-tolerant [NiFe]-hydrogenase 1 from Escherichia coli.
Proc Natl Acad Sci USA 109 :5305-5310. PubMed Id: 22431599. doi:10.1073/pnas.1119806109. |
|||
Mitochondrial rhodoquinol-fumarate reductase: Ascaris suum E Eukaryota, 2.81 Å
with flutolanil inhibitor and fumarate substrate, 2.91 Å: 3VRB |
Shimizu et al. (2012).
Shimizu H, Osanai A, Sakamoto K, Inaoka DK, Shiba T, Harada S, & Kita K (2012). Crystal structure of mitochondrial quinol-fumarate reductase from the parasitic nematode Ascaris suum.
J Biochem 151 :589-592. PubMed Id: 22577165. doi:10.1093/jb/mvs051. |
||
Lu et al. (2014).
Lu P, Ma D, Yan C, Gong X, Du M, & Shi Y (2014). Structure and mechanism of a eukaryotic transmembrane ascorbate-dependent oxidoreductase.
Proc Natl Acad Sci USA 111 :1813-1818. PubMed Id: 24449903. doi:10.1073/pnas.1323931111. |
|||
Steuber et al. (2014).
Steuber J, Vohl G, Casutt MS, Vorburger T, Diederichs K, & Fritz G (2014). Structure of the V. cholerae Na+-pumping NADH:quinone oxidoreductase.
Nature 516 7529:62-67. PubMed Id: 25471880. doi:10.1038/nature14003. |
|||
Na+-translocating ferredoxin: NAD+ reductase (Rnf): Clostridium tetanomorphum B Bacteria, 4.27 Å
cryo-EM structure |
Vitt et al. (2022).
Vitt S, Prinz S, Eisinger M, Ermler U, & Buckel W (2022). Purification and structural characterization of the Na+-translocating ferredoxin: NAD+ reductase (Rnf) complex of Clostridium tetanomorphum.
Nat Commun 13 1:6315. PubMed Id: 36274063. doi:10.1038/s41467-022-34007-z. |
||
STEAP1 (STEAP=Six-TM epithelial antigen of the prostate) bound to three Fab120.545 fragments: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.97 Å
cryo-EM structure STEAP1 is unusual in that it lacks the NADPH binding domain and does not exhibit ferric reductase activity. |
Oosterheert & Gros (2020).
Oosterheert W, & Gros P (2020). Cryo-electron microscopy structure and potential enzymatic function of human six-transmembrane epithelial antigen of the prostate 1 (STEAP1).
J Biol Chem 295 28:9502-9512. PubMed Id: 32409586. doi:10.1074/jbc.RA120.013690. |
||
STEAP4 (STEAP=Six-TM epithelial antigen of the prostate) bound to NADP, FAD, heme and Fe(III)-NTA: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.10 Å
cryo-EM structure bound to NADPH, FAD and heme, 3.80 Å: 6HD1 |
Oosterheert et al. (2018).
Oosterheert W, van Bezouwen LS, Rodenburg RNP, Granneman J, Förster F, Mattevi A, & Gros P (2018). Cryo-EM structures of human STEAP4 reveal mechanism of iron(III) reduction.
Nat Commun 9 1:4337. PubMed Id: 30337524. doi:10.1038/s41467-018-06817-7. |
||
Sun (2020).
Sun J (2020). Structures of mouse DUOX1-DUOXA1 provide mechanistic insights into enzyme activation and regulation.
Nat Struct Mol Biol 27 11:1086-1093. PubMed Id: 32929281. doi:10.1038/s41594-020-0501-x. |
|||
DUOX1-DUOXA1 complex of the NADPH oxidase family, high-calcium state: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.60 Å
cryo-EM structure low-calcium state, 2.80 Å: 7D3E |
Wu et al. (2021).
Wu JX, Liu R, Song K, & Chen L (2021). Structures of human dual oxidase 1 complex in low-calcium and high-calcium states.
Nat Commun 12 1:155. PubMed Id: 33420071. doi:10.1038/s41467-020-20466-9. |
||
NADPH oxidase NOX2: Homo sapiens E Eukaryota (expressed in HEK293 cells), 3.20 Å
cryo-EM structure |
Noreng et al. (2022).
Noreng S, Ota N, Sun Y, Ho H, Johnson M, Arthur CP, Schneider K, Lehoux I, Davies CW, Mortara K, Wong K, Seshasayee D, Masureel M, Payandeh J, Yi T, & Koerber JT (2022). Structure of the core human NADPH oxidase NOX2.
Nat Commun 13 1:6079. PubMed Id: 36241643. doi:10.1038/s41467-022-33711-0. |
||
Heme-Handling Proteins
|
|||
CcmF Cytochrome c Heme Lyase: Thermus thermophilus B Bacteria (expressed in E. coli), 2.67 Å
|
Brausemann et al. (2021).
Brausemann A, Zhang L, Ilcu L, & Einsle O (2021). Architecture of the membrane-bound cytochrome c heme lyase CcmF.
Nat Chem Biol 17 7:800-805. PubMed Id: 33958791. doi:10.1038/s41589-021-00793-8. |
||
Cytochrome c maturation (Ccm) protein system. CcmABCD complex, apo form, closed NBD state: Escherichia coli B Bacteria, 3.24 Å
cryo-EM structure ligand-free, apo form, open NBD state, 3.98 Å: 7VFJ with bound AMP-PNP in closed NBD state, 3.29 Å: 7F03 in complex with Heme and ATP, 2.86 Å: 7F04 in complex with heme and single ATP, 4.03 Å: 7VFP |
Li et al. (2022).
Li J, Zheng W, Gu M, Han L, Luo Y, Yu K, Sun M, Zong Y, Ma X, Liu B, Lowder EP, Mendez DL, Kranz RG, Zhang K, & Zhu J (2022). Structures of the CcmABCD heme release complex at multiple states.
Nat Commun 13 1:6422. PubMed Id: 36307425. doi:10.1038/s41467-022-34136-5. |
||
Ilcu et al. (2023).
Ilcu L, Denkhaus L, Brausemann A, Zhang L, & Einsle O (2023). Architecture of the Heme-translocating CcmABCD/E complex required for Cytochrome c maturation.
Nat Commun 14 1:5190. PubMed Id: 37626034. doi:10.1038/s41467-023-40881-y. |
|||
CcsBA bifunctional protein (heme transporter & cyt c synthase), Open Conformation: Helicobacter hepaticus B Bacteria (expressed in E. coli), 3.56 Å
cryo-EM structure closed conformation, 4.14 Å 7S9Z |
Mendez et al. (2022).
Mendez DL, Lowder EP, Tillman DE, Sutherland MC, Collier AL, Rau MJ, Fitzpatrick JAJ, & Kranz RG (2022). Cryo-EM of CcsBA reveals the basis for cytochrome c biogenesis and heme transport.
Nat Chem Biol 18 1:101-108. PubMed Id: 34931065. doi:10.1038/s41589-021-00935-y. |
||
Electron Transport Chain Complexes: Complex I
|
|||
Complex I membrane domain: Escherichia coli B Bacteria, 3.90 Å
|
Efremov et al. (2010).
Efremov RG, Baradaran R, & Sazanov LA (2010). High-resolution The architecture of respiratory complex I.
Nature 465 :441-445. PubMed Id: 20505720. |
||
Complex I membrane domain: Escherichia coli B Bacteria, 3.00 Å
|
Efremov & Sazanov (2011).
Efremov RG & Sazanov LA (2011). Structure of the membrane domain of respiratory complex I.
Nature 476 :414-420. PubMed Id: 21831629. doi:10.1038/nature10330. |
||
Kolata & Efremov (2021).
Kolata P, & Efremov RG (2021). Structure of Escherichia coli respiratory complex I reconstituted into lipid nanodiscs reveals an uncoupled conformation.
Elife 10 :e68710. PubMed Id: 34308841. doi:10.7554/eLife.68710. |
|||
Complex I peripheral arm: Escherichia coli B Bacteria, 2.73 Å
cryo-EM structure |
Schimpf et al. (2022).
Schimpf J, Oppermann S, Gerasimova T, Santos Seica AF, Hellwig P, Grishkovskaya I, Wohlwend D, Haselbach D, & Friedrich T (2022). Structure of the peripheral arm of a minimalistic respiratory complex I.
Structure 30 1:80-94.e4. PubMed Id: 34562374. doi:10.1016/j.str.2021.09.005. |
||
Respiratory Complex I, DDM-purified, Apo, Resting state: Escherichia coli B Bacteria, 3.60 Å
cryo-EM structure DDM-purified, with NADH, Resting state, 3.20 Å: 7P61 DDM/LMNG-purified, Apo, Open state, 2.40 Å: 7P7C DDM/LMNG-purified, Apo, Resting state, 2.70 Å: 7P7E DDM/LMNG-purified, with DQ, Open state, 2.70 Å: 7P7J DDM/LMNG-purified, with DQ, Resting state, 3.10 Å: 7P7K DDM/LMNG-purified, with NADH and FMN, Open state, 3.00 Å: 7P7L DDM/LMNG-purified, inhibited by Piericidin A, Open state, 3.20 Å: 7P7M DDM/LMNG-purified, under Turnover at pH 6, Closed state, 3.40 Å: 7P63 DDM/LMNG-purified, under Turnover at pH 6, Open state, 2.50 Å: 7P64 DDM/LMNG-purified, under Turnover at pH 6, Resting state, 3.00 Å: 7P69 DDM/LMNG-purified, under Turnover at pH 8, Closed state, 2.93 Å: 7Z80 DDM/LMNG-purified, under Turnover at pH 8, Resting state, 3.00 Å: 7ZC5 LMNG-purified, Apo, Open-ready state, 3.36 Å: 7Z7R LMNG-purified, under Turnover at pH 6, Open state, 3.10 Å: 7Z7T LMNG-purified, under Turnover at pH 6, Open-ready state, 2.29 Å: 7Z7V LMNG-purified, under Turnover at pH 6, Closed state, 2.40 Å: 7Z7S LMNG-purified, under Turnover at pH 6, Resting state, 2.69 Å: 7ZCI |
Kravchuk et al. (2022).
Kravchuk V, Petrova O, Kampjut D, Wojciechowska-Bason A, Breese Z, & Sazanov L (2022). A universal coupling mechanism of respiratory complex I.
Nature 609 7928:808-814. PubMed Id: 36104567. doi:10.1038/s41586-022-05199-7. |
||
Complex I complete: Thermus thermophilus B Bacteria, 4.50 Å
|
Efremov et al. (2010).
Efremov RG, Baradaran R, & Sazanov LA (2010). High-resolution The architecture of respiratory complex I.
Nature 465 :441-445. PubMed Id: 20505720. |
||
Baradaran et al. (2013).
Baradaran R, Berrisford JM, Minhas GS, & Sazanov LA (2013). Crystal structure of the entire respiratory complex I.
Nature 494 :443-448. PubMed Id: 23417064. doi:10.1038/nature11871. |
|||
Complex I soluble domain, oxidized (4 mol/ASU): Thermus thermophilus B Bacteria, 3.30 Å
|
Sazanov & Hinchliffe (2006).
Sazanov LA & Hinchliffe P (2006). Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus
Science 311 :1430-1436. PubMed Id: 16469879. doi:10.1126/science.1123809. |
||
Berrisford & Sazanov (2009).
Berrisford JM & Sazanov LA (2009). Structural basis for the mechanism of respiratory complex I
J Biol Chem 284 :29773-29783. PubMed Id: 19635800. doi:10.1074/jbc.M109.032144. |
|||
Complex I complete: Thermus thermophilus B Bacteria, 3.11 Å
with bound NADH, 3.21 Å: 6I1P with bound Decyl-Ubiquinone, 3.60 Å: 6I0D with bound Piericidin A, 3.60 Å: 6Q8O with bound Aureothin, 3.40 Å: 6Q8W with bound Pyridaben, 3.51 Å: 6Q8X cryo-EM structures: NADH dataset, major state, 4.25 Å: 6ZIY NADH dataset, minor state, 6.10 Å: 6ZJN NAD+ dataset, major state, 4.30 Å: 6ZJL NAD+ dataset, minor state, 5.50 Å: 6ZJY |
Gutiérrez-Fernández et al. (2020).
Gutiérrez-Fernández J, Kaszuba K, Minhas GS, Baradaran R, Tambalo M, Gallagher DT, & Sazanov LA (2020). Key role of quinone in the mechanism of respiratory complex I.
Nat Commun 11 1:4135. PubMed Id: 32811817. doi:10.1038/s41467-020-17957-0. |
||
Kishikawa et al. (2022).
Kishikawa JI, Ishikawa M, Masuya T, Murai M, Kitazumi Y, Butler NL, Kato T, Barquera B, & Miyoshi H (2022). Cryo-EM structures of Na+-pumping NADH-ubiquinone oxidoreductase from Vibrio cholerae.
Nat Commun 13 1:4082. PubMed Id: 35882843. doi:10.1038/s41467-022-31718-1. |
|||
Respiratory Complex I, single-particle cryo-EM structure: Bos taurus E Eukaryota, 4.95 Å
EM map of deposited in EM Data Bank under accession number EMD-2676 |
Vinothkumar et al. (2014).
Vinothkumar KR, Zhu J, & Hirst J (2014). Architecture of mammalian respiratory complex I.
Nature 515 7525:80-84. PubMed Id: 25209663. doi:10.1038/nature13686. |
||
Zhu et al. (2016).
Zhu J, Vinothkumar KR, & Hirst J (2016). Structure of mammalian respiratory complex I.
Nature 536 :354-358. PubMed Id: 27509854. doi:10.1038/nature19095. |
|||
Respiratory Complex I, deactive state: Bos taurus E Eukaryota, 4.13 Å
cryo-EM structure |
Blaza et al. (2018).
Blaza JN, Vinothkumar KR, & Hirst J (2018). Structure of the Deactive State of Mammalian Respiratory Complex I.
Structure 26 2:312-319.e3. PubMed Id: 29395787. doi:10.1016/j.str.2017.12.014. |
||
Chung et al. (2022).
Chung I, Wright JJ, Bridges HR, Ivanov BS, Biner O, Pereira CS, Arantes GM, & Hirst J (2022). Cryo-EM structures define ubiquinone-10 binding to mitochondrial complex I and conformational transitions accompanying Q-site occupancy.
Nat Commun 13 1:2758. PubMed Id: 35589726. doi:10.1038/s41467-022-30506-1. |
|||
Bridges et al. (2023).
Bridges HR, Blaza JN, Yin Z, Chung I, Pollak MN, & Hirst J (2023). Structural basis of mammalian respiratory complex I inhibition by medicinal biguanides.
Science 379 6630:351-357. PubMed Id: 36701435. doi:10.1126/science.ade3332. |
|||
Respiratory Complex I, active state complex from Q10 dataset: Sus scrofa E Eukaryota, 2.90 Å
cryo-EM structure Deactive state from Q10 dataset, 3.30 Å7V2D Active state complex rom Q10-NADH dataset, 2.80 Å 7V2E Deactive state complex from Q10-NADH dataset, 3.10 Å 7V2F Active state complex from DQ-NADH dataset, 2.50 Å 7V2H Deactive state complex from DQ-NADH dataset, 2.70 Å 7V2K Active state complex from Q1-NADH dataset, 2.60 Å 7V2R Deactive state complex from Q1-NADH dataset, 2.70 Å 7V30 Active state complex from rotenone dataset, 2.90 Å 7V31 Deactive state complex from rotenone dataset, 3.20 Å 7V32 Active state complex from rotenone-NADH dataset, 2.60 Å 7V33 Deactive state complex from rotenone-NADH dataset, 2.90 Å 7V3M |
Gu et al. (2022).
Gu J, Liu T, Guo R, Zhang L, & Yang M (2022). The coupling mechanism of mammalian mitochondrial complex I.
Nat Struct Mol Biol 29 2:172-182. PubMed Id: 35145322. doi:10.1038/s41594-022-00722-w. |
||
Respiratory Complex I, single-particle cryo-EM structure: Ovis aries E Eukaryota, 3.9 Å
|
Fiedorczuk et al. (2016).
Fiedorczuk K, Letts JA, Degliesposti G, Kaszuba K, Skehel M, & Sazanov LA (2016). Atomic structure of the entire mammalian mitochondrial complex I.
Nature 538 :406-410. PubMed Id: 27595392. doi:10.1038/nature19794. |
||
Kravchuk et al. (2022).
Kravchuk V, Petrova O, Kampjut D, Wojciechowska-Bason A, Breese Z, & Sazanov L (2022). A universal coupling mechanism of respiratory complex I.
Nature 609 7928:808-814. PubMed Id: 36104567. doi:10.1038/s41586-022-05199-7. |
|||
Respiratory Complex I, active state: Mus musculus E Eukaryota, 3.3 Å
cryo-EM structure in deactive state, 3.9 Å: 6G72 |
Agip et al. (2018).
Agip AA, Blaza JN, Bridges HR, Viscomi C, Rawson S, Muench SP, & Hirst J (2018). Cryo-EM structures of complex I from mouse heart mitochondria in two biochemically defined states.
Nat Struct Mol Biol 25 :548-556. PubMed Id: 29915388. doi:10.1038/s41594-018-0073-1. |
||
Respiratory Complex I with inhibitor piericidin A: Mus musculus E Eukaryota, 3.00 Å
cryo-EM structure active state structure, 3.10 Å: 6ZR2 |
Bridges et al. (2020).
Bridges HR, Fedor JG, Blaza JN, Di Luca A, Jussupow A, Jarman OD, Wright JJ, Agip AA, Gamiz-Hernandez AP, Roessler MM, Kaila VRI, & Hirst J (2020). Structure of inhibitor-bound mammalian complex I.
Nat Commun 11 1. PubMed Id: 33067417. doi:10.1038/s41467-020-18950-3. |
||
Respiratory Complex I, deactive state: Mus musculus E Eukaryota, 3.17 Å
cryo-EM structure ND6-P25L mutant, 3.82 Å: 7AK6 |
Yin et al. (2021).
Yin Z, Burger N, Kula-Alwar D, Aksentijević D, Bridges HR, Prag HA, Grba DN, Viscomi C, James AM, Mottahedin A, Krieg T, Murphy MP, & Hirst J (2021). Structural basis for a complex I mutation that blocks pathological ROS production.
Nat Commun 12 1:707. PubMed Id: 33514727. doi:10.1038/s41467-021-20942-w. |
||
Respiratory Complex I inhibited by IACS-2858: Mus musculus E Eukaryota, 3.04 Å
cryo-EM structure |
Chung et al. (2021).
Chung I, Serreli R, Cross JB, Di Francesco ME, Marszalek JR, & Hirst J (2021). Cork-in-bottle mechanism of inhibitor binding to mammalian complex I.
Sci Adv 7 20:eabg4000. PubMed Id: 33990335. doi:10.1126/sciadv.abg4000. |
||
Respiratory Complex I inhibited by acetogenin: Mus musculus E Eukaryota, 3.04 Å
cryo-EM structure |
Grba et al. (2022).
Grba DN, Blaza JN, Bridges HR, Agip AA, Yin Z, Murai M, Miyoshi H, & Hirst J (2022). Cryo-electron microscopy reveals how acetogenins inhibit mitochondrial respiratory complex I.
J Biol Chem 298 3:101602. PubMed Id: 35063503. doi:10.1016/j.jbc.2022.101602. |
||
Respiratory Complex I, active state: Drosophila melanogaster E Eukaryota, 3.28 Å
cryo-EM structure twisted state, 3.68 Å: 8BA0 |
Agip et al. (2023).
Agip AA, Chung I, Sanchez-Martinez A, Whitworth AJ, & Hirst J (2023). Cryo-EM structures of mitochondrial respiratory complex I from Drosophila melanogaster.
Elife 12 . PubMed Id: 36622099. doi:10.7554/eLife.84424. |
||
Mitochondrial Complex I: Yarrowia lipolytica E Eukaryota, 3.8 Å
Anisotropic crystals. Structure was refined at 3.9 Å x 3.9 Å x 3.6 Å. |
Zickermann et al. (2015).
Zickermann V, Wirth C, Nasiri H, Siegmund K, Schwalbe H, Hunte C, & Brandt U (2015). Structural biology. Mechanistic insight from the crystal structure of mitochondrial complex I.
Science 347 6217:44-49. PubMed Id: 25554780. doi:10.1126/science.1259859. |
||
Mitochondrial Complex I in deactive form: Yarrowia lipolytica E Eukaryota, 4.3 Å
cryo-EM structure |
Parey et al. (2018).
Parey K, Brandt U, Xie H, Mills DJ, Siegmund K, Vonck J, Kühlbrandt W, & Zickermann V (2018). Cryo-EM structure of respiratory complex I at work.
Elife 7 :e39213. PubMed Id: 30277212. doi:10.7554/eLife.39213. |
||
Parey et al. (2019).
Parey K, Haapanen O, Sharma V, Köfeler H, Züllig T, Prinz S, Siegmund K, Wittig I, Mills DJ, Vonck J, Kühlbrandt W, & Zickermann V (2019). High-resolution cryo-EM structures of respiratory complex I: Mechanism, assembly, and disease.
Sci Adv 5 12:eaax9484. PubMed Id: 31844670. doi:10.1126/sciadv.aax9484. |
|||
Mitochondrial Complex I: Yarrowia lipolytica E Eukaryota, 2.70 Å
cryo-EM structure complex I sub-stoichiometric sulfur transferase subunit by focused refinement, 3.50 Å: 6YJ5 |
Grba & Hirst (2020).
Grba DN, & Hirst J (2020). Mitochondrial complex I structure reveals ordered water molecules for catalysis and proton translocation.
Nat Struct Mol Biol 27 10:892-900. PubMed Id: 32747785. doi:10.1038/s41594-020-0473-x. |
||
Mitochondrial Complex I, F89A mutant: Yarrowia lipolytica E Eukaryota, 2.96 Å
cryo-EM structure |
Galemou Yoga et al. (2020).
Galemou Yoga E, Parey K, Djurabekova A, Haapanen O, Siegmund K, Zwicker K, Sharma V, Zickermann V, & Angerer H (2020). Essential role of accessory subunit LYRM6 in the mechanism of mitochondrial complex I.
Nat Commun 11 1:6008. PubMed Id: 33243981. doi:10.1038/s41467-020-19778-7. |
||
Membrane-bound hydrogenase ancient respiratory system: Pyrococcus furiosus A Archaea, 3.7 Å
cryo-EM structure |
Yu et al. (2018).
Yu H, Wu CH, Schut GJ, Haja DK, Zhao G, Peters JW, Adams MWW, & Li H (2018). Structure of an Ancient Respiratory System.
Cell 173 7:1636-1649.e16. PubMed Id: 29754813. doi:10.1016/j.cell.2018.03.071. |
||
Complex I-like photosynthetic NAD(P)H, NDH-Fd structure: Thermosynechococcus elongatus B Bacteria (expressed in E. coli), 3 Å
cryo-EM structure NDH-PQ structure, 3 Å: 6KHJ |
Pan et al. (2020).
Pan X, Cao D, Xie F, Xu F, Su X, Mi H, Zhang X, & Li M (2020). Structural basis for electron transport mechanism of complex I-like photosynthetic NAD(P)H dehydrogenase.
Nat Commun 11 1. PubMed Id: 32001694. doi:10.1038/s41467-020-14456-0. |
||
ferredoxin (FD)-NDH-1L complex: Thermosynechococcus elongatus B Bacteria (expressed in E. coli), 3.2 Å
cryo-EM structure NDH-1LdelV complex, 3.6 Å: 6L7P |
Zhang et al. (2020).
Zhang C, Shuai J, Ran Z, Zhao J, Wu Z, Liao R, Wu J, Ma W, & Lei M (2020). Structural insights into NDH-1 mediated cyclic electron transfer.
Nat Commun 11 1:888. PubMed Id: 32060291. doi:10.1038/s41467-020-14732-z. |
||
Mrp ancient cation/proton antiporter complex: Anoxybacillus flavithermus B Bacteria (expressed in E.coli), 2.98 Å
cryo-EM structure |
Steiner & Sazanov (2020).
Steiner J, & Sazanov L (2020). Structure and mechanism of the Mrp complex, an ancient cation/proton antiporter.
Elife 9 :e59407. PubMed Id: 32735215. doi:10.7554/eLife.59407. |
||
Formate hydrogenlyase complex, anaerobic preparation, without formate dehydrogenase H: Escherichia coli B Bacteria, 2.60 Å
cryo-EM structure aerobic preparation, composite structure, 3.40 Å: 7Z0T |
Steinhilper et al. (2022).
Steinhilper R, Höff G, Heider J, & Murphy BJ (2022). Structure of the membrane-bound formate hydrogenlyase complex from Escherichia coli.
Nat Commun 13 1:5395. PubMed Id: 36104349. doi:10.1038/s41467-022-32831-x. |
||
mitochondrial complex I* from mung bean: Vigna radiata E Eukaryota, 3.90 Å
cryo-EM structure |
Maldonado et al. (2020).
Maldonado M, Padavannil A, Zhou L, Guo F, & Letts JA (2020). Atomic structure of a mitochondrial complex I intermediate from vascular plants.
Elife 9 . PubMed Id: 32840211. doi:10.7554/eLife.56664. |
||
Mitochondrial Complex I: Brassica oleracea E Eukaryota, 3.70 Å
cryo-EM structure assembly intermediate, 3.80 Å: 7A24 |
Soufari et al. (2020).
Soufari H, Parrot C, Kuhn L, Waltz F, & Hashem Y (2020). Specific features and assembly of the plant mitochondrial complex I revealed by cryo-EM.
Nat Commun 11 1:5195. PubMed Id: 33060577. doi:10.1038/s41467-020-18814-w. |
||
Mitochondrial Complex I: native complex, closed: Ovis aries E Eukaryota, 3.80 Å
cryo-EM structure native complex, open1. 3.20 Å: 6ZKP native complex, open2. 3.30 Å: 6ZKQ native open3. 3.50 Å: 6ZKR with NADH, closed. 3.40 Å: 6ZKG with NADH, open1. 3.00 Å: 6ZKH with NADH, open2. 2.80 Å: 6ZKI with NADH, open3. 3.00 Å: 6ZKJ Deactive complex I, open1. 3.10 Å: 6ZKS Deactive complex I, open2. 2.80 Å: 6ZKT Deactive complex I, open3. 3.00 Å: 6ZKU Deactive complex I, open4. 2.90 Å: 6ZKV inhibited by rotenone, closed. 3.70 Å: 6ZKK inhibited by rotenone, open1. 3.10 Å: 6ZKL inhibited by rotenone, open2. 2.80 Å: 6ZKM inhibited by rotenone, open3. 2.90 Å: 6ZKN during turnover, closed. 3.10 Å: 6ZKC during turnover, open1. 2.70 Å: 6ZKD during turnover, open2. 2.60 Å: 6ZKE during turnover, open3. 2.80 Å: 6ZKF Peripheral domain of open complex I, during turnover. 2.30 Å: 6ZK9 Membrane domain of open complex I during turnover. 6ZKA Membrane domain of closed complex I during turnover. 6ZKB |
Kampjut & Sazanov (2020).
Kampjut D, & Sazanov LA (2020). The coupling mechanism of mammalian respiratory complex I.
Science 370 6516. PubMed Id: 32972993. doi:10.1126/science.abc4209. |
||
Klusch et al. (2021).
Klusch N, Senkler J, Yildiz Ö, Kühlbrandt W, & Braun HP (2021). A ferredoxin bridge connects the two arms of plant mitochondrial complex I.
Plant Cell 33 6:2072-2091. PubMed Id: 33768254. doi:10.1093/plcell/koab092. |
|||
Klusch et al. (2021).
Klusch N, Senkler J, Yildiz Ö, Kühlbrandt W, & Braun HP (2021). A ferredoxin bridge connects the two arms of plant mitochondrial complex I.
Plant Cell 33 6:2072-2091. PubMed Id: 33768254. doi:10.1093/plcell/koab092. |
|||
Mitochondrial complex I, active state: Mus musculus E Eukaryota, 2.39 Å
cryo-EM structure with bound piericidin A, 2.84 Å: 8OLT |
Grba et al. (2023).
Grba DN, Chung I, Bridges HR, Agip AA, & Hirst J (2023). Investigation of hydrated channels and proton pathways in a high-resolution cryo-EM structure of mammalian complex I.
Sci Adv 9 31:eadi1359. PubMed Id: 37531432. doi:10.1126/sciadv.adi1359. |
||
Electron Transport Chain Complexes: Complex II
|
|||
Fumarate Reductase Complex: Escherichia coli B Bacteria, 3.3 Å
This structure has been replaced by 1L0V, below. |
Iverson et al. (1999).
Iverson TM, Luna-Chavez C, Cecchini G, & Rees DC (1999). Structure of the Escherichia coli fumerate reductase respiratory complex.
Science 284 :1961-1966. PubMed Id: 10373108. |
||
Iverson et al. (2002).
Iverson TM, Luna-Chavez C, Croal LR, Cecchini G, & Rees DC (2002). Crystallographic studies of the Escherichia coli quinol-fumarate reductase with inhibitors bound to the quinol-binding site.
J Biol Chem 277 :16124-16130. PubMed Id: 11850430. |
|||
Fumarate Reductase Complex FrdA, E245Q mutant: Escherichia coli B Bacteria, 4.22 Å
|
Starbird et al. (2017).
Starbird CA, Maklashina E, Sharma P, Qualls-Histed S, Cecchini G, & Iverson TM (2017). Structural and biochemical analyses reveal insights into covalent flavinylation of the Escherichia coli Complex II homolog quinol:fumarate reductase.
J Biol Chem 292 :12921-12933. PubMed Id: 28615448. doi:10.1074/jbc.M117.795120. |
||
Fumarate Reductase Complex: Wolinella succinogenes B Bacteria, 1.78 Å
This structure supersedes 1QLA at 2.2 Å published by Lancaster et al.. 2BS2 has small unit cell. 1QLB, 2.2 Å, has a larger unit cell. |
Madej et al. (2006).
Madej MG, Nasiri HR, Hilgendorff NS, Schwalbe H, & Lancaster CR (2006). Evidence for transmembrane proton transfer in a dihaem-containing membrane protein complex.
EMBO J 25 :4963-4970. PubMed Id: 17024183. doi:10.1038/sj.emboj.7601361. See also: Lancaster et al. (1999). Lancaster CRD, Kröger A, Auer M, & Michel H (1999). Structure of fumarate reductase from Wolinella succinogenes at 2.2 Å resolution.
Nature 402 :377-385. PubMed Id: 10586875. |
||
Formate dehydrogenase-N: Escherichia coli B Bacteria, 1.6 Å (native structure)
HQNO complex, 2.8 Å: 1KQG |
Jormakka et al. (2002).
Jormakka M, Tornroth S, Byrne B, & Iwata S (2002). Molecular basis of proton motive force generation: structure of formate dehydrogenase-N.
Science 295 :1863-1868. PubMed Id: 11884747. |
||
Succinate:quinone oxidoreductase (SQR, Complex II): Escherichia coli B Bacteria, 2.6 Å
DNP-17 Complex, 2.9 Å: 1NEN |
Yankovskaya et al. (2003).
Yankovskaya V, Horsefield R, Törnroth S, Luna-Chavez C, Miyoshi H, Léger C, Byrne B, Cecchini G, & Iwata S (2003). Architecture of succinate dehydrogenase and reactive oxygen species generation.
Science 299 :700-704. PubMed Id: 12560550. |
||
Succinate:quinone oxidoreductase (SQR, Complex II) with Atpenin A5: Escherichia coli B Bacteria, 3.10 Å
|
Horsefield et al. (2006).
Horsefield R, Yankovskaya V, Sexton G, Whittingham W, Shiomi K, Omura S, Byrne B, Cecchini G, & Iwata S (2006). Structural and computational analysis of the quinone-binding site of complex II (succinate-ubiquinone oxidoreductase): a mechanism of electron transfer and proton conduction during ubiquinone reduction.
J Biol Chem 281 :7309-7316. PubMed Id: 16407191. |
||
Ruprecht et al. (2009).
Ruprecht J, Yankovskaya V, Maklashina E, Iwata S, & Cecchini G (2009). Structure of Escherichia coli succinate:quinone oxidoreductase with an occupied and empty quinone-binding site.
J Biol Chem 284 :29836-29846. PubMed Id: 19710024. doi:10.1074/jbc.M109.010058. |
|||
Succinate:quinone oxidoreductase (SQR, Complex II), H207T SdhB mutant: Escherichia coli B Bacteria, 2.70 Å
|
Ruprecht et al. (2011).
Ruprecht J, Iwata S, Rothery RA, Weiner JH, Maklashina E, & Cecchini G (2011). Perturbation of the quinone-binding site of complex II alters the electronic properties of the proximal [3Fe-4S] iron-sulfur cluster
J Biol Chem 286 :12756-12765. PubMed Id: 21310949. doi:10.1074/jbc.M110.209874. |
||
Succinate:quinone oxidoreductase (SQR, Complex II): Escherichia coli B Bacteria, 3.60 Å
cryo-EM structure resolution 2.50 Å: 7ZJ2 |
Su et al. (2021).
Su CC, Lyu M, Morgan CE, Bolla JR, Robinson CV, & Yu EW (2021). A 'Build and Retrieve' methodology to simultaneously solve cryo-EM structures of membrane proteins.
Nat Methods 18 1:69-75. PubMed Id: 33408407. doi:10.1038/s41592-020-01021-2. |
||
Succinate:ubiquinone oxidoreductase (SQR, Complex II; pig heart): Sus scrofa E Eukaryota, 2.4 Å
with inhibitors, 3.5 Å: 1ZP0 |
Sun et al. (2005).
Sun F, Huo X, Zhai Y, Wang A, Xu J, Su D, Bartlam M, & Rao Z (2005). Crystal structure of mitochondrial respiratory membrane protein complex II.
Cell 121 :1043-1057. PubMed Id: 15989954. |
||
Huang et al. (2006).
Huang LS, Sun G, Cobessi D, Wang AC, Shen JT, Tung EY, Anderson VE, & Berry EA (2006). 3-nitropropionic acid is a suicide inhibitor of mitochondrial respiration that, upon oxidation by complex II, forms a covalent adduct with a catalytic base arginine in the active site of the enzyme.
J Biol Chem 281 :5965-5972. PubMed Id: 16371358. |
|||
Succinate:ubiquinone oxidoreductase (SQR, Complex II; chicken heart) with TEO at the active site: Gallus gallus E Eukaryota, 1.74 Å
with bound malonate at the active site, 2.40 Å: 2H89 |
Huang et al. (2006).
Huang LS, Shen JT, Wang AC, & Berry EA (2006). Crystallographic studies of the binding of ligands to the dicarboxylate site of Complex II, and the identity of the ligand in the "oxaloacetate-inhibited" state.
Biochim Biophys Acta 1757 :1073-1083. PubMed Id: 16935256. |
||
succinate dehydrogenase Sdh1 complex in the apo form: Mycolicibacterium smegmatis B Bacteria, 2.88 Å
cryo-EM structure in complex with UQ1, 2.53 Å: 7D6V |
Zhou et al. (2021).
Zhou X, Gao Y, Wang W, Yang X, Yang X, Liu F, Tang Y, Lam SM, Shui G, Yu L, Tian C, Guddat LW, Wang Q, Rao Z, & Gong H (2021). Architecture of the mycobacterial succinate dehydrogenase with a membrane-embedded Rieske FeS cluster.
Proc Natl Acad Sci U S A 118 15:e2022308118. PubMed Id: 33876763. doi:10.1073/pnas.2022308118. |
||
respiratory complex II in the presence of ubiquinone: Homo sapiens E Eukaryota (expressed in HEK293 cells), 2.86 Å
cryo-EM structure |
Du et al. (2023).
Du Z, Zhou X, Lai Y, Xu J, Zhang Y, Zhou S, Feng Z, Yu L, Tang Y, Wang W, Yu L, Tian C, Ran T, Chen H, Guddat LW, Liu F, Gao Y, Rao Z, & Gong H (2023). Structure of the human respiratory complex II.
Proc Natl Acad Sci U S A 120 18:e2216713120. PubMed Id: 37098072. doi:10.1073/pnas.2216713120. |
||
Electron Transport Chain Complexes: Complex III (Cytochrome bc1)
Information about Cytochrome bc1 |
|||
Cytochrome bc1: Bos taurus E Eukaryota, 2.7 Å
Bovine heart mitochondria, 5 subunits |
Xia et al. (1997).
Xia D, Yu C-A, Kim H, Xia J-Z, Kachurin AM, Zhang L, Yu L, & Deisenhofer, J (1997). Crystal structure of the cytochrome bc1complex from bovine heart mitochondria.
Science 277 :60-66. PubMed Id: 9204897. |
||
Cytochrome bc1: Bos taurus E Eukaryota, 3.0 Å
Bovine Heart Mitochondria, 11 subunits. |
Iwata et al. (1998).
Iwata S, Lee JW, Okada K, Lee JK, Iwata M, Rasmussen B, Link TA, Ramaswamy S, & Jap BK (1998). Complete structure of the 11-subunit bovine mitochondrial cytochrome bc1complex.
Science 281 :64-71. PubMed Id: 9651245. |
||
Cytochrome bc1: Bos taurus E Eukaryota, 2.26 Å
Bovine Heart Mitochondria, with jg144 inhibitor |
Esser et al. (2006).
Esser L, Gong X, Yang S, Yu L, Yu CA, & Xia D (2006). Surface-modulated motion switch: capture and release of iron-sulfur protein in the cytochrome bc1complex.
Proc Natl Acad Sci U S A 103 :13045-13050. PubMed Id: 16924113. |
||
Gao et al. (2003).
Gao X, Wen X, Esser L, Quinn B, Yu L, Yu CA, & Xia D. (2003). Structural basis for the quinone reduction in the bc1complex: a comparative analysis of crystal structures of mitochondrial cytochrome bc1with bound substrate and inhibitors at the Qisite.
Biochemistry 42 :9067-9080. PubMed Id: 12885240. |
|||
Esser et al. (2004).
Esser L, Quinn B, Li YF, Zhang M, Elberry M, Yu L, Yu CA, & Xia D (2004). Crystallographic studies of quinol oxidation site inhibitors: a modified classification of inhibitors for the cytochrome bc1> complex.
J Mol Biol 341 :281-302. PubMed Id: 15312779. |
|||
Huang et al. (2005).
Huang LS, Cobessi D, Tung EY, & Berry EA (2005). Binding of the respiratory chain inhibitor antimycin to the mitochondrial bc1complex: a new crystal structure reveals an altered intramolecular hydrogen-bonding pattern.
J Mol Biol 351 :573-597. PubMed Id: 16024040. |
|||
Cytochrome bc1 in complex with azoxystrobin: Bos taurus E Eukaryota, 2.8 Å
|
Esser et al. (2019).
Esser L, Zhou F, Yu CA, & Xia D (2019). Crystal structure of bacterial cytochrome bc1 in complex with azoxystrobin reveals a conformational switch of the Rieske iron-sulfur protein subunit.
J Biol Chem 294 32:12007-12019. PubMed Id: 31182483. doi:10.1074/jbc.RA119.008381. |
||
Cytochrome bc1 in complex with tetrahydro-quinolone inhibitor JAG021: Bos taurus E Eukaryota, 3.50 Å
|
McPhillie et al. (2020).
McPhillie MJ, Zhou Y, Hickman MR, Gordon JA, Weber CR, Li Q, Lee PJ, Amporndanai K, Johnson RM, Darby H, Woods S, Li ZH, Priestley RS, Ristroph KD, Biering SB, El Bissati K, Hwang S, Hakim FE, Dovgin SM, Lykins JD, Roberts L, Hargrave K, Cong H, Sinai AP, Muench SP, Dubey JP, Prud'homme RK, Lorenzi HA, Biagini GA, Moreno SN, Roberts CW, Antonyuk SV, Fishwick CWG, & McLeod R (2020). Potent Tetrahydroquinolone Eliminates Apicomplexan Parasites.
Front Cell Infect Microbiol 10 :203. PubMed Id: 32626661. doi:10.3389/fcimb.2020.00203. |
||
Cytochrome bc1 in complex with inhibitor CK-2-67: Bos taurus E Eukaryota, 3.20 Å
|
Amporndanai et al. (2022).
Amporndanai K, Pinthong N, O'Neill PM, Hong WD, Amewu RK, Pidathala C, Berry NG, Leung SC, Ward SA, Biagini GA, Hasnain SS, & Antonyuk SV (2022). Targeting the Ubiquinol-Reduction (Qi) Site of the Mitochondrial Cytochrome bc1 Complex for the Development of Next Generation Quinolone Antimalarials.
Biology (Basel) 11 8:1109. PubMed Id: 35892964. doi:10.3390/biology11081109. |
||
Zhang et al. (1998).
Zhang ZL, Huang LS, Shulmeister VM, Chi Y-I, Kim K K, Hung L-W, Crofts AR, Berry EA, & Kim S-H (1998). Electron transfer by domain movement in cytochrome bc1.
Nature 392 :677-684. PubMed Id: 9565029. |
|||
Cytochrome bc1: Saccharomyces cerevisiae E Eukaryota, 2.3 Å
yeast, 9 subunits. |
Hunte et al. (2000).
Hunte C, Koepe J, Lange C, Rossmanith T, & Michel H (2000). Structure at 2.3 Å resolution of cytochrome bc1complex from the yeast Saccharomyces cerevisiae co-crystallized with an antibody Fv fragment.
Structure 8 :669-684. PubMed Id: 10873857. |
||
Cytochrome bc1: Saccharomyces cerevisiae E Eukaryota, 2.3 Å
With phospholipids. |
Lange et al. (2001).
Lange C, Nett JH, Trumpower BL, & Hunte C (2001). Specific roles of protein-phospholipid interactions in the yeast cytochrome bc1complex structure.
EMBO J 20 :6591-6600. PubMed Id: 11726495. |
||
Cytochrome bc1: Saccharomyces cerevisiae E Eukaryota, 2.5 Å
With HHDBT inhibitor. |
Palsdottir et al. (2003).
Palsdottir H, Lojero CG, Trumpower BL, & Hunte C (2003). Structure of the yeast cytochrome bc1complex with a hydroxyquinone anion Qosite inhibitor bound.
J Biol Chem 278 :31303-31311. PubMed Id: 12782631. |
||
Cytochrome bc1: Saccharomyces cerevisiae E Eukaryota, 2.3 Å
With bound stigmatellin. |
Lancaster et al. (2007).
Lancaster CR, Hunte C, Kelley J 3rd, Trumpower BL, Ditchfield R (2007). A comparison of stigmatellin conformations, free and bound to the photosynthetic reaction center and the cytochrome bc1complex.
J Mol Biol 368 :197-208. PubMed Id: 17337272. |
||
Cytochrome bc1: Saccharomyces cerevisiae E Eukaryota, 1.9 Å
With bound isoform-1 cytochrome c. With bound isoform-2 cytochrome c, 2.50 Å: 3CXH |
Solmaz & Hunte (2008).
Solmaz SR & Hunte C (2008). Structure of complex III with bound cytochrome c in reduced state and definition of a minimal core interface for electron transfer.
J Biol Chem 283 :17452-17459. PubMed Id: 18390544. |
||
Cytochrome bc1: Rhodobacter sphaeroides B Bacteria, 3.20 Å
|
Esser et al. (2006).
Esser L, Gong X, Yang S, Yu L, Yu CA, & Xia D (2006). Surface-modulated motion switch: capture and release of iron-sulfur protein in the cytochrome bc1complex.
Proc Natl Acad Sci U S A 103 :13045-13050. PubMed Id: 16924113. |
||
Cytochrome bc1 with azoxystrobin: Rhodobacter sphaeroides B Bacteria, 3 Å
in complex with stigmatellin A, 3.6 Å: 6NIN |
Esser et al. (2019).
Esser L, Zhou F, Yu CA, & Xia D (2019). Crystal structure of bacterial cytochrome bc1 in complex with azoxystrobin reveals a conformational switch of the Rieske iron-sulfur protein subunit.
J Biol Chem 294 32:12007-12019. PubMed Id: 31182483. doi:10.1074/jbc.RA119.008381. |
||
Cytochrome bc1: Rhodobacter capsulatus B Bacteria, 3.50 Å
|
Berry et al. (2004).
Berry EA, Huang LS, Saechao LK, Pon NG, Valkova-Valchanova M, & Daldal F (2004). X-Ray Structure of Rhodobacter Capsulatus Cytochrome bc (1): Comparison with its Mitochondrial and Chloroplast Counterparts.
Photosynth Res 81 :251-275. PubMed Id: 16034531. |
||
quinol:cytochrome c/HiPIP oxidoreductase (alternative complex III): Rhodothermus marinus B Bacteria, 3.87 Å
cryo-EM structure |
Sousa et al. (2018).
Sousa JS, Calisto F, Langer JD, Mills DJ, Refojo PN, Teixeira M, Kühlbrandt W, Vonck J, & Pereira MM (2018). Structural basis for energy transduction by respiratory alternative complex III.
Nat Commun 9 1. PubMed Id: 29712914. doi:10.1038/s41467-018-04141-8. |
||
Alternative complex III (ACIII) in SMA nanodiscs: Flavobacterium johnsoniae B Bacteria, 3.4 Å
cryo-EM structure |
Sun et al. (2018).
Sun C, Benlekbir S, Venkatakrishnan P, Wang Y, Hong S, Hosler J, Tajkhorshid E, Rubinstein JL, & Gennis RB (2018). Structure of the alternative complex III in a supercomplex with cytochrome oxidase.
Nature 557 7703:123-126. PubMed Id: 29695868. doi:10.1038/s41586-018-0061-y. |
||
Alternative complex III (ACIII), dithionite reduced: Roseiflexus castenholzii B Bacteria, 3.50 Å
cryo-EM structure air-oxidized form, 3.20 Å: 6LOD |
Shi et al. (2020).
Shi Y, Xin Y, Wang C, Blankenship RE, Sun F, & Xu X (2020). Cryo-EM structures of the air-oxidized and dithionite-reduced photosynthetic alternative complex III from Roseiflexus castenholzii.
Sci Adv 6 31:eaba2739. PubMed Id: 32832681. doi:10.1126/sciadv.aba2739. |
||
Cytochrome bc1 apo structure: "Aquifex aeolicus" B Bacteria, 3.28 Å
cro-EM structure inhibited complex, 3.22 Å: 6KLV |
Zhu et al. (2020).
Zhu G, Zeng H, Zhang S, Juli J, Pang X, Hoffmann J, Zhang Y, Morgner N, Zhu Y, Peng G, Michel H, & Sun F (2020). A 3.3 Å-Resolution Structure of Hyperthermophilic Respiratory Complex III Reveals the Mechanism of Its Thermal Stability.
Angew Chem Int Ed Engl 59 1:343-351. PubMed Id: 31778296. doi:10.1002/anie.201911554. |
||
Di Trani et al. (2022).
Di Trani JM, Liu Z, Whitesell L, Brzezinski P, Cowen LE, & Rubinstein JL (2022). Rieske head domain dynamics and indazole-derivative inhibition of Candida albicans complex III.
Structure 30 1:129-138.e4. PubMed Id: 34525326. doi:10.1016/j.str.2021.08.006. |
|||
Complex III2 (Cytochrome bc1 homodimer), combined datasets, consensus refinement: Yarrowia lipolytica E Eukaryota, 2.00 Å
cryo-EM structure atovaquone and antimycin A bound, 3.30 Å: 8AB7 ascorbate-reduced with decylubiquinone, Rieske domain in b position, 2.60 Å: 8AB8 ascorbate-reduced, Rieske domain in b position, 3.30 Å: 8AB9 ascorbate-reduced, Rieske domain in intermediate position, 3.20 Å: 8ABA ascorbate-reduced, Rieske domain in c position, 3.20 Å: 8ABB ferricyanide-oxidized, Rieske domain in b position, 2.30 Å: 8ABE ferricyanide-oxidized, Rieske domain in intermediate position, 2.30 Å: 8ABF ferricyanide-oxidized, Rieske domain in c position, 2.30 Å: 8ABG antimycin A bound, Rieske domain in b position, 3.00 Å: 8ABH antimycin A bound, Rieske domain in intermediate position, 3.00 Å: 8ABI antimycin A bound, Rieske domain in c position, 3.70 Å: 8ABJ decylubiquinol bound, Rieske domain in b position, 2.50 Å: 8ABK decylubiquinol and antimycin A bound, consensus refinement, 2.10 Å: 8ABL apo, Rieske domain in b position, 2.80 Å: 8ABM apo, Rieske domain in intermediate position, 2.80 Å: 8AC3 apo, Rieske domain in c position, 2.70 Å: 8AC4 decylubiquinol bound, oxidised, Rieske domain in b position, 3.10 Å:8AC5 |
Wieferig & Kühlbrandt (2023).
Wieferig JP, & Kühlbrandt W (2023). Analysis of the conformational heterogeneity of the Rieske iron-sulfur protein in complex III2 by cryo-EM.
IUCrJ 10 :27-37. PubMed Id: 36598500. doi:10.1107/S2052252522010570. |
||
Electron Transport Chain Complexes: Cytochrome b6f of Oxygenic Photosynthesis
|
|||
Cytochrome b6f complex: Mastigocladus laminosus B Bacteria, 3.0 Å
(Original PDB file 1UM3 replaced by 1VF5) |
Kurisu et al. (2003).
Kurisu G, Zhang H, Smith JL, & Cramer WA (2003). Structure of the cytochrome b6f complex of oxygenic photosynthesis: tuning the cavity.
Science 302 :1009-1014. PubMed Id: 14526088. |
||
Cytochrome b6f complex: Mastigocladus laminosus B Bacteria, 3.80 Å
In complex with quinone analogue inhibitor DBMIB. |
Yan et al. (2006).
Yan J, Kurisu G, & Cramer WA (2006). Intraprotein transfer of the quinone analogue inhibitor 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone in the cytochrome b6f complex.
Proc Natl Acad Sci U S A 103 :69-74. PubMed Id: 16371475. |
||
Yamashita et al. (2007).
Yamashita E, Zhang H, & Cramer WA (2007). Structure of the cytochrome b6f complex: quinone analogue inhibitors as ligands of heme cn.
J Mol Biol 370 :39-52. PubMed Id: 17498743. |
|||
Cytochrome b6f complex with bound TDS:: Mastigocladus laminosus B Bacteria, 3.07 Å
with bound inhibitor NQNO, 3.25 Å: 4H0L |
Hasan et al. (2013).
Hasan SS, Yamashita E, Baniulis D, & Cramer WA (2013). Quinone-dependent proton transfer pathways in the photosynthetic cytochrome b6f complex.
Proc Natl Acad Sci USA 110 :4297-4302. PubMed Id: 23440205. doi:10.1073/pnas.1222248110. |
||
Cytochrome b6f complex: Chlamydomonas reinhardtii E Eukaryota, 3.1 Å
|
Stroebel et al. (2003).
Stroebel D, Choquet Y, Popot JL, & Picot D (2003). An atypical haem in the cytochrome b(6)f complex.
Nature 426 :413-418. PubMed Id: 14647374. |
||
Cytochrome b6f complex: Nostoc sp. PCC 7120 B Bacteria, 3.0 Å
|
Baniulis et al. (2010).
Baniulis D, Yamashita E, Whitelegge JP, Zatsman AI, Hendrich MP, Hasan SS, Ryan CM, & Cramer WA (2010). Structure-function, stability, and chemical modification of the cyanobacterial cytochrome b6f complex from Nostoc sp. PCC 7120.
J Biol Chem 284 :9861-9869. PubMed Id: 19189962. |
||
Cytochrome b6f complex: Nostoc sp. PCC 7120 B Bacteria, 2.70 Å
|
Hasan et al. (2013).
Hasan SS, Yamashita E, Baniulis D, & Cramer WA (2013). Quinone-dependent proton transfer pathways in the photosynthetic cytochrome b6f complex.
Proc Natl Acad Sci USA 110 :4297-4302. PubMed Id: 23440205. doi:10.1073/pnas.1222248110. |
||
dimeric cytochrome b6f complex with bound thylakoid lipids and plastoquinones: Spinacia oleracea E Eukaryota, 3.58 Å
cryo-EM structure |
Malone et al. (2019).
Malone LA, Qian P, Mayneord GE, Hitchcock A, Farmer DA, Thompson RF, Swainsbury DJK, Ranson NA, Hunter CN, & Johnson MP (2019). Cryo-EM structure of the spinach cytochrome b6f complex at 3.6 Å resolution.
Nature 575 7783:535-539. PubMed Id: 31723268. doi:10.1038/s41586-019-1746-6. |
||
dimeric cytochrome b6f complex with bound plastoquinones: Spinacia oleracea E Eukaryota, 2.70 Å
cryo-EM structure high-resolution structure, 2.13 Å resolution: 7ZYV |
Sarewicz et al. (2023).
Sarewicz M, Szwalec M, Pintscher S, Indyka P, Rawski M, Pietras R, Mielecki B, Koziej Ł, Jaciuk M, Glatt S, & Osyczka A (2023). High-resolution cryo-EM structures of plant cytochrome b6f at work.
Sci Adv 9 2:eadd9688. PubMed Id: 36638176. doi:10.1126/sciadv.add9688. |
||
Dimeric cytochrome b6f-PetP complex: Synechocystis sp. PCC 6803 E Eukaryota, 2.80 Å
cryo-EM structure without PetP, 2.80 Å: 7ZXY |
Proctor et al. (2022).
Proctor MS, Malone LA, Farmer DA, Swainsbury DJK, Hawkings FR, Pastorelli F, Emrich-Mills TZ, Siebert CA, Hunter CN, Johnson MP, & Hitchcock A (2022). Cryo-EM structures of the Synechocystis sp. PCC 6803 cytochrome b6f complex with and without the regulatory PetP subunit.
Biochem J 479 13:1487-1503. PubMed Id: 35726684. doi:10.1042/BCJ20220124. |
||
Electron Transport Chain Complexes: Complex IV (Cytochrome C Oxidase)
( Information about cytochrome c oxidases) |
|||
Cytochrome C Oxidase, aa3: Bos taurus (bovine) heart mitochndria E Eukaryota, 2.8 Å
|
Tsukihara et al. (1996).
Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, & Yoshikawa S (1996). The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 Å.
Science 272 :1136-1144. PubMed Id: 8638158. |
||
Fully Oxidized Cytochrome C Oxidase, aa3: Bos taurus (bovine) heart mitochndria E Eukaryota, 1.80 Å
Fully reduced form, 1.90 Å: 1V55 |
Tsukihara et al. (2003).
Tsukihara T, Shimokata K, Katayama Y, Shimada H, Muramoto K, Aoyama H, Mochizuki M, Shinzawa-Itoh K, Yamashita E, Yao M, Ishimura Y, Yoshikawa S (2003). The low-spin heme of cytochrome c oxidase as the driving element of the proton-pumping process.
Proc Natl Acad Sci USA 100 :15304-15309. PubMed Id: 14673090. |
||
Cytochrome C Oxidase, aa3 with bound cyanide: Bos taurus E Eukaryota, 2.00 Å
|
Yano et al. (2015).
Yano N, Muramoto K, Mochizuki M, Shinzawa-Itoh K, Yamashita E, Yoshikawa S, & Tsukihara T (2015). X-ray structure of cyanide-bound bovine heart cytochrome c oxidase in the fully oxidized state at 2.0 Å resolution.
Acta Crystallogr F Struct Biol Commun 71 :726-730. PubMed Id: 26057802. doi:10.1107/S2053230X15007025. |
||
Cytochrome C Oxidase in complex with cytochrome c: Bos taurus E Eukaryota, 2.0 Å
cytochrome c in the structure is from horse (Equus caballus). |
Shimada et al. (2017).
Shimada S, Shinzawa-Itoh K, Baba J, Aoe S, Shimada A, Yamashita E, Kang J, Tateno M, Yoshikawa S, & Tsukihara T (2017). Complex structure of cytochrome c-cytochrome c oxidase reveals a novel protein-protein interaction mode.
EMBO J 36 :291-300. PubMed Id: 27979921. doi:10.15252/embj.201695021. |
||
Cytochrome C Oxidase at neutral pH: Bos taurus E Eukaryota, 1.77 Å
crystallized using a fluorinated detergent |
Luo et al. (2017).
Luo F, Shinzawa-Itoh K, Hagimoto K, Shimada A, Shimada S, Yamashita E, Yoshikawa S, & Tsukihara T (2017). Structure of bovine cytochrome c oxidase crystallized at a neutral pH using a fluorinated detergent.
Acta Crystallogr F Struct Biol Commun 73 :416-422. PubMed Id: 28695851. doi:10.1107/S2053230X17008834. |
||
Cytochrome C Oxidase with bound CO by serial femtosecond x-ray: Bos taurus E Eukaryota, 2.3 Å
by synchrotron light source, 1.95 Å: 5WAU |
Ishigami et al. (2017).
Ishigami I, Zatsepin NA, Hikita M, Conrad CE, Nelson G, Coe JD, Basu S, Grant TD, Seaberg MH, Sierra RG, Hunter MS, Fromme P, Fromme R, Yeh SR, & Rousseau DL (2017). Crystal structure of CO-bound cytochrome c oxidase determined by serial femtosecond X-ray crystallography at room temperature.
Proc Natl Acad Sc. USA 114 :8011-8016. PubMed Id: 28698372. doi:10.1073/pnas.1705628114. |
||
Cytochrome c oxidase with bound azide (4-day soak, 20 mM azide): Bos taurus E Eukaryota, 1.85 Å
2-day soak, 20 mM azide, 1.85 Å: 5Z85 3-day soak, 20 mM azide, 1.85 Å: 5Z86 2-day soak, 2 mM azide, 1.9 Å: 5ZCO 2-day soak, 20 mM azide, 1.65 Å: 5ZCP 2-day soak, 10 mM azide, 1.65 Å: 5ZCQ alternate model of 4-day soak, 20 mM azide, 1.85 Å: 8GVM |
Shimada et al. (2018).
Shimada A, Hatano K, Tadehara H, Yano N, Shinzawa-Itoh K, Yamashita E, Muramoto K, Tsukihara T, & Yoshikawa S (2018). X-ray structural analyses of azide-bound cytochrome c oxidases reveal that the H-pathway is critically important for the proton-pumping activity.
J Biol Chem 293 38:14868-14879. PubMed Id: 30077971. doi:10.1074/jbc.RA118.003123. |
||
Ishigami et al. (2019).
Ishigami I, Lewis-Ballester A, Echelmeier A, Brehm G, Zatsepin NA, Grant TD, Coe JD, Lisova S, Nelson G, Zhang S, Dobson ZF, Boutet S, Sierra RG, Batyuk A, Fromme P, Fromme R, Spence JCH, Ros A, Yeh SR, & Rousseau DL (2019). Snapshot of an oxygen intermediate in the catalytic reaction of cytochrome c oxidase.
Proc Natl Acad Sci USA 116 9:3572-3577. PubMed Id: 30808749. doi:10.1073/pnas.1814526116. |
|||
Cytochrome C Oxidase under low-dose x-ray conditions: Bos taurus E Eukaryota, 1.9 Å
|
Ueno et al. (2019).
Ueno G, Shimada A, Yamashita E, Hasegawa K, Kumasaka T, Shinzawa-Itoh K, Yoshikawa S, Tsukihara T, & Yamamoto M (2019). Low-dose X-ray structure analysis of cytochrome c oxidase utilizing high-energy X-rays.
J Synchrotron Radiat 26 :912-921. PubMed Id: 31274413. doi:10.1107/S1600577519006805. |
||
Cytochrome C Oxidase, monomeric, fully-oxidized state: Bos taurus E Eukaryota, 1.85 Å
fully reduced state, 1.95 Å: 6JY4 |
Shinzawa-Itoh et al. (2019).
Shinzawa-Itoh K, Sugimura T, Misaki T, Tadehara Y, Yamamoto S, Hanada M, Yano N, Nakagawa T, Uene S, Yamada T, Aoyama H, Yamashita E, Tsukihara T, Yoshikawa S, & Muramoto K (2019). Monomeric structure of an active form of bovine cytochrome c oxidase.
Proc Natl Acad Sci USA 116 40:19945-19951. PubMed Id: 31533957. doi:10.1073/pnas.1907183116. |
||
Cytochrome C Oxidase with P-form and F-form intermediates: Bos taurus E Eukaryota, 1.80 Å
|
Shimada et al. (2020).
Shimada A, Etoh Y, Kitoh-Fujisawa R, Sasaki A, Shinzawa-Itoh K, Hiromoto T, Yamashita E, Muramoto K, Tsukihara T, & Yoshikawa S (2020). X-ray structures of catalytic intermediates of cytochrome c oxidase provide insights into its O2 activation and unidirectional proton-pump mechanisms.
J Biol Chem 295 17:5818-5833. PubMed Id: 32165497. doi:10.1074/jbc.RA119.009596. |
||
Shimada et al. (2021).
Shimada A, Hara F, Shinzawa-Itoh K, Kanehisa N, Yamashita E, Muramoto K, Tsukihara T, & Yoshikawa S (2021). Critical roles of the CuB site in efficient proton pumping as revealed by crystal structures of mammalian cytochrome c oxidase catalytic intermediates.
J Biol Chem 297 3:100967. PubMed Id: 34274318. doi:10.1016/j.jbc.2021.100967. |
|||
Ishigami et al. (2022).
Ishigami I, Russi S, Cohen A, Yeh SR, & Rousseau DL (2022). Temperature-dependent structural transition following X-ray-induced metal center reduction in oxidized cytochrome c oxidase.
J Biol Chem 298 4:101799. PubMed Id: 35257742. doi:10.1016/j.jbc.2022.101799. |
|||
Yano et al. (2016).
Yano N, Muramoto K, Shimada A, Takemura S, Baba J, Fujisawa H, Mochizuki M, Shinzawa-Itoh K, Yamashita E, Tsukihara T, & Yoshikawa S (2016). The Mg2+-containing Water Cluster of Mammalian Cytochrome c Oxidase Collects Four Pumping Proton Equivalents in Each Catalytic Cycle.
J Biol Chem 291 46:23882-23894. PubMed Id: 27605664. |
|||
Cytochrome C Oxidase, apo form: Bos taurus E Eukaryota, 2.20 Å
with bound an allosteric inhibitor T113, 2.20 Å: 7XMB |
Nishida et al. (2022).
Nishida Y, Yanagisawa S, Morita R, Shigematsu H, Shinzawa-Itoh K, Yuki H, Ogasawara S, Shimuta K, Iwamoto T, Nakabayashi C, Matsumura W, Kato H, Gopalasingam C, Nagao T, Qaqorh T, Takahashi Y, Yamazaki S, Kamiya K, Harada R, Mizuno N, Takahashi H, Akeda Y, Ohnishi M, Ishii Y, Kumasaka T, Murata T, Muramoto K, Tosha T, Shiro Y, Honma T, Shigeta Y, Kubo M, Takashima S, & Shintani Y (2022). Identifying antibiotics based on structural differences in the conserved allostery from mitochondrial heme-copper oxidases.
Nat Commun 13 1:7591. PubMed Id: 36481732. doi:10.1038/s41467-022-34771-y. |
||
Cytochrome C Oxidase with bound Ca2+, fully oxidized state: Bos taurus E Eukaryota, 1.70 Å
fully reduced state, 1.70 Å:8H8S |
Muramoto & Shinzawa-Itoh (2023).
Muramoto K, & Shinzawa-Itoh K (2023). Calcium-bound structure of bovine cytochrome c oxidase.
Biochim Biophys Acta Bioenerg 1864 2:148956. PubMed Id: 36708913. doi:10.1016/j.bbabio.2023.148956. |
||
Cytochrome C Oxidase, by serial femtosecond crystallography (SFX): Bos taurus E Eukaryota, 2.38 Å
|
Ishigami et al. (2023).
Ishigami I, Sierra RG, Su Z, Peck A, Wang C, Poitevin F, Lisova S, Hayes B, Moss FR 3rd, Boutet S, Sublett RE, Yoon CH, Yeh SR, & Rousseau DL (2023). Structural insights into functional properties of the oxidized form of cytochrome c oxidase.
Nat Commun 14 1:5752. PubMed Id: 37717031. doi:10.1038/s41467-023-41533-x. |
||
Cytochrome C Oxidase, aa3, with bound GDN: Bos taurus E Eukaryota, 3.10 Å
cryo-EM structure |
Di Trani et al. (2022).
Di Trani JM, Moe A, Riepl D, Saura P, Kaila VRI, Brzezinski P, & Rubinstein JL (2022). Structural basis of mammalian complex IV inhibition by steroids.
Proc Natl Acad Sci U S A 119 30:e2205228119. PubMed Id: 35858451. doi:10.1073/pnas.2205228119. |
||
Cytochrome C Oxidase, aa3: Paracoccus denitrificans B Bacteria, 2.70 Å
|
Iwata et al. (1995).
Iwata S, Ostermeier C, Ludwig B, & Michel H (1995). Structure at 2.8 Å resolution of cytochrome c oxidase from Paracoccus denitrificans.
Nature 376 :660-669. PubMed Id: 7651515. See also: Ostermeier et al. (1997). Ostermeier C, Harrenga A, Ermler U, & Michel H (1997). Structure at 2.7 Å resolution of the Paracoccus denitrificans two-subunit cytochrome c oxidase complexed with an antibody FV fragment.
Proc Natl Acad Sci USA 94 :10547-10553. PubMed Id: 9380672. |
||
Cytochrome C Oxidase, aa3, Fully Oxidized: Paracoccus denitrificans B Bacteria, 3.00 Å
|
Harrenga & Michel H (1999).
Harrenga A & Michel H (1999). The cytochrome c oxidase from Paracoccus denitrificans does not change the metal center ligation upon reduction.
J Biol Chem 274 :33296-33299. PubMed Id: 10559205. |
||
Cytochrome C Oxidase, aa3, N131D variant: Paracoccus denitrificans B Bacteria, 2.32 Å
|
Dürr et al. (2008).
Dürr KL, Koepke J, Hellwig P, Müller H, Angerer H, Peng G, Olkhova E, Richter OM, Ludwig B, Michel H (2008). A D-pathway mutation decouples the Paracoccus denitrificans cytochrome c oxidase by altering the side-chain orientation of a distant conserved glutamate.
J Mol Biol 384 :865-877. PubMed Id: 18930738. |
||
Cytochrome C Oxidase, aa3: Paracoccus denitrificans B Bacteria, 2.25 Å
|
Koepke et al. (2009).
Koepke J, Olkhova E, Angerer H, Müller H, Peng G, Michel H (2009). High resolution crystal structure of Paracoccus denitrificans cytochrome c oxidase: new insights into the active site and the proton transfer pathways.
Biochim Biophys Acta 1787 :635-645. PubMed Id: 19374884. |
||
Cytochrome Oxidase, cbb3: Pseudomonas stutzeri B Bacteria, 3.2 Å
|
Buschmann et al. (2010).
Buschmann S, Warkentin E, Xie H, Langer JD, Ermler U, Michel H. (2010). The structure of cbb3cytochrome oxidase provides insights into proton pumping.
Science 329 :327-330. PubMed Id: 20576851. |
||
Cytochrome ba3: Thermus thermophilus B Bacteria, 2.40 Å
|
Soulimane et al. (2000).
Soulimane T, Buse G, Bourenkov GP, Bartunik HD, Huber R, & Than ME (2000). Structure and mechanism of the aberrant ba3-cytochrome c oxidase from Thermus thermophilus.
EMBO J 19 :1766-1776. PubMed Id: 10775261. See also: Soulimane et al. (2000). Soulimane T, Than ME, Dewor M, Huber R, & Buse G (2000). Primary structure of a novel subunit in ba3-cytochrome oxidase from Thermus thermophilus.
Protein Sci 9 :2068-2073. PubMed Id: 11152118. doi:10.1110/ps.9.11.2068. |
||
Cytochrome ba3 with bound xenon: Thermus thermophilus B Bacteria, 3.37 Å
|
Luna et al. (2008).
Luna VM, Chen Y, Fee JA, & Stout CD (2008). Crystallographic studies of Xe and Kr binding within the large internal Cavity of Cytochrome ba3from Thermus thermophilus: Structural Analysis and Role of Oxygen Transport Channels in the Heme-Cu Oxidases.
Biochemistry 47 :4657-4665. PubMed Id: 18376849. |
||
Cytochrome C Oxidase, caa3: Thermus thermophilus B Bacteria, 2.36 Å
Crystallized in meso |
Lyons et al. (2012).
Lyons JA, Aragão D, Slattery O, Pisliakov AV, Soulimane T, & Caffrey M (2012). Structural insights into electron transfer in caa3-type cytochrome oxidase.
Nature 487 :514-518. PubMed Id: 22763450. doi:10.1038/nature11182. |
||
Cytochrome C Oxidase wild-type: Rhodobacter sphaeroides B Bacteria, 2.30 Å
EQ(I-286) mutant, 3.00 Å: 1M57 |
Svensson-Ek et al. (2002).
Svensson-Ek M, Abramson J, Larsson G, Törnroth S, Brzezinski P, & Iwata S (2002). The X-ray crystal structures of wild-type and EQ(I-286) mutant cytochrome c oxidases from Rhodobacter sphaeroides.
J Mol Biol 321 :329-339. PubMed Id: 12144789. |
||
Cytochrome C Oxidase, two-subunit catalytic core: Rhodobacter sphaeroides B Bacteria, 2.0 Å
|
Qin et al. (2006).
Qin G, Hiser C, Mulichak A, Garavito RM, & Ferguson-Miller S (2006). Identification of conserved lipid/detergent-binding sites in a high-resolution structure of the membrane protein cytochrome c oxidase.
Proc. Natl. Acad. Sci. USA 103 :16117-16122. PubMed Id: 17050688. |
||
Ubiquinol Oxidase, cytochrome bo3: Escherichia coli B Bacteria, 3.5 Å
|
Abramson et al. (2000).
Abramson J, Riistama S, Larsson G, Jasaitis A, Svensson-Ek M, Laakkonen L, Puustinen A, Iwata S, & Wikstrom M (2000). The structure of the ubiquinol oxidase from Escherichia coli and its ubiquinone binding site.
Nat Struct Biol 7 :910-917. PubMed Id: 11017202. |
||
Ubiquinol Oxidase, cytochrome bo3: Escherichia coli B Bacteria, 2.20 Å
cryo-EM structure |
Su et al. (2021).
Su CC, Lyu M, Morgan CE, Bolla JR, Robinson CV, & Yu EW (2021). A 'Build and Retrieve' methodology to simultaneously solve cryo-EM structures of membrane proteins.
Nat Methods 18 1:69-75. PubMed Id: 33408407. doi:10.1038/s41592-020-01021-2. |
||
Li et al. (2021).
Li J, Han L, Vallese F, Ding Z, Choi SK, Hong S, Luo Y, Liu B, Chan CK, Tajkhorshid E, Zhu J, Clarke O, Zhang K, & Gennis R (2021). Cryo-EM structures of Escherichia coli cytochrome bo3 reveal bound phospholipids and ubiquinone-8 in a dynamic substrate binding site.
Proc Natl Acad Sci U S A 118 34:e2106750118. PubMed Id: 34417297. doi:10.1073/pnas.2106750118. |
|||
Ubiquinol Oxidase, cytochrome bo3, apo form: Escherichia coli B Bacteria, 3.09 Å
cryo-EM structure with bound an allosteric inhibitor N4, 2.99 Å: 7XMD |
Nishida et al. (2022).
Nishida Y, Yanagisawa S, Morita R, Shigematsu H, Shinzawa-Itoh K, Yuki H, Ogasawara S, Shimuta K, Iwamoto T, Nakabayashi C, Matsumura W, Kato H, Gopalasingam C, Nagao T, Qaqorh T, Takahashi Y, Yamazaki S, Kamiya K, Harada R, Mizuno N, Takahashi H, Akeda Y, Ohnishi M, Ishii Y, Kumasaka T, Murata T, Muramoto K, Tosha T, Shiro Y, Honma T, Shigeta Y, Kubo M, Takashima S, & Shintani Y (2022). Identifying antibiotics based on structural differences in the conserved allostery from mitochondrial heme-copper oxidases.
Nat Commun 13 1:7591. PubMed Id: 36481732. doi:10.1038/s41467-022-34771-y. |
||
Cytochrome bd-type oxidase (anisotropy corrected): Geobacillus thermodenitrificans B Bacteria, 3.05 Å
anisotropic structure, 3.8 Å: 5IR6 |
Safarian et al. (2016).
Safarian S, Rajendran C, Müller H, Preu J, Langer JD, Ovchinnikov S, Hirose T, Kusumoto T, Sakamoto J, & Michel H (2016). Structure of a bd oxidase indicates similar mechanisms for membrane-integrated oxygen reductases.
Science 352 :583-586. PubMed Id: 27126043. doi:10.1126/science.aaf2477. |
||
Cytochrome bd-type oxidase in nanodiscs: Escherichia coli B Bacteria, 2.7 Å
cryo-EM structure |
Safarian et al. (2019).
Safarian S, Hahn A, Mills DJ, Radloff M, Eisinger ML, Nikolaev A, Meier-Credo J, Melin F, Miyoshi H, Gennis RB, Sakamoto J, Langer JD, Hellwig P, Kühlbrandt W, & Michel H (2019). Active site rearrangement and structural divergence in prokaryotic respiratory oxidases.
Science 366 6461:100-104. PubMed Id: 31604309. doi:10.1126/science.aay0967. |
||
Cytochrome bd-type oxidase in nanodiscs treated w. specific inhibitor aurachin: Escherichia coli B Bacteria, 3.3 Å
cryo-EM structure |
Theßeling et al. (2019).
Theßeling A, Rasmussen T, Burschel S, Wohlwend D, Kägi J, Müller R, Böttcher B, & Friedrich T (2019). Homologous bd oxidases share the same architecture but differ in mechanism.
Nat Commun 10 1:5138. PubMed Id: 31723136. doi:10.1038/s41467-019-13122-4. |
||
Cytochrome bd-II type oxidase with bound aurachin D: Escherichia coli B Bacteria, 3.00 Å
cryo-EM structure |
Grauel et al. (2021).
Grauel A, Kägi J, Rasmussen T, Makarchuk I, Oppermann S, Moumbock AFA, Wohlwend D, Müller R, Melin F, Günther S, Hellwig P, Böttcher B, & Friedrich T (2021). Structure of Escherichia coli cytochrome bd-II type oxidase with bound aurachin D.
Nat Commun 12 1:6498. PubMed Id: 34764272. doi:10.1038/s41467-021-26835-2. |
||
Cytochrome bd-II type oxidase: Escherichia coli B Bacteria, 2.06 Å
cryo-EM structure |
Grund et al. (2021).
Grund TN, Radloff M, Wu D, Goojani HG, Witte LF, Jösting W, Buschmann S, Müller H, Elamri I, Welsch S, Schwalbe H, Michel H, Bald D, & Safarian S (2021). Mechanistic and structural diversity between cytochrome bd isoforms of Escherichia coli.
Proc Natl Acad Sci U S A 118 50:e2114013118. PubMed Id: 34873041. doi:10.1073/pnas.2114013118. |
||
Cytochrome bd-type oxidase: Mycolicibacterium smegmatis B Bacteria (expressed in E. coli), 2.79 Å
cryo-EM structure |
Wang et al. (2021).
Wang W, Gao Y, Tang Y, Zhou X, Lai Y, Zhou S, Zhang Y, Yang X, Liu F, Guddat LW, Wang Q, Rao Z, & Gong H (2021). Cryo-EM structure of mycobacterial cytochrome bd reveals two oxygen access channels.
Nat Commun 12 1:4621. PubMed Id: 34330928. doi:10.1038/s41467-021-24924-w. |
||
Cytochrome bd-type oxidase: Mycobacterium tuberculosis B Bacteria (expressed in Mycolicibacterium smegmatis), 2.50 Å
cryo-EM structure |
Safarian et al. (2021).
Safarian S, Opel-Reading HK, Wu D, Mehdipour AR, Hards K, Harold LK, Radloff M, Stewart I, Welsch S, Hummer G, Cook GM, Krause KL, & Michel H (2021). The cryo-EM structure of the bd oxidase from M. tuberculosis reveals a unique structural framework and enables rational drug design to combat TB.
Nat Commun 12 1:5236. PubMed Id: 34475399. doi:10.1038/s41467-021-25537-z. |
||
Heme A synthase (HAS): Bacillus subtilis B Bacteria (expressed in E. coli), 2.2 Å
from S-anomalous dataset, 3.0 Å: 6IED |
Niwa et al. (2018).
Niwa S, Takeda K, Kosugi M, Tsutsumi E, Mogi T, & Miki K (2018). Crystal structure of heme A synthase from Bacillus subtilis.
Proc Natl Acad Sci USA 115 47:11953-11957. PubMed Id: 30397130. doi:10.1073/pnas.1813346115. |
||
Xu et al. (2020).
Xu J, Ding Z, Liu B, Yi SM, Li J, Zhang Z, Liu Y, Li J, Liu L, Zhou A, Gennis RB, & Zhu J (2020). Structure of the cytochrome aa3-600 heme-copper menaquinol oxidase bound to inhibitor HQNO shows TM0 is part of the quinol binding site.
Proc Natl Acad Sci USA 117 2:872-876. PubMed Id: 31888984. doi:10.1073/pnas.1915013117. |
|||
Cytochrome C Oxidase: Saccharomyces cerevisiae E Eukaryota, 3.87 Å
cryo-EM structure |
Ing et al. (2022).
Ing G, Hartley AM, Pinotsis N, & Maréchal A (2022). Cryo-EM structure of a monomeric yeast S. cerevisiae complex IV isolated with maltosides: Implications in supercomplex formation.
Biochim Biophys Acta Bioenerg 1863 7:148591. PubMed Id: 35839926. doi:10.1016/j.bbabio.2022.148591. |
||
Cox13 subunit of cytochrome C oxidase: Saccharomyces cerevisiae E Eukaryota (expressed in E. coli), NMR structure
|
Zhou et al. (2021).
Zhou S, Pettersson P, Björck ML, Dawitz H, Brzezinski P, Mäler L, & Ädelroth P (2021). NMR structural analysis of the yeast cytochrome c oxidase subunit Cox13 and its interaction with ATP.
BMC Biol 19 1:98. PubMed Id: 33971868. doi:10.1186/s12915-021-01036-x. |
||
Electron Transport Chain Supercomplexes (Respirasome)
|
|||
Letts et al. (2016).
Letts JA, Fiedorczuk K, & Sazanov LA (2016). The architecture of respiratory supercomplexes.
Nature 537 :644-648. PubMed Id: 27654913. doi:10.1038/nature19774. |
|||
Electron Transport Chain (ETC) Super Complex I+III2, closed class: Ovis aries E Eukaryota, 4.2 Å
cryo-EM structure. Protein stabilized with amphipols. open class 1, 4.2 Å: 6QC3 open class 2, 4.2 Å: 6QC2 open class 3, 4.6 Å: 6QC4 CI Peripheral Arm focused refinement, 3.8 Å: 6Q9D CI Membrane Arm focused refinement, 3.9 Å: 6Q9B Complex III2 focused refinement, 3.9 Å: 6Q9E Isolated complex I class refinement, 4.1 Å: 6QA9 complex I FRC closed class 1, 4.3 Å: 6QC5 complex I FRC open class 1, 4.1 Å: 6QC6 complex I FRC open class 2, 4.2 Å: 6QC8 complex I FRC open class, 4.4 Å: 6QC7 complex I FRC open class 4, 5.7 Å: 6QC9 complex I FRC open class 5, 6.2 Å: 6QCA complex I FRC open class 6, 6.5 Å: 6QCF |
Letts et al. (2019).
Letts JA, Fiedorczuk K, Degliesposti G, Skehel M, & Sazanov LA (2019). Structures of Respiratory Supercomplex I+III2 Reveal Functional and Conformational Crosstalk.
Mol. Cell 75 6:1131-1146.e6. PubMed Id: 31492636. doi:10.1016/j.molcel.2019.07.022. |
||
Electron Transport Chain (ETC) Super Complex comprised of ETC complexes I, III, and IV: Sus scrofa E Eukaryota, 5.4 Å
cryo-EM structure |
Gu et al. (2016).
Gu J, Wu M, Guo R, Yan K, Lei J, Gao N, & Yang M (2016). The architecture of the mammalian respirasome.
Nature 537 :639-643. PubMed Id: 27654917. doi:10.1038/nature19359. |
||
Electron Transport Chain (ETC) Super Complex I1III2IV1: Sus scrofa E Eukaryota, 4.0 Å
Cryo-EM structure |
Wu et al. (2016).
Wu M, Gu J, Guo R, Huang Y, & Yang M (2016). Structure of Mammalian Respiratory Supercomplex I1III2IV1.
Cell 167 :1598-1609.e10. PubMed Id: 27912063. doi:10.1016/j.cell.2016.11.012. |
||
Respiratory supercomplex CIII2CIV2SOD2: Mycobacterium smegmatis B Bacteria, 3.5 Å
cryo-EM structure |
Gong et al. (2018).
Gong H, Li J, Xu A, Tang Y, Ji W, Gao R, Wang S, Yu L, Tian C, Li J, Yen HY, Man Lam S, Shui G, Yang X, Sun Y, Li X, Jia M, Yang C, Jiang B, Lou Z, Robinson CV, Wong LL, Guddat LW, Sun F, Wang Q, & Rao Z (2018). An electron transfer path connects subunits of a mycobacterial respiratory supercomplex.
Science 362 6418:eaat8923. PubMed Id: 30361386. doi:10.1126/science.aat8923. |
||
Respiratory supercomplex CIII2CIV2: Mycobacterium smegmatis B Bacteria, 3.3 Å
cryo-EM structure |
Wiseman et al. (2018).
Wiseman B, Nitharwal RG, Fedotovskaya O, Schäfer J, Guo H, Kuang Q, Benlekbir S, Sjöstrand D, Ädelroth P, Rubinstein JL, Brzezinski P, & Högbom M (2018). Structure of a functional obligate complex III2IV2 respiratory supercomplex from Mycobacterium smegmatis.
Nat Struct Mol Biol 25 12:1128-1136. PubMed Id: 30518849. doi:10.1038/s41594-018-0160-3. |
||
Yanofsky et al. (2021).
Yanofsky DJ, Di Trani JM, Król S, Abdelaziz R, Bueler SA, Imming P, Brzezinski P, & Rubinstein JL (2021). Structure of mycobacterial CIII2CIV2 respiratory supercomplex bound to the tuberculosis drug candidate telacebec (Q203).
Elife 10 :e71959. PubMed Id: 34590581. doi:10.7554/eLife.71959. |
|||
Electron Transport Chain (ETC) Super Complex III2IV: Saccharomyces cerevisiae E Eukaryota, 3.23 Å
cryo-EM structure |
Rathore et al. (2019).
Rathore S, Berndtsson J, Marin-Buera L, Conrad J, Carroni M, Brzezinski P, & Ott M (2019). Cryo-EM structure of the yeast respiratory supercomplex.
Nat Struct Mol Biol 26 1:50-57. PubMed Id: 30598556. doi:10.1038/s41594-018-0169-7. |
||
Rcf1 protein involved in electron chain super-complex formation: Saccharomyces cerevisiae E Eukaryota (expressed in E. coli), NMR structure
|
Zhou et al. (2018).
Zhou S, Pettersson P, Huang J, Sjöholm J, Sjöstrand D, Pomès R, Högbom M, Brzezinski P, Mäler L, & Ädelroth P (2018). Solution NMR structure of yeast Rcf1, a protein involved in respiratory supercomplex formation.
Proc Natl Acad Sci USA 115 12:3048-3053. PubMed Id: 29507228. doi:10.1073/pnas.1712061115. |
||
Electron Transport Chain (ETC) Super Complex III2IV2: Saccharomyces cerevisiae E Eukaryota, 3.35 Å
cryo-EM structure |
Hartley et al. (2019).
Hartley AM, Lukoyanova N, Zhang Y, Cabrera-Orefice A, Arnold S, Meunier B, Pinotsis N, & Maréchal A (2019). Structure of yeast cytochrome c oxidase in a supercomplex with cytochrome bc1.
Nat Struct Mol Biol 26 1:78-83. PubMed Id: 30598554. doi:10.1038/s41594-018-0172-z. |
||
III2-IV(5B)1 respiratory supercomplex: Saccharomyces cerevisiae E Eukaryota, 3.29 Å
cryo-EM structure III2-IV(5B)2 respiratory supercomplex, 2.80 Å: 6T0B |
Hartley et al. (2020).
Hartley AM, Meunier B, Pinotsis N, & Maréchal A (2020). Rcf2 revealed in cryo-EM structures of hypoxic isoforms of mature mitochondrial III-IV supercomplexes.
Proc Natl Acad Sci USA 117 17:9329-9337. PubMed Id: 32291341. doi:10.1073/pnas.1920612117. |
||
Respiratory supercomplex Factor 2: Saccharomyces cerevisiae E Eukaryota (expressed in E. coli), NMR structure
|
Zhou et al. (2021).
Zhou S, Pettersson P, Huang J, Brzezinski P, Pomès R, Mäler L, & Ädelroth P (2021). NMR Structure and Dynamics Studies of Yeast Respiratory Supercomplex Factor 2.
Structure 29 3:275-283.e4. PubMed Id: 32905793. doi:10.1016/j.str.2020.08.008. |
||
CIII2/CIV respiratory supercomplex: Saccharomyces cerevisiae E Eukaryota, 3.17 Å
cryo-EM structure Cytochrome c oxidase, 3.41 Å 6YMY |
Berndtsson et al. (2020).
Berndtsson J, Aufschnaiter A, Rathore S, Marin-Buera L, Dawitz H, Diessl J, Kohler V, Barrientos A, Büttner S, Fontanesi F, & Ott M (2020). Respiratory supercomplexes enhance electron transport by decreasing cytochrome c diffusion distance.
EMBO Rep 21 12:e51015. PubMed Id: 33016568. doi:10.15252/embr.202051015. |
||
Electron Transport Chain (ETC) Super Complex III2IV2 with bound 4 UQ6 (ubiquinone): S. cerevisiae E Eukaryota, 3.20 Å
cryo-EM structure Complex III2IV, cardiolipin-lacking mutant, 3.30 Å: 8EC0 |
Hryc et al. (2023).
Hryc CF, Mallampalli VKPS, Bovshik EI, Azinas S, Fan G, Serysheva II, Sparagna GC, Baker ML, Mileykovskaya E, & Dowhan W (2023). Structural insights into cardiolipin replacement by phosphatidylglycerol in a cardiolipin-lacking yeast respiratory supercomplex.
Nat Commun 14 1:2783. PubMed Id: 37188665. doi:10.1038/s41467-023-38441-5. |
||
Maldonado et al. (2021).
Maldonado M, Guo F, & Letts JA (2021). Atomic structures of respiratory complex III2, complex IV, and supercomplex III2-IV from vascular plants.
Elife 10 :e62047. PubMed Id: 33463523. doi:10.7554/eLife.62047. |
|||
Respiratory supercomplex III2-IV. CIII2: Rhodobacter capsulatus B Bacteria, 3.30 Å
cryo-EM structure with both FeS proteins in c position (CIII2 c-c), 3.75 Å: 6XKT with one FeS protein in b position and one in c position (CIII2 b-c), 4.20 Å: 6XKU with both FeS proteins in b position (CIII2 b-b), 3.50 Å: 6XKV CIII2CIV bipartite super-complex with CcoH/cy, 5.20 Å: 6XKW CIII2CIV tripartite super-complex, conformation A, 6.10 Å: 6XKX CIII2CIV tripartite super-complex, conformation B, 7.20 Å: 6XKZ |
Steimle et al. (2021).
Steimle S, van Eeuwen T, Ozturk Y, Kim HJ, Braitbard M, Selamoglu N, Garcia BA, Schneidman-Duhovny D, Murakami K, & Daldal F (2021). Cryo-EM structures of engineered active bc1-cbb3 type CIII2CIV super-complexes and electronic communication between the complexes.
Nat Commun 12 1:929. PubMed Id: 33568648. doi:10.1038/s41467-021-21051-4. |
||
Electron Transport Chain (ETC) hybrid Super Complex comprised of M. tuberculosis complexIII and M. smegmatis complexIV: Mycobacterium tuberculosis B Bacteria (expressed in Mycobacterium smegmatis), 2.68 Å
cryo-EM structure hybrid complex in the presence Q203, 2.67 Å 7E1W hybrid complex in the presence of TB47, 2.93 Å 7E1X |
Zhou et al. (2021).
Zhou S, Wang W, Zhou X, Zhang Y, Lai Y, Tang Y, Xu J, Li D, Lin J, Yang X, Ran T, Chen H, Guddat LW, Wang Q, Gao Y, Rao Z, & Gong H (2021). Structure of Mycobacterium tuberculosis cytochrome bcc in complex with Q203 and TB47, two anti-TB drug candidates.
Elife 10 :e69418. PubMed Id: 34819223. doi:10.7554/eLife.69418. |
||
Vercellino & Sazanov (2021).
Vercellino I, & Sazanov LA (2021). Structure and assembly of the mammalian mitochondrial supercomplex CIII2CIV.
Nature 598 7880:364-367. PubMed Id: 34616041. doi:10.1038/s41586-021-03927-z. |
|||
III2-IV2 respiratory supercomplex: Corynebacterium glutamicum E Eukaryota, 2.90 Å
cryo-EM structure |
Moe et al. (2022).
Moe A, Kovalova T, Król S, Yanofsky DJ, Bott M, Sjöstrand D, Rubinstein JL, Högbom M, & Brzezinski P (2022). The respiratory supercomplex from C. glutamicum.
Structure 30 3:338-349.e3. PubMed Id: 34910901. doi:10.1016/j.str.2021.11.008. |
||
III2-IV2 respiratory supercomplex, native: Corynebacterium glutamicum E Eukaryota, 3.10 Å
cryo-EM structure stigmatellin and azide bound, 2.80 Å 7QHM |
Kao et al. (2022).
Kao WC, Ortmann de Percin Northumberland C, Cheng TC, Ortiz J, Durand A, von Loeffelholz O, Schilling O, Biniossek ML, Klaholz BP, & Hunte C (2022). Structural basis for safe and efficient energy conversion in a respiratory supercomplex.
Nat Commun 13 1:545. PubMed Id: 35087070. doi:10.1038/s41467-022-28179-x. |
||
respiratory chain super-complex CI+III2: Tetrahymena thermophila E Eukaryota, 2.60 Å
cryo-EM structure complex IV, composite dimer model, 3.02 Å 7W5Z |
Zhou et al. (2022).
Zhou L, Maldonado M, Padavannil A, Guo F, & Letts JA (2022). Structures of Tetrahymena's respiratory chain reveal the diversity of eukaryotic core metabolism.
Science 376 6595:831-839. PubMed Id: 35357889. doi:10.1126/science.abn7747. |
||
Respiratory chain super-complex, IV2+(I+III2+II)2: Tetrahymena thermophila E Eukaryota, 2.96 Å
cryo-EM structure Megacomplex (IV2+I+III2+II)2 |
Han et al. (2023).
Han F, Hu Y, Wu M, He Z, Tian H, & Zhou L (2023). Structures of Tetrahymena thermophila respiratory megacomplexes on the tubular mitochondrial cristae.
Nat Commun 14 1:2542. PubMed Id: 37248254. doi:10.1038/s41467-023-38158-5. |
||
Electron Transport Chain (ETC) Super Complex, optimized supercomplex state1: Bos taurus E Eukaryota, 5.00 Å
cryo-EM structure optimized supercomplex state2, 4.60 Å: 7DGR optimized supercomplex state3, 7.80 Å: 7DGS optimized supercomplex state4, 8.30 Å: 7DKF Activity optimized complex I (closed form), 3.80 Å: 7DGZ Activity optimized complex I (open form), 4.20 Å: 7DH0 |
Jeon et al. (2022).
Jeon TJ, Lee SG, Yoo SH, Kim M, Song D, Ryu J, Park H, Kim DS, Hyun J, Kim HM, & Ryu SE (2022). A Dynamic Substrate Pool Revealed by cryo-EM of a Lipid-Preserved Respiratory Supercomplex.
Antioxid Redox Signal 36 16:1101-1118. PubMed Id: 34913730. doi:10.1089/ars.2021.0114. |
||
Nitric Oxide Reductases
|
|||
Nitric Oxide Reductase: Pseudomonas aeruginosa B Bacteria, 2.70 Å
Crystallized with cNOR antibody (Fab) |
Hino et al. (2010).
Hino T, Matsumoto Y, Nagano S, Sugimoto H, Fukumori Y, Murata T, Iwata S, & Shiro Y (2010). Structural basis of biological N2O generation by bacterial nitric oxide reductase.
Science 330 :1666-1670. PubMed Id: 21109633. |
||
Nitric Oxide Reductase qNOR wild-type: Geobacillus stearothermophilus B Bacteria (expressed in E. coli), 2.5 Å
HQNO complex, 2.7 Å: 3AYG |
Matsumoto et al. (2012).
Matsumoto Y, Tosha T, Pisliakov AV, Hino T, Sugimoto H, Nagano S, Sugita Y, & Shiro Y (2012). Crystal structure of quinol-dependent nitric oxide reductase from Geobacillus stearothermophilus.
Nat Struct Mol Biol 19 :238-245. PubMed Id: 22266822. doi:10.1038/nsmb.2213. |
||
Nitric Oxide Reductase qNOR: Alcaligenes xylosoxydans B Bacteria (expressed in E. coli), 3.9 Å
cryo-EM structure V495A mutant, 3.3 Å: 6QQ6 |
Gopalasingam et al. (2019).
Gopalasingam CC, Johnson RM, Chiduza GN, Tosha T, Yamamoto M, Shiro Y, Antonyuk SV, Muench SP, & Hasnain SS (2019). Dimeric structures of quinol-dependent nitric oxide reductases (qNORs) revealed by cryo-electron microscopy.
Sci Adv 5 8:eaax1803. PubMed Id: 31489376. doi:10.1126/sciadv.aax1803. |
||
Nitric Oxide Reductase qNOR: Achromobacter xylosoxidans B Bacteria (expressed in E. coli), 2.20 Å
cryo-EM structure |
Flynn et al. (2023).
Flynn AJ, Antonyuk SV, Eady RR, Muench SP, & Hasnain SS (2023). A 2.2 Å cryoEM structure of a quinol-dependent NO Reductase shows close similarity to respiratory oxidases.
Nat Commun 14 1:3416. PubMed Id: 37296134. doi:10.1038/s41467-023-39140-x. |
||
Nitric Oxide Reductase BC complex: Roseobacter denitrificans B Bacteria, 2.85 Å
|
Crow et al. (2016).
Crow A, Matsuda Y, Arata H, & Oubrie A (2016). Structure of the Membrane-intrinsic Nitric Oxide Reductase from Roseobacter denitrificans.
Biochemistry 55 23:3198-3203. PubMed Id: 27185533. doi:10.1021/acs.biochem.6b00332. |
||
Nitric Oxide Reductase qNOR: Neisseria meninigitidis B Bacteria (expressed in E. coli), 3.06 Å
cryo-EM structure x-ray structure: monomeric oxidized state with zinc complex, 3.15 Å: 6L1X |
Jamali et al. (2020).
Jamali MAM, Gopalasingam CC, Johnson RM, Tosha T, Muramoto K, Muench SP, Antonyuk SV, Shiro Y, & Hasnain SS (2020). The active form of quinol-dependent nitric oxide reductase from Neisseria meningitidis is a dimer.
IUCrJ 7 :404-415. PubMed Id: 32431824. doi:10.1107/S2052252520003656. |
||
Nitric Oxide Reductase qNOR, Glu-494-Ala inactive monomer: Achromobacter xylosoxidans B Bacteria (expressed in E. coli), 4.50 Å
cryo-EM structure |
Jamali et al. (2020).
Jamali MAM, Gopalasingam CC, Johnson RM, Tosha T, Muramoto K, Muench SP, Antonyuk SV, Shiro Y, & Hasnain SS (2020). The active form of quinol-dependent nitric oxide reductase from Neisseria meningitidis is a dimer.
IUCrJ 7 :404-415. PubMed Id: 32431824. doi:10.1107/S2052252520003656. |
||
Photosystems
|
|||
Photosystem I: Thermosynechococcus elongatus B Bacteria, 4.0 Å
|
Schubert et al. (1997).
Schubert W-D, Klukas O, Krauß N, Saenger W, Fromme P, & Witt HT (1997). Photosystem I of Synechococcus elongatus at 4 Å resolution: Comprehensive structure analysis.
J Mol Biol 272 :741-769. PubMed Id: 9368655. |
||
Photosystem I: Thermosynechococcus elongatus B Bacteria, 2.5 Å
|
Jordan et al. (2001).
Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, & Krauss N (2001). Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution.
Nature 411 :909-917. PubMed Id: 11418848. |
||
Photosynthetic complex I: Thermosynechococcus elongatus B Bacteria, 3.34 Å
cryo-EM structure |
Schuller et al. (2019).
Schuller JM, Birrell JA, Tanaka H, Konuma T, Wulfhorst H, Cox N, Schuller SK, Thiemann J, Lubitz W, Sétif P, Ikegami T, Engel BD, Kurisu G, & Nowaczyk MM (2019). Structural adaptations of photosynthetic complex I enable ferredoxin-dependent electron transfer.
Science 363 6424:257-260. PubMed Id: 30573545. doi:10.1126/science.aau3613. |
||
Photosystem I, megahertz XFEL structure: Thermosynechococcus elongatus B Bacteria, 2.9 Å
synchrotron structure, 2.9 Å: 6PFY |
Gisriel et al. (2019).
Gisriel C, Coe J, Letrun R, Yefanov OM, Luna-Chavez C, Stander NE, Lisova S, Mariani V, Kuhn M, Aplin S, Grant TD, Dörner K, Sato T, Echelmeier A, Cruz Villarreal J, Hunter MS, Wiedorn MO, Knoska J, Mazalova V, Roy-Chowdhury S, Yang JH, Jones A, Bean R, Bielecki J, Kim Y, Mills G, Weinhausen B, Meza JD, Al-Qudami N, Bajt S, Brehm G, Botha S, Boukhelef D, Brockhauser S, Bruce BD, Coleman MA, Danilevski C, Discianno E, Dobson Z, Fangohr H, Martin-Garcia JM, Gevorkov Y, Hauf S, Hosseinizadeh A, Januschek F, Ketawala GK, Kupitz C, Maia L, Manetti M, Messerschmidt M, Michelat T, Mondal J, Ourmazd A, Previtali G, Sarrou I, Schön S, Schwander P, Shelby ML, Silenzi A, Sztuk-Dambietz J, Szuba J, Turcato M, White TA, Wrona K, Xu C, Abdellatif MH, Zook JD, Spence JCH, Chapman HN, Barty A, Kirian RA, Frank M, Ros A, Schmidt M, Fromme R, Mancuso AP, Fromme P, & Zatsepin NA (2019). Membrane protein megahertz crystallography at the European XFEL.
Nat Commun 10 1:5021. PubMed Id: 31685819. doi:10.1038/s41467-019-12955-3. |
||
Laughlin et al. (2019).
Laughlin TG, Bayne AN, Trempe JF, Savage DF, & Davies KM (2019). Structure of the complex I-like molecule NDH of oxygenic photosynthesis.
Nature 566 7744:411-414. PubMed Id: 30742075. doi:10.1038/s41586-019-0921-0. |
|||
NDH-1MS complex of photosynthetic complex I: Thermosynechococcus elongatus B Bacteria, 3.2 Å
cryo-EM structure |
Schuller et al. (2020).
Schuller JM, Saura P, Thiemann J, Schuller SK, Gamiz-Hernandez AP, Kurisu G, Nowaczyk MM, & Kaila VRI (2020). Redox-coupled proton pumping drives carbon concentration in the photosynthetic complex I.
Nat Commun 11 1:494. PubMed Id: 31980611. doi:10.1038/s41467-020-14347-4. |
||
Photosystem I, monomer: Thermosynechococcus elongatus B Bacteria, 3.20 Å
cryo-EM structure at 6.5 Å: 7BW2 |
Çoruh et al. (2021).
Çoruh O, Frank A, Tanaka H, Kawamoto A, El-Mohsnawy E, Kato T, Namba K, Gerle C, Nowaczyk MM, & Kurisu G (2021). Cryo-EM structure of a functional monomeric Photosystem I from Thermosynechococcus elongatus reveals red chlorophyll cluster.
Commun Biol 4 1:304. PubMed Id: 33686186. doi:10.1038/s42003-021-01808-9. |
||
tetrameric photosystem I: Anabaena sp. PCC7120 B Bacteria, 2.37 Å
cryo-EM structure |
Zheng et al. (2019).
Zheng L, Li Y, Li X, Zhong Q, Li N, Zhang K, Zhang Y, Chu H, Ma C, Li G, Zhao J, & Gao N (2019). Structural and functional insights into the tetrameric photosystem I from heterocyst-forming cyanobacteria.
Nat Plants 5 10:1087-1097. PubMed Id: 31595062. doi:10.1038/s41477-019-0525-6. |
||
tetrameric photosystem I: Anabaena sp. PCC7120 B Bacteria, 3.3 Å
cryo-EM structure |
Kato et al. (2019).
Kato K, Nagao R, Jiang TY, Ueno Y, Yokono M, Chan SK, Watanabe M, Ikeuchi M, Shen JR, Akimoto S, Miyazaki N, & Akita F (2019). Structure of a cyanobacterial photosystem I tetramer revealed by cryo-electron microscopy.
Nat Commun 10 1:4929. PubMed Id: 31666526. doi:10.1038/s41467-019-12942-8. |
||
tetrameric photosystem I: Anabaena sp. PCC7120 B Bacteria, 3.20 Å
cryo-EM structure |
Chen et al. (2020).
Chen M, Perez-Boerema A, Zhang L, Li Y, Yang M, Li S, & Amunts A (2020). Distinct structural modulation of photosystem I and lipid environment stabilizes its tetrameric assembly.
Nat Plants 6 3:314-320. PubMed Id: 32170279. doi:10.1038/s41477-020-0610-x. |
||
Photosystem I grown under white light conditions: Halomicronema hongdechloris B Bacteria, 2.35 Å
grown under far-red light conditions, 2.41 Å: 6KMX |
Kato et al. (2020).
Kato K, Shinoda T, Nagao R, Akimoto S, Suzuki T, Dohmae N, Chen M, Allakhverdiev SI, Shen JR, Akita F, Miyazaki N, & Tomo T (2020). Structural basis for the adaptation and function of chlorophyll f in photosystem I.
Nat Commun 11 1. PubMed Id: 31932639. doi:10.1038/s41467-019-13898-5. |
||
Photosystem I (plant): Pisum sativum E Eukaryota, 4.44 Å
|
Ben-Shem et al. (2003).
Ben-Shem A, Frolow F, & Nelson N (2003). Crystal structure of plant photosystem I.
Nature 426 :630-635. PubMed Id: 14668855. |
||
Photosystem I (plant): Pisum sativum E Eukaryota, 3.40 Å
|
Amunts et al. (2007).
Amunts A, Drory O, & Nelson N (2007). The structure of a plant photosystem I supercomplex at 3.4 Å resolution.
Nature 447 :58-63. PubMed Id: 17476261. |
||
Photosystem I (Plant): Pisum sativum E Eukaryota, 3.30 Å
|
Amunts et al. (2010).
Amunts A, Toporik H, Borovikova A, & Nelson N (2010). Structure determination and improved model of plant photosystem I.
J Biol Chem 285 :3478-3486. PubMed Id: 19923216. doi:10.1074/jbc.M109.072645. |
||
Photosystem I (plant): Pisum sativum E Eukaryota, 2.80 Å
|
Qin et al. (2015).
Qin X, Suga M, Kuang T, & Shen JR (2015). Photosynthesis. Structural basis for energy transfer pathways in the plant PSI-LHCI supercomplex.
Science 348 :989-995. PubMed Id: 26023133. doi:10.1126/science.aab0214. |
||
Photosystem I + ferredoxin supercomplex: Pisum sativum E Eukaryota, 2.50 Å
cryo-EM structure +ferredoxin+plastocyanin supercomplex, 2.70 Å: 6YEZ |
Caspy et al. (2020).
Caspy I, Borovikova-Sheinker A, Klaiman D, Shkolnisky Y, & Nelson N (2020). The structure of a triple complex of plant photosystem I with ferredoxin and plastocyanin.
Nat Plants 6 10:1300-1305. PubMed Id: 33020607. doi:10.1038/s41477-020-00779-9. |
||
Photosystem I/plastocyanin complex: Pisum sativum E Eukaryota, 2.74 Å
cryo-EM structure |
Caspy et al. (2021).
Caspy I, Fadeeva M, Kuhlgert S, Borovikova-Sheinker A, Klaiman D, Masrati G, Drepper F, Ben-Tal N, Hippler M, & Nelson N (2021). Structure of plant photosystem I-plastocyanin complex reveals strong hydrophobic interactions.
Biochem J 478 12:2371-2384. PubMed Id: 34085703. doi:10.1042/BCJ20210267. |
||
Keable et al. (2021).
Keable SM, Kölsch A, Simon PS, Dasgupta M, Chatterjee R, Subramanian SK, Hussein R, Ibrahim M, Kim IS, Bogacz I, Makita H, Pham CC, Fuller FD, Gul S, Paley D, Lassalle L, Sutherlin KD, Bhowmick A, Moriarty NW, Young ID, Blaschke JP, de Lichtenberg C, Chernev P, Cheah MH, Park S, Park G, Kim J, Lee SJ, Park J, Tono K, Owada S, Hunter MS, Batyuk A, Oggenfuss R, Sander M, Zerdane S, Ozerov D, Nass K, Lemke H, Mankowsky R, Brewster AS, Messinger J, Sauter NK, Yachandra VK, Yano J, Zouni A, & Kern J (2021). Room temperature XFEL crystallography reveals asymmetry in the vicinity of the two phylloquinones in photosystem I.
Sci Rep 11 1:21787. PubMed Id: 34750381. doi:10.1038/s41598-021-00236-3. |
|||
Photosystem I in the presence of ferredoxin and cytochrome c6: Thermosynechococcus vestitus E Eukaryota, 1.97 Å
cryo-EM structure |
Li et al. (2022).
Li J, Hamaoka N, Makino F, Kawamoto A, Lin Y, Rögner M, Nowaczyk MM, Lee YH, Namba K, Gerle C, & Kurisu G (2022). Structure of cyanobacterial photosystem I complexed with ferredoxin at 1.97 Å resolution.
Commun Biol 5 1:951. PubMed Id: 36097054. doi:10.1038/s42003-022-03926-4. |
||
Photosystem I utilizing far-red light, trimer: Acaryochloris marina B Bacteria, 2.50 Å
cryo-EM structure |
Hamaguchi et al. (2021).
Hamaguchi T, Kawakami K, Shinzawa-Itoh K, Inoue-Kashino N, Itoh S, Ifuku K, Yamashita E, Maeda K, Yonekura K, & Kashino Y (2021). Structure of the far-red light utilizing photosystem I of Acaryochloris marina.
Nat Commun 12 1:2333. PubMed Id: 33879791. doi:10.1038/s41467-021-22502-8. |
||
Minimal Photosystem I: Dunaliella salina E Eukaryota, 3.2 Å
cryo-EM structure x-ray structure, 3.4 Å: 6QPH |
Perez-Boerema et al. (2020).
Perez-Boerema A, Klaiman D, Caspy I, Netzer-El SY, Amunts A, & Nelson N (2020). Structure of a minimal photosystem I from the green alga Dunaliella salina.
Nat Plants 6 3:321-327. PubMed Id: 32123351. doi:10.1038/s41477-020-0611-9. |
||
Photosystem I chimera: Synechocystis sp. PCC 6803 E Eukaryota, 3.10 Å
cryo-EM structure |
Toporik et al. (2020).
Toporik H, Khmelnitskiy A, Dobson Z, Riddle R, Williams D, Lin S, Jankowiak R, & Mazor Y (2020). The structure of a red-shifted photosystem I reveals a red site in the core antenna.
Nat Commun 11 1:5279. PubMed Id: 33077842. doi:10.1038/s41467-020-18884-w. |
||
Minimal Photosystem I: Synechocystis sp. PCC 6803 B Bacteria, 4.31 Å
cryo-EM structure |
Akhtar et al. (2021).
Akhtar P, Caspy I, Nowakowski PJ, Malavath T, Nelson N, Tan HS, & Lambrev PH (2021). Two-Dimensional Electronic Spectroscopy of a Minimal Photosystem I Complex Reveals the Rate of Primary Charge Separation.
J Am Chem Soc 143 36:14601-14612. PubMed Id: 34472838. doi:10.1021/jacs.1c05010. |
||
NDH-PSI Cyclic electron transport supercomplex: Arabidopsis thaliana E Eukaryota, 3.89 Å
cryo-EM structure Left PSI in the cyclic electron transport supercomplex, 3.25 Å 7WFD Right PSI in the cyclic electron transfer supercomplex, 3.25 Å 7WFE Subcomplexes B,M and L, 3.59 Å 7WFF Subcomplexes A and E, 4.33 Å 7WFG |
Su et al. (2022).
Su X, Cao D, Pan X, Shi L, Liu Z, Dall'Osto L, Bassi R, Zhang X, & Li M (2022). Supramolecular assembly of chloroplast NADH dehydrogenase-like complex with photosystem I from Arabidopsis thaliana.
Mol Plant 15 3:454-467. PubMed Id: 35123031. doi:10.1016/j.molp.2022.01.020. |
||
trimeric high-light-tolerant photosystem I: Cyanobacterium aponinum B Bacteria, 2.70 Å
cryo-EM structure |
Dobson et al. (2021).
Dobson Z, Ahad S, Vanlandingham J, Toporik H, Vaughn N, Vaughn M, Williams D, Reppert M, Fromme P, & Mazor Y (2021). The structure of photosystem I from a high-light-tolerant cyanobacteria.
Elife 10 :e67518. PubMed Id: 34435952. doi:10.7554/eLife.67518. |
||
Photosystem I from a chlorophyll d-containing cyanobacterium: Acaryochloris marina B Bacteria, 3.30 Å
cryo-EM structure |
Xu et al. (2021).
Xu C, Zhu Q, Chen JH, Shen L, Yi X, Huang Z, Wang W, Chen M, Kuang T, Shen JR, Zhang X, & Han G (2021). A unique photosystem I reaction center from a chlorophyll d-containing cyanobacterium Acaryochloris marina.
J Integr Plant Biol 63 10:1740-1752. PubMed Id: 34002536. doi:10.1111/jipb.13113. |
||
Shen et al. (2022).
Shen L, Tang K, Wang W, Wang C, Wu H, Mao Z, An S, Chang S, Kuang T, Shen JR, Han G, & Zhang X (2022). Architecture of the chloroplast PSI-NDH supercomplex in Hordeum vulgare.
Nature 601 7894:649-654. PubMed Id: 34879391. doi:10.1038/s41586-021-04277-6. |
|||
primordial cyanobacterial photosystem I: Gloeobacter violaceus B Bacteria, 2.04 Å
cryo-EM structure |
Kato et al. (2022).
Kato K, Hamaguchi T, Nagao R, Kawakami K, Ueno Y, Suzuki T, Uchida H, Murakami A, Nakajima Y, Yokono M, Akimoto S, Dohmae N, Yonekura K, & Shen JR (2022). Structural basis for the absence of low-energy chlorophylls in a photosystem I trimer from Gloeobacter violaceus.
Elife 11 :e73990. PubMed Id: 35404232. doi:10.7554/eLife.73990. |
||
Photosystem II: Thermosynechococcus elongatus B Bacteria, 3.8 Å
|
Zouni et al. (2001).
Zouni A, Horst-Tobias W, Kern J, Fromme P, Krauss N, Saenger W, & Orth P (2001). Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution.
Nature 409 :739-743. PubMed Id: 11217865. |
||
Photosystem II: Thermosynechococcus elongatus B Bacteria, 3.5 Å
Resolution sufficient to reveal oxygen-evolving center. |
|
Ferreira et al. (2004).
Ferreira KN, Iverson TM, Maghlaoui K, Barber J, & Iwata S (2004). Architecture of the photosynthetic oxygen-evolving center.
Science 303 :1831-1838. PubMed Id: 14764885. |
|
Photosystem II: Thermosynechococcus elongatus B Bacteria, 3.0 Å
Shows locations of 77 cofactors per monomer and provides info on Mn4Ca cluster. |
Loll et al. (2005).
Loll B, Kern J, Saenger W, Zouni A, & Biesiadka J (2005). Towards complete cofactor arrangement in the 3.0 A resolution structure of photosystem II.
Nature 438 :1040-1044. PubMed Id: 16355230. |
||
Photosystem II: Thermosynechococcus elongatus B Bacteria, 2.9 Å
Includes all 20 protein subunits and all 35 chlorophyll a molecules. Part 2 of coördinate file: 3BZ2 |
Guskov et al. (2009).
Guskov A, Kern J, Gabdulkhakov A, Broser M, Zouni A, & Saenger W (2009). Cyanobacterial photosystem II at 2.9-Å resolution and the role of quinones, lipids, channels and chloride.
Nat Struct Mol Biol 16 :334-342. PubMed Id: 19219048. |
||
Photosystem II in S1 state by femtosecond x-ray laser: Thermosynechococcus elongatus B Bacteria, 5.00 Å
In S state after two flashes (S3), 5.50 Å: 4Q54 |
Kupitz et al. (2014).
Kupitz C, Basu S, Grotjohann I, Fromme R, Zatsepin NA, Rendek KN, Hunter MS, Shoeman RL, White TA, Wang D, James D, Yang JH, Cobb DE, Reeder B, Sierra RG, Liu H, Barty A, Aquila AL, Deponte D, Kirian RA, Bari S, Bergkamp JJ, Beyerlein KR, Bogan MJ, Caleman C, et al. & Fromme P (2014). Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser.
Nature 513 7517:261-265. PubMed Id: 25043005. doi:10.1038/nature13453. |
||
Photosystem II imaged using imperfect crystals (Bragg peaks only): Thermosynechococcus elongatus B Bacteria, 4.5 Å
pseudo-crystal refinement, 3.5 Å: 5E79 |
Ayyer et al. (2016).
Ayyer K, Yefanov OM, Oberthür D, Roy-Chowdhury S, Galli L, Mariani V, Basu S, Coe J, Conrad CE, Fromme R, Schaffer A, Dörner K, James D, Kupitz C, Metz M, Nelson G, Xavier PL, Beyerlein KR, Schmidt M, Sarrou I, Spence JC, Weierstall U, White TA, Yang JH, Zhao Y, Liang M, Aquila A, Hunter MS, Robinson JS, Koglin JE, Boutet S, Fromme P, Barty A, & Chapman HN (2016). Macromolecular diffractive imaging using imperfect crystals.
Nature 530 :202-206. PubMed Id: 26863980. doi:10.1038/nature16949. |
||
Young et al. (2016).
Young ID, Ibrahim M, Chatterjee R, Gul S, Fuller FD, Koroidov S, Brewster AS, Tran R, Alonso-Mori R, Kroll T, Michels-Clark T, Laksmono H, Sierra RG, Stan CA, Hussein R, Zhang M, Douthit L, Kubin M, de Lichtenberg C, Vo Pham L, Nilsson H, Cheah MH, Shevela D, Saracini C, Bean MA, Seuffert I, Sokaras D, Weng TC, Pastor E, Weninger C, Fransson T, Lassalle L, Bräuer P, Aller P, Docker PT, Andi B, Orville AM, Glownia JM, Nelson S, Sikorski M, Zhu D, Hunter MS, Lane TJ, Aquila A, Koglin JE, Robinson J, Liang M, Boutet S, Lyubimov AY, Uervirojnangkoorn M, Moriarty NW, Liebschner D, Afonine PV, Waterman DG, Evans G, Wernet P, Dobbek H, Weis WI, Brunger AT, Zwart PH, Adams PD, Zouni A, Messinger J, Bergmann U, Sauter NK, Kern J, Yachandra VK, & Yano J (2016). Structure of photosystem II and substrate binding at room temperature.
Nature 540 :453-457. PubMed Id: 27871088. doi:10.1038/nature20161. |
|||
Photosystem II (0F, S1-rich): Thermosynechococcus elongatus E Eukaryota, 2.08 Å
XFEL structure one-flash state (1F, S2-rich), 2.26 Å: 6W1P 50 microseconds after the second illumination, 2.27 Å: 6W1Q 150 microseconds after the second illumination, 2.23 Å: 6W1R 250 microseconds after the second illumination, 2.01 Å: 6W1T 400 microseconds after the second illumination, 2.09 Å: 6W1U two-flash state of Photosystem II (2F, S3-rich), 2.09 Å: 6W1V |
Ibrahim et al. (2020).
Ibrahim M, Fransson T, Chatterjee R, Cheah MH, Hussein R, Lassalle L, Sutherlin KD, Young ID, Fuller FD, Gul S, Kim IS, Simon PS, de Lichtenberg C, Chernev P, Bogacz I, Pham CC, Orville AM, Saichek N, Northen T, Batyuk A, Carbajo S, Alonso-Mori R, Tono K, Owada S, Bhowmick A, Bolotovsky R, Mendez D, Moriarty NW, Holton JM, Dobbek H, Brewster AS, Adams PD, Sauter NK, Bergmann U, Zouni A, Messinger J, Kern J, Yachandra VK, & Yano J (2020). Untangling the sequence of events during the S2 ? S3 transition in photosystem II and implications for the water oxidation mechanism.
Proc Natl Acad Sci USA 117 23:12624-12635. PubMed Id: 32434915. doi:10.1073/pnas.2000529117. |
||
Zabret et al. (2021).
Zabret J, Bohn S, Schuller SK, Arnolds O, Möller M, Meier-Credo J, Liauw P, Chan A, Tajkhorshid E, Langer JD, Stoll R, Krieger-Liszkay A, Engel BD, Rudack T, Schuller JM, & Nowaczyk MM (2021). Structural insights into photosystem II assembly.
Nat Plants 7 4:524-538. PubMed Id: 33846594. doi:10.1038/s41477-021-00895-0. |
|||
Photosystem II, RT XFEL structure averaged across all S-states: Thermosynechococcus vestitus B Bacteria, 1.89 Å
dark-stable state (0F, S1 rich), 2.08 Å 7RF2 one-flash state (1F, S2-rich), 2.26 Å 7FR3 50 microseconds after the second illumination, 2.27 Å 7RF4 150 microseconds after the second illumination, 2.23 Å 7RF5 250 microseconds after the second illumination, 2.01 Å 7RF6 400 microseconds after the second illumination, 2.09 Å 7RF7 |
Hussein et al. (2021).
Hussein R, Ibrahim M, Bhowmick A, Simon PS, Chatterjee R, Lassalle L, Doyle M, Bogacz I, Kim IS, Cheah MH, Gul S, de Lichtenberg C, Chernev P, Pham CC, Young ID, Carbajo S, Fuller FD, Alonso-Mori R, Batyuk A, Sutherlin KD, Brewster AS, Bolotovsky R, Mendez D, Holton JM, Moriarty NW, Adams PD, Bergmann U, Sauter NK, Dobbek H, Messinger J, Zouni A, Kern J, Yachandra VK, & Yano J (2021). Structural dynamics in the water and proton channels of photosystem II during the S2 to S3 transition.
Nat Commun 12 1:6531. PubMed Id: 34764256. doi:10.1038/s41467-021-26781-z. |
||
Photosystem II: Thermosynechococcus vulcanus B Bacteria, 3.7 Å
|
Kamiya & Shen (2003).
Kamiya N & Shen JR (2003). Crystal structure of oxygen-evolving photosystem II from Thermosynechococcus vulcanus at 3.7-Å resolution.
Proc Natl Acad Sci USA 100 :98-103. PubMed Id: 12518057. |
||
Photosystem II, Br-substituted: Thermosynechococcus vulcanus B Bacteria, 3.7 Å
Br-substitution reveals location of chlorides. I-substituted, 4.0 Å: 3A0H |
Kawakami et al. (2009).
Kawakami K, Umena Y, Kamiya N, & Shen JR (2009). Location of chloride and its possible functions in oxygen-evolving photosystem II revealed by X-ray crystallography.
Proc Natl Acad Sci USA 106 :8567-8572. PubMed Id: 19433803. |
||
Photosystem II: Thermosynechococcus vulcanus B Bacteria, 1.90 Å
Reveals the structure of the Mn4CaO5 cluster and all of their ligands. More than 1300 water molecules are observed in each monomer. |
Umena et al. (2011).
Umena Y, Kawakami K, Shen JR, & Kamiya N (2011). Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å;
Nature 473 :55-60. PubMed Id: 21499260. doi:10.1038/nature09913. |
||
Photosystem II, Sr-substituted: Thermosynechococcus vulcanus B Bacteria, 2.10 Å
|
Koua et al. (2013).
Koua FH, Umena Y, Kawakami K, & Shen JR (2013). Structure of Sr-substituted photosystem II at 2.1 Å resolution and its implications in the mechanism of water oxidation.
Proc Natl Acad Sci USA 110 :3889-3894. PubMed Id: 23426624. doi:10.1073/pnas.1219922110. |
||
Photosystem II by femtosecond X-ray pulses, data set 1: Thermosynechococcus vulcanus B Bacteria, 1.95 Å
Data set 2, 1.95 Å: 4UB8 |
Suga et al. (2015).
Suga M, Akita F, Hirata K, Ueno G, Murakami H, Nakajima Y, Shimizu T, Yamashita K, Yamamoto M, Ago H, & Shen J (2015). Native structure of photosystem II at 1.95 Å resolution viewed by femtosecond X-ray pulses.
Nature 517 :99-103. PubMed Id: 25470056. doi:10.1038/nature13991. |
||
Suga et al. (2017).
Suga M, Akita F, Sugahara M, Kubo M, Nakajima Y, Nakane T, Yamashita K, Umena Y, Nakabayashi M, Yamane T, Nakano T, Suzuki M, Masuda T, Inoue S, Kimura T, Nomura T, Yonekura S, Yu LJ, Sakamoto T, Motomura T, Chen JH, Kato Y, Noguchi T, Tono K, Joti Y, Kameshima T, Hatsui T, Nango E, Tanaka R, Naitow H, Matsuura Y, Yamashita A, Yamamoto M, Nureki O, Yabashi M, Ishikawa T, Iwata S, & Shen JR (2017). Light-induced structural changes and the site of O=O bond formation in PSII caught by XFEL.
Nature 543 :131-135. PubMed Id: 28219079. doi:10.1038/nature21400. |
|||
Photosystem II by femtosecond X-ray pulses, dark state, dataset1: Thermosynechococcus vulcanus E Eukaryota, 2.15 Å
1F state, dataset1, 2.15 Å: 6JLK 2F state, dataset1, 2.15 Å: 6JLL dark state, dataset2, 2.35 Å: 6JLM 1F state, dataset2, 2.4 Å: 6JLN 2F state, dataset2, 2.4 Å: 6JLO 3F state, dataset2, 2.5 Å: 6JLP |
Suga et al. (2019).
Suga M, Akita F, Yamashita K, Nakajima Y, Ueno G, Li H, Yamane T, Hirata K, Umena Y, Yonekura S, Yu LJ, Murakami H, Nomura T, Kimura T, Kubo M, Baba S, Kumasaka T, Tono K, Yabashi M, Isobe H, Yamaguchi K, Yamamoto M, Ago H, & Shen JR (2019). An oxyl/oxo mechanism for oxygen-oxygen coupling in PSII revealed by an x-ray free-electron laser.
Science 366 6463:334-338. PubMed Id: 31624207. doi:10.1126/science.aax6998. |
||
Psb27-Photosystem II complex, dimeric state: Thermosynechococcus vulcanus B Bacteria, 3.78 Å
cryo-EM structure |
Huang et al. (2021).
Huang G, Xiao Y, Pi X, Zhao L, Zhu Q, Wang W, Kuang T, Han G, Sui SF, & Shen JR (2021). Structural insights into a dimeric Psb27-photosystem II complex from a cyanobacterium Thermosynechococcus vulcanus.
Proc Natl Acad Sci U S A 118 5:e2018053118. PubMed Id: 33495333. doi:10.1073/pnas.2018053118. |
||
Photosystem II, high-dose data set: Thermosynechococcus vulcanus E Eukaryota, 1.95 Å
cryo-EM structure low-dose data set, 2.08 Å: 7D1U |
Kato et al. (2021).
Kato K, Miyazaki N, Hamaguchi T, Nakajima Y, Akita F, Yonekura K, & Shen JR (2021). High-resolution cryo-EM structure of photosystem II reveals damage from high-dose electron beams.
Commun Biol 4 1:382. PubMed Id: 33753866. doi:10.1038/s42003-021-01919-3. |
||
Photosystem II monomer: Thermosynechococcus vulcanus B Bacteria, 2.78 Å
cryo-EM structure |
Yu et al. (2021).
Yu H, Hamaguchi T, Nakajima Y, Kato K, Kawakami K, Akita F, Yonekura K, & Shen JR (2021). Cryo-EM structure of monomeric photosystem II at 2.78 Å resolution reveals factors important for the formation of dimer.
Biochim Biophys Acta Bioenerg 1862 10:148471. PubMed Id: 34216574. doi:10.1016/j.bbabio.2021.148471. |
||
Li et al. (2021).
Li H, Nakajima Y, Nomura T, Sugahara M, Yonekura S, Chan SK, Nakane T, Yamane T, Umena Y, Suzuki M, Masuda T, Motomura T, Naitow H, Matsuura Y, Kimura T, Tono K, Owada S, Joti Y, Tanaka R, Nango E, Akita F, Kubo M, Iwata S, Shen JR, & Suga M (2021). Capturing structural changes of the S1 to S2 transition of photosystem II using time-resolved serial femtosecond crystallography.
IUCrJ 8 :431-443. PubMed Id: 33953929. doi:10.1107/S2052252521002177. |
|||
Photosystem II intermediate Psb28-RC47: Thermostichus vulcanus E Eukaryota, 3.14 Å
cryo-EM structure intermediate Psb28-PSII complex, 3.14 Å: 7DXH |
Xiao et al. (2021).
Xiao Y, Huang G, You X, Zhu Q, Wang W, Kuang T, Han G, Sui SF, & Shen JR (2021). Structural insights into cyanobacterial photosystem II intermediates associated with Psb28 and Tsl0063.
Nat Plants 7 8:1132-1142. PubMed Id: 34226692. doi:10.1038/s41477-021-00961-7. |
||
Kamada et al. (2023).
Kamada S, Nakajima Y, & Shen JR (2023). Structural insights into the action mechanisms of artificial electron acceptors in photosystem II.
J Biol Chem 299 7:104839. PubMed Id: 37209822. doi:10.1016/j.jbc.2023.104839. |
|||
Photosystem II from a red alga: Cyanidium caldarium E Eukaryota, 2.77 Å
|
Ago et al. (2016).
Ago H, Adachi H, Umena Y, Tashiro T, Kawakami K, Kamiya N, Tian L, Han G, Kuang T, Liu Z, Wang F, Zou H, Enami I, Miyano M, & Shen JR (2016). Novel Features of Eukaryotic Photosystem II Revealed by Its Crystal Structure Analysis from a Red Alga.
J Biol Chem 291 :5676-5687. PubMed Id: 26757821. doi:10.1074/jbc.M115.711689. |
||
C2S2M2-type Photosystem II supercomplex: Arabidopsis thaliana E Eukaryota, 2.79 Å
cryo-EM structure |
Graça et al. (2021).
Graça AT, Hall M, Persson K, & Schröder WP (2021). High-resolution model of Arabidopsis Photosystem II reveals the structural consequences of digitonin-extraction.
Sci Rep 11 1:15534. PubMed Id: 34330992. doi:10.1038/s41598-021-94914-x. |
||
Photosystem II, full electron dose: Synechocystis sp. PCC 6803 B Bacteria, 1.93 Å
cryo-EM structure low electron dose, 2.01 Å 7RCV |
Gisriel et al. (2022).
Gisriel CJ, Wang J, Liu J, Flesher DA, Reiss KM, Huang HL, Yang KR, Armstrong WH, Gunner MR, Batista VS, Debus RJ, & Brudvig GW (2022). High-resolution cryo-electron microscopy structure of photosystem II from the mesophilic cyanobacterium, Synechocystis sp. PCC 6803.
Proc Natl Acad Sci U S A 119 1:e2116765118. PubMed Id: 34937700. doi:10.1073/pnas.2116765118. |
||
Light-Harvesting Complexes
|
|||
Light-Harvesting Complex: Rhodoblastus acidophilus B Bacteria, 2.50 Å
Former species name: Rhodopseudomonas acidophila |
Prince et al. (1997).
Prince SM, Papiz MZ, Freer AA, McDermott G, Hawthornthwaite-Lawless AM, Cogdell RJ, & Isaacs NW (1997). Apoprotein structure in the LH2 complex from Rhodopseudomonas acidophila strain 10050: modular assembly and protein pigment interactions.
J Mol Biol 268 :412-423. PubMed Id: 9159480. doi:10.1006/jmbi.1997.0966. See also: McDermott et al. (1995) McDermott G, Prince SM, Freer AA, Hawthornthwaite-Lawless AM, Papiz MZ, Cogdell RJ & Isaacs NW (1995). Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria.
Nature 374 :517-521. doi:10.1038/374517a0. |
||
Light-Harvesting Complex: Rhodoblastus acidophila B Bacteria, 2.0 Å
Former species name: Rhodopseudomonas acidophila |
Papiz et al. (2003).
Papiz MZ, Prince SM, Howard T, Cogdell RJ, & Isaacs NW (2003). The structure and thermal motion of the B800-850 LH2 complex from Rps.acidophila at 2.0A resolution and 100K: new structural features and functionally relevant motions.
J Mol Biol 278 :31303-31311. PubMed Id: 12595263. |
||
Light-Harvesting Complex: Rhodospirillum molischianum B Bacteria, 2.4 Å
|
Koepke et al. (1996).
Koepke J, Hu XC, Muenke C, Schulten K, & Michel H (1996). The crystal structure of the light-harvesting complex II (B800- 850) from Rhodospirillum molischianum.
Structure 4 :581-597. PubMed Id: 8736556. |
||
Light-Harvesting Complex LHC-II, Spinach Photosystem II: Spinacia oleracea E Eukaryota, 2.72 Å
|
Liu et al. (2004).
Liu Z, Yan H, Wang K, Kuang T, Zhang J, Gui L, An X, & Chang W (2004). Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution.
Nature 428 :287-292. PubMed Id: 15029188. |
||
Light-Harvesting Complex CP29, Spinach Photosystem II: Spinacia oleracea E Eukaryota, 2.80 Å
|
Pan et al. (2011).
Pan X, Li M, Wan T, Wang L, Jia C, Hou Z, Zhao X, Zhang J, & Chang W (2011). Structural insights into energy regulation of light-harvesting complex CP29 from spinach.
Nat Struc Mol Biol 18 :309-315. PubMed Id: 21297637. |
||
Light-Harvesting Complex LHC-II, Pea Photosystem II: Pisum sativum E Eukaryota, 2.50 Å
|
Standfuss et al. (2005).
Standfuss J, Terwisscha van Scheltinga AC, Lamborghini M, Kühlbrandt W (2005). Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 Å resolution.
EMBO J 24 :919-928. PubMed Id: 15719016. |
||
fucoxanthin and chlorophyll a/c complex: Phaeodactylum tricornutum E Eukaryota, 1.8 Å
|
Wang et al. (2019).
Wang W, Yu LJ, Xu C, Tomizaki T, Zhao S, Umena Y, Chen X, Qin X, Xin Y, Suga M, Han G, Kuang T, & Shen JR (2019). Structural basis for blue-green light harvesting and energy dissipation in diatoms.
Science 363 6427. PubMed Id: 30733387. doi:10.1126/science.aav0365. |
||
Light-Harvesting Complex LHC-II: Marichromatium purpuratum B Bacteria, 2.38 Å
cryo-EM structure |
Gardiner et al. (2021).
Gardiner AT, Naydenova K, Castro-Hartmann P, Nguyen-Phan TC, Russo CJ, Sader K, Hunter CN, Cogdell RJ, & Qian P (2021). The 2.4 Å cryo-EM structure of a heptameric light-harvesting 2 complex reveals two carotenoid energy transfer pathways.
Sci Adv 7 7:eabe4650. PubMed Id: 33579696. doi:10.1126/sciadv.abe4650. |
||
Light-Harvesting Complex LHC-II: Cereibacter sphaeroides B Bacteria, 2.10 Å
cryo-EM structure |
Qian et al. (2021).
Qian P, Swainsbury DJK, Croll TI, Castro-Hartmann P, Divitini G, Sader K, & Hunter CN (2021). Cryo-EM Structure of the Rhodobacter sphaeroides Light-Harvesting 2 Complex at 2.1 Å.
Biochemistry 60 44:3302-3314. PubMed Id: 34699186. doi:10.1021/acs.biochem.1c00576. |
||
Photosystem+Light-Harvesting Complex Supercomplex
|
|||
Photosystem I-Light harvesting complex supercomplex with 5 Lhcr antennae: Cyanidioschyzon merolae E Eukaryota, 3.63 Å
with 3 Lhcr antennae, 3.82 Å: 5ZGH |
Pi et al. (2018).
Pi X, Tian L, Dai HE, Qin X, Cheng L, Kuang T, Sui SF, & Shen JR (2018). Unique organization of photosystem I-light-harvesting supercomplex revealed by cryo-EM from a red alga.
Proc Natl Acad Sci USA 115 17:4423-4428. PubMed Id: 29632169. doi:10.1073/pnas.1722482115. |
||
Photosystem I supercomplex with light-harvesting complexes I & II: Zea mays E Eukaryota, 3.3 Å
cryo-EM structure |
Pan et al. (2018).
Pan X, Ma J, Su X, Cao P, Chang W, Liu Z, Zhang X, & Li M (2018). Structure of the maize photosystem I supercomplex with light-harvesting complexes I and II.
Science 360 6393:1109-1113. PubMed Id: 29880686. doi:10.1126/science.aat1156. |
||
Photosystem I supercomplex with 8 light-harvesting complexes I: Chlamydomonas reinhardtii E Eukaryota, 2.89 Å
cryo-EM structure with 10 LHCI, 3.3 Å: 6IJO |
Su et al. (2019).
Su X, Ma J, Pan X, Zhao X, Chang W, Liu Z, Zhang X, & Li M (2019). Antenna arrangement and energy transfer pathways of a green algal photosystem-I-LHCI supercomplex.
Nat Plants 5 3:273-281. PubMed Id: 30850819. doi:10.1038/s41477-019-0380-5. |
||
Photosystem I supercomplex with 10 light-harvesting complexes I: Chlamydomonas reinhardtii E Eukaryota, 2.9 Å
cryo-EM structure with 8 light-harvesting complexes, 2.9 Å: 6JO6 |
Suga et al. (2019).
Suga M, Ozawa SI, Yoshida-Motomura K, Akita F, Miyazaki N, & Takahashi Y (2019). Structure of the green algal photosystem I supercomplex with a decameric light-harvesting complex I.
Nat Plants 5 6:626-636. PubMed Id: 31182847. doi:10.1038/s41477-019-0438-4. |
||
Photosystem I-LHCI-LHCII supercomplex from from double phosphatase mutant pph1: Chlamydomonas reinhardtii E Eukaryota, 2.84 Å
cryo-EM structure from the LhcbM1 lacking mutant, 3.16 Å 7DZ8 from the double phosphatase mutant pph1;pbcp, 3.13 Å 7E0J double phosphatase mutant pph1;pbcp, 3.09 Å 7E0K from the LhcbM1 lacking mutant, 3.75 Å 7E0H from the LhcbM1 lacking mutant, 3.53 Å 7E0I |
Pan et al. (2021).
Pan X, Tokutsu R, Li A, Takizawa K, Song C, Murata K, Yamasaki T, Liu Z, Minagawa J, & Li M (2021). Structural basis of LhcbM5-mediated state transitions in green algae.
Nat Plants 7 8:1119-1131. PubMed Id: 34239095. doi:10.1038/s41477-021-00960-8. |
||
Photosystem I-LHCI supercomplex: Chlamydomonas reinhardtii E Eukaryota, 3.40 Å
|
Gerle et al. (2023).
Gerle C, Misumi Y, Kawamoto A, Tanaka H, Kawai-Kubota H, Tokutsu R, Kim E, Chorev D, Abe K, Robinson CV, Mitsuoka K, Minagawa J, & Kurisu G (2023). Three structures of PSI-LHCI from Chlamydomonas reinhardtii suggest a resting state re-activated by ferredoxin.
Biochim Biophys Acta Bioenerg . PubMed Id: 37270022. doi:10.1016/j.bbabio.2023.148986. |
||
Photosystem I IsiA supercomplex: Synechocystis sp. B Bacteria, 3.48 Å
cryo-EM structure |
Toporik et al. (2019).
Toporik H, Li J, Williams D, Chiu PL, & Mazor Y (2019). The structure of the stress-induced photosystem I-IsiA antenna supercomplex.
Nat Struct Mol Biol 26 6:443-449. PubMed Id: 31133699. doi:10.1038/s41594-019-0228-8. |
||
Photosystem I-IsiA supercomplex: Thermosynechococcus vulcanus B Bacteria, 2.74 Å
cryo-EM structure |
Akita et al. (2020).
Akita F, Nagao R, Kato K, Nakajima Y, Yokono M, Ueno Y, Suzuki T, Dohmae N, Shen JR, Akimoto S, & Miyazaki N (2020). Structure of a cyanobacterial photosystem I surrounded by octadecameric IsiA antenna proteins.
Commun Biol 3 1. PubMed Id: 32393811. doi:10.1038/s42003-020-0949-6. |
||
Photosystem I-IsiA-flavodoxin supercomplex: Synechococcus elongatus PCC 7942 B Bacteria (expressed in E. coli), 3.30 Å
cryo-EM structure Photosystem I-IsiA supercomplex, 2.90 Å: 6KIG |
Cao et al. (2020).
Cao P, Cao D, Si L, Su X, Tian L, Chang W, Liu Z, Zhang X, & Li M (2020). Structural basis for energy and electron transfer of the photosystem I-IsiA-flavodoxin supercomplex.
Nat Plants 6 2:167-176. PubMed Id: 32042157. doi:10.1038/s41477-020-0593-7. |
||
Photosystem I in complex with Light-Harvesting Complex: Physcomitrium patens E Eukaryota, 3.23 Å
cryo-EM structure |
Yan et al. (2021).
Yan Q, Zhao L, Wang W, Pi X, Han G, Wang J, Cheng L, He YK, Kuang T, Qin X, Sui SF, & Shen JR (2021). Antenna arrangement and energy-transfer pathways of PSI-LHCI from the moss Physcomitrella patens.
Cell Discov 7 1:10. PubMed Id: 33589616. doi:10.1038/s41421-021-00242-9. |
||
Gorski et al. (2022).
Gorski C, Riddle R, Toporik H, Da Z, Dobson Z, Williams D, & Mazor Y (2022). The structure of the Physcomitrium patens photosystem I reveals a unique Lhca2 paralogue replacing Lhca4.
Nat Plants 8 3:307-316. PubMed Id: 35190662. doi:10.1038/s41477-022-01099-w. |
|||
Photosystem II in complex with Light-Harvesting Complex: Chaetoceros gracilis E Eukaryota, 3.02 Å
cryo-EM structure |
Pi et al. (2019).
Pi X, Zhao S, Wang W, Liu D, Xu C, Han G, Kuang T, Sui SF, & Shen JR (2019). The pigment-protein network of a diatom photosystem II-light-harvesting antenna supercomplex.
Science 365 6452. PubMed Id: 31371578. doi:10.1126/science.aax4406. |
||
Photosystem II in complex with Light-Harvesting Complex II: Spinacia oleracea E Eukaryota, 3.2 Å
Cryo-EM structure |
Wei et al. (2016).
Wei X, Su X, Cao P, Liu X, Chang W, Li M, Zhang X, & Liu Z (2016). Structure of spinach photosystem II-LHCII supercomplex at 3.2?Å resolution.
Nature 534 :69-74. PubMed Id: 27251276. doi:10.1038/nature18020. |
||
Su et al. (2017).
Su X, Ma J, Wei X, Cao P, Zhu D, Chang W, Liu Z, Zhang X, & Li M (2017). Structure and assembly mechanism of plant C2S2M2-type PSII-LHCII supercomplex.
Science 357 :815-820. PubMed Id: 28839073. doi:10.1126/science.aan0327. |
|||
photosystem I-light harvesting complex I supercomplex: Pisum sativum E Eukaryota, 2.39 Å
|
Wang et al. (2021).
Wang J, Yu LJ, Wang W, Yan Q, Kuang T, Qin X, & Shen JR (2021). Structure of plant photosystem I-light harvesting complex I supercomplex at 2.4 Å resolution.
J Integr Plant Biol 63 7:1367-1381. PubMed Id: 33788400. doi:10.1111/jipb.13095. |
||
C2S2M2N2-type PSII-LHCII supercomplex: Chlamydomonas reinhardtii E Eukaryota, 3.73 Å
cryo-EM structure |
Shen et al. (2019).
Shen L, Huang Z, Chang S, Wang W, Wang J, Kuang T, Han G, Shen JR, & Zhang X (2019). Structure of a C2S2M2N2-type PSII-LHCII supercomplex from the green alga Chlamydomonas reinhardtii.
Proc Natl Acad Sci USA 116 42:21246-21255. PubMed Id: 31570614. doi:10.1073/pnas.1912462116. |
||
photosystem I-LHCI-LHCII super complex in state 2: Chlamydomonas reinhardtii E Eukaryota, 3.42 Å
cryo-EM structure |
Huang et al. (2021).
Huang Z, Shen L, Wang W, Mao Z, Yi X, Kuang T, Shen JR, Zhang X, & Han G (2021). Structure of photosystem I-LHCI-LHCII from the green alga Chlamydomonas reinhardtii in State 2.
Nat Commun 12 1:1100. PubMed Id: 33597543. doi:10.1038/s41467-021-21362-6. |
||
You et al. (2023).
You X, Zhang X, Cheng J, Xiao Y, Ma J, Sun S, Zhang X, Wang HW, & Sui SF (2023). In situ structure of the red algal phycobilisome-PSII-PSI-LHC megacomplex.
Nature 616 7955:199-206. PubMed Id: 36922595. doi:10.1038/s41586-023-05831-0. |
|||
Photoprotection Proteins
These proteins limit photo-oxidative damage to plants |
|||
Fan et al. (2015).
Fan M, Li M, Liu Z, Cao P, Pan X, Zhang H, Zhao X, Zhang J, & Chang W (2015). Crystal structures of the PsbS protein essential for photoprotection in plants.
Nat Struct Mol Biol 22 :729-735. PubMed Id: 26258636. doi:10.1038/nsmb.3068. |
|||
Photosynthetic Reaction Centers
|
|||
Photosynthetic Reaction Center: Blastochloris viridis B Bacteria, 2.3 Å
The first high-resolution crystallographic structure of a membrane protein Former species name: Rhodopseudomonas virdis |
Deisenhofer et al. (1985).
Deisenhofer J, Epp O, Miki K, Huber R, & Michel H (1985). Structure of the protein subunits in the photosynthetic reaction centre of Rhodospeudomonas viridis at 3 Å resolution.
Nature 318 :618-624. PubMed Id: 22439175. |
||
Photosynthetic Reaction Center: Blastochloris viridis B Bacteria, 1.86 Å
Lipidic sponge-phase structure. Reveals lipids on protein surface. Low x-ray dose structure, 1.95 Å: 2WJM |
Wöhri et al. (2009).
Wöhri AB, Wahlgren WY, Malmerberg E, Johansson LC, Neutze R, & Katona G (2009). Lipidic sponge phase crystal structure of a photosynthetic reaction center reveals lipids on the protein surface.
Biochemistry 48 :9831-9838. PubMed Id: 19743880. |
||
Photosynthetic Reaction Center: Blastochloris viridis B Bacteria, 3.50 Å
Structure determined by serial femtosecond crystallography |
Johansson et al. (2013).
Johansson LC, Arnlund D, Katona G, White TA, Barty A et al. (2013). Structure of a photosynthetic reaction centre determined by serial femtosecond crystallography.
Nat Commun 4 :2911. PubMed Id: 24352554. doi:10.1038/ncomms3911. |
||
Photosynthetic Reaction Center, microcrystals for femtosecond crystallography: Blastochloris viridis B Bacteria, 2.80 Å
microcrystals, 2.40 Å: 5NJ4 5 ps structure, 2.80 Å: 6ZI4 5 ps structure, 2.80 Å: 6ZID 20 ps structure, 2.80 Å: 6ZI6 300 ps structure, 2.80 Å: 6ZI5 300 ps structure, 2.80 Å: 6ZI9 8 μs structure, 2.80 Å: 6ZIA |
Dods et al. (2021).
Dods R, Båth P, Morozov D, Gagnér VA, Arnlund D, Luk HL, Kübel J, Maj M, Vallejos A, Wickstrand C, Bosman R, Beyerlein KR, Nelson G, Liang M, Milathianaki D, Robinson J, Harimoorthy R, Berntsen P, Malmerberg E, Johansson L, Andersson R, Carbajo S, Claesson E, Conrad CE, Dahl P, Hammarin G, Hunter MS, Li C, Lisova S, Royant A, Safari C, Sharma A, Williams GJ, Yefanov O, Westenhoff S, Davidsson J, DePonte DP, Boutet S, Barty A, Katona G, Groenhof G, Brändén G, & Neutze R (2021). Ultrafast structural changes within a photosynthetic reaction centre.
Nature 589 7841:310-314. PubMed Id: 33268896. doi:10.1038/s41586-020-3000-7. |
||
Photosynthetic Reaction Center, lipidic cubic phase for femtosecond crystallography, at SACLA: Blastochloris viridis B Bacteria, 2.40 Å
at SwissFEL, 2.25 Å: 7Q7Q |
Båth et al. (2022).
Båth P, Banacore A, Börjesson P, Bosman R, Wickstrand C, Safari C, Dods R, Ghosh S, Dahl P, Ortolani G, Björg Ulfarsdottir T, Hammarin G, García Bonete MJ, Vallejos A, Ostojić L, Edlund P, Linse JB, Andersson R, Nango E, Owada S, Tanaka R, Tono K, Joti Y, Nureki O, Luo F, James D, Nass K, Johnson PJM, Knopp G, Ozerov D, Cirelli C, Milne C, Iwata S, Brändén G, & Neutze R (2022). Lipidic cubic phase serial femtosecond crystallography structure of a photosynthetic reaction centre.
Acta Crystallogr D Struct Biol 78 :698-708. PubMed Id: 35647917. doi:10.1107/S2059798322004144. |
||
Photosynthetic Reaction Center: Rhodobacter sphaeroides B Bacteria, 2.80 Å
also known as Cereibacter sphaeroides |
Allen et al. (1987).
Allen JP, Feher G, Yeates TO, Komiya H, & Rees DC (1987). Structure of the reaction center from Rhodobacter sphaeroides R-26: the protein subunits.
Proc Natl Acad Sci USA 84 :6162-6166. PubMed Id: 2819866. See also: Yeates et al. (1988). Yeates TO, Komiya H, Chirino A, Rees DC, Allen JP, & Feher G (1988). Structure of the reaction center from Rhodobacter sphaeroides R-26 and 2.4.1: protein-cofactor (bacteriochlorophyll, bacteriopheophytin, and carotenoid) interactions.
Proc Natl Acad Sci USA 85 :7993-7997. PubMed Id: 3186702. Allen et al. (1987). Allen JP, Feher G, Yeates TO, Komiya H, & Rees DC (1987). Structure of the reaction center from Rhodobacter sphaeroides R-26: the cofactors.
Proc Natl Acad Sci USA 84 :5730-5734. PubMed Id: 3303032. |
||
Photosynthetic Reaction Center: Rhodobacter sphaeroides B Bacteria, 3.1 Å
|
Chang et al. (1991).
Chang CH, Elkabbani O, Tiede D, Norris J, & Schiffer M. (1991). Structure of the membrane-bound protein photosynthetic reaction center from Rhodobacter sphaeroides.
Biochemistry 30 :5352-5360. PubMed Id: 2036404. |
||
Photosynthetic Reaction Center: Rhodobacter sphaeroides B Bacteria, 3.00 Å
M202HL mutant, 3.00 Å: 1PST |
Chirino et al. (1994).
Chirino AJ, Lous EJ, Huber M, Allen JP, Schenck CC, Paddock ML, Feher G, & Rees DC (1994). Crystallographic analyses of site-directed mutants of the photosynthetic reaction center from Rhodobacter sphaeroides.
Biochemistry 33 :4584-4593. PubMed Id: 8161514. doi:10.1021/bi00181a020. |
||
Photosynthetic Reaction Center: Rhodobacter sphaeroides (dark state) B Bacteria, 2.2 Å
Illuminated state, 2.60 Å 1AIG |
Stowell et al. (1997).
Stowell MH, McPhillips TM, Rees DC, Soltis SM, Abresch E, & Feher G (1997). Light-induced structural changes in photosynthetic reaction center: implications for mechanism of electron-proton transfer.
Science 276 :812-816. PubMed Id: 9115209. |
||
Photosynthetic Reaction Center: Rhodobacter sphaeroides B Bacteria, 2.35 Å
Lipidic cubic phase crystallization. |
Katona et al. (2003).
Katona K, Andréasson U, Landau EM, Andr?asson L-K, & Neutze R (2003). Lipidic cubic phase crystal structure of the photosynthetic reaction centre from Rhodobacter sphaeroides at 2.35 Å.
J Mol Biol 331 :681-692. PubMed Id: 12899837. |
||
Photosynthetic Reaction Center: Rhodobacter sphaeroides B Bacteria, 1.87 Å
pH 8 neutral state. pH 8 charge-separated state, 2.07 Å: 2J8D |
Koepke et al. (2007).
Koepke J, Krammer EM, Klingen AR, Sebban P, Ullmann GM, & Fritzsch G. (2007). pH modulates the quinone position in the photosynthetic reaction center from Rhodobacter sphaeroides in the neutral and charge separated states.
J Mol Biol 371 :396-409. PubMed Id: 17570397. |
||
Photosynthetic Reaction Center, Zn-substituted: Rhodobacter sphaeroides B Bacteria, 2.85 Å
M(L214H) variant, 2.85 Å: 4N7L |
Saer et al. (2014).
Saer RG, Pan J, Hardjasa A, Lin S, Rosell F, Mauk AG, Woodbury NW, Murphy ME, & Beatty JT (2014). Structural and kinetic properties of Rhodobacter sphaeroides photosynthetic reaction centers containing exclusively Zn-coordinated bacteriochlorophyll as bacteriochlorin cofactors.
Biochim Biophys Acta 1837 :366-374. PubMed Id: 24316146. doi:10.1016/j.bbabio.2013.11.015. |
||
Selikhanov et al. (2020).
Selikhanov G, Fufina T, Vasilieva L, Betzel C, & Gabdulkhakov A (2020). Novel approaches for the lipid sponge phase crystallization of the Rhodobacter sphaeroides photosynthetic reaction center.
IUCrJ 7 :1084-1091. PubMed Id: 33209319. doi:10.1107/S2052252520012142. |
|||
Photosynthetic Reaction Center, M subunit F197H mutant: Cereibacter sphaeroides B Bacteria, 2.10 Å
by fixed-target serial synchrotron crystallography (room temperature, 26keV), 2.04 Å 7P2C |
Selikhanov et al. (2022).
Selikhanov G, Fufina T, Guenther S, Meents A, Gabdulkhakov A, & Vasilieva L (2022). X-ray structure of the Rhodobacter sphaeroides reaction center with an M197 Phe→His substitution clarifies the properties of the mutant complex.
IUCrJ 9 :261-271. PubMed Id: 35371503. doi:10.1107/S2052252521013178. |
||
Photosynthetic Reaction Center, L subunit I177H and M subunit F197H double mutant: Cereibacter sphaeroides B Bacteria, 2.60 Å
|
Fufina et al. (2023).
Fufina TY, Selikhanov GK, Gabdulkhakov AG, & Vasilieva LG (2023). Properties and Crystal Structure of the Cereibacter sphaeroides Photosynthetic Reaction Center with Double Amino Acid Substitution I(L177)H + F(M197)H.
Membranes (Basel) 13 2:157. PubMed Id: 36837660. doi:10.3390/membranes13020157. |
||
Photosynthetic Reaction Center: Thermochromatium tepidum B Bacteria, 2.2 Å
|
Nogi et al. (2000).
Nogi T, Fathir I, Kobayashi M, Nozawa T, & Miki K (2000). Crystal structures of photosynthetic reaction center and high-potential iron-sulfur protein from Thermochromatium tepidum: thermostability and electron transfer.
Proc Natl Acad Sci USA 97 :6031-6036. PubMed Id: 11095707. |
||
Homodimeric photosynthetic reaction center: Heliobacterium modesticaldum B Bacteria, 2.2 Å
This the simplest known reaction center. |
Gisriel et al. (2017).
Gisriel C, Sarrou I, Ferlez B, Golbeck JH, Redding KE, & Fromme R (2017). Structure of a symmetric photosynthetic reaction center-photosystem.
Science 357 :1021-1025. PubMed Id: 28751471. doi:10.1126/science.aan5611. |
||
Reaction center bound with cytochrome c (the larger form): Chloracidobacterium thermophilum B Bacteria, 2.61 Å
cryo-EM structure bound with cytochrome c (the smaller form), 2.22 Å: 7VZR |
Dong et al. (2022).
Dong S, Huang G, Wang C, Wang J, Sui SF, & Qin X (2022). Structure of the Acidobacteria homodimeric reaction center bound with cytochrome c.
Nat Commun 13 1:7745. PubMed Id: 36517472. doi:10.1038/s41467-022-35460-6. |
||
Light-Harvesting+Reaction Center Complexes
|
|||
LH1-RC complex, P21 crystal form: Thermochromatium tepidum B Bacteria, 3.01 Å
Supersedes 3WMN. C2 crystal form. 3.01 Å: 3WMM |
Niwa et al. (2014).
Niwa S, Yu LJ, Takeda K, Hirano Y, Kawakami T, Wang-Otomo ZY, & Miki K (2014). Structure of the LH1-RC complex from Thermochromatium tepidum at 3.0 Å.
Nature 508 7495:228-232. PubMed Id: 24670637. doi:10.1038/nature13197. |
||
LH1-RC complex: Thermochromatium tepidum B Bacteria, 1.9 Å
|
Yu et al. (2018).
Yu LJ, Suga M, Wang-Otomo ZY, & Shen JR (2018). Structure of photosynthetic LH1-RC supercomplex at 1.9 Å resolution.
Nature 556 7700:209-213. PubMed Id: 29618814. doi:10.1038/s41586-018-0002-9. |
||
LH1-RC complex with bound electron donor HiPIP: Thermochromatium tepidum E Eukaryota, 2.89 Å
|
Kawakami et al. (2021).
Kawakami T, Yu LJ, Liang T, Okazaki K, Madigan MT, Kimura Y, & Wang-Otomo ZY (2021). Crystal structure of a photosynthetic LH1-RC in complex with its electron donor HiPIP.
Nat Commun 12 1:1104. PubMed Id: 33597527. doi:10.1038/s41467-021-21397-9. |
||
Photosynthetic assembly RC-FMO2: Chlorobaculum tepidum B Bacteria, 3.08 Å
cryo-EM structure RC-FMO1, 3.49 Å: 7UEB |
Puskar et al. (2022).
Puskar R, Du Truong C, Swain K, Chowdhury S, Chan KY, Li S, Cheng KW, Wang TY, Poh YP, Mazor Y, Liu H, Chou TF, Nannenga BL, & Chiu PL (2022). Molecular asymmetry of a photosynthetic supercomplex from green sulfur bacteria.
Nat Commun 13 1:5824. PubMed Id: 36192412. doi:10.1038/s41467-022-33505-4. |
||
LH1-RC complex: Blastochloris viridis B Bacteria, 2.87 Å
cryo-EM structure |
Qian et al. (2018).
Qian P, Siebert CA, Wang P, Canniffe DP, & Hunter CN (2018). Cryo-EM structure of the Blastochloris viridis LH1-RC complex at 2.9 Å.
Nature 556 7700:203-208. PubMed Id: 29618818. doi:10.1038/s41586-018-0014-5. |
||
RC-LH core complex: Roseiflexus castenholzii B Bacteria, 4.1 Å
cryo-EM structure |
Xin et al. (2018).
Xin Y, Shi Y, Niu T, Wang Q, Niu W, Huang X, Ding W, Yang L, Blankenship RE, Xu X, & Sun F (2018). Cryo-EM structure of the RC-LH core complex from an early branching photosynthetic prokaryote.
Nat Commun 9 1. PubMed Id: 29674684. doi:10.1038/s41467-018-03881-x. |
||
RC-LH114-W complex: Rhodopseudomonas palustris B Bacteria, 2.65 Å
cryo-EM structure RC-LH116 complex, 2.80 Å: 6Z5R |
Swainsbury et al. (2021).
Swainsbury DJK, Qian P, Jackson PJ, Faries KM, Niedzwiedzki DM, Martin EC, Farmer DA, Malone LA, Thompson RF, Ranson NA, Canniffe DP, Dickman MJ, Holten D, Kirmaier C, Hitchcock A, & Hunter CN (2021). Structures of Rhodopseudomonas palustris RC-LH1 complexes with open or closed quinone channels.
Sci Adv 7 3. PubMed Id: 33523887. doi:10.1126/sciadv.abe2631. |
||
LH1-RC super complex: Rhodospirillum rubrum B Bacteria, 2.76 Å
cryo-EM structure |
Tani et al. (2021).
Tani K, Kanno R, Ji XC, Hall M, Yu LJ, Kimura Y, Madigan MT, Mizoguchi A, Humbel BM, & Wang-Otomo ZY (2021). Cryo-EM Structure of the Photosynthetic LH1-RC Complex from Rhodospirillum rubrum.
Biochemistry 60 :2483-2491. PubMed Id: 34323477. doi:10.1021/acs.biochem.1c00360. |
||
LH1-RC super complex: Rhodospirillum rubrum B Bacteria, 2.50 Å
cryo-EM structure |
Qian et al. (2021).
Qian P, Croll TI, Swainsbury DJK, Castro-Hartmann P, Moriarty NW, Sader K, & Hunter CN (2021). Cryo-EM structure of the Rhodospirillum rubrum RC-LH1 complex at 2.5 Å.
Biochem J 478 17:3253-3263. PubMed Id: 34402504. doi:10.1042/BCJ20210511. |
||
LH1-RC super complex: Rhodobacter sphaeroides B Bacteria, 2.94 Å
cryo-EM structure |
Tani et al. (2021).
Tani K, Nagashima KVP, Kanno R, Kawamura S, Kikuchi R, Hall M, Yu LJ, Kimura Y, Madigan MT, Mizoguchi A, Humbel BM, & Wang-Otomo ZY (2021). A previously unrecognized membrane protein in the Rhodobacter sphaeroides LH1-RC photocomplex.
Nat Commun 12 1:6300. PubMed Id: 34728609. doi:10.1038/s41467-021-26561-9. |
||
RC-LH1-PufXY monomer complex: Rhodobacter sphaeroides B Bacteria, 2.50 Å
cryo-EM structure |
Qian et al. (2021).
Qian P, Swainsbury DJK, Croll TI, Salisbury JH, Martin EC, Jackson PJ, Hitchcock A, Castro-Hartmann P, Sader K, & Hunter CN (2021). Cryo-EM structure of the monomeric Rhodobacter sphaeroides RC-LH1 core complex at 2.5 Å.
Biochem J 478 20:3775-3790. PubMed Id: 34590677. doi:10.1042/BCJ20210631. |
||
LH1-RC super complex dimer: Cereibacter sphaeroides B Bacteria, 2.75 Å
cryo-EM structure structure lacking protein-U, 2.63 Å 7VY3 |
Tani et al. (2022).
Tani K, Kanno R, Kikuchi R, Kawamura S, Nagashima KVP, Hall M, Takahashi A, Yu LJ, Kimura Y, Madigan MT, Mizoguchi A, Humbel BM, & Wang-Otomo ZY (2022). Asymmetric structure of the native Rhodobacter sphaeroides dimeric LH1-RC complex.
Nat Commun 13 1:1904. PubMed Id: 35393413. doi:10.1038/s41467-022-29453-8. |
||
LH1-RC super complex dimer, in class 1: Cereibacter sphaeroides B Bacteria, 2.74 Å
cryo-EM structure in class-2, 2.90 Å 7VOT PufX-KO RC-LH1, 4.20 Å 7VOY WT RC-LH1 monomer, 2.79 Å 7VNY PufY-KO RC-LH1 monomer, 2.86 Å 7VNM PufY-KO RC-LH1 dimer type-1, 3.08 Å 7VA9 PufY-KO RC-LH1 dimer type-2, 3.45 Å 7VB9 |
Cao et al. (2022).
Cao P, Bracun L, Yamagata A, Christianson BM, Negami T, Zou B, Terada T, Canniffe DP, Shirouzu M, Li M, & Liu LN (2022). Structural basis for the assembly and quinone transport mechanisms of the dimeric photosynthetic RC-LH1 supercomplex.
Nat Commun 13 1:1977. PubMed Id: 35418573. doi:10.1038/s41467-022-29563-3. |
||
Photosynthetic FMO-Reaction Center complex (FMO-RC): Chlorobaculum tepidum B Bacteria, 2.50 Å
cryo-EM structure |
Xie et al. (2023).
Xie H, Lyratzakis A, Khera R, Koutantou M, Welsch S, Michel H, & Tsiotis G (2023). Cryo-EM structure of the whole photosynthetic reaction center apparatus from the green sulfur bacterium Chlorobaculum tepidum.
Proc Natl Acad Sci U S A 120 5:e2216734120. PubMed Id: 36693097. doi:10.1073/pnas.2216734120. |
Description of Table
The table above is initially presented in a collapsed form, and the user can expand different sections of the table, or the entire table, and bookmark different sections of the table, or a fully expanded table version of the page, using the , , , and icons on the left margin of the table section headers.
mpstruc Taxonomic Domain data are derived from the UniProt Knowledgebase, which is based on the NCBI taxonomy database. These taxa can be searched for using 'Text Search of Table', above. The following icons are used in the table, as appropriate:
The figure at the top right of the page shows the progress of membrane protein structure determination. The figure may be used freely in seminar presentations provided that the URL and lab information on the image are not removed.
Useful Membrane Protein Structure Resources
Progress of membrane protein structure determination. See also White (2009)
Bilayer Insertion of Membrane Proteins (Structural Bioinformatics and Computational Biochemistry Unit, Oxford)
Protein Data Bank of Transmembrane Proteins (Institute of Enzymology, Budapest)
mpstruc has a user interface to help accommodate the growing size of the protein data table. The dynamic nature of this interface is handled by your browser, and so, your particular browser, its configuration, and your hardware configuration all may have an impact on the interface performance.
You can use a URL like https://blanco.biomol.uci.edu/mpstruc?pdbid=1prh to open the mpstruc web page directly to the table entry for the pdb ID "1prh". mpstruc will use that parameter to build a link to the internal anchor for that protein (e.g., https://blanco.biomol.uci.edu/mpstruc/#id_1XKW_14_2, and then open to that anchor.
We've found that, in general, contemporary versions of Firefox, Chrome, and Safari provide the best performance. Internet Explorer performs well, but is a bit awkward when attempting to create a bookmark for this page to open with an expanded table (preparing the proper URL requires a page reload). This may also be an issue for older versions of the previously mentioned browsers.
The Opera browser, while full-featured, seems to be the slowest browser of those we've tested. If this is your favorite browser, you may want to bookmark an expanded table version of the page, and avoid using the dynamic features of the table.
Of course, browser providers are providing frequent updates of their products, so these observations may be out of date by the time you read this.
By the way, you can use the icons to bookmark sections of the table. That icon in the table header allows you to create a bookmark for this page with the table fully expanded.
If you discover any issues with this interface, please let us know. We want to make this resource as useful as possible!